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EXECUTIVE SUMMARY: 

 

The major accomplishments of this research program were as follows: 

 

1. We fabricated and tested the first inverse opal infrared “white” pigment. 

2. We made the first electrochromic cell that operated in the important 8µm-12µm 

atmospheric transmission window. 

3. We made the first all-polymer electrochromic cell, that contained no metallic components. 

4. We achieved 80% contrast, electrically tuned, in an infrared electrochromic cell. 

5. We demonstrated electrochromic switching in 67 milli-seconds, essentially a video rate. 

 

 



INTRODUCTION: 

 The goal of this research program was to create a technology for artificially 

programmable infrared emissivity of surfaces.  As an example, this would permit a vehicle, or a 

person to blend into its surroundings, and become invisible to an infrared camera.  A great deal 

has been accomplished in this research program, that will help convert this technology into a 

practical reality. 

 The main technical objective is the controlled reduction of infrared emissivity.  An 

emissivity reduction not an increase is desired, since objects of interest are generally hotter than 

their surroundings.  The tunability of emissivity is made possible by electrochromics.  Today, 

electrochromics is becoming a common technology that is used, for example, in self-dimming 

rear view mirrors in automobiles.  Electrochromic materials change their color by undergoing an 

electronic transition of some form.  In the most common type the electronic transformation is 

induced electro-chemically in special polymeric materials.  In effect this is a type of 

electrochemical doping, with the material thereby undergoing a transition from an insulator to a 

metal, with the corresponding changes in color.  

 There are two possible approaches to emissivity control:     

(a)  It is possible to imagine that the electronic transition is to a metallic state, that might have 

high reflectivity. 

  

(b)  The insulating state would be transparent, and it could be backed up by a highly reflective 

medium.   

  

  

 It turns out that the first option, (a) using the electrochemically doped metallic state as a 

reflector is not practical.  The electro-chemically doped metals are actually not very good 

reflectors in the infrared.  The materials are still somewhat resistive, compared to conventional 

metals, and therefore they are actually good absorbers in the infrared, rather than good reflectors.  

This is illustrated in 

Figure 1.  The visible band 

and infrared band have 

surprisingly opposite 

behaviour.  Therefore we 

employed option (b) 

above.   

  

  

  

  

  

  

 The requirements 

then were a polymeric 

material that was 

relatively transparent in 

the undoped state, and an 

infrared pigment that was 

“white” in the infrared.  

Such an infrared pigment 

would represent new 

technology, made for 

example by inverse opal 

photonic crystal particles 

in which short range order 

would suffice.  Such an 

infrared pigment would 

coat the rear side of the 

 
Figure 1:  The absorbance of PEDOT in the visible and the infrared.  

Notice the counter-intuitive effects of doping.  Doping eliminates 

the strong absorption in the visible, but the added carriers increase 

the absorption in the infrared. 



 
Figure 2:  The basic strategy for controlling infrared emissivity by means of an electrochromic 

cell. 

electrochromic polymer, as shown in Figure 2.  Such an infrared pigment could be regarded as a 

superior form of “white” pigment compared to titanium dioxide particles that are commonly used 

as white pigments in the visible range. 

 

 Thus the work divided itself into two parts:   

(1) The construction of the infrared electro-chemical cell with the highest infrared contrast 

possible. 

(2) The fabrication of this new type of infrared pigment based on a powder made of inverse opal 

photonic crystals.  It made sense to build the inverse opal photonic crystals out of chalcogenide 

glasses, that had the required infrared transparency, and the desirable high refractive index. 

 Most of the team’s effort (Reynolds, Tanner, Wudl, and Dunn) was directed toward the 

difficult task of building the infrared electrochemical cell, with the Principal Investigator directly 

supervising the infrared opal work that was taking place in the laboratory of Ray Baughmann.  

Initially that work was in the industrial AlliedSignal lab that had considerable experience with 

pigments as part of their textile business.  During this MURI program, there were a number of 

mergers, and corporate changes, and the Baughmann/Zakhidov team moved their research lab to 

the Univ. of Texas, Dallas.  With minor disruptions they continued their progress toward infrared 

chalcogenide photonic crystal reflectors until the completion of this MURI program.  

 

FABRICATION OF THE INFRARED ELECTRCHROMIC ELECTROCHEMICAL CELL: 

 

 Responsibility for the creation of the infrared electrochemical cell fell to Reynolds and to 

Dunn, who had parallel approaches.  Wudl concentrated on the synthesis of novel narrow 

bandgap electrochromic polymers, that would have more specialized applications, like the fine 

tuning of the infrared response over a particular narrow portion of the infrared..   



Figure 3:  A very successful infrared electrochromic cell fabricated by our Florida group.  In this 

case, the reflective pigment behind the Redox polymer is actually a slitted reflective gold film, 

rather than the inverse opal chalcogenide photonic crystal that is one of the goals of the program.  

All the layers below the slitted gold film are simply for the purpose of providing a practical 

counter-electrode for the active Redox polymer. 
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 The preferred dopable polymer for these infrared electrochromic was generally 

PEDOT-Me2 whose structure is illustrated in the inset to Figure 3.  Nevertheless, a wide variety 

of candidate polymers were investigated.   

 

 The infrared performance allows for over 80% emissivity contrast as shown in Figure 4.  
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Figure 4:  Tuning the infrared emissivity, electrochemically.  80% contrast is achieved. 
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Figure 5:  This electrochemical design permitted emissivity modulation in the 8µm-12µm 

atmospheric window. 

Such a high contrast level bodes well for the practical application of this technology in the field.  

Nonetheless, a cursory examination of Figure 4, shows strong absorption peaks at the water band, 

and in the CH stretching band, where there is weak modulation contrast.  The water peak can be 

removed by careful drying of the polymer, and the CH stretch can be diminished to about a 20% 

peak, that still permits considerable modulation.  The contrast seems to peak for an 

electrochromic polymer film thickness, <400nm.   

 In tests, after 10,000 deep double switches the polymer was still electrochemically very 

active, with only a 12% loss in reflectance difference.  By substituting a commercially available 

PMMA porous white membrane, (that is supposed to emulate our inverse opal infrared pigment), 

in place of the slitted gold film reflector, the path that the ions had to follow was greatly 

shortened.  This allowed the resistive drop to diminish and permitted faster switching times, 

<1sec.  Starting from 74% contrast, after 168,000 cycles the contrast had only dropped to 66%, at 

an infrared wavelength of λ=1.5µm.   

 Furthermore Dunn has also studied mesoporous electrode configurations that allow for 

even faster reduction and oxidation of the electrochromic polymer.  Switching times as fast as 

67milli-sec was observed, which is close to video rates. 

There were also experiments in which the counter electrode was also an electrochromic polymer.  

This allowed for novel architectures in which various double sided effects could be demonstrated.  

These “metal-free” electrochromic cells are expected to be useful, where metal electrodes could 

cause difficulties.   

 The 

electrochromic cell 

experiments were 

extended well into 

the 8µm-12µm 

atmospheric window.  

The cell geometry is 

shown in Figure 5.  

The new features 

included a proper 

Germanium window, 

anti-reflection 

coated.  Excellent 

reflection contrast is 

noted in Figure 6, 

Wavelength (µm)

%R

+1.0V (doped)

-1.0V (undoped)

0 V 

• AR coating on both sides of 

Ge and gel electrolyte with 

carbon black was applied to 

increase reflection contrast of 

IR device

• IR reflection varies between 

20~30% and 60~70% for 

undoped and doped states

  

Figure 6.  Significant reflection modulation in the 8µm-12µm 

atmospheric window.  Contrary to previous cases, the performance 

improved with carbon black impregnated absorbing gel electrolyte, rather 

than the “white” pigment electrolyte. 



although using a black reflector, rather than a white reflector.  Owing to the relatively permeable 

PMMA-based gel electrolyte, switching times <100milli-sec were observed again. 

 The results presented above represent a number of firsts, that we are proud of, including: 

1. We made the first electrochromic cell that operated in the important 8µm-12µm 

atmospheric transmission window. 

2. We made the first all-polymer electrochromic cell, that contained no metallic components. 

3. We achieved 80% contrast, electrically tuned, in an infrared electrochromic cell. 

4. We demonstrated electrochromic switching in 67 milli-seconds, essentially a video rate. 

This level of electrochromic cell performance should be very suggestive to government decision 

makers who are interested in the potential of electrochromics for emissivity control.  None of the 

electrochromic cells listed above took advantage of the inverse opal infrared pigment structures, 

that were being developed at the University of Texas.  Those novel pigments are expected to 

produce even higher levels of performance. 

 

SYNTHESIS OF LOW BANDGAP INFRARED ELECTROCHROMIC POLYMERS: 

 

 Prof. Fred Wudl took the lead in this project.  Such low bandgap infrared polymers could 

be very useful in fine-tuning infrared response, within an electrochemical cell that is oriented 

toward overall reduced emissivity.  Wudl 

was able to produce polymers with a 

bandgap as small as 0.2electron-Volts.  

His strategy was to combine a molecular 

group with a low energy Lowest 

Unoccupied Molecular Orbital, (LUMO) 

with another group with a relatively high, 

Highest Occupied Molecular Orbital, 

(HOMO).  This squeezed the electron 

transition energy splitting to make it low 

enough to be useful in the infrared. 

NN

S SS

NN

S SS
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Figure 7:  These unusually large groups attached to 

a polymeric backbone, results in very low infrared 

bandgap electrochromic polymers. 

 An example of such a low bandgap 

polymer is shown in Figure 7. 

 

 

FABRICATION OF INFRARED WHITE PIGMENT: 

 

 In general the infrared electrochromic cells should perform best with a white pigment 

backing.  When the polymer is undoped, it transmits radiation that is reflected by the white 

backing, resulting in a low emissivity.  Conversely, when doped, the polymer is quite absorbing 

in the infrared, (though not in the visible).  Usually the polymer is thin enough, <400nm, that the 

infrared vibrational bands in the polymer itself have small effect, but that thickness is more than 

enough to hold a sufficient density of doped electrons per square centimeter to be strongly 

absorbing.  Thus the goal of tunable low emissivity relies on having a low emissivity backing on 

the undoped polymer.  The work described below was done by Dr. Ali Aliev working at the Univ. 

of Texas, Dallas. 

 We have chosen to work with the chalcogenide glasses that have bandgaps compatible 

with infrared transmission, are easy to fabricate, and have among the high refractive indices 

known.  The  high refractive index insures strong scattering which produces the lowest possible 



emissivity.  Indeed, in the visible region of the spectrum TiO2 is used as a white pigment for the 

same reason.  It has the highest know refractive index in the visible.  In the same way 

chalcogenides have even higher refractive index, but in the infrared. 

Figure 8:  SEM image of a sintered opal template fabricated from silica microspheres of 3.9µm. 

(a) Low-magnification image showing long-range ordering. Several ordered layers can be seen 

on the fractured edge to the bottom right. (b) High-magnification image showing a slight 

decrease in the lattice parameter after sintering at 900
o
C for 24 hours.  The average distance 

between spheres reduced from 3.9µm to 3.65µm. 

      
(a)      (b) 

 There have been numerous studies of inverse opal photonic crystals.  Their photonic 

bandgap is not very wide, but the structure scatters strongly over a broad range of frequencies.  

The starting point for these strongly scattering structures is a face centered cubic arrangement of 

polystyrene spheres as shown in Figure 8.  Similar SEM pictures have been shown by research 

groups around the world, but usually at a size scale about 5-10 times smaller, where they are 

suitable at visible frequencies.  We believe that we are the first with such large opal structures 

whose period is suitable for the infrared.  Special care was taken with the purification of these 

spheres to make certain that non-spherical impurities were removed. 

 

Table I:  Properties of some potential opal infiltration materials. 

Name Formula Refraction 

index  

Transmission 

range (µm) 

Melting point 

(
o
C) 

AMTIR-1* Ge33As12Se55 2.514 (4 µm) 

  2.497 (10 µm) 

0.9 - 16 370 

Arsenic 

selenide 

As2Se3 2,41 (4 µm)  2.0 - 12 260 

Arsenic  

sulfide 

As2S3 2,41 (5 µm) 1.5 - 8 310 

Gallium 

Arsenide 

GaAs  3,3  (4 µm) 1.0 - 15 1238 

 Ge25Ga5As5S65 2.58 0.6 - 7 850 
*  http://www.amorphousmaterials.com/Amtir-1.htm 

 The next important step was infiltration of this long period opal structure with 

chalcogenide glass.  Table I indicates the physical properties of some arsenic and selenium 



containing compounds.  We used the commercial blend called AMTIR-1.  Pressure assisted the 

infiltration process at 600°C.   

 

       
(a)       (b) 

Figure 9:  Left: SEM image of the cleaved edge of the chalcogenide glass-silica opal composite 

with ~100% infiltration. Right: image of the chalcogenide glass inverse opal with the silica glass 

dissolved away.  The channels between voids are easily seen.  The original particle diameter of 

the template was 2.3µm. After sintering the distance between particles reduced to 2µm 

 The final step in using these materials would be to break up the beautiful inverse opal 

structure of Figure 9(b) into a coarse powder that would have substantial infrared reflectivity.  

This powder would be the “white” infrared pigment that we refer to.  It would be entirely 

analogous to a coarse polycrystalline mass of TiO2 particles, that looks brilliant white in the 

visible regime.  We have measured reflectivity up to 60%-70%, but that has to be merely a lower 

limit since it was difficult to collect all the scattered optical radiation.  An integrating sphere 

measurement would have been most decisive as to the degree of infrared “whiteness” that would 

be observed. 

 The fabrication outlined above is ready to be adapted for the creation of a useful pigment 

that consists of a porous mass of inverse opal material.  For further conclusions on this project, 

please see the Executive Summary at the beginning.  
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