Electrodynamics in curved spacetime: $3+1$

formulation ${ }^{\star}$

Summary. This paper develops the mathematical foundations for a companion paper on 'Black-Hole Electrodynamics'. More specifically, it re-expresses the equations of curved-spacetime electrodynamics in terms of a $3+1$ (space +
 field E , magnetic field B , etc.) that lie in hypersurfaces of constant time t. Three-dimensional vector analysis is used to express Maxwell's equations, the
 energy and momentum conservation in forms closely resembling their flatspacetime counterparts.
After developing the $3+1$ formalism for general spacetimes, this paper
specializes to the spacetime outside a stationary but rotating black hole.

 versal time t. This viewpoint and associated mathematics are the foundation for the companion paper.
There is a close relationship between the theory of axisymmetric pulsar magnetospheres (e.g. Goldreich \& Julian 1969; Mestel, Phillips \& Wang 1979), and the theory of black-hole and
 astrophysicists have spent enormous effort on the axisymmetric pulsar problem, an idealized 7nd әлеч 7 nq 's.ses [nd (э! little effort into the theory of black-hole magnetospheres, for which the assumption of axisymmetry is probably justified in Nature.
K.S. Thorne and D. Macdonald
We think that this may be due to the fact that general relativity plays crucial roles in the We think that this may be due to the fact that general relativity plays crucial roles in the
black-hole problem, but not in the pulsar problem, and that the language and mathematical

 not easy for an astrophysicist to get an intuitive, physical feeling for these variables or for
 density ρ_{e} of his flat-space pulsar theory.
Fortunately, it is possible - indeed straightforward - to rewrite curved-spacetime blackhole electrodynamic theory in terms of the physically measured $\underset{\mathrm{E}}{\mathrm{E}} \underset{\mathrm{B}}{\mathrm{j}}, \mathrm{j}$, and ρ_{e} and thereby to obtain a formalism that is very similar to the theory of pulsar electrodynamics and that therefore might be a powerful tool in future black-hole research. The prescription for this
 a fiducial reference frame;i.e.split spacetime up into three space directions and one uniquely
 magnetic field tensor F into electric and magnetic fields E and B in the usual manner of flat spacetime (\mathbf{E} is the time-space part of \mathbf{F}; \mathbf{B} is the space-space part). (iii) Similarly, in the
 a three-space part $\mathfrak{j}=$ (current density). (iv) Rewrite in terms of $\underset{\sim}{\mathrm{E}}, \underset{\sim}{\mathrm{B}}, \rho_{\mathrm{e}}$, and \mathfrak{j} the curvedspacetime Maxwell equations, the Lorentz force law, and the law of charge conservation. of fiducial reference frame. However, in the case of stationary black-hole electrodynamics there is one set of fiducial frames preferred over all others: the frames of observers who are at rest in the hole's stationary gravitational field, and who see neighbouring fiducial observers OWVZ, suәचsis әәuрр!̣n

 equations of pulsar electrodynamics. Moreover, when using these frames one can mentally adopt a new viewpoint on the $3+1$ formalism: one can regard electrodynamics and all other regard time as merely a parameter which demarks the evolution of the matter and fields. In other words, one can return to the absolute-space and universal-time viewpoint of Galileo, which underlies most modern-day astrophysical intuition.
Previous research on black-hole electrodynamics has not used either the $3+1$ viewpoint, or the absolute-space/universal-time viewpoint. The purpose of this paper and its companion is to introduce those viewpoints and thereby, we hope, to make it easier for astrophysicists to carry their pulsar-based intuition over to the black-hole problem
We have split our presentation into two papers, so as to make the $3+1$ formalism more accessible to astrophysicists. Paper I (this paper) derives $3+1$ electrodynamics from the relativist's more usual four-dimensional formalism - and in doing so it makes free use of the mathematical tools of general relativity theory. Paper II (Macdonald \& Thorne 1982) refor-

 general relativity.
Paper II can be read separately from Paper I if one is willing to accept the equations of
+1 electrodynamics on faith.

Electrodynamics in curved spacetime 341
The rest of this paper is on Microfiche MN 198/1 and is organized as follows. Section 2 The rest of this paper is on Microfiche MN 198/1 and is organized as follows. Section 2
introduces the mathematics of the $3+1$ split, including: a brief historical survey of the
 respect to which the $3+1$ split is made (Section 2.2); the dot product, cross product, gradient, divergence and curl of spatial vectors (three-vectors) lying in the fiducial hypersurfaces (Section 2.3); three different types of time derivative (Section 2.4); identities for transforming volume, surface and line integrals and their time derivatives into each other (Section 2.5).

Section 3 presents the $3+1$ formulation of electrodynamics in terms of differential equa-
 sional quantities (Section 3.1); the Maxwell equations (Section 3.2); expressions for E and B in terms of the scalar potential ϕ and vector potential A (Section 3.3); the law of charge conservation (Section 3.4); the Lorentz force law and equation of motion of a charged test particle (Section 3.5); and the differential laws of energy and momentum conservation for the electromagnetic field and a continuous medium (Section 3.6).

Section 4 presents the integral formulation of $3+1$ electrodynamics: Gauss's law, Ampere's law, Faraday's law and the law of charge conservation.

Section 5 specializes the $3+1$ formalism to the spacetime of a stationary, axisymmetric black hole, including: the selection of the ZAMO observers as our fiducial observers and the resulting simplifications of various $3+1$ kinematic equations (Section 5.1); the $3+1$ electrodynamic equations specialized to our black-hole spacetime (Section 5.2); the pathological behaviour of the hypersurfaces $\mathscr{O}_{\mathbf{t}}$ near the hole's horizon, and the resulting delicate defini-

 in $3+1$ language (Section 5.4).

Section 6 illustrates the $3+1$ formalism by rewriting in $3+1$ language two known solu-
 Schwarzschild hole (Section 6.1), and a uniform magnetic field surrounding and deformed
by a Kerr hole (Section 6.2).

Throughout this paper we use the mathematical notation and conventions of Misner, Thorne \& Wheeler (1973; cited henceforth as MTW), including units in which the speed of light c is unity. (Nowhere, except in the examples of Sections 5.3 and 6 , do we need to set Newton's gravitation constant G to unity.) Electromagnetic quantities are expressed in Gaussian units (electric fields in statvolts per centimetre, magnetic fields in Gauss). We denote four-vectors and four-tensors by bold-face letters, e.g. \mathbf{U} and \mathbf{F}, and their components tensors (three-tensors) by underscored letters, e.g. E and γ, and their components by Latin indices, e.g. E^{j} and $\gamma_{j k}$.
f

Figure 1. The world lines of fiducial observers with four-velocities U, and the space-like hypersurfaces of
simultaneity \mathscr{C}_{t} which are orthogonal to the fiducial world lines.

Figure 2. The Fermi-Walker time derivative $D_{\tau}{\underset{\sim}{\sim}}^{\text {, }}$, Lie time derivative $\mathscr{D}_{\tau} \mathrm{M}$, and shifting time derivative $\mathscr{L}_{\mathbf{t}}^{\mathrm{M}}$ of a spatial vector $\underset{\sim}{\mathrm{M}}$. The two hypersurfaces are separated by global time Δt, and fiducial observer
In the upper diagram observer A carries with himself a gyroscope, applying an acceleration a at its centre of mass to keep it moving with him. He orients the gyroscope along the direction of M at time t,

At time t in the upper diagram the tail of $\underset{\sim}{M}$ sits on fiducial observer A and the tip on fiducial observer B. After proper time lapse $\Delta \tau=\alpha \Delta t$ the tail is still on A but the tip has been displaced away from B.
The lower diagram shows trajectories a and b of the shifting congruence. The velocity of a trajectory and the tip on trajectory b. After global time lapse Δt the tail is still on a but the tip has been displaced away from b. Its vector displacement is $\left(\mathscr{L}_{\mathrm{t}} \mathrm{M}\right) \Delta t$.

343

Figure 3. A curve $\mathscr{C}(t)$, lying in the hypersurface \mathscr{O}_{t}, changes in some arbitrary manner as time t passes.
A point labelled 1 moves with velocity v as measured by a fiducial observer near it. During proper time

 Finkelstein coordinates (MTW, Box 31.2). Plotted upward is the Eddington-Finkelstein time coordinate
\tilde{t}, which is related to the Schwarzschild time and radial coordinates by $\tilde{t}=t+2 M \ln (r / 2 M-1)$. Plotted t, which is related to the Schwarzschild time and radial coordinates by $t=t+2 M \ln (r / 2 M-1)$. Plotted
horizontally is the Eddington-Finkelstein radial coordinate r, which is identical to the Schwarzschild radial coordinate. The curves shown are our fiducial hypersurfaces \mathscr{O}_{t}, and the cones are the radial light
cones as given by the metric (5.19).
VOL. 198, NO. I, 1982

Kip Se hhoriv and Dowgen My Mecrontild

Monthly Notices
of the
ROYAL
ASTRONOMICALSO
The microfiches are $105 \times 148 \mathrm{~mm}$ archivally permanent siver halide film
produced to internationally accepted standaris in the NMA 98 -image fommat

There are two rather different ways to make a $3+1$ split of the laws of
hysics in curved spacetime the firse way selects a fiducial congruence of
Eimelike world ines, and at each event identifies ivimet as the direction
along the fiducial world ine and "space" as the ehree directions orthogonal to it.
In chis congruence approach the space directions es neighboring events will rot
mesh to form global spacelike hypersuriaces (3mspaces oit constant cime), unless
the conguuence is consprained co be "rotationomee".
The second approsch selecrs a Foliation of piducial 3adimensional hypersure
faces (Zaspaces of constant time), and at each event identifies "space" as the
directions lying in the hypersurface. In this bypersurpace approach one can
identity as "time" the direction orihogonal to the hypersurface in which case
the formadism is identical to the rotation-free imit of the congruence

(nonzero "shift vector ${ }^{3 \prime}$).

and Lisshite (1941) and in greater detais by 2el manov (1956, 9.95$)$, who sefers
to spatial vectors and sensors ss chyonometric invariznts . Today chis congru-
 measure because of the inimuence of Igor Movígovg who was a seudent of \&el manop
 approach was developed in bries form by cattareo (1959) and in great detail by
Estabrook and Wahlquist (1964), who called it che "dyadic formalism" None of

these warkers, Russian or Western, wrote down Maxwell's equations in $3+1$ con

nobody has ever used the Ellis equations in astrophysics or relativity

research, except for our present study of blackmole electrodynamics.

it was further developed in the $1950^{\prime} s$ by Bergmann, Dirac, Wheeler, Arnowitt,
Deser, Misner, and others as part of their efforts to create a Mamitonian
formulation of general relativity and thereby to lay the foundations for
canonical quantization of the gravitational field; see Arnowitt, Deser, and
Misner (1962) ("ADM"). As part of this program, Misner and Wheeler (1957)
 but using the language of exterior calculus rather than vector analysis; Arnowict, Deser, and Misner (1960a,b) wrote down the $3+1$ Maxwell equations with point

Stachel (1969) wrote down those portions of the $3+1$ Maxwell equations which
 Maxwell equations" have been much used since 1960 as a guide to formal mathematical studies of the dynamics an since 1960 as gulde to formal mathethey seem never to have been used in astrophysics research. In recent years the Eull ADM $3+1$ hypersurface formalism has been adopted as the canonical foundation for numerical solutions of the Einstein field equations and of hydrodymamical equations in curved spacetime (numerical relativity"); see Smarr and York (1978), York (1979), Smarr, Taubes, and wison (1980). In the Soviet union the hyper. surface approach to $3+1$ splits has been formulated by zel'manov (1973): he refers to spatial vectors and censors in this formaism as "Rinematic invariants". In the present work we shall use the AnM hypersurface approach to $3+1$ splits. Initially we shall choose our time direction orthogonal to the hyper. surfaces, thereby making our formaism identical to the rotationstee fimit of © Royal Astronomical Society • Provided by the NASA Astrophysics Data System

Pormulation of Maxwell's equations. Later, when specializing to blackohole

instead of being orthogonal to the fiducial hypexsurfaces, it is along the

2. 2 FIDUCTAL EYPERSURPACES AND CONGRUENCE

[^0]

- 704 InO (T) : SuOTH

ecc. and we "chink" in coordinatemfree language, whereas murerical relativists
always have a coordinate mesh and use index notation $A^{j} B^{k} \gamma$ ik with components

 relativity.

 time from hypersurface bo hypersurface, but (iii) is otherwise arbitrary.
 time parametex" or simply "global fime". See Figure ie
There will exist a congruence of timelike curves which are orthogonal to the hypersurfaces. These curyes can be regarded as the world 1 ines of a family
 © Royal Astronomical Society • Provided by the NASA Astrophysics Data System

Downloaded from https://academic.oup.com/mnras/article/198/2/339/2893547 by guest on 20 August 2022

as well as on vector fields. The action of D_{τ} is always defined by parallel
vers; see Schild (1967) and Figure 2 of this paper. The Lie time derivative $2 \mathbb{M}$
 tory of the shifting congruence-the change being measured relative to the

- $_{\text {jk }}$ (sxtrinsic curvature; equation 2.6).]

integral formulation, we shall use yarious integral identities. If of is a
region of 3 -dimensional space 1 ying in s and ∂ if is tis closed 2-dinensional
boundery, then Gauss s theorem says that for any vector field M
$\int_{\eta \cdot M}^{7} \sim=\int_{\sim}^{M} M \cdot d \sum_{\sim} \quad \cdot \quad$ (2. 22)
Here dy is an element of spatial proper volume in po and ak is an element of area

term accounts for the change $\Delta d V$ (edv) At in a prysical volume elenent dV
which is atcached to Eiducial observers the thitd cemm accounts ror the

$\Delta t \rightarrow 0$ re obtain the integas identity

Let $\underset{\sim}{M}$ be a smoothly varying vector field in spacetime; let $\mathcal{A}(t)$ be a

port by fiducial observers; cf. Figure 2. If M and \mathcal{A} were both attached to

 due to the fiducial expansion θ; the second temm accounts for this change
The third term accounts for the displacement wAt of points on the interior of Arelative to fiducial observers - the integral of $\nabla \cdot M$ over (v ΔT) $\cdot d \Sigma=$

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System

of the boundary of firelative to fiducial observers,

integral identity

Let M be a smoothly varying vector field in spacetme; and let $C(t)$ be a closed curve in 8 which changes in some arbitrary but smooth mannex as time passes. Then between time t and $t+\Delta t$ the integral of M over $C(t)$ changes by								

cial observers;cf. Figure 2. If M and dh were both Lie transporced by

tem accounts for this. The thind tem accounss for the displacement of $C(t)$
relative to fiducial observers, i.e., for the Ealure of de to be Lie trang-
ported; the integral of $\nabla \times M$ over the area (vAr) $\times d A$ car be cransformed by

which are measured by the fiducial observers in the usual maner of flat
spacetime, and which therefore have the usual physical interpretation:
3 3+1 Electrodynamics in Differential Form
3.1 ELECTROMAGNETIC QUANTTTIES

AITSUQP 3 ITYD $=0$
$\left(e s u / \mathrm{cn}^{3}\right)$
$\left(e s u / \mathrm{cm}^{3}\right)$
terms of the Fermi time derivative by (2.16b), and using $A \sim \underset{\sim}{A} \times \underset{\sim}{C}=\underset{\sim}{A} \times \underset{\sim}{C}$,
we obtain the integral identity
equation by Δt, taking the 1 imit $\Delta t \rightarrow 0$, expressing the Lie derivative in

cisely the equation for the evolution of a magnetic field that is sirozen

expansion θ of the fiducial observers moves the field ines apate with a
 （conservation of flux），$D_{T \sim}^{B}=-\frac{2}{3} \theta \underset{\sim}{B}$ ．The shear $\underset{\sim}{\sigma}$ rotates the frozen－in field

scopes），$D \mathcal{D}_{\sim}=\underset{\sim}{\sigma} \cdot \underset{\sim}{B}$ ；this shearing also changes the distance between field Iines and thereby changes the field strength，$D_{\tau}|\underset{\sim}{B}|=\sigma_{j k} B_{j} B_{k} /|B|$ If the fiducial observers do not carry a perfectly conducting medium， then they can see an electric field whose curl produces a time－changing mag－ netic field $D_{T \sim}^{B}=-\alpha^{-1} \underset{\sim}{\nabla} \times(\alpha \underset{\sim}{E})=-\underset{\sim}{\nabla} \times \underset{\sim}{E}-\underset{\sim}{a} \times \underset{\sim}{E}$（right side of equation 3．4d）． The lapse function α gives rise to the unfamiliar term $D_{\tau} B=-a \times E$ ，which has
the following physical interpretation：Because the fiducial observers ac－
 inertial frame．This motion，together with the electric field E in the
 netic field，$\Delta \underset{\sim}{B}=-\underset{\sim}{V} \underset{\sim}{E}=-(\underset{\sim}{a} \times \underset{\sim}{x}) \Delta \tau$ 。

（ Pザ $^{\circ}$ ）noŗenba
$3.3 \underset{\sim}{E}$ AND $\underset{\sim}{B}$ IN TERMS OF POTENTIALS

scalar and vector potentials：
$=-\alpha^{-1} \underset{\sim}{\nabla}(\alpha \phi)-\left(D_{\tau \sim}^{A}+\frac{1}{3} \theta \underset{\sim}{A}+{\underset{\sim}{\sigma}}^{\circ} \underset{\sim}{A}\right)$
（3．5a）
B
$\stackrel{\circ}{n}$
$\dot{9}$

Iine - is is the race of change of p with respect to (i) Fermi transport from
the particle's initial position in B°, along the observer's world line to
 0 the particle neis
in $\mathcal{S}_{t+\Delta r / \alpha}$, along $v \Delta t$ to the particle's new position.
The cerm $-\left(\mu \Gamma a+\underset{\sim}{\sigma} \cdot \underline{\sim}+\frac{1}{3} \theta p\right)$ on the right-hand side of equation (3.8)
 at the old and new positions of the particle have a selative velocity

the usual lorentz force in $3+1$ notation.
3.6 CONSERVATION OF ENERGY AND MOMIENTUM FOR ELECTROMAGNETIC FIELD AND A

CONTENUOUS MEDIUM

density, by $\underset{\sim}{S}$ the energy flux, and by W the stress tensor - all as measured in
the fiducial reference frame:

$$
\begin{aligned}
& \left(0 T^{\circ} \varepsilon\right) \\
& \left(6^{\circ} \varepsilon\right)
\end{aligned}
$$

The $3+1$ split of the Law of energy-momentum conservation pib β : 0 has
been worked out and applied in a variety or coneexts by workers in mumerical

$\left(2 I^{\circ} \varepsilon\right)$
and his general form of the law of momentum conservation (force balance)

($\left.\varepsilon \tau \cdot{ }^{\circ} \varepsilon\right) \quad{ }^{6} \quad 0=(\tilde{M} D) \cdot \tilde{\Delta}_{T-} D+\tilde{\varepsilon}_{3}+\tilde{s} \cdot \tilde{\rho}+\tilde{s} \theta \frac{\varepsilon}{\eta}+\tilde{s}^{1} \theta$
cf., York's equations (40) and (41). Here ε, S, and W contain all forms of energy, momentum, and stress.
 matter to electromagnetic fields, $U_{\mu} T_{E M \rho \nu}^{\mu \nu}=-U_{u} F^{\mu \nu} J_{\nu}$ and $\gamma^{\alpha}{ }_{T_{E M}}^{\mu \nu}=$ $-\gamma^{\alpha}{ }_{F}{ }^{\mu \nu} J_{\nu}$, have the $3+2$ form $\mu^{2} E M ; \nu \mu^{\mu}$

(3.14)

 stress (equations 3.10).

4 3+1 Electrodynamics in Integral Form

identities to rewrite in incegral form the differential Maxwell equations
(3.4) and the law of charge conservation (3.6)

© Ropal Astronominal Society Provided by the NASA Astrophysics Data System

 - (7) M 70 Kxepunoq Butaou oyt yinozyl ut smotj

3+1 Electrodynamics Outside a Stationary Black Hole

spatial and null infinity. We require that the spacetime geometry of be

The theory of stationary, axisymmetric black holes is reviewed by Carter
(1979). We adopt his notation and for the mutually commuting Killing
vector Iields which genexate invariant "time translations" and invariant
"rotations about the axis of symmetry". Fax from the hole ${ }^{2} \rightarrow-1$ and
${ }^{2} \rightarrow(\text { distance from axis of symmetry })^{2}$.
spacelike, but the killing vector

time parameter mesh with the hole's stationary exterior geometry in the fol-
lowing senses: (i) The fiducial congruence completely covers the exterior

that he sees a forever unchanging spacetime geometry in his neighborhood.
(iii) The hypersurfaces of simultaneity all have identical spatial geometries.

time τ as measured by the fiducial observers.

fiducial observers are the "zero-angular-momentum observers" (ZAMOs) of
Bardeen, Press, and Teukolsky (1973). Their 4-velocities can be expressed in
terms of the killing vectors and mas
$\sum=\alpha^{-1}(x+\omega \cos)$
where ω is the ZAMO angular velocity
© Royal Astronomical Society • Provided by the NASA Astrophysics Data System
$\omega=-\omega /{ }^{2}$
$\left(Z^{\circ} 9\right)$
and where α, the lapse function, can be expressed as

8	(0)	4	08
0	(6)	0	0
)	a	$\stackrel{\circ}{\circ}$	-
\pm	\cdots	$\xrightarrow{\circ}$	\xrightarrow{n}

IIe time dexivative ${ }^{2}$ along :

(5.7)

-UEPTETES

metain the spacetime viewpoint, using it as a tool in deviving fuxther fea-- USTTEMAT THC out 70 sexny
5.2 ELECTRODYNAMIC EQUATIONS

[^1]

(5.12)

electromagnetic field and/or a continuous medium become, upon using expres-
sions $(2.16 a),(5.5)$, and $(5.6 f, g)$,

basis d/dt, with respect to the killing crajectories of : amd
$\begin{aligned} & P=\mu V \mu v\left(1-v^{2}\right)^{m / 2} \text { is its momentum as measured by the 2AMOS. } \\ & \text { The differential laws of energy conservation (3. } 2 \text { (2) and (3.14) for }\end{aligned}$

measured by the wams; av twm is its velocity, on a per unit global time
The differential laws of energy conservation (3.12) and (3. 14) for an
(5.13)

$(2.4),(5.6 f, g)$, and (5.7).

$=-a\left(\rho_{e_{r}}+j x \sin\right.$ oriy electromegnetism
(5.14)

laws. However, there do exist integral conservation laws associated with

the two Killing vector fields * and w. Associated with $\&$ is a conserved
In general

i.e. [cf. equations (5.2), (3.9), (3.10)]

$\tilde{u} \cdot(\tilde{a} \times \tilde{y}) \frac{4 y}{m}+\left(\tilde{q}+z^{\tilde{D}}\right) \frac{48}{n}$

$$
\varepsilon_{E}=\alpha \varepsilon+\omega S
$$

(gST.s)
ws! qeusewoxาวato 105

angular momentum have the same form as those for electric charge [equations
(5.11) and (4.5)]:

$$
\begin{aligned}
& \begin{array}{l}
\left(88 I^{\circ} G\right) \\
\left(9 \angle T^{\circ} G\right)
\end{array} \\
& \text { only electromago } \\
& \text { netism included, } \\
& \text { all included }
\end{aligned}
$$

星

present structure extends all the way in to $x=2 M$.

Although the above discussion is couched in the language, formulae, and

same for any stationary, axially symmetric hole.
 Function go to zexo and the Eiducial (2AMO) comgruence become mull

$\alpha=$	(dt/dt) along congruence $\rightarrow 0$
(1) \rightarrow	$\Omega^{H}=$ (angular velocity of hole)
C ${ }^{\text {emb }} \rightarrow$	$=\Omega^{H}=\binom{\text { cangent co mul }}{\text { generator of } \%}$

One can show, using the formulas on pages 251 and 252 of Bardeen (1973), that

congruence behaves as

底 $78 x+\left(z_{z} x\right) 0+x=|\tilde{y}| x=2 x$

Ite on 4 : the $2 A M O$ observers mear the horizon must accelexace like hell to

$\left(\varepsilon \sigma^{\circ} \mathrm{S}\right)$

che horizan:

$$
d s^{2}=-\alpha^{2} d t^{2}+\omega^{2}\left(d \varphi-\Omega^{H} d s\right)^{2}+\kappa^{-2} d o^{2}+d A^{2}
$$

Eddington-Finkelstein \tilde{t} (equation 5.20). For generic black holes, as for

Schwarzschild black holes, all physical quantities must approach well-behaved

$\left(\angle Z^{\circ} \mathrm{S}\right)$

One can verify that the scalar field \tilde{t} has finite derivatives along $10 n d$ along
$\tilde{t} \equiv t+k^{-1} \ln \alpha$
$t \equiv t+k^{-1} \ln \alpha$
\% at N, and thus is well behaved there. This $\hat{\text { t }}$ is the generic analog of the limits as one approaches the horizon along . Fomaliy, we define
> $" \rightarrow$ " means "becomes equal to, as one approaches the horizon along a curve to which is tangent-i.e., along a curve of constant in the mat plane".
(i.e., lies in the 3-surfaces of constant \tilde{t}), where
$(1 / \alpha)(บ-n) \cdot \sqrt{1}=-1$ at \mathbb{N}.$] At the horizon \alpha==$ is tangent to \mathbb{N}, while
points inward through $\mathbb{W}(c f$. Figure 4$)$. It is convenient to fix the constant
in the definition (5.25) of so that
in the definition (5.25) of 蠋 so that
$\tilde{t}_{, \mu} \xi^{\mu}=0$
(97.5)
$"^{\prime \rightarrow} \rightarrow$ "
$\left(82^{\circ} 5\right)$

charge per unit area which would precisely termirate the perpendicular electric
field lines E a at the horizon. If one pretends that this charge really
exists, then one can ignore the actual fate of the electric field lines inside
the horion the electric field lines inside
the horizon.

(itious) surface current density $\|^{H}$ (charge per unit tine \hat{t} crossing a unit

cuit ${ }^{\prime \prime}$ of all currents j entering and leaving the horizon. Damour goes on to
show that the hole behaves as though it had a surpace resistivity

$\left(07^{\circ} \mathrm{g}\right)$

($57^{\circ} 9$)

Nīze

Znajek ($1978 b$) describes the horizon in a somenhar different manner from

beauty and advantage of treating $\underset{\sim}{E}$ and $\underset{\sim}{B}$ on equal footings and of not attrib-
 the Damour-Carter description instead of Znajek's because we want a formalism which so far as possible meshes with one's flat-spacetime, laboratory experience, where magnetic monopoles are nonexistent.
Since the hypersurfaces \mathcal{S}_{t} do not extend inside the horizon, Gauss's law
$\underset{\sim}{B} \cdot \underset{\sim}{d}=0$ [which relies on of lying entirely in $\&_{t}$] cannot be applied to

can be applied to such 2 -surfaces $\left[\right.$ with $\mathcal{A}(t)=\partial \mathscr{V}_{,} \partial \mathcal{A}(t)=0$]. It says that
(5.45)

"per unit global time basis, and when combined with Gauss's law (5.42) and
Ampere"s law (5.43), becomes

with Gauss's law (5.42) and Ampexe's law (5.43), and with $\omega \rightarrow \Omega^{\text {H }}$, becomes

$\left(47^{\circ} 5\right)$

为
$\left(87^{\circ} 5\right)$

language.
6 Explicit Solutions of the Maxwe 11 Equations

tions of Maxwel1's equacions for stationary, axially symmetric electromagnetic Eields in blackwho spacetimes; and Wi son (1977) has initiated numerical stum
dies of nonstationary fields in the magnetohydrodynamic approximation. This

been made.
The published analytic solutions include: the electric field of a point

(1928) and Linet (1976); solution as a multipole expansion by Cohen and Wald

(1976) for pictures in the Schwareschild case; Wald (1974) for Kerr hole;

- (SLGI UosttM pue tutifny) pfnty pasaeyo 'qutaou

they can all be translated easily into that language. We give two examples.

6.2 KERR HOLE IMMERSED IN A UNIFORM MAGNETIC FIELD
For a kerr hole the spatial geometry, lapse, fiducial angular velocity,
and angular killing vector are
$d s^{2}=\left(\rho^{2} / \Delta\right) d x^{2}+\rho^{2} d \theta^{2}+\left(A \sin ^{2} \theta / \rho^{2}\right) d \varphi^{2}$

,	\cdots	O	\bigcirc
¢	¢	$\xrightarrow{\circ}$	\%
	0	ω	
${ }^{\circ}$	0	\bigcirc	\bigcirc

equations (3.3) and (5.10a,b) we compute the corresponding $3+1$ potentials

2	$\hat{0}$
0	0
0	0

$\left(39^{\circ} 9\right)$

in the Kerr spatial geometry (6.5a)

critique of this manuccript we thank Roman 2ajek.
REFERENCES

R., Academic Press, New York.
San Eranciscn. Cited in cext as MTW.
Elis, G. Fe Re, 1973. In Cargese Lectures in Hiysics, Vol. 6, p. 1, ed.

（Proceedings of the sixth Conference on Problems of Cosmogony），p． 144 ，

Moscow．

$$
\begin{aligned}
& \text { Doklady Akad. Nauk SSSR, 209, 822; English translam } \\
& \text { tion in Sov. Phys.-Doklady, 18, } 231 . \\
& \text { Unpublished } \mathrm{PhD} \\
& \text { f Cambridge. } \\
& \begin{array}{c}
457 . \\
639 . \\
833 .
\end{array} \\
& \frac{\text { Mon. Not. R. astr. Soc., }}{\text { Mon. Not. R. astr. Soc.s }} \\
& \begin{array}{lll}
\text { Znajek, } & \text { R. L。, } & 1977, \\
\text { Znajek, } & \text { R. Lo, } & 1978 \mathrm{a} 。 \\
\text { Znajek, } & \text { R. L., } & 1978 \mathrm{~b} .
\end{array}
\end{aligned}
$$

[^0]:

[^1]:
 (L.g) pur (8*99 5) suorienbo $70 \Rightarrow 5 n$

