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Abstract. A singular perturbation problem, modeling one-dimensional time-depend-
ent electrodiffusion of ions (holes and electrons) in a bipolar membrane (semi-conductor
diode) at a reverse bias is analyzed for galvanostatic (fixed electric current) conditions. It
is shown that, as the perturbation parameter tends to zero, the solution of the perturbed
problem tends to the solution of a limiting problem which is, depending on the input data,
either a conventional bipolar electrodiffusion problem or a particular electrodiffusional
time-dependent free boundary problem. In both cases, the properties of the limiting
solution are analyzed, along with those of the respective boundary and transition layer
solutions.

0. Introduction. In our recent paper [1] we analyzed the electrodiffusional free
boundary problem that arose asymptotically in the singularly perturbed model of elec-
trodialysis for a vanishing perturbation parameter. This model concerned the passage
of a specified direct electric current through a layer of univalent electrolyte adjacent
to the wall (cathode, cation exchange membrane) selectively permeable to positive ions
(cations) only. The simplest version of the governing equations was

t > 0: pf = {p£x +pe4>%)x Vx€(0,l), (0.1)
t > 0: n\ = (n% -ne(j)£x)x Vxe(0,l), (0.2)

t > 0: e<f)£xx = n£ - p£ Vx € (0,1). (0.3)
Here p£(x,t), n£(x,t), cp£(x,t) are, respectively, the cation and anion (negative ions) con-
centrations and the electric potential. Equations (0.1) and (0.2) are the Nernst-Planck
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equations for electrodiffusion of the cations and anions, respectively. These equations
merely express conservation of each ionic species, with the expressions in parentheses
standing for the respective ionic flux (with a minus sign). The first term in these expres-
sions stands for the ordinary diffusional flux component, whereas the second stands for
the migration in the electric field. Equation (0.3) is the Poisson equation, with pE — ne
being the space charge density. The small parameter e in (0.3), the squared dimension-
less Debye length, lies in the range 10~12 < e < 10~4 for realistic macroscopic systems.
The source and implications of smallness of £ may be verbalized as follows (for a detailed
discussion of these issues the reader is referred to Ref. [2]). One gram-equivalent of ionic
species carries a very large electric charge. This is why any appreciable deviation from
the local concentration balance of the ionic species on a macroscopic scale should require
a presence of immense electric fields acting on the same scale. Absence of such fields at
and near the equilibrium implies that for quasi-equilibrium conditions any appreciable
space charge (comparable to the local ionic concentration) must be confined to boundary
layers (double electric layers in physico-chemical terminology) of the order of thickness
y/e. This is not necessarily the case for strongly nonequilibrium conditions, considered
in [1] and in the present paper.

Combining Eqs. (0.1)-(0.3) yields the continuity equation for the electric current den-
sity whose integration implies

£<t>%t+Pex - < + (P£ + n£Wx = (0.4)

Here I(t) is the electric current density. The first term on the left-hand side of (0.4)
stands for the displacement current, whereas the second and the third correspond to
the diffusion and conduction current components, respectively. For galvanostatic (fixed
current) conditions, considered in Ref. [1],

I(t) = I = const (0-5)

where I is specified by the boundary conditions.
The main result of Ref. [1] consisted in proving that for e —> 0, / > /llm = 4,

the solution of the perturbed problem (0.1)-(0.5) with the respective boundary-initial
conditions tends to that of the following free boundary problem:

ct=cxx, Vx G (0,R(t)), R(t) G (0,1), (0.6)

c = 0, Vxe(R{t), 1), (0.7)

c(R{t),t) = 0, (0.8)

cx(R{t),t) = -1-. (0.9)

Here

c(x,t)d= limpe(x,t) = lim ne(:r, t). (0.10)
£ —>0 e^0

In addition to this result, the limiting problem for I < 7hm has been analyzed, along
with the asymptotics for the boundary layers solutions (for both I < Ihm and I > Ihm)
and that for the "empty" zone R(t) < x < 1, developing for I > 7llm.
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The outlined treatment thus addressed one of the few basic functional elements of
membrane transport—passage of ions from the electrolyte solution into a charge-selective
object (ion-exchange membrane, metal electrode). Another prototypical situation con-
cerns the transfer of ions between different objects of this type, in particular with alter-
nating charge selectivity. This is namely the case in a bipolar membrane—a sandwich
formed by an anion exchange membrane (A) adjacent to a cation exchange membrane
(B)—the object of our study in this paper. Bipolar membranes are used, in particular, for
acid-base generation. Acid-base generation occurs as a result of water electrolysis under
the action of strong nonequilibrium electric fields that develop around the A-B junction
upon the passage of a specified direct electric current from A to B (see Refs. [3]—[5]). This
electric field and the pertaining development of the space charge fronts, irrespectively of
the related electrolysis, is the issue that we are concerned with here. The entire setup we
are about to study is mathematically identical to that for a reversely biased semiconduc-
tor diode operated at a constant current. The simplest relevant time-dependent model
problem treated here reads

t > 0: p£t = (p£x +P£<pex)x VxG(-l,l), (0.11)

t > 0: n£t = a(n£x - n£<p£x)x Va:e(-l,l), (0.12)

{_/V 0 x 1
Vxe(-i,i), (0.13)

-N, -1 < x < 0

x = -1: pe + N = ne = n0, (0-14)

x = 1: p£ = n£ + N = p0: (0.15)

<f(-M) = 0, (0.16)

x = 1: P% ~ otn% + {p£ + an£)cf)£x + e<j>£xt = -I, (0.17)

t — 0: p£(a;,0) = Pq(x) > 0, n£ = nl(x) > 0. (0.18)
Here p£(x,t),n£(x,t) are the cation (hole) and anion (electron) concentrations, respec-
tively (in parentheses we include the respective semiconductor terms); 4>e(x,t) is the
electric potential; e is the squared dimensionless Debye length; N(x) is the fixed charge
density of the bipolar membrane (doping function); I in (0.17) is the specified current
density in the system; po,n() in (0.14), (0.15) are the fixed concentrations of the respec-
tive species at the outer edges of the bipolar membrane, determined by the external
solution concentrations, assumed symmetric for simplicity along with the fixed charge in
the membrane and equal ionic mobilities. Equations (0.11)-(0.13) are again the standard
Nernst-Planck equations describing electrodiffusion of ions and the related electric field.
The boundary condition (0.16) normalizes the electric potential by fixing it at one point
(x = —1) at an arbitrary (zero) value.

The nonvanishing fixed charge density, changing sign, is the main feature distinguish-
ing the present setup from electrodialysis (see Ref. [1]), where the electric current flows
from a region with a zero fixed charge into an ideally permselective membrane. This
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structural difference between the two setups yields some considerable differences of both
physical and mathematical nature in the response to the passage of a direct electric cur-
rent. Below we schematically outline some of these differences to be analyzed in the bulk
of this paper.

In Fig. 1 (a)-(c) we present a sketch of the steady-state ionic concentration profiles
in a bipolar membrane, for a small e, at three consecutive values of the current I. For
I = 0 (a), the essentially constant concentrations in the quasi-electroneutral regions
— 1 < x < 0(e1^2),0(e1^2) < x < 1 are connected through a transition '"double electric"
("space charge") layer of thickness (^(e1/2). For 0 < / < Jhm = 2po{^ — 1), ionic con-
centration gradients are formed in the electroneutral layers, although the very division
of the space into electroneutral bulk and a transition layer remains valid. So far the
general picture is qualitatively identical to that in electrodialysis. For / = /hm (b), the
interface concentrations of the minority carriers (anions on the left and cations on the
right of the interface) approach zero whereas that of the majority carriers approach the
respective finite fixed charge concentration. This is different from the respective situ-
ation in electrodialysis where both ionic concentrations nearly vanish at the interface.
Thereafter, for I > /llm (c), a macroscopic space charge zone, essentially void of ions,
appears around the interface. The size of this zone increases with growth of I above
/llm. At the outer edges of this space charge zone the majority ions concentration varies
abruptly from a low value to almost N within a transition layer of width 0(e5). This
discontinuity of the majority carrier concentration at the boundary of the space charge
zone is another difference between the bipolar membrane and electrodialysis setups. Still
another difference between electrodialysis and bipolar setups lies in the distribution of
the electric fields, unreflected in the above sketches. In electrodialysis the electric field
increases without bound as e —* 0 for I > 7hm already at the outer edge of the elec-
troneutral layer (x = R(t) — 0), whereas in the bipolar case it does so only inside the
space charge zone.

In an evolutionary problem, with the space charge zone initially absent, it is expected
to appear at some moment and thereafter evolve in time. In the limit e —> 0, with the
shrinking width of the transition layers, free boundaries corresponding to the edges of
the space charge zone are expected to appear. The subject of the present paper is the
analysis of asymptotic occurrence of the respective free boundary problem when e —> 0,
including the structure of the space charge zone and the transition layers. In particular,
it is proven for the simplest "symmetric" formulation (0.11)—(0.18) that for I > /hm and
e —> 0 the solution tends to that of the following free boundary problem:

ct = ^cx — and c(x,t) > N Va; > R(t), c(x,t) =0 Va; < R{t), (0.19)

c(R(t) + 0, t) = N, (0.20)

NR(t) = I - cx(R(t) + 0, t). (0.21)
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Fig. 1. Sketch of charge carriers concentrations (positive—
continuous line, negative—dashed line) for different values of current.

Here R(t) is the position of the free boundary ("positive" edge of the space charge zone,
extending, due to symmetry, upon the segment —R(t) < x < R(t)) and

cd=lim {pe+n£). (0.22)

Asymptotic occurrence of the free boundary problems for the space charge around the
p-n transition in a semiconductor diode at a reverse bias has been studied on several
occasions [6]—[9], for potentiostatic (fixed voltage) steady-state conditions. Brezzi with
coauthors ([6], [7]) were first to pinpoint this problem and study it for a one-dimensional
steady-state setup. This work was followed by that of Caffarelli and Friedman ([8])
who analyzed a related simplified steady-state model problem in . Schmeiser in [9]
studied the full steady-state problem in R2 with realistic boundary conditions by formal
asymptotic methods. The distinctive feature of the potentiostatic mode of operation
as opposed to the galvanostatic (fixed current) one, studied here, is that in the former
the position of the free boundary does not evolve in time and depends solely on the
magnitude of the applied voltage (of order 0(e-1)).

This paper is organized as follows. In Sec. 1 we obtain estimates on the solution of the
problem (0.11)—(0.18), uniform in e, and employ these estimates to prove the convergence
of the solution of this problem when e —> 0 to that of the respective limiting problem,
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whose fine structure is analyzed in Sec. 2. This includes the proof of smoothness of the free
boundary, uniformly in time; convergence of the solution of the time-dependent problem
to that of the steady-state one; and monotonicity of the free boundary for a positive
initial flux. In the final Sec. 3 we analyze the solution of the perturbed problem in the
transition layer and in the space charge zone. In particular, we find the characteristics
of the solution that remain continuous and smooth upon the limiting transition £ —> 0,
along with the leading-order corrections to the limiting solutions in the space charge
zone, and transition and boundary layer solutions.

1. Uniform estimates on the solution and the limiting transition e —> 0. In
this section we obtain estimates, uniform in e, on the solution of the model problem
(0.11)-(0.18) and study the asymptotic solution in the limit e —> 0.

First of all, let us define flux functions as follows:

Jp d= Pi ~ PE(t>£x + Jn =f - n£<t>%) ~ (1.1a,b)

Next, let us first formulate the following two existence and uniqueness theorems. The
proofs of these theorems are rather technical and may be obtained by a straightforward
modification of the respective proofs of Theorems 1 and 2 of Ref. [1],

Theorem 1 (Existence). Let and Jp{x, 0) belong to the spaces

c1+7[-i,i]nC2+1[-i,o] nC2+7[o, l], c2+7[-i,i], o < 7 < l,

respectively, such that the following consistence conditions hold:

Po{-l) + N = ne0(-l) = n1, PoiX) = no(!) + N = Pu = ^(±1,0) =0,

n0x\x=±\ 7^ 0) Pox\x—±l 7^ 0)

Poxx - Po(no + N(x) - Po) I _ n0xx + no(no + N(x)~ P§) |
C- I X= — 1 p. I — 1 1

Pox n0x
Poxx - PoK + N(x) - Po) I n0xx + no(no + N(x) - pe0),

E \x=l — £ k=l-
Pox n0x

Then, there exists a solution of the model problem (0.11)—(0.18) ne,pE,(f>e with pE,n£,
and <f>e belonging to the functional space C1+7([—1,1] * [0, T]) and JE, to the functional
space C2+7,1+7/2([— 1,1] * [0, T]) for every T > 0.

Theorem 2 (Uniqueness). The solution of the problem (0.11)—(0.18) is unique in the
spaces mentioned in Theorem 1.

Furthermore, let us establish uniform a priori estimates on the solutions p£,n£,(j)£.

Lemma 1. Let the conditions of Theorem 1 hold together with the following additional
ones:

(i) functions Pq{x), tiq(x) are bounded uniformly in e;
(ii) functions J£(x,0), J£(x,0) are bounded uniformly in e.
Then the functions pe(x, t),ne(x, t), J„(x, t), J£(x, t) are bounded uniformly in e \/x €

[-1, l],t > 0.
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Proof of Lemma 1. First, let us establish a uniform maximum principle for the solu-
tions pe,ne. In order to do this we rewrite the equations (0.11), (0.12) in the following
form:

pi =fxx + tfxpl+fN{x)+£n£~pE, (1.2)

nt = anlx - Oi<j)%n% - arfN^  —. (1.3)

Taking into account the boundary conditions (0.14), (0.15) and using the maximum
principle for Eqs. (1.2), (1.3), one can prove that

0 <ps,ne V(x, t) e [0,1] * [0,T\. (1.4)

Therefore, in order to show that the solutions are bounded uniformly in e we must find
the upper estimates on the functions rf ,p£. The main difficulty here is the existence of
the boundary layer at the point x = 0 (because of discontinuity of N(x)) causing inability
to expect boundedness of the derivatives p%,nx or even their belonging to the L2 space
globally in (—1,1) * (0, T). On the other hand, we can prove that the flux functions
Jp, J£ are bounded in the whole of the domain [—1,1] * [0, T] uniformly in e. In order to
do this, let us write down the boundary value problem for functions J£, as

■rPt = j;xx+<¥jFv,+f(J" ~J£p), (i-5)

Jut = a(Jnxx - C4 + Jp e J" , (1.6)

Jpx = Jnx=° for x = ±!- (1-7)

Let us prove the following maximum principle for problem (1.5)—(1.7):

, ^ (1-8)[-1,1J*[0,TJ 1-1,1]

The proof is standard for parabolic-type equations. Let us define the auxiliary func-
tions Q and P by the equalities

Q = Jene~P = 7 > 0. (1.9a,b)

The boundary value problem for Q and P reads

pt + 7p = pxx + <t>%Px+P£ (Q ~ P), (l.io)

Qt + iQ = q (Qxx - 4>ExQx + n£^P ̂  ̂ J , (1.11)

Px = Qx = 0 for x = ±1. (1-12)

Let us assume that a positive interior maximum of the function P exists at the point
(xo,to): P(xo,to) = maxj.jjtio,t] P > 0. Since the function pe is positive, using Eq.
(1.10) we obtain that

maxP = P(xo,to) < Q(xo,to) < maxQ. (1.13a)
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Assuming the existence of the positive interior maximum of the function Q at the point
(xi,ti) using Eq. (1.11) and positivity of ne we obtain

maxQ = Q(x\,t\) < P(xi,ti) < maxP. (1.13b)

Due to the boundary conditions (1.12), inequalities (1.13a,b) are also valid for possible
maxima at x = ±1. Since these inequalities yield a contradiction, we conclude that

max (P, Q) < max (J£(x, 0), Ji{x, 0), 0). (1.14a)

Taking the limit 7 —> 0 in (1.14a) we obtain

max (J£ Ji) < max( J£{x, 0), J£(x, 0), 0). (1.14b)
[—1,1]*[0,T] P ~~ [—1,1]

The same consideration with negative 7 yields the minimum principle and completes
the proof of estimate (1.8).

Let us define the function sign^ <p£x by

,£ def /1 1 r\s,8°ifc = (L15)

Since

J {Jp- Jn) sign<5 dx = J ^ + {p£ + rf)(t>% + l(Kl+^^j sign 6<t>%dx,
(1.16)

integration by parts, making use of Eq. (0.13) and the boundedness of the left-hand side
of equality (1.16) yield

-1 / Setf2L XX + (f + n£)4>l sign5 <t>% ) dx < Cx (1.17)

/:

A4>? + 6)312
for all t > 0.

Taking the limit as <5 —» 0 we obtain
ri

(pe + ns)\cfr£x\dxdt. < C\, Vt > 0. (1-18)
'-1

Taking into account the definitions (l.la,b) and the estimate (1.8), the latter estimate
yields

(bxl + \n%\)dx < C2, Vt>0. (1.19)i-i
Since the functions p£(x, t),n£(x, t) are constant independent of e at x — ±1, estimate

(1.19) yields

/;

0 < pe,n£ < C3, Vx e [-1,1], t > 0, £ > 0. (1-20)

This completes the proof of Lemma 1.
In the remainder of this section we use the following standard scheme to prove the

convergence of the perturbed solution to the limiting one as the perturbation parameter
e tends to 0.

(i) The estimates obtained in Lemma 1 allow us to choose a converging subsequence
of the solutions of the problem (0.11)—(0.18).
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(ii) We shall study the fine structure of the limit of the aforementioned subsequence
and find the formulation of the limiting problem.

(iii) We shall prove that the limiting problem possesses a unique solution, and this
uniqueness theorem will yield the convergence of the whole sequence of the per-
turbed solutions as the perturbation parameter e tends to 0.

In what follows we restrict ourselves to consideration of the symmetric formulation of
(0.11)—(0.18). Thus, in addition to the symmetry of the fixed charge distribution (0.13),
we assume symmetry of the boundary and initial conditions:

ni = Pi, Po(x) = no(~x) Vx E (—1,1), Ve > 0, a = 1. (1.21a-c)

These assumptions yield symmetry of solutions to the problem (0.11)—(0.18):

n£(x,t) = p£(-x,t), 4>%(-x,t) = <psx(x,t), J£(x,t) = -J£{-x,t) Vz € [-1,1], t > 0.
(1.22a-c)

Let us formulate the main result of this section.

Theorem 3. Let the conditions of Theorem 1 and Lemma 1 hold together with condi-
tions (1.21) and the following additional ones:

Po(x) ~ n£0{x) -> N, pl(x) + n£0(x) -> c0{x) in L2(0,1).

Then the sequence of solutions (pe,n£,<p£) has the following limit as e —* 0:

p£ + n£ —> c(x,t), x - R(t)> in L2(0,1) * (0,T) VT > 0,
[0, 0 < x < R{t)

#(*,i)^(~°°' °*X*m in L2(R(t), 1) * (0,T) VT > 0.
[<t>x(x,t), x > R(t)

The functions c(x,t),R(x,t) are the solutions of the following limiting free boundary
problem: Find a Lipschitz continuous function R(t) and a function c{x,t) continuous
outside of the region (0, oo) * (0, R(t)) such that

Ct = cxx - an<^ c(x,t) > N \/x g (0,R(t)), t> 0, (1.22a,b)

c(R{t) + 0,t) = N, \/t> 0 such that R(t) / 0, (1.23a,b)

R(t) = I — cx(R(t) + 0, t) Vt > 0 such that R(t) / 0, (1-24)

NI
cx(0,t) = —, c(0,t) > N \/t > 0 such that R(t) = 0, (1.25a,b)

Hpf
c(l,i) = ci =2pi~N>N, Vi > 0, c(x, 0) = co(z) Vx e (0,1) (1.26a,b)

and <j>(x,t) can be found a posteriori by the equality

4>x = ~^ Vx € (R(t), 1]. (1-27)
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Proof of Theorem 3. Due to the equality

ov£ne)x = n£ Jp + ^-I-(p£-~), (1.28)
y a 2 \ a J

estimate (1.8) yields that the spatial derivative (penE)x is bounded in [—1,1] * [0, T]
uniformly in e:

(.pene)x<C4. (1.29)

Let us define now the scaled potential <j)e as follows:

4>e = ecp6. (1.30)

The Poisson equation (0.13) and estimate (1.20) yield

4>lx = N(x) + n£ (1.31a)

J (P£ +ne)\4>ex\ < Cie. (1.31b)

Taking into account estimates (1.20), (1-29) we obtain

£ C0'1!—1,1] Vf > 0 uniformly in e > 0. (1.32)

Using estimates (1.8), (1.19), (1-20), (1.32) we can choose the sequence £m such that
£m —> 0 as m —> oo and

p£m p, nSm —* n strongly in Lp(—1,1) * (0, T) Vp > 0, (1.33a,b)

Jp™ —> Jp, J^7" —» Jn weakly in Lp{-1,1) * (0, T) Vp > 0, T > 0, (1.33c,d)

4>E™ -> 4> in C1+«[-l, 1] Vg e (0,1), t>0 (1.34)

as m —» oo. The aforementioned estimates also yield the boundedness of the limit
functions p, n, Jn, Jp and Lipschitz continuity in x of the function <j>x.

Taking the limit m —* oo in statements (1.31) we obtain

4>xx = N(x) + n — p in the Lp sense, (1.35a)

/:

fi

(p + n)\4>x\dx = 0. (1.35b)
/-i

These equalities yield that on the set A(t) = {x £ [— 1,1]: <f>x ̂ 0} the function p(x, t) +
n(x,t) vanishes almost everywhere and

4>xx = N(x) almost everywhere on A(t) Vt > 0. (1.36)

Let us study now the fine structure of the set A(t). Since the product pn is not equal to
zero at x = ±1 and is Lipschitz continuous in x, Eq. (1.35b) yields (f>x(±l,t) = 0 V< > 0.
Making use of (1.36) we obtain that the function <fix, Lipschitz continuous in x, decreases
in x for x < 0 and increases in x for x > 0. Therefore, the set A(t) is connected and a
nonnegative function R(t) exists such that

A(t) = (-R(t),R(t))c(-l,l). (1.37)
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Using estimate (1.35b) we obtain that

p(x,t) = n(x,t) = 0 Vx £ (—R(t),R(t)), t > 0. (1.38a)

Outside the set A(t),<fix(x,t) — 0 and, taking into account Eq. (1.31b), we find

p{x,t) — n(x,t) = N(x) Vx ^ (—R(t), R(t)), t > 0. (1.38b)

Using statement (1.38b), we can improve the above estimates on the functions p£, n£, (f)e
outside the set A(t). In order to do this, we may use the convergences (1.33a,b) and find
that the Lebesgue measure of the set

Mm(t) = {1 > x > R(t): |\p£m(x,t) - n£m(x,t) - N\ > rj > 0}

tends to zero asm—>ooVi>0,77>0

lim \Mm{t)\ = 0. (1.39)
m—>00

Let us consider two arbitrary points x\,x2 such that x\ < X2 and X\,X2 £
Employing once more the procedure used earlier for estimates (1.18), (1.19), we obtain

r® 2
(IpS-I + Km| + (p£m + n£m)\<j>lm\) dx < C4(r?+ \x2 -®i|) (1.40)

/J X\fx 1

and, consequently,

\p£rn{xi,t) — p£m(x,t) \ + \p£m(x2,t) -p6m{x,t)| < C5(r]+ \x2 - xi|), Va; € (x1,x2).

(1.41)
This estimate yields that

pem{x)t)>~, Vie(xbi2) (1-42)

if \x2 - xi| < (f - 77(C5 + 1 ))/C4.
Making use of the convergence (1.39), we conclude that there exists a sequence Sm > 0

such that 6m —► 0 as m —> 00 and
N

p£rn(x,t)>— Mx € {R{t) + 6m, 1], t > 0. (1.43a)

A similar estimate may also be obtained for n£m in the respective symmetric part of the
interval [—1,1], yielding

N
n£m(x,t)>— Vx e [—1, —R(t) — Sm), t > 0. (1.43b)

Combining these estimates with estimate (1.18) we obtain
r-R(t)-Sm r-l

/ \<j)£xm\dx+ / \4>£xm\dx < Cq, Mt > 0. (1-44)
J — 1 J R{t)-\-6m

Let us now multiply J£rn +J£m/a by the test function where ip(x) € C°°[— 1,1],
ip(x) = 0 Vx 6 [~R(t)-6, i?(i)+(5] for some S > 0, ip(x) = 1 Vx ̂  (—R(t) — 2S, R(t)+25).
Then, integrating the resulting function over the interval (—1,1) and using estimates
(1.14), (1.44), we find

4>lm eL2(-l,-R{t)-S)u(R(t) + 5:1) V5 > 0, t>0 (1.45a)
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uniformly in m. Using the boundedness of the functions Jp,J^ we obtain

P£xm,nexm e L2(-l,-R(t)-5)U(R(t) + 6,l) V<5 > 0, t > 0. (1.45b)

The two latter statements allow us to find the limiting functions X,, Jn outside the interval
(-R(t),R(t)):

Jp = Px + p<t>x + Jn = a(nx - n<j>x) - Vx G [-1, -R(t)) U (~R(t), 1].
(1.46a,b)

Since the functions Jp,Jn are bounded and px — nx vanishes outside the interval
(—R(t), R(t)), we find, taking the difference Jv — Jn/ce, that

\4>x\<C7, Vx e [-1, -R(t)) U (~R(t), 1] (1.47a)
and, consequently,

\px\, \nx\ < C8, Vx € [—1, —R(t)) U 1]. (1.47b)
The last estimates imply smoothness of the limiting concentrations and potential outside
of the interval (—R(t), R{t)).

Let us consider next the interior of the region A(t) = (—R(t), R(t)). Defining the
functions $(x, t), ^(x, t) as

pX rX

= / p(x,t)dx, ty(x,t) = / n(x,t)dx, (1.48a,b)
Jo Jo

we find that

= Jp(x, t) - Jp{ 0, t), ft = Jn{x, t) - Jn( 0, t). (1.49a,b)

Since the functions <J>(x, t), ^(x, t) are Lipschitz continuous in x and t and vanish for
x e [— R(t), R(t)] we obtain, using equalities (1.49),

Jp{x, t) = Jp{0, t), Jn(x, t) = J"(0, t) Vx e {-R{t),R{t)). (1.50a,b)
Therefore, the flux functions are constant in x in the interior of region A(t).

We can also find 4>x as a function of c = p + n and cx outside this region. In order to
do that, let us define the functions $(x,i), ^(x,i) as

<&(x, t) = f p(x,t)dx, *1>(x,t) = f (n(x, t) + N(x)) dx. (1.51a,b)
J X J X

Since

Jp{x,t), = (1.52a,b)

and

$-$ = 0, Vare (fl(t),l)
then

Jp(x,t) - Jn(x,t) = Jp(l, t) - Jn(l, t) = lim e<t>L(l,t) = 0 Vx e (R(t), 1). (1.53)
£ —*0

Using equalities (1.46), we obtain

21 + (1 — a)cx
(1 + a)c + (1 — a)N

Vx €(/?(*), 1]. (1.54a)
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The same calculations for x € [—1, —R(t)) yield

21 + (1 — a)cx
(1 + a)c -(!-„)« V»6[-l,K(t)). (1.54b)

Let us now find the respective limiting initial-boundary value problem. By considering
the total ionic concentration c£(x, t) = pE(x, t) + ne(x, t), we observe that it satisfies the
following equation:

C? = {j; + (1.55)

Let us multiply this equation by a smooth test function ip(x, t) such that ip(x, T) = 0,
ip(±l,t) = 0 and integrate over the region (—1,1) * (0, T). Then

rT />1 pT pi pi
/ / c£iptdxdt= / / (J£ + J^)ipx dx dt + / ce(x, 0)ip(x, 0) dx. (1.56)

Jo J-i Jo J-1 J-1
Taking the limit m —» oo in Eq. (1.56), we obtain
pT rl nT nl rl

/ / cipt dx dt — / / (Jp + Jn)ijjx dx dt + / c(x, O)'0(x, 0) dx
Jo J-1 Jo J-1 J-1

IT
(Jp{0, f) + Jn{0, ), t) - Ip(-R(t),t))

+L 1 + a
R(t))U(R(t),l)

(1 — a)c + (1 + a)N(x) 21 + (1 — a)cx
%jjx dx I dt2 (1 + a)c + (1 — a)N(x)

+ J c(x, 0)ip(x, 0) dx.
(1.57)

Using estimates (1-47), we find

c(—1, t) = 2n\ — AT; c(l,t) = 2pi — N; c(±(R(t) + 0), t) = TV"; (1.58a-d)

c(x,t) = 0 Vx E (—R(t),R(t)) if R(t) > 0. (1.58e)

Equations (1.57), (1.58) are the weak formulations of the respective limiting free
boundary problem. In order to obtain a strong formulation we must prove the smooth-
ness of the free boundary x = ±R(t). Next, applying integration by parts in (1.58), we
will find the conditions on the free boundary.

Considering (1.57), we observe that the following equation holds in a weak sense:

Ct = (Jp + Jn)x Vx e (-1,1), t> 0. (1.59)

Let us consider two moments of time t\,t2 assuming R(t\) = R\, R(tz) = i?2, i?2 > Ri-
Thus, c(x,ti) = 0 for x £ (-Rt,Ri), c(x,tt) > N for |x| > Rj, i = 1,2. Integrating Eq.
(1.59) over the rectangle (—R2,R2) * (^1,^2)5 we obtain

I c(x,t\) dx < max | Jp(x,t) + Jn(x,t)\\t2 — t\\. (1.60)
(-H2,-Ri)n(n1,R2) (x'f)
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Since c(x,t\) > N in the interval (—R2,R\), inequality (1.60) yields

|-R(^2) ~~ ̂ (^l) I ̂  Cg\t2 — t\\ yt\,t2 > 0, (1.61a)

and the free boundaries x = ±R(t) are Lipschitz continuous. Therefore, for almost all
t > 0, there exists a derivative R(t) and

R(t) e L°°(0,oo). (1.61b)

Using statements (1.61) we can obtain the following strong formulation of the limiting
problem instead of the integral one: Find a Lipschitz continuous function R(t) and a
function c(x,t) continuous outside the region (0, oo) * ( — R(t),R(t)) such that

l + a_ ({{I - a)c + (1 + a)N(x))(2I + (1 - a)cx)
C-t — C-xx —2 V 2((1 + a)c + (1 — a)N(x)) Jx (1.62a,b)

and c(x, t) > N Vx ^ (—R(t), R(t)), t > 0,

c(R(t) + 0, t) = c(—R(t) — 0,t) = N Mt > 0 such that R{t) ^ 0, (1.63a,b)

R(t) = /- + ^ RW °»0 vt > 0 such that R(t) ± 0, (1.64)

c(—1, t) = 2rii - N > N, c(l, t) = 2pi - N > N Vf > 0, (1.65a,b)

c(x,0) = co(x) Vx € (-1,1). (1.65c)

In the general nonsymmetric case we did not succeed in proving the uniqueness of the
limiting problem. For this reason, in the rest of the proof let us employ the requirement
of symmetry (1.21). This assumption yields the respective symmetry of the solutions of
problem (0.11)-(0.18) and of the solution of the limiting problem (1.62)-(1.65). Problem
(1.22)-(1.26) is the reformulation of the limiting problem (1.62)-(1.65) for the symmetric
case.

We shall prove the uniqueness of the solution of the free boundary problem (1.62)-
(1.65) using the so-called enthalpy method developed by Kamin ([10]) and Oleinik ([11]).
At first, let us reformulate the problem (1.22)-(1.26) in the form of a singular parabolic
equation, holding uniformly in the region (0,1) * (O.oo). Defining the function 9 as

„ def „, N def I 0 for C < JV,0 0(C) ) ~ (1.66)
— ./V for c > N,

we find that the free boundary problem (1.22)-(1.26) is equivalent to the following one
in a weak formulation: Find a function c(x, t) such that 9(c) is Lipschitz continuous in
x in (0,1) * (0, T) VT > 0, 0(1, t) = c\ — N > 0 and

/T r 1 rT n\ / jyj q _|_ yy   rl
/ apt dx dt = / / ( 9X - g + N +T — -Jipxdxdt+ / c(x, 0)^(x, 0) dx

(1-67)

for all smooth functions ijj(x,t) such that ip(x,T) = i/j(l,t) = 0.
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Equation (1-67) is the so-called enthalpy formulation of the free boundary problem
(1.22)-(1.26). Here 6 is the analog of the temperature and c is the analog of enthalpy in
the Stefan problem.

Let us assume that there exist two solutions cl(x,t) and c2(x,t) of problem (1.67)
satisfying the same initial and boundary data. Denoting c = c1 — c2, and taking the
difference of the integral identities satisfied by cl,c2, we obtain the equality

fT f1 I NIJo Jo ~C(qpt + ^xx + NitX~ ^ ~ + N)(02 + N^x) dX dt = °' (1'68)

In (1.68)

(L69)
Ci - C2 C\ c2

with 0 < n < 1. The function ip(x,t) vanishes at x = 0, t = T and ipx(x,t) vanishes at
x = 0.

Let us consider a sequence of the initial-boundary value problems:

+ if"+«)«,+jjW -1)« - ^w + JvK»,+w)fcn = *■<*■<>■ <L™>

tpn{x,T) = 0, Vx G (0,1), ^n(l,t) = 0, V"(0,t) = 0, Vte(0,T) (1.71a-c)

with smooth nonnegative bounded functions nn(x,t), strongly convergent to fi(x,t) in
L2{0,1) * (0,T) and smooth function F(x,T).

Using the maximum principle, we obtain

\ipn(x,t)\ < Tmax\F(x,t\ Mx € (0,1), t € (0,T). (1-72)
X,t

Since the functions c1, c2 do not vanish at the boundary x = 1, the equality /x = 1 should
hold in some neighborhood of this boundary. Using the local estimates, we can prove
that in this neighborhood the solutions ipn are uniformly smooth. Therefore,

max IV'xU, t)\ < Cq Vn. (1-73)

To derive the latter estimate independent of the index n, let us multiply Eq. (1-70)
by and then integrate over (0,1) (for any t = const. > 0). It follows from a simple
computation that

jf + 6)i>£dx Vf dx < fc9 + Cio J* Vx2 dx + £ F2(x, t) dx (1.74)

which, by the Gronwall inequality, implies that

max f ipx2dx + f f (fj,n + S)ip^2 dx dt < Cn- (1-75)
te(o,T) Jo Jo Jo

The last estimate together with Eq. (1.70) yields

[ [ (W2 + i/;f) dx dt + [ [ {/in + 6)^2dxdt<C12. (1.76)
J 0 Jo Jo Jo
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Prom (1.76), via a standard diagonalization, we can select a subsequence strongly
convergent in L2(0,1) * (0, T) and weakly in W%'1 to a function ips(x,t) 6 W%'1(0,1) *
(0, T) such that

[ f (ipf2 + tp6x2) dx dt + [ f Sipsxl dxdt < C12. (1.77)
Jo Jo Jo Jo

We substitute the resulting function into identity (1.68) to obtain

f f cFdxdt= f ( c5ipsxxdx dt. (1-78)
Jo Jo Jo Jo

It follows from (1.77) that
r-T r 1

1,6IfJo Jo
cdtpxx dx dt —► 0 as 6 —> 0. (1-79)

Thus we obtain
rT rl

cFdxdt = 0 (1.80)IfJo Jo
with an arbitrary smooth function F(x, t). Therefore, function c coincides with zero, and
we proved the uniqueness of the solution of the limiting problem. This completes the
proof of Theorem 3.

2. The fine structure of the solution of the limiting problem. In this section
we study the properties of the solution of the limit problem (1.22)-(1.26).

The uniform in e estimates obtained in the previous section yield the following result:

Lemma 2. The free boundary R(t) is Lipschitz continuous in time and 9(c) is Lipschitz
continuous in x for all t > 0, x € (0,1) uniformly in time.

Remark. Using the local parabolic estimates, we can prove C°°-smootlmess of the
limiting concentration c and the free boundary R(t) for all x > R(t) and for all moments
of time t > 0, except for those to for which lim^^-o c(0, t) = N.

Lemma 2 immediately yields the following result:

Lemma 3. The solution (c(x,t)), R(t)) tends to the respective steady-state solution
(coo(ar), ^oo) as t —> oo in the following sense:

lim R(t) = Roc, lim 9(c(x,t)) = 0(coc(x)) in the Holder norm,
£—►00 t—►oo

dc
Cqc —y— = NI and > N for x > R^ > 0, (2.2a,b)

dx

if Rao > 0, ^(.Ro) = N, (2.3)

Coo(l) = Ci. (2.4)

We can also prove the following monotonicity result for the free boundary R(t).
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Lemma 4. Let the following assumption hold:

NI
cdx(®,0)--r-rr >0 Va; £ (0,1). (2.5)

Co (•£? 0)
Then

NI 6 + N - c
^-gTlv + J JV -° v«e(0,i), VtXJ, (2.6)

and

J?(t) >0 Vf > 0. (2.7)

Proof of Lemma 4- To prove Lemma 4, let us consider once more the weak ("en-
thalpy") formulation of the free boundary problem (1.67):

ct = (0(c)x - N + ^ (61(c) + JV - c))x, (2.8)

(0(c)a; - + ^(^(c) + JV - c))|x=0 = 0, (2.9)

9(1, t) = c\ — N > 0, c(x, 0) = co(x). (2.10a,b)

Equation (2.6) holds in a weak sense.
We regularize the singular initial-boundary value problem, defining a sequence of

monotonic smooth functions 9n(c) such that

1 > (9n)' > — > 0,9n € C2,9n —> 6 in the Holder norm. (2.11a-c)
n

Let us define c™ as a solution of the regularized problem:

<? = (9"(c»), - ^'+N + jjW'.c") + N- c»))„ (2.12)

(e"(cn)* " 0"(c») + JV + + " " Cn))l"» = °' (2'I3)

0"(1, t) = ci - JV > 0, cn{x, 0) = c°(x). (2.14a, b)

Considering the function v,

" = ~ »■(<£) + JV + ^("°(c") + W ~ <2'15)

we find that it is a solution of the following initial-boundary value problem:
NI I

Vt = (9nyvxx + (en)"cnxvx + {en + N)2(n'vx + x((0nY - IK, (2.16a)

wU=o=0, vx\x=1=0, v\t=0 < 0. (2.16b-d)

Applying the maximum principle to problem (2.16) we obtain

v(x, t) = (0»(c»))x - Qn{^+N + j}(0n(c») + JV - c") < 0 Vz 6 (0,1), t > 0.

(2.17)
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In order to derive an estimate independent of the index n, let us multiply Eq. (2.12)
by 0™ and integrate over (0,1) * (0,T). It follows by a simple computation that

[F [\(0n(cn))2t + (On(cn))l)dxdt<C13. (2.18)
Jo Jo

Using estimate (2.11a) together with (2.18) we obtain

c™ —> c in L2(0,1) * (0, T), 9n{cn) -> 9(c) in W2M(0,1) * (0,T) as n — oo. (2.19)

Combining (2.19) with (2.17) completes the proof of Lemma 4.

3. Characteristics continuous and smooth over Region C and the boundary
layers. Boundary layers solutions. In the previous section we have proved the local
continuity and smoothness, uniform in e, of the solutions (outside the boundary layers at
x = 0, R(t)). In this section we shall find those characteristics of the system that preserve
their uniform-in-e boundedness and smoothness throughout the boundary layers and the
"empty" Region C (c = 0) (i.e., those combinations of the original dependent variables)
despite the singularities that appear in the original variables in these regions upon the
transition e —> 0. These characteristics will be subsequently employed to analyze the
asymptotic behavior of the solution in the boundary layers.

Lemma 5. The functions n£ and p£ are of the order O(e) locally in Region C. The
function <p£ is of the order O(j-) in Region C.

[ N(x — R(t)) if x € [0, i?(f)l;
lim ed>% = < in Holder norm, (3.1a)
e-o \o if X > R(t)

ti^ N R — I
lim — = lim — = ——  . N. in a weak sense locally in [0, R(t)). (3.1b)£ e^O £ 2N(x - R(t)) v y

Proof of Lemma 5. Let us define the following functions:

p£ = —, h£ = —, cf)E = ecf. (3.2a-c)£ £
Using the properties (1.32)—(1.36), we find

le l j N(x — R(t)), for 0 <x<R{t), .<b% —> ©r = \ in Holder norm. (3.3)
x \0 for R(t) < x < 1,

Furthermore, we find using (1.50a,b) that in a weak sense in the interval (0, R{t))

   , — = lim pedx H—
+0 p £—>o 2 2

lim Jp = lim pe(j)x + - = lim p£(^x + - = Jp(0,t), (3.4a)

K = lim ne(f>£x - ^ = lim h£j>£x - ^ = Jn{0,t). (3.4b)
£ —>0 £—►() Z £—>0 Z

Moreover, the limiting function <j>x is separated away from zero in the interval (0, R(t) —
5), 6 > 0 by the inequality 4>x > N5 (see (3.3)). This implies, taking into account the
Holder convergence in (3.3), that weak limits of pe and he exist in this interval:

p=flimp£, n=flimne, (3.5a,b)
e—»0 £—>0
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and
Jp(0,t) — 2 _ — Jn(0,t) — 2 ^ N

p = ~n= = (3.6a,b)

Making use of the symmetry of the problem, we find that

Jp(0, t) + Jn(0,t) = 0 p = n Vz e (0, R(t)). (3.7a,b)
Furthermore, passing to the limit e —> 0 in the difference pe — n£, we obtain

lim(ps -n£) = C(x,t) = {N' (3.8)
\0, ®€[0,iZW),

and the following equation holds in a weak sense:

Ct = (Jp — Jn)x- (3-9)

Taking into account the existence of the sharp free boundary x = R(t), separating the
"empty" and "normal" zones, we find that

Therefore,
NR = [Jp - Jnfx= 2JP(0, t). (3.10)

_ _ NR — I
p-n~ 2N(x-R{t))' ^

This completes the proof of Lemma 5.
We turn now to the study of the behavior of the solution inside the boundary layers.

We shall begin with considering the boundary layer at x = 0 nonadjacent to Region C.
Let us assume that c(0,£o) > N. Then the following result holds.

Lemma 6. The solutions ne,p£,(t>£ converge, as e —> 0, in the Holder norm with respect
to the boundary layer variable x,

3=4=, (3-12)
y/e

to the limiting solutions n°,p°,(j)p:

s.&E*.-,, «V, (3.13a,b)

AN + ^K+e-n-cg, 0°(O) = 0. (3.14)

Here cq = c(0, to).

Proof of Lemma 6. As mentioned previously (see (1.29)),

c2 - N2pene —>    as e —> 0 in CQ[0,1] for t = to and a € [0,1). (3.15)

Transformation to the boundary layer variable x yields

P%+P£<t>% =£ - Q . n% -n£(pl =£ (jn + Q > (3.16a,b)
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be-~
XX N + n£-p£, (3.17)

and, using the uniform-in-gr boundedness of the right-hand sides of the identities (3.16),
(3.17), we obtain that the functions p£(x, to),n£(x, io), </>|£(x, to) are Lipschitz continuous
uniformly in e. Using the condition of symmetry, we observe that

pe(0, t0) = n£(0,to) (3.18)

and, taking the limit e —* 0, we obtain the existence of the following limits:

lim p£=p°(x), lim n£ = n°(x), lim (f)£ = <j)°(x), p°n° =   (3.19a-d)
e—>0 £ —>0 e^O 4

which are solutions of the following boundary-value problem Vx € (0, oo):

P£ + P°0i = O Vx e (0,oo), (3.20a)

n? - = 0 Vx G (0, <x>), (3.20b)

=n° -p° Vx € (0, oo), (3.20c)

p°( 0) = n°( 0). (3.20d)

In order to compute the formulation of the problem (3.20), we have to find two additional
boundary conditions. One is provided by use of the normalization condition for the
potential, namely,

<A°(0) = 0. (3.20e)
Furthermore, by rewriting estimate (1.18) in terms of the boundary layer variables, we
obtain

fJ 0

oo

{p°+ n°)\4>l\d5; < Cl (3.21)

This implies, taking into account equality (3.17d) and the Lipschitz continuity of
the following boundary condition at infinity:

lim (p°(x) — n°(x)) = N. (3.20f)
x—>oc

Finally, solution of the problem (3.20a-f) yields expressions (3.13a,b), (3.14). Q.E.D.
Let us assume next the case 0 < R(t) < 1 and consider the transition layer at x = R(t)

in which function p£ varies from 0 to N. The main features of the respective transition
layer solution are summarized by the following lemma.

Lemma 7. Whenever Region C exists, for e tending to 0, the functions ne ,p£ converge
in the Holder norm with respect to the suitably defined transition layer variable x (see
(3.36)) respectively to 0 and p1, defined as

(3.22a)

Here cf)1 is defined by the relation

1 r^1 d<i
x = ^  . (3.22b)

y/N Jo \/2s + e~s — 2 + 2 In 2
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Proof of Lemma 7. We begin with proving that the thickness of the transition layer
at the free boundary x = R(t) is of the order of \fe. Let us define the function R\(t) as:

ifp"((M)-'S' (3.23)
[max{x0 > 0,p£(x,t) < 6 € (0,iV),Vx < x0}.

By this definition

p£<5 VxG(0 ,Rj(t)}. (3.24)

Let us define the set Y as

Y = {(x,t): R£5(t) < x < 1}. (3.25)

Set Y is connected by this definition and

pe(x,t)>6 Vx € dY. (3.26)

It follows from Eqs. (0.11), (0.13) that the following inequalities hold at the inner mini-
mum point of pe in Y:

p£ > n£ + N > N (3.27)

and
pe > 6 in Y. (3.28)

Thus, we have shown that

p£ < 5 Vx e [0, Rg(t)), (3.29a)

p£ > 6 Vx e [-ftf(i), 1]- (3.29b)
Let us define the interval M| as follows:

M£5(t) = {x: x £ (R£6(t),R£N_6(t))}. (3.30)

Estimates (3.29a,b) yield

p£{x,t) e [S,N - 6) Vx 6 M|(t). (3.31)

Let us estimate the measure of the set Inequality (1.18) and expression (3.31)
yield

/ \<Px\dx < (3.32)
JMi(t) 6

Since

£ E

then

N >4>lx>- Vx e Mf (i), (3.33)

M| (t)

The latter estimate, together with (3.32), yields

[ \cj)x\dx >-\MI(t)\2. (3.34)
J Milt) £

\MI(t)\ < (3.35)
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Let us define the transition layer variable x as

iS-(3.36)
ve

Rewriting estimates (1.18) and (3.33) in terms of x and using (3.29) yields

\(j>x\dx<~, (3.37a)
jR%(t) d

N-5><f>%£>6 Va;eM£(i), (3.37b)
and, consequently,

\4>*\ <^ + (N-S)^^ in (3.38)
0 \J £

Furthermore, using estimate (1.8) for the flux function J£ yields

\Pi\ < ^ + (N - in M!(t). (3.39)

Since p varies from S to N — 5 and Mf and the sequence M| decreases in 6, we conclude
that

|M|| > (3.40)
Thus, we have proved that the thickness of the transition layer at the free boundary
x = R(t) is of the order of yfe.

The uniform-in-e smoothness of functions p£(x,t),n£(x,t),<j)e(x,t) implies that

\p%\,\n%\,\(f>l\<C15, (3.41)
which yields for e —> 0 the existence of the following limits:

lim pe=p1(x,t), lim n£=n1(x,t), lim (j>£ = ^(x, t). (3.42a-c)
e-+0 £—>0 e—>0

The respective limiting functions are the solutions of the following boundary-value prob-
lem:

pl+p1<pl = 0 Vie (-00,00), (3.43a)

n\ — nl<j>\ = 0 Vx € (-00,00), (3.43b)

4>\x = N + n1 - p1 VxG (-00,00), (3.43c)

p1(°) = y. (3.43d)

To complete the formulation of the problem (3.43), we have to supplement it with bound-
ary conditions. One of them follows from the uniform smoothness of the functions p£n£.
Indeed, since p£(R(t),t)n£(R(t),t) —> 0 as e —> 0 we have

n1(0)=0, (3.43e)

which yields, upon solving (3.43b),

n1 = 0 Vx € (—00,00). (3.44)
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With (3.44) system (3.43) simplifies to

P\+P1<t>\= 0 Vf e (-00, oo), (3.45a)

ft>lx=N-Pl Vie (-00,00), (3.45b)

P1(°.0 = y- (3.45c)

Decreasing the sets Mf(i) in 5 together with estimates (3.35), (3.40) yields

px(—00, f)=0, p1(oo,t) = N. (3.45d,e)

Finally, the last missing boundary condition is that of the normalization of potential,

4>1(0,t) = 0. (3.45f)
Solving the boundary value problem (3.45) yields expressions (3.22a,b) which con-

cludes the proof of Lemma 7.

4. Concluding remarks. The results of this paper, concerning the limit problems
(Theorem 3), are formulated so as to cover both the regular limit of locally electroneutral
electrodiffusion and that of formation of the free boundary. Qualitatively, the respec-
tive results may be phrased as follows: for currents below the limiting value, the free
boundary either does not appear at all, or, having appeared due to exotic initial condi-
tions, disappears in a finite time. In contrast to this, for currents above the limiting one,
the free boundary appears in finite time and persists indefinitely. Finally, let us point
out that the uniqueness of the solution to the limiting free boundary problem has been
obtained here for the symmetric case only. The respective uniqueness question for the
general nonsymmetric setup remains open.
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