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Abstract

A uniform vertical electric field produces an instability
in a poorly-conducting fluid subject to a vertical temperature
gradient. A gradient in conductivity resulting from the
temperature gradient causes free charge to accumulate in the
fluid when an electric field is applied. For the cases con-
sidered the gradient in dielectric constant can be neglected
with the significant electric force that due to the free charge.
The threshold conditions for the instability are predicted using
linear perturbation theory. Approximations are made which allow
the equations with space-varying coefficients to be solved. The

analysis shows that, for fluids with short or moderate electrical

*Present Address: Charged Particle Research Laboratory, Depart-
ment of Electrical Engineering, University of Illinois, Urbana,
Illinois.




relaxation times, the electric field causes the gravity wave

propagating downward to become unstable.
I. INTRODUCTION

A fluid that is uniformly heated from above is stabilized by
gravity because its density increases with depth. If the fluid is
a‘poor electrical conductor, the conductivity can be a very strong
function of temperature and a vertical electric field will produce
an instability. A theory to predict the‘threshold conditions for
this instability is developed in this paper.

Figure 1 illustrates the problem of interest. An incompress-
ible fluid with a small electrical conductivity is placed between
two horizontal highly conducting plates. Each of these plates is
maintained at a constant temperature with the upper one being
warmer. A vertical d-c electric field is applied to produce con-
vection., In the absence of an electric field the fluid is stable
since it is most dense on the bottom.

The electrical force on a fluid isl
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The last term in the force expression is the gradient of a scaler and
thus it has no effect on an incompressible fluid. The first term in-

volves the free charge, pf‘, which is non-zero only when the electrical
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properties of the fluid are space-varying. The second term depends
on the gradient in dielectric constant, Therefore the electrical
forces can have no effect in the bulk of the fluid unless there is an
inhomogeneity in the fluid,

The electrical properties of the fluid are functions of tempera-
ture and therefore vary in the vertical direction because of the
temperature gradient. The resulting electrical force densities are
esséntially determined by the gradient in conductivity since it is a
much stronger function of temperature than the dielectric constant.
This is shown in reference 2,

An inviscid fluid with a stabilizing temperature gradient sup-
ports a class of waves known as internal gravity waves.3 These waves
are damped by viscosity. It will be shown later that thé electric
field #cting through the gradient in conductivity decreases the damping
of the gravity waves. If the electric field exceeds some threshold
value, the waves become unstable and convection results.

When a stréng, uniform electric field is imposed on a poorly-
conducting fluid, convection is observed even in the absence of a -
temperature gradient. 1In the 1930's Avsec and Luntz4 observed steady
cellular motion in light oils in the presence of an electric field but
with no temperature gradient. Observations of bulk convections were
made by Ostromov5 in a variety of slightly-conducting fluids. He used

a temperature gradient and a Schlleren apparatus to detect the motions,



but the purpose of the temperature gradient was only to detect the
motions, not to produce them. The causes of this electroconvection
are not understood, but these effects can be neglected in this work
because in the class of fluids of interest the voltages needed for
instability with a temperature gradient are much less than those
needed witﬁout a temperature gradient.

The hydrodynamic problem of a fluid heated from below (Bénard
problem) is one where the viscosity, boundaries and thermal conduc-
tivity team up to retard the free convection and produce a threshold
for instability? The Bénard problem appears similar to the electro-~

hydrodynamie situation analyzed here.

II. CONDITION FOR THE ONSET OF CONVECTION
A. Equations
The equations needed to solve for the motions are given below.

Conservation of mass may be expressed as

20, 9o o3 - @
ot + Ve(pv) = 0

The fluids considered are incompressible, i.e., the density 1is inde-
pendent of the pressure. However P 1is still a variable since it

depends on the temperature.

The momentum equation for the problem is
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where pr ™ 3¢ 7 V'V)fe is the force of electfical origin given by

equation (1), and T(v) is the viscous stress tensor. If the pres-

sure is replaced by

Y e

€ =,
P30 E'E (4)

pp=P-
the electrostriction term disappears from the equation. The coef-

ficients of the viscous stress tensor for an incompressible fluid

'y

are
v ov
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The energy equation, neglecting the work of compression, is

DT '
pcp pe = Vok'T) + P, + P . (6)

where Pv is the viscous power dissipated and Pe the electrical loss.
Because we are dealing only with poorly conducting fluids, the mag-

8
netic fields are negligible and the electrical equations become

VxE=0 7
VeeE = pf (8)
ap

——£+V.3- o (9)



An ohmic conduction law is assumed for the current throughout
this paper. Although not always obeyed by fluids, Ohm's law is valid
for many fluids and has been used to successfully interpret a variety

9-12

of experiments. If the fluid is in motion an additional term is

added to the current to account for convection of charge.
.J'OE-’-pr (10)

Finally, the fluid properties are assumed to be functions of tempera-

ture alone,
p = o(T) 0 = o(T)
€= e(T) H = u(T) (11)

B. Equilibrium Point

To decide on the stability of a system, one finds the equilibrium
point, considers small perturbations from the equilibrium, and then
determines whether the perturbations grow or decay in time. 1In the
equilibrium state the fluid is stationary with a steady-state tempera-
ture distribution.

At equilibrium

v = 0 (12)

and

VeV + P =0 (13)




Thermal conductivities of liquids are not very strong functions
1
of temperature at moderate temperature. 3 Therefore, the thermal
conductivity may, as a first approximation, be made a constant and

equation (13) becomes

k V21 + P =0 (14)

For poorly conducting fluids ( O < 10_9 mho/m) Pe is negligible
for field strengths of the order of 105 volts/m and the temperature
distribution is approximately linear.

As a consequence of the linear temperature distribution, the |

fluid properties are assumed to vary as follows

p(z) = p_ +p; 2z/a 5 (p) <0) (15)
u(z) = w+u z/a 3 (W) < 0) 16y
' 2
0(z) = 00 1+ az/a +_B ?/82) . (0,8 > 0) (7

It can be shown that gradients in dielectric constant may be
neglected since the conductivity is a much stronger function of

temperature than the dielectric constanf,.2



The equilibrium electric field is vertical and is given by

E .
E (z) = 9 . (18)

2 2
l1+aza +8 z/a

where Eo is determined by the applied voltage. The forces are curl-
free and are therefore balanced by the pressure.

C. Linear Theory

To test for stability, the fluid is now slightly displaced from
equilibrium. The perturbation variables are the velocity v, the
electric field €, pressure p', density .p' , conductivity Q';, vis-—
cosity pu' , and temperature T'. Since éh;ee-dimensional wave motion
may be obtained by the superposition of two-dimensional waves, the

perturbations are assumed to be two-dimensional and of the form:

j(wt—kx)]

p = Relp'(z) e (19)

.

(The circumflex is used to denote complex amplitudes.) Since the per-
turbations are small, the equations will be linearized with respect to
the perturbation variables.

Considering the heat conduction equation (6), we find that Pv is
negligible since it is proportional to the velocity squared. Since we
have already neglected Pe, the equation reduces to the diffusion equa-
tion. For a poorly conducting fluid with a characteristic length of

1 cm, the time constant for diffusion of heat is about 20 minutes.



Because the gravity waves have periods of less than 1 minute heat

diffusion will be neglected and equation (6) reduces to

DT
~1—)-€-=0. (20)

Equation (20) says that each fluid particle retains it original
temperature while it moves. Because the fluid properties are func-
tions of temperature only, they also do not change for each particle

as the fluid moves., Thus:

= 0 (21)

Do+a) _ g (22)

Dt
De+0) .o
Dt (23)

Equations (2) and (22) yield
A

Vev = 0 (24)

We may now assume a velocity stream function ¥ defined by

For the two-dimensional motion, only the y-component ofAig is non-
zero. This component will be called ¥ .
Since the electric field is curl-free, we may introduce a po-

tential function

e = - V4 (26)
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The curl of the momentum equation (3) combined with equation (22)

and linearized results in

A A

2_ 1,2 " - - 2 . ~
J?O(D k )W + jw(DD)(D¢) J %_ 8(Dp)w + jkC(DzE)¢ - jkeE(Dz_ k2)¢

+ nu(p?- k’)zvj + 2(Dy) (D3- k’)D@ + (D) (D%+ k’)@ (27)

The linearized electrical equations (5-10,23) combined to form

one equation yield

jke(DzE):J; - (o + jue) (0~ k%9 - % D{(Do)E] ¥

K A PN (28)
" E(Do) (DY) - DoD$ = 0O

These equations, (27) and (28) are linear but have space-varying
coefficients. In the next section approximations are developed which

permit solutions to be found.
D. Electrohydrodynamic "Boussinesq Approximations''

In ordinary hydrodynamics, the equations have space-varying coeffi-
cients whenever the fluid has a temperature gradient. An approximation
given by Boussinesq14 and applied to the Beénard problem by Rayleigh15
yields constant coefficient equations by assuming that the density is
constant except in the gravitational term where it varies linearly with

height. Also, all the other fluid properties are assumed to be constant.
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From equation (27) we see that neglecting the density gradient

in the inertial term requires that

‘ Dp D i
, D)((D—R)W)<<1 . (29)

But
(8 (2 —zg)~ = (3

where ™. means the two sides are of the same order of magnitude and

a is the tank height. 1In order for the ratio of equation (30) to be
equal to .1 for a liquid, a temperature difference across the tank of
greater than 100° C would be necessary. 1If we restrict ourselves to
smaller temperature gradients, we can neglect the density gradients in
the inertial term.

Applying the Boussinesq approximation reduces all the mechanical
terms in the equations to constant coefficient form. The electrical
conductivity cannot be made constant because it is a very strong func-
tion of temperature. 1In addition, the instability under investigation
requires a gradient in conductivity. An approximation that could be
made without neglecting any important effects, is to assume that the

conductivity is constant in any term where it appesrs without being

differentiated. In terms where a derivative of the conductivity appears,

that derivative will be approximated as a constant. This process will
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be repeated for the electric field and the viscosity, even though
for the usual Boussinesq approximatioﬁify = 0, The approximations
were used successfully in analyzing a steady flow problem consist-
ing of a traveling-wave electric field pumping a fluid with a tem-
perature gradient.9 We can see that these approximations are in

the same spirit as those of Boussinesq by considering equation (27)
without the electric field terms. The density multiplies the veloc-
ity in the inertial term so (9 is taken to be constant there. How-
ever, in the gravitf term, only])@ appears so it is considered to

be constant there yielding the same results as Boussinesq obtained.
E. Dispersion Relation

The Boussinesq approximations require the following substitu-

tions into equations (27) and (28)

o
p=p 3 Dp = Ya

o
2
pe=u ;3 Du= "l/a 5 Dw= 0
28 .
g . 250 (31)
0-00;D0=008 3 Do o?
: 2
R =
E-Eo; DE--EOa ’ D.E ZEo( a

If equations (27) and (28) are reduced to constant coefficient form,

combined and non-dimensionalized the result is

{[a + jw*R)(D*z— k*z) + aD*] [Mm*z(D*z- k*z) (32)
+ k2 4 jw*(D*z— K2)2. Ju a@2- K"2)p"]

* * 2._2 * 2 _ ~
- kD - (S22 g &= 8y 30" k2o 2¢02-)109 = 0
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where we have introduced the following quantities (an asterisk in-

dicates a dimensionless number) -

. M H (33)
D = Da
- £
The relaxation time To o
o 2
eE® o
H = g
P, a ‘ - P48
eV T s (< 0) W=
Dlg 1 . L
P 2u
) A-____l'_
R = -2 ¥
T

The problem depends on six parameters R, H, M, A, o , and B. The

length scale is a and the time scale ﬁﬁ 1
Equation (32) is a sixth order ordinary differential equation

and therefore requires six boundary conditions to specify a solution.

These conditions are: the normal and tangential velocities and the

tangential electric field must vahish at each electrode. An iterative

numerical method must be used to find the solutions. The difficulties

of this approach force one to look for an approximate solution, Ome

possible approximation is to assume that the boundaries allow an
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integer number of half wavelengths in the vertical direction. In the

absence of an electric field and viscosity this solution satisfies the
boundary conditipns. The real justification for this approximation is
that it gives results that agree qualitatively and quantitatively with

16
experiments.

We now have ~ " z
v o= v el
(34)
- DT
q a

The resulting dispersion relation in non-dimensional form is
MR (a2+ k2)2 Fa2+ k) (q2s K2
Jw'MR(q™+ k)" + wl(q®+ k?) (q%+ k? + JqAIR + M(q*+ k2- joq)
(a*+ k)] - JulR(g*+.k?) KM + (g™ k%+ 3qA) (g2+ k?) (q%+ k?~jaq)(35)
2
2 a’=-B8.f 2, .2 2
+ k*H2R( p )(q + k‘+ 2(a -B)) 1 - k®™M(q*+ k2~ jaq)

+ k®H[q%+ k% 2(a?- B)}(jq - g%'—zﬁ) = 0

To find the ;onditions for incipient instability we range over
all allowed values of q and k and find the smallest voltage (or H)
which has a solution for w with a negative imaginary part. Since we
are allowing only real values of g and k, and since at the threshold

w is purely real, the threshold conditions may be calculated directly.
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This is done by dividing equation (35) into real and imaginary parts
and then solving the two resulting equations for w and H. H can then

be minimized over the allowed values of q and k.
F. Small Temperature Gradient Approximations

If the temperature gradient is very small, further approximations
may be made. These approximations enable us to explain physically the
basic mechanisms that cause the instability. Also, it is hoped that a
theory which is valid for small temperature gradients may still be a
good approximation for moderate omnes.

For small temperature gradients

%—‘-‘(( l . The ratio of the

viscous terms in the mechanical equation (27), using the substitution

(30), is
2y n 2u
‘ —L (p2- k2)Dy —% 2 .
T " =] <t
| u?- k)2 ¥ u/a? s (36)
The electrical force terms in the same equation have the ratio
2- A~
‘jkeZE (9‘—-2—5-)4,
°\ a° v a2~ B (37)

|skeE_(02- 11§

But for small temperature gradients 02 and B are much less than one.
To linear terms, the electrical force consists of the perturbation

charge times the equilibrium electric field plus the equilibrium free
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charge times the perturbation electric field. We have just neglected
the latter.
To find similar approximations in the electric field equation

(28) we use the same reasoning and get

aA
o —D
_£L£gr:g-- N oo << 1 ' (38)
o (D*- k2)¢
(o]
a,—2 ”
2 v 2 (39)
_a._._a._.:-——-,\'a“zﬁ << 1
ZD\P o

The small termperature gradient approximation reduces equation
(32) to
: A *2 2 rS
k, & x, ~ k) “x Kk H [_ * al-8 *] A%
2 2_ 2 * 2 - D
Mw “(D k )y + k ‘My + 1:73;;§ jw R2( - ) v
]

A 40
+ jw*(D*z— k*z)zw* - 0 (40)

The above equation is only fourth order so two boundary conditions
have been eliminated. Since the force due to the perturbation electric
field has been neglected, the boundary conditions on the tangential
electric field must have been eliminated. The number of non-dimensional
parameters is now also four, M, H, R and (dz- B)/d.

Satisfying the boundary conditions presents the same problems as

before, so again sinusoidal variation in the z-direction is assumed.
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The dispersion relation is, with the asterisks omitted:

- JwMR(q%+ k?) - w?[R(g%+ k%) + M(q%+ k2)]

. 2_ . (41)
+ ot + kH2RC E=8) & (g% k)?] + kM = §qk?H = O

.

-

With q and k real the threshold conditions (w real) may be found by

separating equations (41) into real and imaginary parts. This yields

2 k?
(q2+ kz) + % (‘-lz‘*‘ kz)z (42)

R*2(q% k?) + (q%+ k2~ +§ (% k%)’
2[q <~ ]
K [w - 2R( “—E-é)} [1 + 2% “z’J

(43)

.

The voltage for instability is found by using equation (42) to calculate
w and then calculating H from equation (43). H is then minimized over

allowable values of q and k to give the threshold voltage.
III. SPECIAL CASES
A, Instantaneous Charge Relaxation

If charge relaxation occurs instantaneously, R = 0 and equations
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(42) and (43) become

wt = 7 (44)

qk (45)

Eliminating w gives

Y,
H= ﬁﬂ%%.ki) (46)
The stability of the system now depends on only one number, H. To
find the voltage at which instability first occurs, we now minimize
H over the allowed values of q and k. If q = nn, H has a minimum at

k = nn/ 2. The minimum H is then

nm 3V/3
- (47)

If n = 1, the fluid is unstable for H> 8.15. Recalling the defi-
nition of H, equation (33), we see that the instability is caused
by the electrical forces acting through the gradient in conductivity

overcoming the viscous damping of the internal gravity waves.
B. Inviscid

The small temperature gradient approximation applied to an invis-

cid fluid yields an equation which requires only two boundary conditions.

Thus the solutions satisfying the boundary conditions may be found
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analytically. If the viscosity is set to zero in equation (40),
M->»<o¢and H >o<but H/M remains finite. The inviscid limit for that

equation is . .

2

A "~ 2__ A
w? (D2 k2)y + K2V + £—F— [juR2 ( 9‘—;-@) -Dlp = O

1 +jwR (48)

where ?

€L o
Fo= (H/M) = —72

a('Olg)

(49)

The remaining boundary conditions are that the normal velocities must

vanish at each electrode giving

; v +1 (50)
v = jkV =0 atz=2" 7

z .

The solutions are

~ Pyz P2z (51)

where p1 and p2 are the solufions to

2—
2 W2RF ¢ a B)
2,2 _l<_£_+kz<1_wz+L -0

PP TV uR 1 + jur (52)
Equations (50), (51) and (52) result in
4R? (K24 n?1?)w®- B(k2+ n?n?)Rjw® - 4[k?(1+R*)+ n’n? 53)

2_ - 2_ )
+ R2K22F (9;;;13)]m“ + BKZR[1+ F(SLT;JQ)]jm3+ 4k2w?- K F? = 0
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Two limits to equation (53) which give simple results are the
limit of zero conductivity and the limit of zero relaxation time.

1) zero conductivity (R—> >° )

The solution to equation (53) is now

. az._ 8
2 | K CL+ 265

For this case, the instability is a static one and the necessary and

sufficient condition for stability is
. . -
1+ 2F (_q_a_ﬁ_) >0 (55)

This is equivalent to

gDp - €ED’E < 0 (56
This solution is identical to that which is obtained using sinusoidal
variation in the vertical direction. The reason for this is that dis-
turbances of all wavelengths go unstable at the same time and boundaries
cannot affect the threshold. .

2) Zero relaxation time (R — 0)

The solutions to equation (53) with R = 0O are

(57)
w2 = 2%V ik k" (ikK2+ n*n?)F?
2(k%+ n?r?)
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The system is stable if and only if wz is real and positive,

which occurs when

1
K+ n?m

F< 2 (58)

For any given voltage, the fluid is unstable for short enough wave-
lengths. However, the viscosity, which was neglected, has its
greatest effect at short wavelengths. This indicates that the in-

viscid 1limit is unrealistic unless the conductivity is zero.
Iv. CHARACTERISTICS OF THE INCIPIENT ELECTROCONVECTION
A. Properties of the Solutions to the Dispersion Relation

In the absence of an electric field, an infiscid stratified
fiuid supports internal gravity waves3 with real frequencies. The
addition of viscosity adds a damping to the gravity waves and also
decreases the real part of the frequency. The effect of an electric
field can be most easily seen for the case of instantaneous charge
relaxation. The solutions to the dispersion relation (40) are, for

this case

L}
L i@iri+ kY k? Hy = (a*n+ k?)?
w M “\ammTr ez 4 - iem ) - Sy

(59)

For n positive, the electric field reduces the damping for the root

with Re(w) - O and increases it for the other root.
Figures 2-6 are plots of solutions to the dispersion relation

for different fluid properties. The properties which are varied are the
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electrical relaxation time (R) and the viscosity. All the graphs
are plots of complex w for real k with q = . Each line represents
a particular voltage. The arrowheads indicate the direction of in-
creasing k.

The parameters chosen for Figure 2 are those of corn oil in a
one inch high tank with a temperature range of 25-45o C. The H=0
curve represents the zero voltage case. Increasing the voltage
causes one root to go unstable at HAX 8, k <~ .6n, énd increases the
damping for the other gravity wave root. There is a third root,
basically due to charge relaxation, which does not appear in Figure 2
since it is too heavily damped.

Figure 3 is plotted for the same fluid as Figure 2 except that
the relaxation time is increased by a factor of 10. In this case
the charge relaxation root interacts strongly with one of the gravity
wave roots. The threshold voltage has increased by a factor of four
from that of Figure 2., Increasing the relaxation time by another
factor of 10'produces Figure 4. In this case it is the charge relaxa-
tion root which goes unstable and the threshold voltage has again been
increased by a factor of 4.

If the viscosity is increased by a factor of 10 from Figure 2
with all other parameters unchanged, Figure 5 shows the solutions to
the dispersion relation. When there is no electric field, the pertur-

bations decay in time with no sinusoidal component. The threshold H
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remains about the same with the voltage increasing because of the
increased viscosity. The other two roots are not shown since they
are heavily damped. Reducing the viscosity by a factor of 25 from

Figure 2 does not change the features of the solutions much. Fig-

‘ ure 6, where the low viscosity solutions are shown, differs %rom

Figure 2 mainly in the magnitude of the damping of the gravity waves.

B. Effect of Electrical Conduction and

Charge Convection on the Threshold

The perturbation forces are produced by free qharges which
occur either because of convection of fhe equilibrium free charge
or from electrical conduction or from both. In this section the
effects of these two phenomena will be compared. First we will .
consider each separately.

Case 1 If the perturbation free charge results solely
from electrical conduction then relaxation is instan-
taneous. Forlthis case the stability criferion'is

given by equation (47) and is

< 8.15 (60)

Case 2 1If only charge convection is present, the elec-

trical conductivity must be zero and the stability
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criterion is equation (55) which is

01/, - 2, @D < 0 or
If the temperature gradient is uniform, <« 2 . B is »
generally a positive numbér and charge convection
can never produce an instability. Rather, it tends

' to stabilize the fluid.

Iﬂ Section II both charge conduction and convection were bresent
and the threshold H was given by equation (43). 1In this expression
charge conduction and convection effects appear in the first bracket
in the denominator. The conduction produces the q/w while convec-
tion produces the - 2R ( < 2 _ B)/x . 8ince H must be positive to
be physically realizable, it may be easily seen that charge convec-

tion raises the threshold voltage.
C. Properties of the Unstable Mode

The properties of the instability will be shown by examining
the part played by the different forces. For this we use the small
temperature gradient approximation. The curl of the.force equation
is -

of

poé-t--Vp x§+ fox-f+ qulﬁ

(62)

The stream function is

Y = wo cos(wt - kx + qz) (63)
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and the resulting vorticity is

= - 2
Q = - iy (q%+ k )y, cos(wt - kx+ qz) (64)

.

Assuming instantaneous relaxation the y- component of equation (62) is

k%o, ¥ g
p w(q®+ k?)y_ sin(uwt -kx+qz) = - —— gin(wt -kx +qz)
o) o wa (65)
2 2
g0kl

w a cos (wt -kx +qz) + u(q2+ kz)zd)o cos(wt -~ kx +qz)

The curl of the electrical force; fo x E, is in phase with the
vorticity if (q/w) is positive and exactly out of phase if (q/w) is
negative. Therefore, instfbility can only occur for (gq/w) positive.
The phases of the unstable mode can only propagate downward. For
this reason the instability can never appear to be a standing wave.

Equation (65) also shows that the instability will occur at the
longest possible wavelength, since the electric field forces depends
on the wave number cubed and the viscous force on the wave number to
the fourth power. This means that the boundaries play an important
role in determining the stability of the fluid. The threshold condi-
tions can be determined by equating the curl of the electrical force
with the curl of the viscous force.

Another result which may be obtained from equation (65) is the

frequency at which the instability occurs. This is obtained by
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equating the gravitational and inertial terms. A consequence of
equation (63) is that the fluid velocities are always tangential to

the planes of constant phase.

The theory developed in this paper is verified both qualitatively

16
and quantitatively by experiments described in a separate paper.( )
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FIGURE CAPTIONS

Cross section view of fluid with vertical temperature gradient
and electric field.
Solutions to the dispersion relation in the complex w-plane for
corn oil in a tank of height 1 inch with a temperature range of
250 - 450 C. The vertical wavenumber is n and the horizontal
wavenumber increases from O to i along each of the lines in the
direction indicated by the arrowheads. Instability occurs when
In(w) < 0.
Same as Figure 2 except that the electrical relaxation time has
been increased by a factor of 10.
Same as Figure 2 except that the eleﬁtrical relaxation time has
been increased by a factor of 100.

a) Gravity wave roots

b) Charge relaxation root

Same as Figure 2 but with the viscosity increased by a factor

"of 10.

Same as Figure 2 with the viscosity decreased by a factor of 25,

hd



