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ARTICLE

Electrochromic two-dimensional covalent organic
framework with a reversible dark-to-transparent
switch
Fei Yu 1,2, Wenbo Liu1, Si-Wen Ke3, Mohamedally Kurmoo4, Jing-Lin Zuo 3✉ & Qichun Zhang1,5✉

Electrochromic (EC) materials with a dark-to-transmissive switch have great applications in

optical communications, infrared wavelength detectors for spacecraft, and infrared camou-

flage coatings. However, such electroactive materials with high stability and cyclability are

rare. Considering the advantages of the donor-acceptor approach (wide-range tuneable band

position) and porous two-dimensional (2D) covalent organic framework (COF, well-ordered

crystalline framework with stable structure and high surface area), in this work we con-

structed an extended delocalised π-electron layered dark purple EC-COF-1 by reacting the

donor N,N,N′,N′-tetrakis(p-aminophenyl)-p-benzenediamine (TPBD) with the acceptor 2,1,3-

benzothiadiazole-4,7-dicarboxaldehyde (BTDD). A sandwiched device made of EC-COF-1

exhibits the two-band bleaching (370 nm and 574 nm) in the visible region and becomes

transparent under the applied potential with an induced absorption centring at 1400 nm. This

discovery of a stable dark-to-transmissive switch in COF might open another door for their

application in many EC devices for various purposes.
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R
ecently, organic layered materials with extended π-electron
structures, and controllable porosity to mimic graphene
and its analogues are becoming the focus of much scientific

researches due to the numerous technological attributes—low
density, easy preparation, electronic activity, photoactivity asso-
ciated with the tuneable colours, the low-cost processing and
manufacturing, and the friendliness to our environment1,2.
Generally, the design strategy to construct electronic and optical
materials is to create covalent bonds between two redox-active
building blocks3. If both electron donating (D) and electron
accepting (A) building units are simultaneously used in one
structure, a D–A type-conjugated covalent organic framework
(COF) is formed4–7. By selecting the suitable D and A units with
reasonable energy levels (redox potentials), the COF with the
desired electrical, optical, or combined optoelectronic properties
could be achieved8–10. Recent reports have demonstrated the
applicability of functional D–A COF as active elements in organic
photovoltaics (OPV)11,12, photoconductive devices13, photo-
catalysis14–20, and two-photon-induced florescence21. Beside
benefitting from their ordered micro- or meso-pores22–24, COFs
are also used as external-stimuli-responsive materials to sense
light25, solvent26,27, and pH28–31. Although the energy levels of
D–A polymers can be tuned to reach the desired valence and/or
conduction band positions for the purpose to display desired EC
properties32–35, the application of D-A COF in electrochromic
devices (ECD) is rare36,37. However, for most EC products, such
as eyewear, smart windows, and display devices, neutral-state
black devices integrated with bleached states are highly desir-
able38. Nevertheless, to the best of our knowledge, black colour
currently remains a big challenge due to the special demand for
broadband absorption across the whole visible region. Such gap
strongly encourages us to develop COF with the ordered pores
and the extended regular π–π stacking structures for potential
application in electrochemistry and photoelectrochemistry fields.

Here, we show a D-A two-dimensional (2D) COF with N,N,N′,N′

-tetrakis(p-aminophenyl)-p-benzenediamine (TPBD)39 as donor, and
2,1,3-benzothiadiazole-4,7-dicarboxaldehyde (BTDD) as acceptor40,
was prepared (Fig. 1 and Supplementary Fig. 1) and has been em-
ployed as an active element for EC device (Fig. 1c). When the voltage
is ramped from −1.8 to +2V, the colour of the as-fabricated 2D
COF films accordingly change from opaque black to transparent.
Note that under our experimental condition, all EC devices are stable
and can be reversibly switched. The typical modulation of the elec-
tronic structure of the COF has been provided in Fig. 1c.

Results
COF design and synthesis. To obtain efficient electrical response,
COF materials should not only have sufficient oscillator strength
during charge transfer transitions, but also be sensitive to the
changes of polarity in the pores. The COF with electron-rich
donors and electron-deficient acceptors as building blocks might
be ideal candidates for such applications, because they would
provide us more opportunities to tune their band gap and elec-
trochemical activity. Since our previous results have already
demonstrated that triphenylamine units could easily realise well-
ordered frameworks with large crystal domains25, the same
strategy will be extended in the present research. Besides, this type
of units might enable us to optimise the EC response within a
single COF family. Moreover, we believe that the tuneable elec-
tron deficiency in aldehyde counterparts would produce the
electronic transitions, with the varying degrees of charge transfer
across the conjugated imine bond and decrease the energy gap to
form the dark-coloured COF (Supplementary Fig. 2).

The building units of TPBD and BTDD were synthesised
according to the reported methods with slight modifications (see

in Supporting Information)39,40. The 2D COF was prepared as
follows: after dissolving TPBD and BTDD in a mixed solvent of
1,2-dichlorobenzene:n-butanol (v:v= 1:1) and ultrasonicating 20
min to generate a dark purple solution, acetic acid (6M) was
added, followed by rapid freezing to 77 K, degassed through three
cycles of freeze–pump–thaw, and sealed under vacuum. After the
sealed tube was heated at 120 °C for 72 h, the targeted EC-COF-1
was formed as a dark purple precipitate.

EC-COF-1 films were deposited on transparent conducting
indium tin oxide (ITO) electrodes by direct liquid/solid interface
solvothermal method at 120 °C. ITO electrodes were cut to the
appropriate size (1.0 × 1.5 cm) and placed vertically in a glass
tube. The as-fabricated EC-COF-1 film on the ITO electrode
displays blue-purple colour with the well adhesion ability.

Structure characterisation. The powder X-ray diffraction
(PXRD) pattern of the as-synthesised EC-COF-1 (Fig. 2a) shows
several distinct Bragg reflections with 2θ approximately at 4.0, 5.8,
8.1, and 9.0°, consistent with that simulated for a model structure.
Furthermore, Pawley refinement was used to extract C2 space
group, and a unit cell of a= 31.96, b= 30.87, c= 4.72 Å, and β=
92.3°. The good match between the experimental result and the
simulated pattern is further confirmed as judged by their difference
(Fig. 2a–c and Supplementary Table 1). The suitable sample for
transmission electron microscopy (TEM) was prepared through
immersing ITO electrode into EtOH, where the films automatically
detached from the ITO substrates. The TEM image (Fig. 2d) of the
film clearly displays many parallel lines with the neighbouring dis-
tance of ~1.8 nm, attributing to a dominant hkl of an ordered
structure of the EC-COF-1. The homogenous topography of the as-
fabricated film is investigated through atomic force microscope
(AFM; Fig. 2e and Supplementary Fig. 3), where the thickness of the
EC-COF-1 film lies in the range 500 ± 20 nm. This result further
provides solid experimental evidence of the high crystalline and
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uniformity of the as-fabricated COF films. Attenuated total reflec-
tion Fourier transform infrared spectra revealed the absence of
both ν(N−H) from TPBD in the range of 3450–3010 cm−1 and ν
(C=O) at 1670 cm−1 from BTDD, while the emerging band at

1620 cm−1 is assigned to ν(C=N) for EC-COF-1 (Supplementary
Fig. 4). The Brunauer−Emmett−Teller measurement showed a non-
hysteretic sorption isotherm for N2 gas at 77 K with a surface area of
915m2 g−1 and a pore volume of 0.64 cm3 g−1 (Fig. 2f and Supple-
mentary Fig. 5). The non-local density function theory31–42 was
employed to estimate a pore size distribution of ~1.8 nm (Supple-
mentary Fig. 5). The X-ray diffraction (XRD) patterns of the as-
prepared films before and after electrochemical oxidation (Fig. 2g)
clearly indicated that there were almost no changes, suggesting that
the structure of the as-prepared EC-COF-1 film has high stability.
Thermogravimetric analysis revealed that EC-COF-1 has high
thermal stability up to 405 °C (Supplementary Fig. 6).

Band structure calculation. The electronic energy diagram of the
band structure calculated by the PBE-D3 process clearly suggests
that pristine EC-COF-1 is a semiconductor with an apparent
indirect energy band gap of 0.64 eV (Fig. 3a and Supplementary
Fig. 7)43, which is consistent with the observed gap of 0.75 eV from
solid-state ultraviolet–visible–near-infrared (UV–vis–NIR) spectrum
(Supplementary Fig. 8). The bandwidths of the valence and the
conduction bands are 0.34 and 0.15 eV, respectively. The HOMO of
the valence band maximum (VBM) is predominantly located on the
TPBD donor node, while the LUMO of the conduction band
minimum (CBM) is delocalised over the BTDD acceptor unit,
confirming the π-conjugated feature (Fig. 3b, c). Furthermore, the
CBM and VBM dominantly constitute of the atomic orbitals of C
and N, which supports the creation of expanded π-conjugation,
since these energy levels were observed through the partial density of
states (Supplementary Figs. 9 and 10)44–46.

Electrochromism. A quasi-solid-state device was constructed to
evaluate the potential application of the EC-COF-1 film as an EC
electrode. The EC device has a sandwiched configuration (Figs. 1b
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and 3d), where an EC-COF-1-covered ITO plate was employed as
the working electrode, another blank ITO glass as the counter
electrode, and a LiClO4/propylene carbonate-based PMMA
polymer gel as a quasi-solid electrolyte, which was injected into
the space between two electrodes. When an applied external
potential across the device is gradually increased, both absorption
bands at 370 and 574 nm proportionally decrease. Meanwhile, the
concomitant formation of new absorption arose in the NIR
region (Fig. 3d), indicating the formation of radical cations
(polarons) and further evolving into dications (bipolarons) at
higher bias voltages (Supplementary Fig. 11). These changes can
be clearly observed in the transmittance (ΔT%) of 33% at 574 nm
and 12% at 730 nm. Moreover, the stability of EC devices was also
studied, where ΔT% dropped only ca. 0.3% at 574 nm and 0.5% at
730 nm after 15 cycles of switching potential. Also, good stability
in 200 cycles was observed under cyclic voltammetry test.
Moreover, the XRD pattern at the hkl (100) Bragg reflection was
retained, indicating that the EC-COF-1 structure is stable after
EC performances (Figs. 2g and 3e, and Supplementary Figs. 12
and 13). The response time is obtained from the ΔT% experi-
ments when the contrast ratio reach over 90% of its maximum of
EC-COF-1 ECD between bleached and coloured states. Colouring
(tc) and bleaching (tb) times of film electrodes at 574 and 730 nm
were 1.8/7.2 and 2.6/3.5 s, respectively (Supplementary Figs. 14
and 15). The colouration efficiencies at 574 and 730 nm were 284
and 246 cm2 C−1, respectively. Since NIR switching has some
important applications in several fields, such as infrared wave-
length detectors for spacecraft, optical communications, and
biomedicals47–51, our D–A COF with the distinct advantage to
significantly reduce the energy band gap (Fig. 3a) could be treated
as a promising visible-to-NIR EC material.

The relative luminance changes during potential programming
were studied through measuring the brightness of the transmitted
light as a percentage of that of a light source calculated against
the eye sensitivity. In the process of electrochemical oxidation,
the colour of EC-COF-1 films switched from an opaque blue-
purple state to strongly transparent appearance with a relative
luminance change of up to 36.5% (Supplementary Fig. 16). A
detailed colorimetry study of the blue-purple colour of the
neutral-state EC-COF-1 suggests significantly negative b* value
and in particular small a* value compared to b*, where L*a*b*
values of the neutral and oxidised states can be figured out from
the CIE 1976 L*a*b* colour model. By oxidation, the L* value
jumps from 34 to 72, while the a* and b* values change from 6 to
−2 and −14 to 12, respectively (Fig. 3d and Supplementary
Fig. 16). These results imply that EC-COF-1 transforms into a
transmissive state, where the human eye can hardly perceive the
residual colour, suggesting that the EC device reaches nearly
the ‘white point’.

Different from most EC materials with colour changes from
light (neutral state) to dark (oxidised state), the D–A approach
could allow us to construct EC COF materials with two-band
absorption (deep absorption, i.e., blue-purple) in the visible
region (neutral state), which becomes transparent after an electric
field is applied, and simultaneously, NIR absorption arises. This
approach allows us to ‘merge’ these bands together for the
synthesis of highly saturated dark-coloured materials. Further-
more, theoretical work suggests that the ground state of the
oxidised D–A system contains the local energy levels within the
band gap, which could rationalise the presence of the low energy
NIR bands in the optical spectrum.

Discussion
We have demonstrated a successful D–A approach in constructing
COF with a reversible electrochromic property switching from

blue-purple to transparent. We believe that their D–A structure,
stable crystallinity, high surface area, reversible transparency in the
visible region, and the opacity in the NIR region are key factors to
allow us to obtain such dark-to-transmissive switch. Together with
other appealing advantages of COF such as the ease of self-
assembly and low weight, we believe that such materials would
have great application in diverse EC devices and stimuli-responsive
instruments.

Methods
The synthesis of EC-COF-1 bulk powder. The synthesis of COF bulk powder was
performed under vacuum in polytetrafluoroethylene-sealed glass reaction tubes
(20 mL). Solvents and acetic acid were obtained in highly pure grades from
commercial suppliers and were, unless shipped under argon, degassed, and
saturated with argon prior to use. TPBD (23.2 mg, 50 μmol) and BTDD (19.3 mg,
100 μmol) were filled into a reaction tube, followed by the addition of a mixed
solvent of 1,2-dichlorobenzene:n-butanol (v:v= 1:1 mL). After ultrasonicating 20
min, a dark purple solution was formed, followed by the addition of acetic acid
(200 µL, 6 M), rapid freezing to 77 K, degassed through three freeze–pump–thaw
cycles for three times, and sealed under vacuum. Then, the sealed tube was heated
at 120 °C for 72 h. After cooling to room temperature, the precipitate was col-
lected by filtration, washed with MeCN, and dried in air to yield a dark purple
precipitate.

EC-COF-1 thin film synthesis. COF thin films were prepared in a 20 mL glass
reaction tube of 12 mm diameter. ITO-coated glass (10–12Ω/ϒ) substrates were
cleaned with detergent solution, water, acetone, and isopropanol, and then, acti-
vated with an O2-plasma for 10 min directly before use. The substrates were placed
vertically in a glass tube. TPBD (4.6 mg, 10 μmol) and BTDD (3.8 mg, 20 μmol)
were filled into the tube, followed by the addition of a mixed solvent of 1,2-
dichlorobenzene:n-butanol (v:v= 2:2 mL), and ultrasonicating 20 min to generate a
dark purple solution. An ITO substrate was inserted and acetic acid (200 µL, 6 M)
was added, followed by rapid freezing to 77 K, degassed through
freeze–pump–thaw cycle for three times. The tube was sealed and heated to 120 °C
for 72 h. After cooling to room temperature, the substrate was immersed in dry
MeCN and dried under N2. Thinner films were grown using shorter reaction times
ranging from 4 h to 2 days.

Structure characterisation. PXRD patterns were conducted on a PANalytical
X’Pert Pro MPD diffractometer using Cu Kα radiation (λ= 1.5406 Å) and oper-
ating at 40 kV and 40mA between 2 and 30° (2θ). Thin film XRD patterns were
conducted on Bruker D8 Discover with Ni-filtered Cu Kα radiation (λ= 1.5406 Å)
and a LynxEye position-sensitive detector. TEM was performed with a JEM-2100
(JEOL Ltd., Japan) with an accelerating voltage of 200 kV.

Optical absorption spectroscopy. UV–vis–NIR spectra were recorded on a
Perkin-Elmer Lambda 950 spectrometer equipped with a 150 mm InGaAs inte-
grating sphere. Time-resolved absorption measurements were performed at fixed
detector gain and slit settings. Diffuse reflectance spectra were collected with a
Praying Mantis (Harrick) accessory and were referenced to barium sulphate
powder as white standard. The specular reflection of the sample surface was
removed from the signal by spatial filtering.

Data availability
The data that support the findings of this study are available within the article and
Supplementary Information files, or available from the corresponding authors on
request. Source data are provided with this paper.
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