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A computational framework is presented for the continuum modeling of cellular biomolecular
diffusion influenced by electrostatic driving forces. This framework is developed from a
combination of state-of-the-art numerical methods, geometric meshing, and computer visualization
tools. In particular, a hybrid of �adaptive� finite element and boundary element methods is adopted
to solve the Smoluchowski equation �SE�, the Poisson equation �PE�, and the Poisson-Nernst-Planck
equation �PNPE� in order to describe electrodiffusion processes. The finite element method is used
because of its flexibility in modeling irregular geometries and complex boundary conditions. The
boundary element method is used due to the convenience of treating the singularities in the source
charge distribution and its accurate solution to electrostatic problems on molecular boundaries.
Nonsteady-state diffusion can be studied using this framework, with the electric field computed
using the densities of charged small molecules and mobile ions in the solvent. A solution for mesh
generation for biomolecular systems is supplied, which is an essential component for the finite
element and boundary element computations. The uncoupled Smoluchowski equation and
Poisson-Boltzmann equation are considered as special cases of the PNPE in the numerical
algorithm, and therefore can be solved in this framework as well. Two types of computations are
reported in the results: stationary PNPE and time-dependent SE or Nernst-Planck equations
solutions. A biological application of the first type is the ionic density distribution around a fragment
of DNA determined by the equilibrium PNPE. The stationary PNPE with nonzero flux is also
studied for a simple model system, and leads to an observation that the interference on electrostatic
field of the substrate charges strongly affects the reaction rate coefficient. The second is a
time-dependent diffusion process: the consumption of the neurotransmitter acetylcholine by
acetylcholinesterase, determined by the SE and a single uncoupled solution of the
Poisson-Boltzmann equation. The electrostatic effects, counterion compensation, spatiotemporal
distribution, and diffusion-controlled reaction kinetics are analyzed and different methods are
compared. © 2007 American Institute of Physics. �DOI: 10.1063/1.2775933�
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I. INTRODUCTION

The density distribution of molecular species is funda-
mental for understanding and describing biophysical and bio-
chemical processes. The concentrations of ligands �for ex-
ample, substrates�, receptors �enzymes�, and ions regulate
nearly all biomolecular and cellular activities.

Modern microscopic imaging technology �see Ref. 1�
enables the monitoring of physiological activity in cells with
increasingly higher spatial and temporal resolution. The
translocation and concentration variation of biomolecules or
reagents can now be observed in real time. It has become
possible to measure molecular locations and monitor subcel-
lular signaling processes in vivo. Direct observations are pos-
sible for the spatially nonuniform distribution of species and
the time dependence of chemical processes. In addition, re-
cent progress in determining the three-dimensional �3D�
structures of biomolecules �such as ion channels� or even
organelles �such as synaptic vesicles� has supplied a wealth
of information which greatly facilitates theoretical modeling
and numerical simulation of these systems. With such infor-
mation from experiments, the demand is emerging for dy-
namical modeling with subcellular spatiotemporal resolution.
However, molecular dynamics simulations at atomic-level
resolution are still not tractable for such time and length
scales. Therefore, we resort to continuum models due to their
ability to efficiently resolve features on larger space and time
scales.

Variations in concentration are due to molecular trans-
portation or reaction �production/depletion�. A main mode of
transportation is the random motion of molecules arising
from thermal fluctuations; this is seen as diffusion in the
continuum description. Diffusion causes the spread of local-
ized signals and can be utilized for intra- or intercellular
communication. In addition, reaction and enzymatic regula-
tion are normally involved in the production, depletion, and
diffusion of species. Molecular diffusion and enzyme reac-
tions form a coupled system which is often associated with
signal transduction, gene expression, and metabolism net-
works.

Another observation is that the diffusion in some biomo-
lecular processes is driven by an electrostatic field induced
by the environment. In these cases, the electrostatic interac-
tion can strongly affect the diffusion and, as a result, the rate
of association between a ligand and receptor �e.g., see Refs.
2 and 3�. On the other hand, the electrostatic field is not only
determined by the target macromolecule but also by the den-
sity distributions of all the charged species, including diffus-
ing ions and small charged molecules, which vary in time in
nonsteady-state processes.

In the mean-field approximation, in which the particle-
particle correlations of the diffusing molecules or ions are
neglected, the Poisson-Nernst-Planck equation �PNPE� is a
proper physical model for describing the coupling of electro-
statics, density distribution, and diffusion processes. The
PNPE is a combination of Nernst-Planck �NP� equations and
Poisson equation �PE�. The PE is used to describe the elec-
trostatics in a medium induced by the charge distribution
including both fixed and mobile charges. The NP is a current

density equation widely used in studies of electrolyte trans-
port and ion channels, as well as semiconductors. It is noted
that another very similar and closely related equation is the
Smoluchowski equation �SE�, which is often used in studies
of stochastic processes and kinetics of diffusion-reaction
processes.4–7 The SE gives the conditional probability that
the particle starting from the point r�t0� reaches the point r at
the time t under influence of a potential. It describes the
diffusion of probability, because the process of diffusion is
the superposition of Brownian motions of the particles. In
biological measurement, the current of ions �particles� con-
tains a huge number of single ion passage events, which
enable us to pass from the one-ion description via probability
density, i.e., from the SE, to the continuous description in
terms of the electric current density, i.e., to the
Smoluchowski-Nernst-Planck equation �continuity equation
with the NP current, also simply called as NP�. Due to the
similar mathematical formulas, the NP and the SE have same
numerical structures. Differing from PNPE, the potential in
the SE is normally considered as an external field that is not
coupled with the �charged� diffusing particles. For instance,
if the electrostatic field is determined by the mean mobile ion
density distribution, which obeys the Boltzmann distribution,
then the SE in this case is referred to the Smoluchowski
Poisson-Boltzmann equation �SPBE� in which the Poisson-
Boltzmann equation �PBE� is solved only once, at the begin-
ning, to supply the electrostatic field for the diffusion solu-
tion. Due to the uncoupled nature, the SPBE can be
considered as a numerically simplified case of the PNPE.
Early applications of SPBE solutions include theoretical
studies of ion diffusion.8,9 Besides the aforementioned ap-
proximations, the application of the PBE assumes that the
ionic solution is in an equilibrium state. For nonsteady-state
processes, or even steady-state processes with stationary val-
ues of diffusive fluxes �including ionic fluxes�, the PE in-
stead of the PBE must be used to determine the electrostatic
field, because the nonequilibrium charge density distribu-
tions deviate from the Boltzmann distribution. This leads to
the PNPE treatment. The usual application of the PNPE in
biology is the steady-state version, which has been used ex-
tensively to investigate ion permeation and related transport
processes with considerable success, for instance, in calcu-
lating the I-V characteristics of ion channels. Numerical
PNPE solvers have been developed for both simple one-
dimensional phenomenological models10–12 and complex 3D
models for protein ion channel permeation,13–16 and compari-
sons with 3D Brownian dynamics simulations have been
performed.17–20 Typically, a finite difference method �with
exception of Ref. 15 that used a spectral element method�
has been used to approximate the solution in the membrane
channel with either atomic-level resolution or using simpli-
fied descriptions.

The finite element �FE� version of the SPBE approach
has been developed in previous work of our group and col-
laborators for the diffusion-controlled reaction of acetylcho-
line �ACh� in the neuromuscular junction �NMJ�.21–25 Solv-
ers were developed for the time-dependent SE, with no
interaction fields, for studies of the NMJ.21,22 Also, a soft-
ware was developed to solve the PBE using a multigrid
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method,26 and this was used with the steady-state SE to study
the consumption of ACh by acetylcholinesterase �AChE�.24,25

The solution of the nonsteady-state SE for the above system
is described in another work27 and in this work. With the
exception of Ref. 21, each of these previous works, as well
as the present work, makes use of the general finite element
modeling library FETK �which stands for finite element
toolkit�28 developed over a number of years at UC San Di-
ego.

The finite element method �FEM� has advantages in
modeling irregular geometries with complex boundary con-
ditions. In our finite element approach, the molecular surface
�boundary� is identified and discretized; this discretization is
used as the boundary of the volume mesh. Such meshes are
said to be boundary or surface “conforming” because they
are aligned with the“real” molecular surface, whereas in the
finite difference method, the mesh is nonconforming because
it is allowed to “cut through” the molecular surface. A two-
dimensional �2D� comparison of the two types of meshes can
be seen in Fig. 1. One consequence of adopting a noncon-
forming mesh is that sizable numerical errors in the solution
are generated at the dielectric and permeability interfaces.
Another advantage of adopting conforming mesh in our
study is that it is convenient to use proper specification of
boundary conditions on the surface for the modeling of
reaction-diffusion processes.

In our scheme, the boundary-conforming mesh is also
used in the boundary element method �BEM� to allow better
predictions of the electrostatic field, especially at the molecu-
lar surface. It is a standard practice to treat the charge distri-
bution inside a large biomolecule as a collection of point
charges. Using a finite element method inside the molecule
requires very fine meshing because of the singularities in the
charge distribution, whereas the BEM handles such charge
distributions very naturally using only surface elements. Al-
though the interior of the large molecule still needs to be
meshed in our hybrid FEM/BEM scheme, the volume mesh
is not nearly as fine as would be required without the BEM.

The current work aims to integrate the former works and
outlines a numerical framework to solve the complete PNPE,
including both time dependence and the coupling between
the density of diffusing particles and electrostatics. In this
framework, the time evolution of diffusion of each species is
given, and the electrostatics is determined on the fly for each
spontaneous configuration of charge distributions. The focus
is on biological system with realistic geometry, especially at
atomic resolution. In principle, the approach can be applied
to systems with arbitrary numbers of diffusive species.
Moreover, it also applies for both monovalent and multiva-
lent ions �if the correlation effects are ignored�, and it has
the feature that no net charge neutrality is required for the
system.

II. THE POISSON-NERNST-PLANCK EQUATION

A typical biophysical model is depicted in Fig. 2. The
domain �s denotes the solvent region where there is a mixed
solution with one or more diffusive species, such as mobile
ions and small diffusing molecules. The domain �m denotes
the fixed macrobiomolecule�s�, such as a protein, DNA, or
membrane. In the following text, the whole computational
domain is represented by �=�s+�m. The diffusion region is
normally limited to the domain �s; i.e., the moving particles
are not allowed to penetrate into the region �m. The con-
tinuum description of the diffusion of each species obeys the
NP in terms of the current density. If one only considers the
electrostatic interaction, the potential field can be generally
described by the PE. Supposing qi is the charge of each
particle of the ith species, the coupled NP and Poisson equa-
tion system �PNPE� is

FIG. 1. �Color online� An example of conforming and nonconforming 2D
meshes. The molecular interior is represented by shading, and the mesh
covers the whole domain in each case.

FIG. 2. �Color� Schematic of problem domain, denoting the boundaries and
volumes. �m denotes the fixed molecular boundary, and �s is the boundary
of the whole volume mesh. If reaction on the molecular surface is consid-
ered, according to Song et al.’s treatment �Ref. 24� �similar figure can also
be found therein�, a small patch �a ��a��m� around the active site is set to
a zero Dirichlet boundary condition �sink boundary� to model the chemical
reaction.
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�pi�r,t�

�t
= � · �Di�r�e−�qi��r,t� � �e�qi��r�pi�r,t���

= � · �Di�r���pi�r,t� + � � �qi��r,t��pi�r,t���,

�1�
r � �s, i = 1, . . . ,K ,

� · � �r� � ��r,t� = − � f�r� − �
i

qipi�r,t�,

�2�
r � �, i = 1, . . . ,K ,

where pi�r , t� is the density distribution function of the dif-
fusing particles of the ith species with diffusion coefficient
Di�r�, � f is the fixed source charge distribution �usually, the
atomic charges of the biomolecule�s� in the system�, K is the
number of species considered, �=1/kBT is the inverse Bolt-
zmann energy, kB is the Boltzmann constant, T is the tem-
perature, � is the dielectric coefficient, and � is the electro-
static potential that imposes driving forces on the diffusing
particles. When pi�r , t� is interpreted as the probability dis-
tribution function, Eq. �1� is the SE. Therefore, at some
places in the following sections in connection to our previous
work, we also refer Eq. �1� as the SE.

It is worth noting that, in Eqs. �1� and �2�, all the charged
species are treated as diffusing particles including the mobile
ions that form the ionic solution. In some cases, if one is
interested in the diffusion of larger particles such as sub-
strates, and supposing that the density relaxation of the mo-
bile ions is faster than the diffusion of the larger molecules,
the distributions of the mobile ions can be considered to be
in thermal equilibrium. That is, the ion densities can be ap-
proximated by the Boltzmann distribution pi= p0

i e−�q
i�,

where p0
i is the bulk concentration of the ith ionic species.

The advantage of this treatment is that the number of diffu-
sion equations is then reduced by the number of these fast
diffusing species. Equation �2� is accordingly modified in
this case. For example, for neutral 1:1 ionic solution
�monovalent ions�, the electrostatic portion, Eq. �2�, can be
replaced with

� · � �r� � ��r� − ��r�
��r��2�r�

�
sinh����r�� + � f�r�

+ �
i

qipi�r,t� = 0, �3�

where � is the inverse Debye length, ��r� is a function that is
equal to 1 in regions where the counterions can penetrate and
0 elsewhere, and the summation is only performed on the
other species. The concentrations of the two counterions are
implicitly included in the equation and do not appear in the
diffusion equations. However, this treatment has the addi-
tional cost of solving a nonlinear PBE instead of a linear one
in each coupling step. If no other diffusing species except
mobile monovalent ions are in the solution, Eq. �3� is then
the nonlinear Poisson-Boltzmann equation �NPBE�,

� · � �r� � ��r� − ��r�
��r��2�r�

�
sinh����r�� + � f�r� = 0.

�4�

A further simplified form, valid for small values of electric
potential, is the linearized PBE �LPBE�,

� · � �r� � ��r� − � �r��2�r���r� + � f�r� = 0. �5�

This can be very convenient in situations where the charges
are not too strong. Because it is a linear partial differential
equation, it can be solved using boundary element methods
and treated just like the Poisson equation in the hybrid solu-
tion of Eqs. �1� and �2� described in the following sections.

III. NUMERICAL TREATMENTS

A. For the diffusion process

This work uses FETK, developed by two of the authors
and collaborators28 �http://www.fetk.org/�, for the solution of
the diffusion part �Eq. �1�� around the macromolecule. For
the case of no time dependence �steady state or equilibrium�,
the diffusion and electrostatic portions �Eqs. �2� and �1�, re-
spectively� are solved separately. Given an initial guess of
the electric field �, the diffusion portion of each species is
solved using FETK. The resulting concentrations pi are
plugged into the electrostatic part �Eq. �2�� which is solved
using the hybrid BE/FE method, described below, to obtain
the electric field �. The electric field is then plugged back
into the diffusion equations �Eq. �1�� for the new concentra-
tion solutions. For the steady-state case, this process is re-
peated until the concentrations and electric field converge.
For the time-dependent case, the diffusion portions �Eq. �1��
are stepped forward in time, with the electric field solved at
each time step for the input of next step solution of the dif-
fusion equation using the hybrid method.

B. Electrostatic calculation

We have recently developed an efficient and accurate
BEM solver for the linearized PBE by introducing a “node
patch” BEM �Ref. 29� and implementing the new version of
the fast multipole method;30,31 this solver can be used for the
PE as a special case. In principle, one could use the solver to
solve the Poisson part �Eq. �2�� using the charge distributions
in both the solvent and macromolecule. However, including
the solvent charge density would require volume integrals of
the charge distribution over the entire domain. According to
Boschitsch and Fenley,32 once the volume integrals appear in
the BEM, the computation times incurred by a conventional,
or even some multipole-accelerated integral equation meth-
ods, increase significantly and tend to be higher than even a
finite difference scheme of comparable accuracy. A hybrid
finite difference/BEM approach and a decomposition strat-
egy were adopted and tested to solve the nonlinear PBE in
their work.32 So, rather than use boundary elements alone to
solve the Poisson equation, we use the hybrid BE/FEM
method described below to avoid the volume integrals.

In the hybrid FE/BE method, the strategy for solving
Eqs. �2� and �1� is to decompose the solution of the Poisson
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equation into a singular component and a regular component,
i.e., ��r�=�s�r�+�r�r�. The singular component is solved
from the Poisson equation with singular charge distributions

� · � �r� � �s�r� = − � f�r�, r � �m, �6�

and the regular component is obtained by solving

� · � �r� � �r�r� =�0, r � �m

− �
i

qipi�r� , r � �s, i = 1, . . . ,K .	
�7�

The BEM is used in solving for the singular component �Eq.
�6�� and the FEM is used in solving for the regular compo-
nent �Eq. �7��. The splitting of the solution into singular and
regular components was recently examined in detail theoreti-
cally for the Poisson-Boltzmann equation in Ref. 33.

For a given macromolecule, the interior charge distribu-
tion is fixed; therefore, Eq. �6� is solved only once, at the
beginning, to obtain the singular component �s, using the
boundary element method. Afterwards, during each iteration
between the diffusion and electrostatic equations for the non-
time-dependent case, or for each time step for the time-
dependent case, Eq. �7� is solved for the regular component
�r. Because the charge density used for solving Eq. �7� is
continuous in �s and zero in �m, the interior of the molecule
does not need to be resolved with as fine a mesh as would be
required for a FE solution to the singular component �s. In
principle, the diffusion and regular electrostatic portions of
the PNPE could be solved simultaneously using FETK, but
the domains are different, with the diffusion part defined
only on �s; this situation cannot be handled directly by the
current version of FETK, but can be done as a block Gauss-
Seidel iteration with FETK used to solve each block in a
fixed-point iteration. We use the same mesh in �s for solu-
tions of both the diffusion and electrostatic equations, and
apply a data transfer/mapping procedure for the communica-
tion of charge densities and potentials between the coupled
equations.

It is worth noting that when solving the PE in the whole
domain �, the dielectric coefficient � has different values in
�m and in �s. This fact leads to the numerical difference
between FD and BEM or FEM. In FD, the dielectric coeffi-
cient and the final solution at the interface are calculated
through interpolation from the values at the neighboring
grids, and the interface conditions are not enforced to be
satisfied. While the boundary-conforming mesh used here
explicitly �in BEM� or implicitly �in FEM� satisfies the in-
terfacing conditions, thus leads to better solutions at the in-
terface. Comparison of the accuracy of the BEM solution can
also be found in previous works.29,34

For the case where the Poisson-Boltzmann approxima-
tion �Eq. �4�� is used for the fixed electrostatic field �as in
SPBE�, the procedure is still the same, since FETK can be
used to solve nonlinear equations. One just needs to include
the nonlinear term of Eq. �4� in Eq. �7�. In this case, the
numerical method becomes essentially the one analyzed in
Ref. 33, with the singular component computed numerically
rather than represented analytically.

C. Finite element treatment

A tetrahedral mesh is used to discretize the whole do-
main �, and the molecular surface is defined by a surface
mesh of triangles that form faces of tetrahedra in both �s and
�m. The same mesh in �s is used to compute the solutions to
the diffusion part �Eq. �1�� and the regular electrostatic part
�Eq. �7��.

The numerical solutions of NPBE, PE, or the steady-
state SE involve the use of a fairly sophisticated adaptive
method within FETK which is based on the use of error indi-
cators to drive a solve-estimate-mark-refine iteration.28,33,35,36

Three core components of this adaptive solution algorithm in
FETK, namely, assembly of the linear and nonlinear algebraic
equations, application of the discrete operators to vectors
within iterative solution algorithms, and iterative inversion
of the discrete operators inside a Newton iteration, also form
the core computational kernels for the solution of time-
dependent problems such as the time-dependent SE with up-
dating of the electrostatic potential. Below, we will first
briefly review the methods for the steady-state problem and
then derive the algorithm for the time-dependent PNPE sys-
tem.

We now describe the mathematical framework employed
in FETK for static and dynamics problems. Consider a general
class of elliptic equations of the form

− � · �D � u� + b�u� + f = 0, in �s, �8�

u = 
ū
��s
, on ��s, �9�

where D is a symmetric positive definite tensor, b is a real-
valued function, and f is a source term. Its solution u also
solves the following Galerkin weak problem:

Find u � ū + H0
1��s�, such that�F�u�,v� = 0,

�10�
∀v � H0

1��s� ,

where ū is a trace function satisfying the Dirichlet boundary
conditions, H0

1��s� is a Sobolev space of weakly differen-
tiable functions which vanish on the boundary of the domain,
and the “weak” form �F�u� ,v�, which generally is nonlinear
in u and linear in v, is given by

�F�u�,v� = 
�s

�D � u · �v + b�u�v + fv�dx . �11�

In order to solve this nonlinear problem with a Newton-type
iteration, we need the directional derivative with respect to u

in the direction of w of �F�u� ,v�, which turns out to be a
bilinear form,

�DF�u�w,v� =
d

dl

�F�u + lw�,v�
l=0

= 
�s

�D � w · �v + b��u�wv�dx , �12�

where w is a test function. Note that, if b is linear, b�u�
=bu and b��u�=b. Note that the boundary integrals vanish in
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the derivations of the above nonlinear weak and bilinear
forms due to the fact that the test function v vanishes on the
boundary. Denoting the approximate solution u by its expan-
sion in the test function space, i.e., u�x�=� ja jv j�x�, the weak
form Eq. �11� essentially produces two matrices: a stiffness
matrix A associated with the product D�w ·�v and the mass
matrix M associated with the product b��u�wv. The solution
u�x� of the weak form Eq. �11� is therefore equivalent to the
solution of a linear algebraic system,

�A + M�a = − f , �13�

where unknown vector a= �a j� is the expansion coefficients
of u, and vector f is known from the integration of ��s

fvdx

for all given test functions v. Given the system of equations
implied by Eq. �11� and the linearization Eq. �12�, the FETK

software solves them using a posteriori error estimation
along with adaptive tetrahedron subdivision and unstructured
algebraic multilevel methods for Eqs. �13� along with inexact
Newton methods for Eq. �11�. These methods within FETK

have been shown to have linear space and time complexity
for systems of the form Eqs. �13� and �11�.

We now consider the time-dependent NP �or SE�. For the
NP of the ith species, defining u=e�q

i�pi and D�

=Di�r�e−�q
i� gives rise to the symmetrized form of Eq. �1�,

�

�t
�ue−�qi�� = � · �D� � u� , �14�

whose weak form is given by

�F�u�,v� = 
�s

�D� � u · �v − �qie−�qi���

�t
uv

+ e−�qi��u

�t
v�dx . �15�

We use a time-dependent expansion, so called the method of
lines,

u�t,x� = �
j

a j�t�v j�x� ,

and derive a governing equation to evolve the expansion
vector a�t� from its given initial value. Indeed, by inserting
the expansion u�t ,x�=� ja j�t�v j�x� into Eq. �15� and using the
matrix notation, we could derive an equation similar to Eq.
�13� as

Aa + cMa + dM
�a

�t
= 0, �16�

where the three terms are the matrix representations of their
corresponding terms in Eq. �15�, c=−�qie−�q

i��� /�t and d

=e−�q
i�. Here, we assume that the derivative of electrostatic

potential with respect to time, �� /�t, at current time step is
known when solving the NP. Equation �16� provides the for-
mulation to evolve the expansion coefficients a from time
step tn to tn+1:

an+1 = an + 
tn

tn+1
�a

�t
dt = an − 

tn

tn+1
M−1

d
�Aa + cMa�dt ,

�17�

where M−1 denotes the inverse of M. Different approxima-
tion methods can be used to numerically calculate the inte-
gral in Eq. �17�, such as forward Euler method, backward
Euler, or the trapezoid rule. In this study, we use the back-
ward Euler method because it is unconditionally stable and,
thus, allows large time steps for the integration in Eq. �17�. It
does require inverting large sparse unstructured matrices, but
we employ the low space and time complexity linear solvers
in FETK to make these types of implicit methods competitive,
or in the case of parabolic evolutions equations, substantially
superior to explicit methods. With this backward Euler
method and using a constant time increment 	t= tn+1− tn, we
have

an+1 = an + 
tn

tn+1
�a

�t
dt = an −

M−1

d
�Aan+1 + cMan+1�	t .

�18�

Moreover, we define 	an+1=an+1−an so that we can compute
an+1 by solving this 	an+1 and adding it to an. After some
algebraic manipulations on Eq. �18�, we get the following
equation for 	an+1:

�M

	t
+

1

d
�A + cM��	an+1 = −

1

d
�A + cM�an. �19�

This suggests that, once we compute the first a0 from the
initial condition on the concentration, we can iteratively
solve Eq. �19� to calculate all the expansions an and, hence,
the concentration at any time tn+1. The assembling of matri-
ces A and M and the solution of linear algebraic system Eq.
�19� is accomplished by using the flexible numerical frame-
work of FETK. The equations for computing 	an+1 using the
forward Euler method or the trapezoid rule can be derived
similarly. In the case of implicit methods, the low complexity
solver framework in FETK is used to solve Eq. �19�.

For the steady-state NP, the time derivative parts vanish
in the weak forms. The weak forms for the PE have the same
form as the above NPs, and one only needs to substitute the
time-dependent term with the charge distribution term.

D. Iteration procedure between the coupled NP and
PE

For the steady-state case, in order for the iteration be-
tween the diffusion and electrostatic equations to converge, it
was found necessary to employ under-relaxation, especially
when macromolecule exists. In other words, variables were
updated with a linear combination of old values and calcu-
lated new values, rather than just new values. The necessity
of under-relaxation procedure was also experienced in the
work of Corry et al.

17 Even though, many iterations may be
required in the non-time-dependent solutions. In the cases
studied in this work, several tens or a few hundreds of itera-
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tions were required for convergence. The over-relaxation
scheme has been used in the finite difference solver,13 but
seems not applicable in this frame.

E. Boundary conditions

Proper boundary and/or initial conditions should be cho-
sen according to different situations in applying the above
equations. For the PE, because we normally choose a big
enough domain � whose exterior boundary is far away from
the molecule, the easily calculated Debye-Hückel screening
potential on the boundary �induced by the total source
charges� is taken as the �Dirichlet� boundary condition.

For the NP �or SE�, if there is no absorption or source
generation on the boundary for the diffusive particle, then
either a reflecting boundary condition is used on the outside
boundary to simulate a closed box,

n�r� · j = 0, for r � �s,

or a Dirichlet boundary condition to simulate the bulk con-
dition,

p�r� = pbulk, for r � �s.

The condition jn=0 is actually a Neumann condition for the
pure diffusion equation or, more generally, a type of Robin
condition. On the molecular surface, it is also reasonable to
use the reflecting boundary condition.

A special application is the solution of the diffusion-
reaction system, which can be modeled by designating a “re-
active” boundary patch �a �see Fig. 2�, and setting the
boundary conditions as in Refs. 24 and 37,

n�r� · j = − k�r�p�r,t�, for r � �a,

n�r� · j = 0, for r � �m − �a.

Such applications have been successfully performed on ACh
consumption by the enzyme AChE, which is a diffusion-
controlled reaction process.24 In Ref. 24, a simpler sink
boundary condition is taken for the reaction site p�r , t�=0,
for r��a.

The diffusion-influenced biomolecular reaction rate con-
stant is calculated from the flux by integration over the active
site boundary as

k =
− � �a

n · jds

pbulk
.

IV. MESH GENERATION AND SYSTEM SETUP

Mesh generation is a long standing problem, hindering
the wide application of the finite element and boundary ele-
ment methods to biomolecular systems due to the very ir-
regular shape of biomolecules. To enable our finite element
modeling work using FETK, we have built a high-quality bio-
molecular mesh generation tool chain using a number of ex-
isting mesh generation tools. The tool chain has essentially
three main components. First, a triangulation of the solvent-
excluded surface is generated using the program MSMS.38

The molecular surface is the envelope of the atoms on the
surface, represented as spheres with the atom’s van der

Waals radius. The surface atoms are determined by rolling a
probe sphere with radius of 1.4 Å over the surface; the atoms
that are contacted by the probe sphere are considered part of
the surface. The unaltered MSMS surface mesh could be used
in the BEM calculation, but cannot serve as a boundary for
the FE calculation because the triangulation contains many
triangles with very small or large vertex angles, leading to
large interpolation errors. This impacts both finite element
and boundary element approximation quality. Therefore, in
the second step, the program ADVENTURE�TETMESH �Ref. 39�
is used to smooth the surface triangular mesh. Finally, in the
third step, the tetrahedral volume mesh is generated using the
program TETGEN,40 which starts with a closed triangulated
boundary. In addition, if the domain is regular, as in a model
system, the mesh can be generated using NETGEN.41 All of
these tools are available free online in source form, with the
exception of MSMS which is only available as a binary ex-
ecutable.

Figure 3 shows an example of the unstructured tetrahe-
dral volume mesh and triangulated surface mesh of a frag-
ment of A-form DNA used in our later FEM and BEM cal-
culations. The molecular surface mesh is the smoothed
version generated from the original surface mesh created by
MSMS.

For the cases studied in this paper, AMBER force-field
values were used for the partial atomic charges and van der
Waals radii.42 The dielectric coefficient � is set to 2 in �m

�molecular interior� and 78 in �s �solution�.

V. RESULTS

We mainly perform two types of calculations. First, the
coupled system �PNPE� using Eqs. �1� and �2� in steady state
are solved for a spherical cavity model for illustrations and
for a DNA system to investigate the surrounding ionic den-
sity distribution. Second, using Eqs. �1� and �4�, both the
steady-state and time-dependent SEs are solved using a pre-
calculated PB potential �rather than then the coupled PE po-
tential� in order to study the diffusion-reaction process.

A. Numerical accuracy test

A unit spherical cavity with a positive charge +e located
at the center was chosen to test the numerical accuracy of the
FEM solution. A sphere with radius of 40 Å was set as the
outer boundary of the whole calculation domain. The whole
volume mesh was generated with 22 728 vertices and
111 723 simplices �tetrahedra�, of which 22 704 vertices and
111 311 simplices are located in the outside domain of the
cavity. The FEM was used to solve Eq. �7� for the regular
component of the electrostatic potential. Figure 4 shows the
relative errors of the calculated potentials �regular compo-
nent� relative to the analytical one. The relative errors in the
whole domain were kept at very small values. The increase
in relative errors in the middle range of the radial distance
was due to the mesh being coarser than in the other parts.
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B. Counterion compensation

Biological macromolecules are polyions whose function
depends strongly on the surrounding ion atmosphere in solu-
tion. The accumulation of ions around oppositely charged
regions of the macromolecule is often called charge compen-

sation, because the ions can offset the charge on the macro-
molecule, sometimes even causing the charge around the
molecule to reverse. Manning gave a suggested distance

from the molecule to count for the counterion distribution
and charge compensation.43 In fact, from Gauss’s law, the
molecular charge must be compensated by ions to some dis-
tance far enough away from the molecule because the elec-
tric field approaches zero, otherwise, the mobile counterions
will move closer to compensate again. Therefore, the charge
compensation could be used as a criterion for the accuracy of
the continuum model for ion density prediction. We will first

FIG. 3. �Color� An example of mesh generation for a fragment of A-form DNA. �a� Cross section of the whole tetrahedral volume mesh. �b� A close-up view
of the fine mesh around the molecule, whose body is colored by green. The edge between green and blue regions lies on the molecular surface. �c� The
triangular boundary mesh conforming to the molecular surface.
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revisit the theoretical predictions based on the solutions of
the linearized Poisson-Boltzmann equation �Eq. �5��. It is
important to understand the approximation and its effect on
computed charge compensation. The case of a charged
sphere is a convenient system to study, because of the avail-
ability of analytical solutions.

For a unit sphere cavity of radius a with a point charge
−e located at the center, the LPBE potential is

� =
− e exp�− ��r − a��

4
�s�1 + �a�r
, �20�

where �=�2n0e2 / ��okBT�, �s is the solvent dielectric coeffi-
cient, and n0 is the bulk ionic concentration. Then, the net
charge q�r� inside a volume of radius r, defined as the com-
pensation charge, is the accumulation of the counterions and
coions,

q�r� = �+ + �− = 
a

r

n0�exp�− �e�� − exp��e���dr3.

�21�

The quantity q�r� is numerically integrated using MATLAB. It
is worth noting here that Moy et al.

44 used again the linear
approximation of the above Boltzmann distribution in Eq.
�21� �this is the approximation used to get the LPBE from the
NPBE� to derive an analytical solution,

q�r� = e�1 −
1 + �r

1 + �a
exp�− ��r − a��� . �22�

We point out that these two formulas lead to essentially dif-
ferent pictures of charge compensation. Formula �22� pre-
dicts that the compensation charge within any radius mono-
tonically increases but is bounded by +1e, corresponding to
100% compensation. This feature can be seen in Fig. 5�a�.
However, formula �21� gives different compensation profiles
for different ionic strengths as shown by the blue curves in
Fig. 5�a�. In particular, the curve at high ionic strengths may
go beyond unity, indicating overscreening �charge reversal�
of the cavity charge. At low ionic concentrations, the two

formulas give similar predictions and do not show charge
reversal within the distances shown in the figure. Figure 5�b�
gives a picture of the charge compensation within a fixed
radius of 40 Å with respect to the ionic strengths �through
��. The compensation has a peak at certain values of �, but
falls back to 100% again with an increase of �. The figure
shows the properties of counterion compensation from theo-
retical predictions, even though the large � has no biological
correspondence. Therefore, even when using the linear PBE,
the overscreening of counterions can be predicted by using
Eq. �21�.

In fact, if one extends the region of integration to be
large enough in Fig. 5�b�, i.e., �40 Å, it is found that the
numerical integral results seem to always give on over-
screening even at very low ionic concentrations. This means
that the direct solution of LPBE inherently overestimates the
counterion densities. In the following section, we will show
that, for the same spherical model, the NPBE tends to give a
smaller potential relative to that of LPBE, thereby leading to
the prediction of a smaller counterion density. This indicates
the improvement of the NPBE on charge compensation pre-

FIG. 4. �Color online� The numerical error in the solution of the regular part
of the PBE using FEM.

FIG. 5. �Color� The charge compensation predicted based on the analytical
solution of the LPBE for a unit sphere cavity with charge −e at the center.
�a� The compensation charge as a function of radial distance at different
ionic strengths represented by �. Blue lines correspond to the results from
Eq. �21�, red marks from Eq. �22�. �b� The net charge within r=40 Å as a
function of � using Eq. �22� �red� and Eq. �21� �blue�.
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diction, but it is still not proved that the NPBE solution leads
to a monotonically increasing charge compensation and
bounded by 100%.

C. Solutions of the coupled system PNPE

1. Potential and ion density in equilibrium state

When there is no flux existing, the PNPE trivially re-
duces to the NPBE �Eqs. �4�� with the charge density given
by the Boltzmann factor. This property can be used to check
the correctness of the PNPE program. We used a spherical
cavity of radius 1 Å to test computations of the potential and
charge compensation. One unit charge +e was placed at the
center, the interior of the sphere was set to a dielectric coef-
ficient of 2, and the material outside the sphere �the solvent�
was set to a dielectric coefficient of 78. A sphere with radius
of 200 Å is set as the outer boundary of the computation
domain. The volume mesh had 3745 vertices and 22 614
simplices, in which 3721 vertices and 22 206 simplices lie in
the domain outside the cavity. The solvent contained a neu-
tral 1:1 salt; 50 mM was set as the outer boundary condition
for both positive and negative ions; and a reflecting boundary
condition was imposed on the inner sphere. Comparisons of
the potentials obtained with different numerical algorithms
based on the LPBE, NPBE, and PNPE are listed in Fig. 6.

It was found that the LPBE result nearly coincides with
the exact, analytical solution. The results from the PNPE are
very close to those from the direct solution of the NPBE,
which is consistent with the model �the PNPE reduces to the
NPBE at equilibrium�. Thus, solving the PNPE at equilib-
rium provides another way to solve the NPBE. Deviation of
the potential computed using the LPBE from that using the
NPBE is found even at this low ionic concentration. Both the
potentials from the NPBE and the PNPE are lower than the
LPBE results, which is also reasonable from physical and
mathematical analyses. The LPBE is more likely to overes-
timate the counterion screening effect as discussed in the
previous section. The resulting weaker potential leads to

smaller computed compensation charges. The charge com-
pensation, by integrating the total ion charge densities over
the solvent domain, was computed to be 1.3e, 1.1e, and
0.98e, using the numerical solutions of the LPBE, NPBE,
and PNPE, respectively. The differences in potentials and
compensation charges between the results from the LPBE
and the NPBE are expected to be larger with increased mo-
lecular charge or ionic concentration.

2. Effect of charge flux of a third diffusing species

Now we consider the same system, but with another dif-
fusing species in addition to the 1:1 salt, with the third spe-
cies being absorbed by the inner sphere �sink� at steady state.
The third species was given a plus or minus unit charge, and
the spherical cavity boundary was set as a sink boundary
�p=0� to generate a charge flux. The outer boundary condi-
tion at r=200 Å for the third species was set to a 50 mM
constant concentration. We explored the effect of the steady-
state charge flux on the potential and concentration profile of
the two ions, and vice versa, the effect of the coupling
among the three charged species to the flux expressed by rate
constant. Both positively and negatively charged reacting
species were considered. The results are shown in Fig. 7.

It was found in Fig. 7�a� that the potential and the den-
sity distributions of both counterions and coions of salt were
significantly affected even at a modest 50 mM ionic strength.
The positively �negatively� charged flux raised �lowered� the
potential throughout the whole domain. This effect was seen
because the reacting species added its own charge to the
system. In this case, the potential shift was on the magnitude
of 0.2 kcal/mol e. It was even seen that the negatively
charged flux could lead to reversal of the sign of the total
potential at certain distances; this would not happen in the
1:1 salt using the NPBE model for the ions. Figures 7�b� and
7�c� show the significant changes in the counterion and coion
density distributions caused by the charged flux. The magni-
tude of changes was about one third of the original, unper-
turbed profile.

The calculations with different models also showed ob-
vious effects of the coupling of the three charged species to
the reaction rate constant. For example, in the SPBE model,
the negative flux had a rate constant of 3.17
�1011 mol−1 min−1, while in the PNPE model it decreased to
2.39�1011 mol−1 min−1 and 2.82�1011 mol−1 min−1 if the
the bulk concentration of the third species was 10 mM. This
indicates that the higher the concentration of the reactive
species, the stronger the effect of the coupling on the rate
constant. To further check how the interaction between the
reactive particles affects the rate constant, we set the ionic
strength to zero, and it was found that the calculated rate
constants were 3.84�1011 mol−1 min−1 in SPBE, 2.50
�1011 mol−1 min−1 in PNPE for a bulk concentration of
50 mM of the diffusing particle, and 9.87
�1010 mol−1 min−1 in PNPE for a bulk concentration of
300 mM of the diffusing particle. This implies that the
strongly electric repulsion between the reactive particles
leads to great reduction in rate constant. A simple explana-
tion for this phenomena is as follows. According to Gauss’s
law for the simple symmetric sphere case, the diffusing par-

FIG. 6. �Color� Comparisons of the calculated electrostatic potentials in
50 mM 1:1 salt around a unit spherical cavity with +e at the center from
different approaches: the analytical LPBE solution �blue square�, LPBE
�black star�, NPBE �red triangle�, and PNPE �green circle�.
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ticles surrounding the sphere associated with the flux induce
a repulsive drifting field for the diffusion, which lowers the
rate coefficient compared with the case with the repulsion
interaction ignored. Therefore, the interparticle repulsion and
the sink-particle attraction are competitive factors to the rate
constant, and both are regulated �reduced� by ionic strength.
For this reason, the reaction rate coefficient can be expected
to be increased by the ionic screening due to the weakened
interparticle repulsion in certain ranges of ionic and diffusing
particle concentrations. For instance, with a bulk concentra-
tion of 300 mM for the diffusing particle, the rate constant in
the PNPE calculation at 50 mM ionic strength is 1.35
�1011 mol−1 min−1, which is higher than that in case of zero

ionic strength as shown above. This observation actually il-
lustrates a violation of the widely accepted rate theory based
on the famous Debye-Hückel law �e.g., see Ref. 3�.

These results demonstrate the significance of the effects
of mutual interactions among salt ions and other charged
diffusing particles. Furthermore, they highlight the impor-
tance of solving the coupled PNPE, rather than the SPBE,
especially in cases of large flux. However, the SPBE is still
an acceptable approximation of the PNPE when the concen-
tration of the reacting species is small and the coupling is not
strong �at zero ionic strength, �10% difference in the rate
constants obtained with the two methods at 10 mM, and
�1.4% at 1 mM�. This approximation is desirable when pos-
sible because of the large savings in computational cost.

3. Ion density around the DNA

We calculated the ion distributions around a fragment of
A-form DNA with 12 base pairs and a net charge of −22e.
The system has a strong negative potential field, which at-
tracts cations. The system was bounded on the outside by a
spherical boundary with a radius of 200 Å. The mesh over
the whole domain had a total of 99 093 vertices and 620 117
simplices, with 24 503 vertices and 49 002 triangles on the
molecular surface, and 74 163 vertices and 388 419 tetrahe-
dra in the solvent domain. For comparison, we calculated
concentrations of both monovalent �i.e., Na+� and divalent
�i.e., Ca2+� cations. The bulk densities in solution for, i.e.,
NaCl and CaCl2, were set to 50 and 25 mM, respectively.
Figure 8 shows the surface potential and the counterion con-
centrations around DNA. Figure 8�a� shows a common fea-
ture of A-form DNA—a strongly negative electrostatic po-
tential in the major groove. This led to the dense
concentration of cations in the major groove �see Figs. 8�b�
and 8�c��. When the solution was changed to CaCl2, the
bivalent Ca2+ ions were much more strongly attracted to the
major groove �Fig. 8�b�� than the monovalent cation, and the
highly concentrated regions were larger. This observation
agrees with the known fact that the bivalent cation binds
much more strongly �far greater than a factor of 2� than the
monovalent cation to the site with negative potential. In
addition, the calculations predicted very accurately charge
compensations in the whole exterior domain of
DNA: 21.3e�1013.7 Na+ ,992.4 Cl−� for 1:1 salt and
21.1e�508.0 Ca2+ ,994.9 Cl−� for 2:1 salt.

D. Solutions of the uncoupled system SPBE

1. Steady-state diffusion-reaction system: ACh
consumption

Debye-Hückel theory predicts the screening effect of
mobile ions in solution on the electrostatic potential of im-
mersed biomolecules. This theory implemented within tran-
sition state theory gives a similar screening effect �exponen-
tially decreasing with ion concentration� on the rate of
protein-protein or protein-ligand association, which is called
the Debye-Hückel limiting law. Because of consistency in
principle, the SPBE model can be expected to reproduce the

FIG. 7. �Color� Effects of the addition of a charge flux in the 50 mM 1:1 salt
to �a� the potential, �b� the counterion, and �c� the coion density distribu-
tions. In the three figures, the red square marks denote the 1:1 salt case
without charge flux, the blue triangle marks denote the case with a negative
charge flux �−e particle� added in the salt, the black star the case with a
positive charge flux added in the salt.
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behavior following the Debye-Hückel limiting law. The basic
ionic-strength dependence of the binding rate can also be
found by combining Zhou’s average Boltzmann factor theory
and the screened electrostatic potential approximation.45,46

The Debye-Hückel limiting law was used to fit the experi-
mental data of ligand binding to acetylcholinesterase.3

Former papers24,25 studied the steady-state reaction rate of
the AChE monomer with acetylcholine in the SPBE model,
using the software package APBS �Ref. 26� to compute the
potential with nonadaptive and adaptive meshes. To com-
pare, we repeated the calculation using the Poisson-
Boltzmann potential computed from the boundary element
method. All of the simulations in the AChE studies, both the
steady-state and the time-dependent cases, were done by
solving the linearized PBE for the mobile ions only once at

the start, plugging the electric field into Eq. �1�, and then
solving the SE for the ACh concentration.

ACh is a positively charged ligand, and a diffusivity of
D�r�=78 000 Å2 /s is assumed for ACh and a neutral
ligand �TFK0� for later comparison. Rather than using the
procedure described above for generating meshes, we chose
to use the same meshes for the AChE monomer and tetramer
as were used in the previous works24,47 in order to facilitate
comparison of results. The meshes were generated only for
the solvent domain �s and not for the interior of AChE,
which allows solution of the SPBE problem but not the
PNPE in the current framework, as described in the previous
sections. The tetrahedral mesh sizes for the AChE monomer
were 312, 276, and 366 nm for the lengths of the three prin-
cipal axes, respectively, and that for the AChE tetramer

FIG. 8. �Color� Electrostatic potential and cation density �mM� around a fragment of A-form DNA. �a� Surface electrostatic potential from the BEM LPBE
solution in a 50 mM 1:1 salt. The color scale is from −11 �red� to 10 �blue� kcal/mol e. �b� Cross section of the density distribution in 50 mM 1:1 salt. �c�
Density distribution in 25 mM 2:1 salt �e.g., CaCl2�. The color scale is doubled for ease of comparison with �b�. �d� Density isosurface with a value of
3000 mM in the case �b� from a different orientation. These and all the following density figures are generated using the software OPENDX �Ref. 59�.
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�1c2b� were 763, 671, and 679 nm. These sizes were about
40 times the radius of the monomer. More details about the
meshes and the boundary conditions can be found in Refs. 24
and 47.

It is worth noting that AChE densities at vertebrate neu-
romuscular junctions range from 2000/m2 to about
3000/m2, both in the primary cleft and in the secondary
cleft folds,48,49 depending on the species. This is approxi-
mately equivalent to 20 nm of separation for a square array
distribution. AChE appears in the NMJ mainly in a cluster of
three tetramers. Thus, the mesh sizes were several times
larger than the separation between AChE molecules; we did
not attempt to address the issue of competition among neigh-
boring AChE molecules in vivo. If the steady-state reaction
rate is computed, as in the former works,24,25,47 the radius of
the outer boundary does not significantly affect the results,
because the boundary condition on the outer boundary is set
to the bulk density. This is a good approximation when the
outer mesh boundary is sufficiently far from the molecule.
As in the previous studies, we used a Dirichlet condition on
the outer boundary with values of the bulk concentrations,
reflecting boundary conditions on most of the molecular sur-
face, and an absorbing boundary condition at the active site.

Figure 9 shows that both approaches correctly captured
the screening effect of ionic solution on the binding rate of
the charged substrate and agreed well with the fit of the
Debye-Hückel limiting law to the experimental data. Be-
cause the computed reaction rate is directly affected by the
electric potential at the active site, the more accurate value of
the potential computed from the BEM gives improved rates
over even the refined FE mesh from the previous studies.

2. Time-dependent diffusion-reaction process

The time-dependent case gives more kinetic information
on the diffusion-reaction process than the steady-state case.
However, it strongly relies on the initial condition, locations
and types of boundary conditions, and the mesh geometry.
For instance, in the steady-state situation, the calculated re-
action rate constant is not sensitive to the boundary value

and the size of the outer boundary �if far enough away from
the molecule�, whereas in the time-dependent case, all of
these factors do affect the observations. Therefore, results
such as the ACh depletion time, cannot yet be compared
directly to experimental data, but can supply important quali-
tative information on properties and factors affecting the pro-
cess, if the conditions closely approximate conditions in vivo

or in vitro.
In each calculation, there was one AChE monomer or

tetramer located at the center of the mesh. A reflecting
boundary condition on the outside boundary of the mesh was
used to avoid the spreading of ACh to a much larger volume.
Two types of initial conditions were used. One was a uni-
form distribution of ACh in the whole diffusion domain
around AChE; this is based on the assumption that ACh
quickly fills the synaptic cleft after release from the vesicle,
compared to the time scale of whole synaptic activity and
depletion. The other is a pulse of ACh corresponding to
about 10 000 molecules of ACh at about 0.3M concentration,
uniformly distributed in a sphere of 24 nm in radius and
centered at 48 nm from the enzyme center on the positive y

axis. The latter pulse condition roughly corresponds to what
happens in the NMJ �Refs. 21, 22, and 50–52� upon release
of ACh from a synaptic vesicle �represented by the sphere� in
the frog NMJ.53 The reactive boundary on molecular surface
is also equipped with Dirichlet condition and with zero value
to reflect the fast catalytic process which clears the ACh from
the NMJ. We note that the AChE density in this circumstance
is lower than in real NMJ, as mentioned in the mesh genera-
tion section, and interactions among the ACh molecules were
neglected. However, the model still gives useful information
about the time scales and trends of ACh depletion.

Figure 10 is a set of visualizations of the diffusion-
reaction processes for the cases with monomer or tetramer of
AChE, positively charged or neutral diffusing substrate, and
different initial conditions. The salient feature is the ability
of the electrostatic field of the enzyme AChE to steer ACh
diffusion by absorbing it to the peripheral sites of the reac-
tive gorge of AChE even at very early times �see Fig. 10�d�

FIG. 9. Comparison of calculations of the steady-state
reaction rate of AChE monomer with BEM potential,
APBS potential, and experimental fitting data. The dot-
ted lines are the results from Ref. 25 with APBS elec-
trostatic potential using unrefined or refined meshes, re-
spectively. The thin solid line is from experimental data
�Ref. 3� fit to the Debye-Hückel limiting law.
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at 0.1 s and Fig. 10�h� at 0.5 s� to accelerate the reaction.
However, the initial ACh pulse quickly spreads in the whole
space even when perturbed by the electrostatic attraction �see
Figs. 10�e� and 10�h��. Under normal physiological condi-
tions, it appears that the initial pulse of ACh reaches a fairly
even distribution in a short time, and then the electrostatic
forces persistently steer the substrate molecules to the active
site. In other words, a quasi-steady-state condition is estab-
lished with the rapid initial spread of substrate, followed by
the slower channeling to the active site. This effect is seen in
the graphs of Fig. 11, showing a slow decay in numbers of
remaining ACh after a rapid transient. This holds even for
the case of small ionic concentration, where the steering ef-
fect is the greatest.

Figure 11�a� shows the consumption kinetics of an initial
ACh and TFK0 pulse by the AChE monomer under different
ion strengths. It can be observed that higher ionic strengths
cause higher buildups of ACh due to electrostatic screening,
but the electric field still accelerates the reaction rate sever-
alfold, compared to the case of the neutral substrate. The
time required to consume one-half of the total ACh in solu-
tion of 0 mM ionic strength is just about one-eighth
�350 s /2620 s� of the time required at 300 mM ionic
strength.

Figure 11�b� plots the consumption rate of AChE in the
early stage of the process. In the following longer depletion
period, each line smoothly declines in a slower exponential

FIG. 10. �Color� Visualization of the evolution of substrate concentrations in the diffusion-reaction processes. +e denotes the one unit positively charged
ligand ACh and 0e denotes the neutral ligand TFK0. �a�–�g� show the cases of diffusion from an initial pulse in the presence of AChE monomer at ionic
strength of 0.3M. �h� shows the tetramer �1c2b� case with diffusion with an initial condition of ACh pulse and in zero ionic strength. �i� is the same as �h� but
with a uniform distribution �0.3M� of ACh as the initial condition. For the sake of visualization, different color scales are used in different subfigures. The
largest color scales �red� are 0.000 18 in �a�–�c�, 0.0001 in �d�, 0.000 05 in �e�–�h�, and 1.0 in �i�.
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decay. The time for the reaction rate to reach the maximum
value reflects the effect of the substrate-enzyme interaction
on the diffusion. Using a reference time scale estimated from
the Einstein-Smoluchowski equation, �r2� =6Dt, the aver-
age time for a particle to freely diffuse across 45 nm, a dis-
tance between the vesicle center and the AChE reactive site,
is 0.43 s. This is close to the neutral case �Fig. 11�b�,
purple line�. In the charged cases, the times to reach the
maximum are a bit greater than in the neutral case, and the
magnitudes increase significantly. A direct explanation is that
the electrostatic attraction helps to gather more ACh mol-
ecules �increased magnitude�, and from a longer range �de-
layed peak�, into the AChE reactive site than does the free
diffusion.

We also set the initial pulse position at different direc-
tions from the enzyme but at the same distance. We found
that this affected the overall ACh depletion process very little
�data not shown here�.

Figure 12 shows the results of the simulations with ini-
tial condition of an ACh bulk ��r ,0�=1. Because Eq. �1� is
linear with respect to density p, the initial bulk density will
not affect the dynamic features, so all numbers of residual

ACh molecules are normalized. In this case, it is found that
ACh consumption processes show the same tendency as seen
in Fig. 11.

VI. CONCLUSIONS AND DISCUSSION

A numerical framework has been developed to enable
the simulation of the electrodiffusion process in biomolecu-
lar systems. The framework consists of a biomolecular mod-
eling tool chain and a boundary element solver combined
with the FETK finite element modeling library for both statics
and dynamics. The quality of the generated meshes is suffi-
cient for the present finite element calculation, and the hy-
brid scheme is validated by the results. The program gives
accurate calculations for the potential profile, density distri-
bution, and compensation charges for different models �lin-
earized PBE, nonlinear PBE, and PNPE�. The calculation
results for the unit spherical model also indicate that, even at
10 mM concentration of the diffusing particle, the coupling
among all the charged species in the diffusing system signifi-
cantly affects the reaction rate, so application of the PNPE is
recommended for reaction rate calculations if sufficient com-
putational resources are available. The time-dependent
model �currently still an uncoupled system� can capture the
main features of the consumption of the substrate ACh as
well as TFK0. The detailed geometry of AChE, electrostatics,
and ionic strength are included in this model, and the time
scale represented by the computation can reach microsec-
onds to milliseconds. This is on the same time scale as phe-
nomena in the synapse, allowing the possibility of predicting
and comparing with experimental measurements.

The current program incorporates the solvers of the lin-
ear and nonlinear PBEs, NP/SE, and their coupled/uncoupled
forms �PNPE/SPBE�, allowing for the treatments of a variety
of continuum models. This methodology can be applied to
other fields as well, such as colloid science, with dimensions
scaled accordingly. Although representing an improved algo-
rithm, the program is comparable with the previous work
using FETK �Ref. 24� but using other mesh generation tools,
and the electric potential fields used as input can be gener-
ated from the APBS package. In addition, in order to reduce

FIG. 11. Substrate consumption processes by AChE monomer at different
ionic strength. +e denotes the positively charged ACh, 0e the neutral TFK0.
The diffusion starts from a vesicle-sized area containing 10 000 ACh mol-
ecules and �20 nm away from AChE �see Fig. 10�a��. The bottom figure
shows a close-up view of the transient behavior at the beginning.

FIG. 12. Consumption of bulk ACh by the AChE monomer at different ionic
strengths.
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the complexity of the program package, both the SE and the
PE can be solved using the FETK package alone, but a pro-
cedure is required to generate a fine enough interior mesh for
the macromolecule to guarantee numerical accuracy.

As with all models based on continuum descriptions of
ions, such as the Poisson-Boltzmann equation, the biggest
room for improvement is in the model itself. The current
PNPE is based on the mean-field approximation, in which
finite ion size or ion-to-ion correlation is not considered.
Such effects cause ion saturation in highly charged systems,
such as DNA, and single filing of ions in channels; these
phenomena cannot be captured by the present continuum
model. For example, ion concentrations are overestimated
near charged surfaces in comparison with models in which
the ions are explicitly included in, e.g., Brownian dynamics54

or grand canonical Monte Carlo simulations.55 Some recent
models have been proposed and tested in ion channel perme-
ation to effectively take into account the ion size,56,57 thus
partially remove the limitation that mobile species are treated
as point charges. Another effect neglected by these models is
the specific interactions of some ions, such as Mg2+, with
water and their influence on the water’s microstructure. For
example, the Mg2+ ion is typically accompanied by several
water molecules, even when bound to DNA or proteins.
Moreover, current work completely ignores molecular flex-
ibility and the presence of thermal noise. Macromolecule
flexibility could play an important role in the process of ion
density relaxation. It may be useful to take into account the
macromolecular flexibility into the PNPE theory to calculate
fluxes and mobile ion density distribution. A recent work
incorporates information about the channel dynamics in
terms of potential of mean force into PNPE calculations.58

Another possibility is to extract a set of snapshots �ensemble�
from the trajectory of a molecular dynamics simulation, then
perform PNPE calculations for each conformation and ana-
lyze the results. This type of work is underway to study the
catalysis efficiency for the dynamical AChE tetramers.

Several improvements could be made in the numerical
solution itself. As mentioned above, the under-relaxation it-
erative procedure for the PNPE in our FE framework seems
necessary, especially when macromolecules exist. However,
such an iterative procedure might have difficulty converging
in cases of highly charged macromolecular systems and need
to be improved. Where possible, one should use the Poisson-
Boltzmann approximations to avoid the iterative solution.
Work is underway to carry out a FEM computation on the
regular component of the electrostatic solution �Eq. �7��, in
which the interior of the biomolecule does not need to be
meshed; this will allow simultaneous solution of both diffu-
sive and electrostatic components using FETK because the
meshes will coincide. Finally, the current boundary condition
settings for the PE solution may not be completely correct
for the cases where three or more types of diffusing particle
exist or if the whole system is far from neutrality.

For solution of the time-dependent PNPE, it is expected
that the CPU cost would be increased by several times com-
pared with that of the solution of a pure diffusion equation or
SPBE, depending on the total number �K+1, K is the number

of diffusing species� of equations to be solved at each time
step. This is still acceptable for normal computational power.

Despite the above limitations, the Poisson-Nernst-Planck
model and the software framework can give accurate values
for charged particle density and reaction rates, provided that
the particles are dilute and the strength of the electric field is
not too high.
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