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The restricted relativity theory resulted mathematically in the introduction
of pseudo-euclidean four-dimensional space and the welding together of the
electric and magnetic force vectors into the electromagnetic tensor.

Einstein's general relativity theory led to the assumption that the four-
dimensional space mentioned above is a curved space and the curvature
was made to account for the gravitational phenomena.

The Biemann tensor which measures the curvature and the electro-
magnetic tensor seem thus to play essentially different rôles in physics:
the former reflects some properties of the space so that gravitation may
be said to have been geometricized,—when the space is given all the
gravitational features are determined; on the contrary, it seemed that the
electromagnetic tensor is superposed on the space, that it is something
external with respect to the space, that after space is given the electro-
magnetic tensor can be given in different ways. Several attempts were
made to geometricize the electromagnetic forces, to find a geometric inter-
pretation for the electromagnetic tensor, to incorporate this tensor into the
space in the sense in which the gravitational forces had been incorporated.

It seemed that in order to do this it was necessary to change the
geometry ; to abandon the Riemann geometry and to adopt a more general
space with a more complicated curvature tensor, one part of which would
then account for the gravitational properties and the other would in the
same way account for the electromagnetic phenomena.

H. Weyl arrived in a most natural way to such a generalization. His
theory always will remain a brilliant mathematical feat, but it seems that
it did not fulfil the expectations as a physical theory and the same seems
to be true with respect to other attempts.

The electromagnetic tensor is, however, not entirely independent of the
Riemann tensor in the ordinary general relativity theory; these two tensors
are connected by the so called energy relation; it seemed to be desirable
to try, without breaking the frame  of the Riemann geometry, to  study

* Presented to the Society, February 24, 1923, December 27,1923, March 1, 1924, and
May 3, 1924.
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mathematically the connection between these two most important tensors
of physics.   This study forms the object of the present paper.

The result of this study is quite unexpected; it is that, under certain
assumptions, the electromagnetic field is entirely determined by the curvature
of space-time, so that there is no need of further generalizing the general
relativity theory; it was only necessary to develop mathematically the
consequences of well known relations in order to see that without any
modifications it takes care of the electromagnetic field, as far as "classical
electrodynamics" is concerned; whether the phenomena of emission and
absorption of radiation and such features of the electron theory as equality
of charges can be accounted for by the general relativity theory in its
original form remains to be seen, but there are indications which show
that they might.

As to the method of the study it seemed to me better to avoid, as far
as possible, the introduction of things which have no intrinsic meaning,
such as coordinates, the g's, the three-indices symbols, the distinction
between co- and contravariant quantities, etc. I believe that the present
paper shows the advantages of this point of view which I expound at
greater length elsewhere.* I also have not used the so called electro-
magnetic potential vector, which is, moreover, not fully determined ; I believe
that its use tends to conceal the fundamental properties of the really
important things; if we use that vector, the fact that one of the sets of
the Maxwell equations is satisfied seems to be granted beforehand and
then the other set is a consequence of the general properties of the space ;t
but in reality the existence of the electromagnetic field imposes on the
space additional conditions.

In writing the paper I endeavored not to recede very far from the
notation now in general use; I start with components and also translate
the results into the language of components, but I hope that the intrinsic
meaning of the formulas remains sufficiently clear.

Part I is devoted to the study of the algebraic relations resulting from
the energy relation; the electromagnetic tensor in each point is shown to
be partly determined by the curvature tensor at that point, only one scalar
remaining arbitrary. In Part II by the consideration of differential properties
the indeterminateness is reduced to one constant of integration. In Part in
it is shown to be possible to eliminate the remaining arbitrariness by con-
sideration of certain integrals.

* American Journal of Mathematics, April, 1924 and January, 1925.
t Cf. Einstein's paper Bietet die Feldtheorie Möglichkeiten für die Lösung des Quanten-

problems, Berliner Sitzungsberichte, January 15, 1924, statement at the bottom of
p. 362.
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108 G. Y. RAINICH [January

The contents of Parts I and II were briefly presented in the Proceedings
of the National Academy of Sciences in two notes under the title
Electrodynamics in the general relativity theory in the April and July numbers,
1924.   We shall cite them as "First Note" and "Second Note".

PART I. ALGEBRAIC PROPERTIES
1. THE INVARIABLE PLANE OF A TENSOR OF THE SECOND RANK

We shall start with the usual form of the general relativity theory; we
shall mostly have to consider two tensors of the second rank, the electro-
magnetic tensor, which is antisymmetric, and the energy tensor which is
symmetric. In this first part we shall consider only the connection which
exists between these two tensors at a given point, without taking into
account the corresponding tensor fields; our considerations will belong,
thus, to the algebra of tensors, not to the analysis of tensor fields. But
before we consider the relation between our two tensors we shall have
to study some geometric properties which belong to every tensor of the
second rank.

We shall consider a tensor of the second rank as defining a trans-
formation, and for that purpose it is convenient to use it in its mixed
form, fj; if x* are the contravariant components of a vector (we could
also write dx*) we form the expressions

(1.1) fpXP

(we use throughout this paper Greek letters for umbral indices or dummy
suffixes); these can be considered as contravariant components of a new
vector; we see thus that a tensor of the second rank gives rise to a trans-
formation of a vector into another vector, or to a linear vector function.
In many cases it is much more convenient to refer to this linear vector
function rather than to the components which depend upon the system of
coordinates we are using; we shall simply write a; for the vector with the
components x1 and fix) for the transformed vector with the components
(1.1); and we shall speak of the tensor/.

We shall write qx for the vector whose components are qx4 and we shall
call the totality of vectors of the form q x with a fixed x and a variable q
a direction; two vectors belong, therefore, to the same direction if then-
components are proportional. The totality of vectors of the form ç x + ay
with x and y fixed vectors and q and a variable numbers will be called & plane.

A direction or a plane is called an invariable direction or an invariable
plane, respectively, of a tensor/ if vectors belonging to it are transformed
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1925] ELECTRODYNAMICS   AND  GENERAL  RELATIVITY 109

by / again into vectors belonging to it (compare, for a general theory of
such regions, S. Pincherle and TJ. Amaldi, Operazioni Distributive). If
a vector a belongs to an invariable direction of / we have

fia) = Xa,

where X is a number which is called the characteristic number of this
direction.   If a belongs to an invariable plane QX-\-ay, we have

ft == pa; + fty,       /(ft) = QX + a'y;

applying / to both sides of the second equality and writing f2ia) for
f[fia)) we find

f(a) = o"x + a"y,

and it follows from the last three equalities that a relation of the form

(1.2) f2(a)-uf(a) + ßa = 0

must hold for a; inversely, if a does not belong to an invariable direction
and a relation of the form (1.2) holds, ft belongs to an invariable plane
defined by the vectors a and /(ft).

It is known that a characteristic number X of an invariable direction
satisfies the characteristic equation

(1.3) \f}-tyj\ = 0.

The tensor / itself satisfies a relation which for the four-dimensional
space has the form

(1.4) fl(a)-af\a) + ßr(a)-rna) + d = 0,

f3(x) standing for/[/*(«,)], etc., and the coefficients a, ß, y, â being equal
to the coefficients of the corresponding characteristic equation*.

We shall have to use the following
Theorem. Every linear vector function of a four-dimensional space has

at least one invariable plane.

*A very simple proof of this proposition is given by L.E.Dickson, Journal de
Mathématiques, ser. 9, vol.2 (1923), p. 309, footnote.
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110 G. Y. RAINICH [January

The proof depends upon the fact that the left hand side of equation (1.4)
can be written in the form A[fe(a)] or fe[A(a)] with

M«)=/'(«)-ei/W + A«       and      kia) = ftia) — cufia)-\-ß2a,

where ax, ßx, u2, ßs are real numbers. Suppose now one of the functions
h and fe, say h, never becomes zero for a non-zero argument; then every
value of hia) makes fe zero; if among the values of hia) there are two
which belong to différent directions, they certainly give us at least one
invariable plane; if they all have the same direction we have, e.g.,
hix) = ça, hiy) = a a and since h never becomes zero q and a are
different from zero; but then we have hiax— oy) = 0, contrary to our
assumption. If h = fe our equation (1.4) takes the form /i*(a) = 0 for
every value of a,  and from this follows hia) = 0 for every value a.

2. Some properties of the Minkowski space
The scalar product of two vectors x and y can be expressed through

their contravariant components in the form

(2.1) xy = x-y = gp<rxpya.

If we use geodesic coordinates with

(2.11) gxx = —\, gi2 = gBS = gu = 1 and gy = 0 (t $j)
this gives
(2.2) xy = — xlyi-\-x*y* + x3y3 + xiyi.

This shows that we have vectors of three kinds: those with negative square,
those with positive square and those of zero length. We shall call the
latter zero-vectors and the corresponding directions zero-directions. The
elementary geometric properties of such a pseudo-euclidean bundle have been
well known since the time of Minkowski. We shall only mention that we
have three kinds of planes; those which have two zero-directions, those
which have none and those which have one; a plane which contains a vector
of negative square has two zero-directions.

Given a system of axes we introduce four vectors », j, fe, I by their
components

(2.3) 1,0,0,0; 0,1,0,0; 0,0,1,0; 0,0,0,1.
We have
(2.4) i* = —1,       f = ft» » ? = 1;
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all the other products are zero. Vice versa, if we have four mutually
perpendicular unit vectors (the square of the length of one will then
necessarily be — 1 and of each of the three others +1) we can introduce
their directions as axes.   We have the relations

(2.5)   x = ixl-Yjx2-Ykxi+lxi = — i(ix)+j(jx)-Yk(kx) + l(lx).

If we are given a plane with no zero-direction we can so choose the
axes as to make it the k, I plane; a plane with two zero-directions we can
make the i, j plane (i-\-j and i—i being two zero-vectors); a plane with
just one zero-direction we can make the i-\-j, k plane. The last statement
may need a proof. Let us take any axes; on the zero-direction of our plane
there will be a vector of the form ¿ + a/ + ßk-\-yl with a2-\-ßi-\-yi = 1;
we can change our "space axis" so as to make aj-\-ßk-\-yl our new
j vector; then our zero-vector already has the form i-YJ; now let p be any
unit vector of our plane; the vector of this plane i-\-j — 2pipi-\-pj) has
a zero square and since there is but one zero-direction we must have
pi-\-pj = 0; if we introduce now the vector q = ipi)ii-\-j)-\-p, we see
that

q2= 2(pi)(pi+pj) + l = 1,    qi = — pi+pi = 0,    qj = pi+pj=0;

we can, therefore, choose q for our k.
Once the axes are chosen the formulas can be made more symmetrical,

in many cases, by introducing imaginaries, but for the treatment of planes
which have just one zero-direction the imaginaries present some difficulties;
we shall therefore abstain from introducing them while we have yet to
deal with such planes.

3.  The. antisymmetric tensor of the second rank
If a tensor of the second rank is given in its covariant form fa or in its

contravariant form f*J the property of antisymmetry is simply expressed
respectively by the formulas

h = -fji,      f9 = ~fJi-

In vector notations we have

fix)-y = foaxpy",      fiy)-x = f„Xpya
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112 G. Y. RAINICH [January

so that the property of antisymmetry is expressed by the formula

(3.1) fix).y = -fiy)-x.

Incidentally, for a symmetric tensor we have

(3.11) fix)-y = fiy).x.

But we have to use, at least temporarily, the mixed form and in this form
the property under consideration has a more complicated expression; if we
take geodesic coordinates (2.11) we find for the mixed components of an
antisymmetric tensor

ft = fi f* = n f* = n fi — — p f* — — p fi = — /•»jx        j2i    Ji       Je'    Ji       J ii    Ji Jb>    J% Ji>    Jz J i'

The coefficients are symmetric in the indices if one of the indices is 1, and
antisymmetric in other cases; they are zero when the two indices coincide.

We shall discuss now the question of invariable planes of an antisymmetric
tensor. We know that there exists at least one invariable plane (§ 1).
Suppose there exists an invariable plane which has no zero-directions; we
can take this plane for the fe, I plane (§ 2); then we have /(fe) = afe+ ßl,
fil) = Yk-\-dl\ that means that in the scheme of coefficients

0 ABC
A ODE

(3'2)                                     £ —D       OF

C —E   —F     0

B = C — D = E — 0.   There only remains

0       A 0      0
¿0 0      0
0       0 OF'
0       0 —F     0

On the other hand, if there is an invariable plane with two zero-directions
we can take it for the i,j plane; we have then f(i) = ai-\-ßj, f(j) = yi-\-aj,
so that B = C=D = E = 0 with the same result as before. We have
therefore in both cases considered

f(i) = A.j,    f(j) = A-i,    f(k) = -F.l,    f(l) = F-k.
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Using (2.5) we find

f(x) = —Aj(ix)    + Ai(jx) — Fl(kx)   + Fk(lx)
A{i(jx) -j(ix)} + F{k(lx) — l(kx)}.

This is the first canonical form of an antisymmetric linear vector function
(the same expression holds also for the euclidean bundle where it is the only
canonical form). The geometric meaning of a function of the form (3.3)
is seen to be the following: a vector of each of the invariable planes (the
i, j plane and the k, I plane) is transformed into another vector of the same
plane, which is perpendicular to the original vector and whose length is,
respectively, A or F times greater; the transformation of a vector which
does not belong to one of the invariable planes is given by the transformation
of its components in these planes.*

The case remains to be considered when the invariable plane or planes have
only one zero-direction. According to § 2 we can take such a plane for the
i+j, £ plane; then we have f (i+j) == a(i+j) + ßk, f(k) = yii+j) + ôk;
confronting this with the scheme (3.2) we find C= E, B = D, F=0,
so that

f(i) = Aj+Bk+Cl, f(j) = Ai-Bk—Cl, f(k) = Bi+Bj, f(l) = Ci+Cj.

It is easy to see that unless A = 0 the vectors f(i) and f(j)
determine an invariable plane which has two zero-directions, viz. that of
the vector i+j and that of the vector (Aj + Bk + Cl) (B2+C2—A2)
+ (Ai — Bk — Cl)(B2+C2 + A2); A must, therefore, be zero. Know,
without changing i and j we choose the unit vector of the direction
Bk + Cl for our new k and denote the length of Bk + Cl by G we have

f(i) = Gk,      f(j) = - Gk,       f(k) = Gi + Gj,       f(l) = 0,
and
(3.31) f(x) = G{i(kx) — k(ix)+j(kx) — k(jx)} = G{n(kx) — k(nx)},

* This interpretation was given in a paper presented to the Society, February 24, 1923 ;
compare also Comptes Rendus, vol. 176, p. 1294. A proof for the euclidean case is given
by A.Mochoolsky in the Memoirs of the Research Institute, Odessa, February, 1924.
It is interesting to note that Sommerfeld originally defined the six-vector as the set of two
perpendicular planar quantities (Ebenenstücke), Ann alen der Physik, vol. 32 (1910), p.753-
E. T. Whittaker also comes near to this interpretation in his paper on The tubes of electro-
magnetic force, Proceedings of the Royal Society of Edinburgh, vol. 42 (1922),
pp. 1-23. See also S. R. Milner's paper in the Philosophical Magazine, ser. 6, vol.44
(1922), p. 705.
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where to = i-\-j; this is the second canonical form of an antisymmetric
linear vector function in a pseudo-euclidean bundle. Here we also have
two perpendicular planes: i-\-j, k and i-\-j, I which are invariable, but this
is a different kind of perpendicularity (in both cases we have a so called
absolute perpendicularity, i. e., each vector of each of the two planes is
perpendicular to each vector of the other plane, but in the first case the
two planes have only a common point and in the second they have a common
direction).

For the components we have in the first case

fl = fx = a,      fl = -JÎ = F,       all the others zero;

in the second case

fl = f3 = —fl = f\ = G,       all the others zero.

Every antisymmetric tensor is known to have two invariants

h = sin +sin +nn +nn+nn +nn   and
(3.4) i, = nsi+nn+nn-
In the first case their values are A1— F* and AF; in the second case both
invariants vanish.

We conceive of an electromagnetic field as of something of the nature
of an analytic function (compare Part III) ; it is natural to assume, there-
fore, that the invariants of an electromagnetic field cannot be strictly zero
in one region without being zero all over; and since there are regions where
they are different from zero we shall assume that they are different from
zero everywhere with the exception only of points. From this point of view
a field for which both invariants are strictly zero (a self-conjugate field,
using the terminology of H. Bateman*) does not exist in nature and must
be considered only as an approximation, this approximation not being,
incidentally, an intrinsic quality because it depends on the separation of
space and time.

Instead of considering the vanishing of the two invariants Ix and Is as
characteristic for the self-conjugate field, we may consider as such the
vanishing of one number

(3.5) 4w4 = JÍ + 4/I;

* Electrical and Optical Wave-Motion, p. 5.
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in the case when m does not vanish, i. e., in the case when the tensor may
be presented in the first canonical form, we have

(3.51) «   =-^-.

The number <» V2 is considered by Milner (paper cited above) who designates
it R.

It is often inconvenient, as already mentioned, to have the square of one
of our unit vectors negative while the others have positive squares. In
order to avoid this we shall consider henceforth instead of the vector %
this vector multiplied by V — 1, but we shall designate this new vector by
the same letter t; this change necessitates the substitution of —V — I-A
for A in the formula (3.3) ; we shall call this imaginary number X and in-
stead of F we shall write ft. The electromagnetic tensors with which we
shall have to deal will, therefore, have the form

(3.6) fix) = X{iijx)-j(ix)}-\-fi[k(lx)-likx)},
with
(3.7) i* = j* = fe2 = Is = 1,       i-j = i.ft = • • • = 0;

X is an imaginary and /» a real number.
We shall say that the planes i,j and fe, I form the skeleton of the tensor;

in order to know the tensor it is necessary to know the skeleton and the
two numbers X and fi.

It must be noticed that, whereas X and /* are entirely determined by the
tensor, the vectors i, j, fe, I are not; the vectors fe, I may be turned in
their plane through an arbitrary angle xp, i. e. we may introduce in their
stead two vectors K and L connected with them by the relations

(3.8) fe = Kcosxp — Lsinxp,       I = Ksinxp-\-L cosxp;

the substitution of these expressions in (3.6) will show that the vectors
K, L play exactly the same part as fe, I. The same can be said with
reference to the couple i, j with a little modification necessitated by the
fact that i is imaginary; we shall have here the transformation

(3.9) i = Jcosx + Jsinx- V—1,     j = -Tsinjc-V—l-f«7cosx.
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I would not say that the consideration of these vectors i, j and k, I
instead of the planes which they determine is entirely satisfactory from
the point of view of mathematical elegance; it introduces elements which
have no intrinsic significance and it is to be hoped that it will eventually
be possible to do without them, to operate directly on the planes. But as
things stand now, we have to use the vectors. If the two vectors i, j are
given they determine also the plane k, I (and vice versa) because there is
only one plane perpendicular to a given plane in a four-dimensional bundle.
We could, therefore, use. only one couple of vectors but this would necessitate
the introduction of a new operation and would make our formulas less
symmetric.

4.  The energy relation
The electromagnetic energy (and momentum) tensor is usually given in

the form fpf¡ —\g)fpf%, but a simpler form* can be obtained if we use
the dual or reciprocal tensor d together with /, viz.,

(4.1) jUff-Údf}.

Now fpfaX is in vector notation simply/3 (x) because it is the result
of the transformation / applied twice ; we can write therefore for the energy
tensor

(4.11) \\f(x)-d2(x)\.

The dual tensor of an antisymmetric tensor fj is defined by

ä\=ft,   *\=A,   d\=f¡,   d\=f¡,   d\=f¡,   d2=f¡.

If we take / in the canonical form (3.6) its components are

(4.2) fl = X,       f¡ = p       and      f¡ = f¡ = f* = f¡ = Q.

The components of d will, therefore, be

(4.21) d\ = p,    ft4 = X,       dz — d\ = £¿t = d% = 0,

*See, e.g., J.Rice, Relativity, London, 1923, p. 224. This form is due to Laue; see
Sommerfeld, loe. cit., p. 768.
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so that
(4.3) d(x) = fi{iijx)-j(ix)} + l{k(lx) — likx)}.

It should be noted that with our convention this is an imaginary tensor,
i. e., it gives us vectors multiplied by V—1; in the formula (4.11) nothing
imaginary remains because d is there applied twice in succession. We could
of course easily introduce instead of d a real tensor, but we see no harm
in its remaining imaginary and in some cases it is even of some advantage
(see §§ 6 and 9).

We have

/2(a;) = -X*{iiix)+jiJx)}-i*>{Hlx) + likx)},
d'ix) = -ftt{iiix)-\-jijx)} — Xt{kikx) + l(lx)},

so that the expression for the electromagnetic energy tensor (4.11) becomes

(4.4) co^iiix) +jijx) - kihx) - lilx)},

if we put, in accord with (3.51),

(4.5) „* = ¿L=L.

Now in the general relativity theory the energy tensor at a given point
can be calculated from the Riemann tensor. If R} is the contracted Riemann
tensor, then the energy tensor is usually assumed to be Rj— \gljRt. In
a region which is free from matter the whole energy is electromagnetic,
so that this expression must be equal to the electromagnetic energy tensor
and we have the equation

(4-6) B)-\9)K-SÍSj~\9)£Sr-

Contracting, we see that Rp must be in this case equal to zero, so that
the electromagnetic energy tensor is equal to the contracted Riemann
tensor. It is also possible to suppose that Rp is a constant different from
zero—this would correspond to the cosmological equations. In this case
we have to take for the energy tensor the expression a?] — \g] Rp; in both
cases, we see, the electromagnetic energy tensor is equal to an expression
which can be obtained from the Riemann tensor, i. e., which can be found
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if the space-time is given. If we denote this tensor, which is obtained
from the curvature of the space-time, by F] we have, therefore, the relation

(4.12)    F¡= \{fPf?-dpdj)    or   F(x) = \ {/(*) -/(»)}.

This relation which we call the energy relation connects the curvature
field and the electromagnetic field. We are going to find out what in-
formation concerning each of these fields can be obtained from this relation.
We shall start by investigating what restrictions are imposed on Fix) by
the existence of the relation (4.12). From the general theory of curved
space we only know that Fix) is a symmetric linear vector function and
that any symmetric linear vector function can be taken for F, as far as
general properties of space are concerned; but if we write our relation
in the form
(4.41) F(x) =--- m2{i(ix:)+j(jx) — k(kx) — l(lx)},

we see that F(x) must be a linear vector function of a special form. We
are going to ask ourselves how, given a tensor of the second rank, we
can know whether it has the form (4.41) or not. First or all, substituting
in (4.41) in turn x = i, j, k, I, we find

(4.42) F(i) = «»i,    F(j) = o>2/.    F(k) =- - m2k,   F(l) = — m2l.

We see that the vectors i, j, k, I, belong to invariable directions, their
characteristic numbers being w2, w2, —w2, —a2. It is easy to see that
every direction of each of the planes i,j and k, I is an invariable direction
with the characteristic number a2, — w2, respectively. Here we have
a full geometric characterization of F:

It has two planes of invariable directions ivith characteristic numbers
(4.43) of opposite signs;  these planes are (absolutely) perpendicidar with one

common point.
If we want to find a characterization of F in terms of its components,

the best way is to start with the remark that

(4.7) F2(x) =■ F[I\x)] =: m2{F'(i)(ix) + F{j)(jx)-F(k)(kx)—F\l)(lx))
— mi{i(ix)+j(jx) + k(kx) + l(lx)} — »*ar.

In components we may write for the left hand part (as we did before for/)
Fp F% xa, and the right hand part may be written as u>* gp xp; we there-
fore have

(4.71) FÍ Ff = g) »*.
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This is a necessary condition for F but it is not sufficient, as, e. g., the
function

Fix) = mi{i(ix)—j(jx) — k(kx) — lilx)}

also satisfies it.   But together with the condition

(4.8) Fpp == 0,

which was obtained by contracting (4.6), the equation (4.71) gives a full
characterization of F. The proof of this statement will be a little cumber-
some because we have not studied the geometric properties of a symmetric
function in a pseudo-euclidean bundle. We know, however, that F (x), like
every linear vector function, has at least one invariable plane; if there is
such a plane with two zero-directions we take it for the i,j plane; we have
F(i) = ai-\-ßj, F(j) = yi-\-Sj. Comparing this with the scheme for
a symmetric linear vector function, viz.,

F (i) = Ai + Bj -\-Ck+Dl,       F (j) = Bi + Ej+Gk + Hl,
Fik) = Ci + Gj + Kk + LI,       Fil) = Di + Hj+Lk + Ml,

we find C =D = G = H = 0; we thus have two perpendicular invariable
planes and we shall show that each of them has two perpendicular invariable
directions with the characteristic numbers rtw2. Take, e. g., the plane i,j;
writing that F*(i) = u>H, F*(j) = «V, we find A*-\-B* = B*+Ei = wl,
B(A+E) = 0; if B = 0, A3 = E* = «* and the vectors i and j give
us the directions we want. If B ^ 0, E = —.4 and a simple calculation
shows that the vectors Bi — (A—w2)j and (A — m2)i-\-Bj belong to two
invariable directions with the characteristic numbers ± w2. We have thus
established that there are four mutually perpendicular directions with
characteristic numbers ± ws. The equation (4.8) shows that the sum of the
characteristic numbers is zero ; two of them must therefore be positive and
two negative. It remains to show that there always is a plane with two
zero-directions; if all time-directions are invariable a plane defined by two
of them is certainly invariable and it contains two zero-directions (§2); if
there is a time-direction which is not invariable let the vector i belong to it ;
the plane determined by i and F(i) is invariable because F[F(i)] =FH — u>H,
and it has two zero-directions.

The above discussion leaves open the possibility F(i) = —ws¿; if we want
to exclude this we have to put down the additional condition

(4.9) Fl>0.
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We know now the necessary and sufficient conditions which have to be
satisfied if our tensor F is to have the form (4.41) ; if these conditions are
satisfied we can find the vectors i,j,k,l and the number w. Once we have
found them we put, to satisfy (4.5),

(4.51) X = m V—2 sin f,        p = wK2cos<p,

where y is an arbitrary (real) angle and have in

fix) = X{i(jx)-j(ix)}+p{k(lx)-l(kx)}

an electromagnetic tensor which satisfies the energy relation with the given
tensor F. We see thus that the electromagnetic tensor is not entirely
determined by the curvature tensor of space-time at the same point; after
the curvature tensor is given there are an infinity of electromagnetic tensors
which are possible from the point of view of the energy relation. To
complete the determination of the electromagnetic tensor we must know,
besides the curvature tensor, the number f. From the geometric point of
view we may say that the curvature tensor gives the skeleton of the electro-
magnetic tensor, but instead of giving the two numbers X and p it gives
only their combination p2 — X2.

It would, however, be wrong to conclude from this that the curvature
of space-time does not determine the electromagnetic field. So far we have
considered only the relation between the two tensors in a point. We shall
now take into account their differential properties.

PART n. DIFFERENTIAL PROPERTIES
5. Preliminary remarks

We shall proceed to study a region of space-time, in each point of which
we consider the electromagnetic tensor; in each point the energy relation
holds, so that the results of Part I are applicable, but we shall now take
into account also the Maxwell equations which are satisfied by the electro-
magnetic tensor. We shall ask ourselves, first, what additional information
with respect to the field F can be obtained from the fact that /, which
is connected with F by the energy relation, is, at the same time, subjected
to the Maxwell* equations. After we have found the restrictions which
have to be imposed on the field of F we shall, secondly, take up again the
question of how far the field / is determined by the field F;  and finally

* When we say Maxwell equation in  the following we  always  imply in  empty  space.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1925] ELECTRODYNAMICS   AND  GENERAL  RELATIVITY 121

we shall translate the conditions for the field F into the language of
components.

The usual form of the Maxwell equations in regions where matter is
absent is

(5.1) ftP = 0,       d(p = 0,

where d, as before, means the dual tensor of /, and the index after the
comma corresponds to covariant differentiation. It will not, however, be
convenient for us to deal with the components of tensors; the results of
§ 3 permit us, it is true, to choose the coordinates for a given point in
such a way as to bring the components of / into the simple form (see 4.2)

OX 0 0
X   0 0 0

(5.2) 0   0 0 p '

0   0 — p 0

but we shall not be able to use this form where differentiation is involved,
because this holds only for the point in which the system of coordinates
is geodesic and if it is geodesic for one point it cannot be geodesic in its
neighborhood.   We therefore take the form (see (3.6) and (4.3))

(53) /(a,) = ^{iiJx)-jiix)}+p{kilx)-likx)},
dix) = p{i(jx)—j(ix)} + ).{k(lx) — l(kx)}.

We can consider/and d as given in this form for all points (of a certain
region). Of course, the vectors i,j, k, I will not be the same in different
points; in a curved space there is no such thing as equality—and still
less identity—between vectors of different bundles. The values of the
numbers X and p may also change from point to point. The vectors i,j, k, I
and the numbers X and p will therefore be point functions. If a definite
system of coordinates is introduced, the numbers X and p and the com-
ponents of the vectors i,j, k, I will be functions of coordinates; they will
constitute tensor fields of rank zero and one, respectively. Of course the
tensor analysis can be developed from the beginning independently of
coordinates (compare the author's papers cited in the introduction), but
here we shall translate into vector language only the things which we
are going to use.

8
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If we have a tensor of rank zero, i. e., a point function X, it has in
each point four derivatives A¿; we may consider them as the covariant
components of a vector, which is called the gradient of X and denoted by
grad X. We may, on the other hand, consider instead of the derivatives
the differential; if we denote the differentials of coordinates by h* and
the vector which has ¿V" for its components by h, the differential can be
written as Xphp. This is the scalar product of grad X by h; it is also
a scalar linear function of fe which we shall designate X'(h); in short, the
differential of a scalar field X is

(5.4) X'ih) = grad X. h = Xp hp;

and we have, using (2.5) (with — changed into + according to (3.7)),

(5.5) grad A = ». X'(i)+j- X'ij) + k- A'(ft) + i- X'U),

if i,j, fe, I are any four perpendicular unit vectors.
If we have a vector field v, i. e., a tensor field of rank one with contra-

variant components vi, the absolute derivatives vt of these components can
be considered as mixed components of a tensor of the second rank; if
instead of the derivatives we consider the differential v)p hp we can inter-
pret this as a transformation applied to the vector h, i. e., a linear vector
function, which we shall designate by v'ih).

If we have a tensor field of the second rank given by its mixed com-
ponents fj the absolute derivatives will be fjk and if we consider instead
of the components fj the transformation fp xp, the differential will be
fp,axp h , i. e., a bilinear vector function with the arguments x and h; we
shall in vector notations write for the differential of the linear vector
function fix) simply fix, h).

The  result   of   contracting fjk  with respect  to  the  indices  i, fe is
fj\P = Sj,i+Sj,2+Sj,t¡-i-Sj,t\ these are components of a vector, say vy
It is easy to see that in vector notations this becomes

(5.6) v = fii,i)+/U,J)+fik,k)+fil,l).

We shall not go farther in this direction; that is all we need for the
translation of the Maxwell equations. But before we start the work on
them we notice that, differentiating the identities (3.7), we find

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1925] ELECTRODYNAMICS   AND  GENERAL  RELATIVITY 123

(5.7) i'(h) - i = j'ih) -j = k'ih) - k = I'ih) -1=0;

i'(h)-k + k!(h)-i =j'(h)-k + k!(h)-j — H(h)-l + l'ih)-i
(5.8) - Jih)-l + l'(h)-j  =0;

(5.9) i'ih)-j+j'(h)-i = k'ih)-l + tih)-k = 0.

6. Geometric properties of a Maxwell field
In order to write down the first set of Maxwell's equations in vector

4?orm we have to write that the vector v (5.6) is zero when / is the tensor
given by (5.3). The differential of f(x) is

f(x,h)=     X'(h).i.(jx) — X'(h).j.(ix) + p'(h)-k.(lx)—p'(h)-l-(kx)
(6.1) +X-i'(h)-(jx) — X.j'(h)-(ix) + p-k'(h)-(lx) — p-l'ih)-(kx)

+ X-i.[j'(h)-x] — X.j.[i'(h)-x] + pk[l'(h)-x] —pl[k'(h)-x].

Instead of writing that the vector v is zero we shall write that its com-
ponents, i.e., the products v-i, etc., are zero. In order to form, e.g., v-i,
we consider fix, h)-i; the multiplication of (6.1) by i destroys on its left
hand side all the terms which are perpendicular to i, i. e., those which have
the directions of y, k, I, i'.   There remains

fix,h)-i = X'(h)-(Jx)-X.[j'(h)-i]-(ix) + p-[k'(h)-i]-(lx)
-p-[l'ih)-i]-ikx) + X[j'ih).x].

To obtain v-i we have to put here x — h, to substitute for this vector
in turn i,j, k, I and to add the results. The first term of (6.2) gives a vector
different from zero only for h — j; the second for h — i, the third for h = I,
the fourth for h = k and the last for h = i, or k or I. We have thus,
since the second and the last terms of the result destroy each other,
using (5.8)

(6.3)   v-i = X'(j)-X{k'(k)-j+l'(l)-j}— p{l'(k)-i-k'(l)-i) — 0.

This is a scalar equation and we shall have three more similar equations
for the other components of v from the first set of the Maxwell equations (5.1)
and four more from the second set. We can obtain them from (6.3) by
interchanging i and j, k and I, and X and p. But we need now only the
one which we obtain by interchanging X and p, viz.

(6.31)    pU)-p{Jc'ik).j+íil)-j}-X{l'(k)-i-k'(l)-i} =0.
8«
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Eliminating from (6.3) and (6.31) first the third terms and then the second
terms, we obtain

(6.41) ftft'(j)~XX'(j) = ifi2-X2){k'(k).j + l'il).j},
(6.42) Xp'(j)-fa'ij) = (X*-f>s){k'il).i-l'ik).i}.

Now we have from (4.5) and (4.51), remembering that w iz 0,

ftp,'—XX'       1_ j^—X*)'       J_ («a2)'  _ ^/
ft'—lM~ 2    ft'—X*    ~  2     w*    ~   w'

Xp'—pX'       1   — »V^smyV+w'V^cosqp    »V —2cos9>.r/-rW—2sinip

o)P^2 cosy ceiV—2sinyi»' 2w*

œ   _y'l/=î

This permits us to write (6.41) and (6.42) in the form

^ = k'ik).j + l'il).j = [k'ik) + l'il)).j,
w

cp'(J)-V^i = k'(l)-i — l'(k)-i = [k'(l)-l'(k)]-i,

and we have three more of each type.   If we put

(6 51) P * í'fA'W-í* + rW-¿í+-?''íA'W^ + rW-^
+*-[«y(»)-*+/0')-*l+Mí'(0-i+/0')-í]f

(652)  3 = i'tÄ'W->-r^-^+^-trW-*-Ä'W-il
+fc-[i'0')-í-/(0-¿]+í-ü,(«)-*—«*0>*1,

and use (5.5) we find as the equivalents of Maxwell's equations

(6.61) grad« = top        or        grad log w = p,

(6.62) V—1 grady = q.

In § 3, we called the two invariable planes of an antisymmetric tensor
the skeleton of this tensor.   We shall now call skeleton of an antisymmetric
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field the totality of the skeletons of its tensors. It is easy to show that the
vectors p and q defined by (6.51) and (6.52) are entirely determined (for
each point) by the skeleton of the field (in the neighborhood of that point);
in order to do so it is enough to notice that the form of the expressions
(6.51), (6.52) is not changed by the transformations (3.8) and (3.9). The
equations (6.61) and (6.62) give therefore a property of the skeleton of an
antisymmetric field which satisfies Maxwell's equations, which may be stated
as follows:

Theorem. If an antisymmetric field satisfies Maxwell's equations, the
vectors p and q  defined by its skeleton are gradients of scalar functions.

The converse is also true. Suppose we are given two perpendicular
planes in each point of a region and we want to know whether there exists
a Maxwellian field which has these planes for its skeleton. We choose in
each plane two perpendicular unit vectors », j and k, I respectively, and
form according to the formulas (6.51) and (6.52) the vectors p and q; if
these vectors are gradients of scalar functions there exists an go 2 of different
Maxwellian fields with these planes as skeletons. In fact, we can determine
two functions w and <p (each containing an arbitrary additive constant),
satisfying (6.61) and (6.62); if we now form X and p according to the
expressions (4.51) and use them in (5.3) we have the fields in question.

It is interesting to notice that q is an imaginary vector, i. e. a vector
of our space multiplied by V — 1, because i enters in every term once as
a factor ip is real because i enters in some of its terms twice and does
not enter in other terms at all). If we consider, in a purely formal way,
the sum p + q as a complex vector we can say that it is the gradient of

log« + (pK^T= logoe?^1.

The formulas (4.51) show that

mcfPV^ -=-- p + X.

Following this line and introducing complex tensors we could considerably
simplify our calculations but as the purpose of this paper is only to show
how the electromagnetic field is determined by the curvature it does not
appear desirable to make the calculations depend on these concepts because
this would tend to obscure the principal point at issue. (See, however, § 9.)

A different expression is given for the vector jp (with the sign changed)
in the "First Note" (formula 4). This expression holds only if the vectors
i,j,k,l are chosen in a special way indicated there and does not seem
to have any essential advantage over (6.51).
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7. Differential properties of the energy tensor
We saw (end of § 4) that the curvature tensor gives the skeleton of the

electomagnetic tensor and the number co2 in each point. We can restate
this now saying that the curvature field determines the skeleton of thé
electromagnetic field and the scalar function <*>*. In order to complete the
determination of the electromagnetic field it remains for us to determine the
function cp, but we shall take this question up a little later. For the present
we emphasize the fact that the equations (6.61) and (6.62) must furnish us
some properties of space-time in which there is an electromagnetic field,
because the vectors p, q and the function to2 are determined by the curvature
of space-time.

As for the equation (6.61) both p and w are given by the curvature so
that it directly gives us a property of space-time. This property is, how-
ever, not new; it is a consequence of the known relation

(7.1) (<-!^i£)i?=0,

which holds in every curved space.* In our case this relation takes the
simpler form

(7.2) *£,= 0.

Using the expression (4.41) for F and proceeding in the same way as we
did in the beginning of § 6 when we were about to translate Maxwell's
equations, which have the same form as (7.2), we find

F'(x,h)-i = 2m-u>'ih)-iix)
(7.3) + ut{[j'ih)-i]ijx)-[k'(h)-i](kx) — [l'ih).i]ilx) + i'ih).x]
and
V'i = 2co • ca'ii)

+ «" WU) ■ i - k'ik) • i - l'il) - i + i'ij)-j + i'ik) . fe + i'H). 1} = 0.

The relations (5.9) show that the first and the fourth terms in the brackets
give a sum zero, and the relations (5.8) that the fifth is equal to the second
and the sixth to the fourth; we can write therefore, remembering that w 4= 0,

Ü^ííl = k'ik)-i + l'il).i,

* Cf. J. A. Schouten and D. J. Struik, Philosophical Magazine, vol. 47 (1924), p.584.
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and, with the three other similar equations, this is equivalent to (6.61);
this proves our assertion that this last equation does not impose any new
restrictions on space-time. It may, however, be argued that the choice of
the expressions for the energy tensor in terms of the curvature tensor, viz.
B) or Bj — \ g) B,"„ was influenced by the consideration that for the energy
tensor the equation (7.2) must be satisfied.

We shall try now to find whether equation (6.62) gives us some property
of space-time containing an electromagnetic field. We know that the point
function (p which enters in (6.62) is not determined by the tensor F in the
corresponding point; we have, therefore, to eliminate f from this equation
and this we can do simply saying that q must be a gradient of a scalar
field; or we may write

(7.4) rotff = 0,        or        qitj — qjti.

This property of space-time containing an electromagnetic field does not
seem to be a consequence of general properties of curved space; it seems
to be an additional restriction imposed on our space-time. However this
may be, we suppose henceforth that this condition is satisfied.

We return now to the question of how far the electromagnetic field is
determined by space-time. We stated at the beginning of this section that
we had still to determine the function y; but that is just what equation (6.62)
does; it determines the function y, the only remaining arbitrariness being
in a constant of integration. If op is a solution of (6.62) the general solution
is y + y, y being a constant.   From (4.51) we obtain

(7.5) X — taV^-2s\wi<p + y), p = <ùV~2cosi<f + y),

and, if by X0 and p0 we designate the values of X, p which correspond to
y = 0, we have

X = X0 cos y + p0smyl/r—1, p = p0cosy + X0sii\yV — 1;

if, further, by/0 and do we designate the tensor fields which are obtained
from (5.3) for A = X0, p = p0, we can write the general electromagnetic
field which is compatible with the given space-time in the form

(7.6) / = foCosy + doSmy-V—1.        d =doCosy +f0smy-V^l,

the vectors i, j, k, I and the number m being determined by the tensor F
in the point considered and the function y> by the field F in the neighborhood
of that point.
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It is not the place here to treat the connection of the results obtained with
the question of radiation, which was briefly indicated in our "Second Note."

8.  Second order property in components
The field F determines the skeleton, the skeleton determines the vector

field ft; equation (7.4) expresses, therefore, a property of the tensor field F.
We shall show now how this property can be expressed in terms of the
components of F.

Multiplying both sides of the relation F2 (x) = w4 x (see (4.7)) by y and
using the symmetry of F (3.11), we obtain

F(x)-F(y) = wl-(xy).

In what follows we will consider only the vectors i, j, k, I, which are
mutually perpendicular, as the values of x, y; therefore if x, y are different
we will have

F(x)-F(y) = 0.

Differentiating this we obtain

(8.1) F'(x,h)-F(y) + F'(y,h)-F(x) = 0.
We now form

(8.2) P(x,y,z) = F'ix,y)-Fiz) + F'iy,z).Fix) + F'iz,x)-Fiy).

Using (8.1) we easily see that Pix, y, z) changes its sign when two of
its arguments are interchanged (always supposing x, y, z to be three dif-
ferent vectors from among i,j, k, I); it has, therefore, only four essentially
different values, but they can be obtained from one by interchanging i,j, k, I.
Let us calculate, e. g., Pii,j,k), or, according to (4.42),

*2{-F'(i,j)-k + F'(j,k)-i + F'(k,i).j};

the middle term can be obtained from (7.3), making x —j, h = k. Taking
in consideration (5.9) we see that it vanishes. To obtain the last term,
we interchange in (7.3) i and j, and make then x = k, h = i; there remains

^{-k'(i)-j+j'(i)-k} = 2w2[j'(i)-k]

according to (5.8). With the aid of (8.1) we see that F'(i,j)-k can be
obtained from this interchanging i and j.   We have thus

P(i,j,k) == 2co'[j'(i).k-i'(j).k].
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Confronting this with (6.52) we see that this is the product q • I multiplied
by the factor 2w4, or that P(i,j, fe) is but for this factor the ¿-component
of the vector q.

If we make x = i, y —j, z — k in (8.2) we obtain for P(i,j, fe) an
expression which, translated in the usual language of coordinates, is

1,2  -^8 + ^2,8 *pi~r -T^lPp-li

this is equal to w4 qt but it is a component of a tensor of the third rank,
which, according to our remark following (8.2), is completely alternating.
It is, therefore, more convenient to introduce instead of q a completely
alternating tensor of the third rank qyu defined for geodesic coordinates
by the equalities

(8.3) ffiäs = qt,       Ï234 = — qx,       qui — q»,        qm = ~qs,

and which is sometimes referred to as complement of qi. For this tensor
we have then*

(8.4) 2 „« • qm = Fpj Fpk + lftk Fpi + Fpt Fpj.

It remains to write in terms of the tensor qyk the equations (7.4),
which express the condition that q must be a gradient. Take, e. g., the
equation qi,2 = #2,1; using (8.3) we obtain —#284,2 — qm,i or, on account
of the alternating property, #341,1 + 4842,2 — 0; and finally since qyk vanishes
when two indices are equal,

i841Ii+«843(2+a848,8+«844,4=o.

where we use contravariant components, which makes no difference while
we are using geodesic coordinates but permits us to write the result in
a form which is independent of the system of coordinates, viz.,

(8.5) qW T = 0.

This together with the formula (8.4) defining q^ß gives us the differential
conditions to which the curvature tensor is subjected as a consequence of
the presence of the electromagnetic field.

*In the "Second Note", formula (11), «/ must stand instead of a>2; this is obvious
because q must not change when F is multiplied by a constant.
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PART m.   INTEGRAL PROPERTIES AND SINGULARITIES

9.  Analogy with analytic functions
In order to find the significance of the fact that the curvature of space-

time seems to leave undetermined a constant in the expression for the electro-
magnetic field we shall have to touch upon the question of matter, which
we consider as constituted by the singularities of the field. In discussing
these singularities much help can be derived from the consideration of both
points of striking analogy and points of difference between the theory of
the electromagnetic field and the theory of analytic functions of a complex
variable.

We begin with the analogy, which can also be stated by saying that
both the theory of analytic functions and the theory of the electromagnetic
field are special cases, corresponding to r = 2, and r = 4, respectively,
of a general theory of conjugate functions, imagined by Volterra as early
as 1889.* From this point of view the Maxwell equations are analogous to
the Cauchy-Riemann equations of the theory of functions. They can also
be replaced by an equivalent integral relation which is analogous to the
Cauchy-Morera theorem of the theory of functions. Before we write
down this integral form of the Maxwell equations, we go one step farther
than is usually done (so far as we knowt) and introduce, instead of the
tensors / and d, their sum

(9.1)     w(x) = fix) + dix) = v{iUx)—Jiix)-\-kilx) — likx)}.

Since the tensor d is an imaginary tensor (cf. the statement after (4.3))
the tensor w is to be considered as a complex tensor, i. e., if a; is a vector
of our space, wix) is the sum of a vector of our space and of a vector
of our spar multiplied by V—1; the number v, being the sum of a real
number ¡i and an imaginary number X, is also a complex number. Incidentally,
from this point of view the tensor F is the product of w by the conjugate
tensor w, or the square of the modulus of the tensor w, and the number w2
is half the square of the modulus of v; using these notations we could have
simplified our calculations in the §§ 6 and 7, grad log v would furnish us
the complex vector p-hq, etc.

*Lincei Eendiconti, 1889, 1st semester, pp. 599-611 and 630-640. The analogy in
question has been already noticed. See, e. g., F. Kottler, Maxwell'sche Gleichungen und
Metrik, Wiener Sitzungsberichte, lia, vol. 131, No. 2, pp. 119-146. This paper con-
tains full bibliographical references.

fCompare, however, L. Silberstein, Annalen der Physik, ser. 4, vol.22 (1907), p.579 and
H. Weber, Partielle Differentialgleichungen der Mathematischen Physik, vol. 2, 1901, p. 348.
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We can formulate now the analogue of the Cauchy-Morera theorem as
follows; the statement that Maxwell's equations for empty space hold in
a certain region is equivalent to the statement that the integral

(9.2) iwnda,

taken over any two-dimensional surface which belongs to the region and can
be continuously transformed into a point without leaving that region, vanishes.*
An immediate consequence of this is that the value of integral (9.2) when
it does not vanish—this value is a complex number—does not change if,
instead of one closed surface, we take another into which the former can
be continuously transformed without leaving the region where Maxwell's
equations are satisfied.

The question naturally arises: what is it in this theory, that takes the
place of singular points of the theory of analytic functions? Many con-
siderations, both physical and mathematical, lead us to believe that the
most interesting objects of this kind are singular lines (having time-direction).
If we consider a two-dimensional surface 2 which surrounds such a singular
line r (much as a circle surrounds a straight line in our three-dimensional
space), the value of the integral (9.2) taken over 2 is not necessarily zero,
but it follows from what was said after (9.2) that we may change 2 as
we want; so long as it surrounds r and remains in a simply connected
region in which r is the only singularity, the value of the integral will
not change. In other words this value is entirely determined by the sin-
gular line. This value, which is a complex number, is obviously an ana-
logue of the residue, and we shall use for it this word.

Now it so happens that, if we look for the physical interpretation of (9.2),
we find that its real part gives the electric charge which is present in
some three-dimensional volume enclosed by our surface, and the imaginary
part would correspond to a magnetic charge, hit this magnetic charge is
always zero. This last fact seems to be inexplicable from the point of view
of the electromagnetic field considered independently of the curvature of
space-time, or, let us say, in the space-time of special relativity theory.
But it is different from the point of view of general relativity theory on
which we stood in the first two parts of the present paper, and to which
we shall revert presently.

* A formulation of Maxwell's equations involving integrals over two-dimensional surfaces
in time-space was given by R. Hargreaves as early as 190Ö (contemporaneously with the
famous publications of Minkowski) in the Cambridge Philosophical Society Trans-
actions, vol. 21, p. 116. For a comprehensive presentation see F. D. Murnaghan's book
Vector Analysis and the Theory of Relativity, Baltimore, 1922, especially p. 72 sqq.
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10.  CONSEQUENCES OF THE  CURVATURE OF SPACE-TIME

The considerations regarding integral properties of the electromagnetic
field and the residue are independent of the metrical structure of the space.
They are, therefore, applicable in the case when the space is the Riemann
space of the general relativity theory (in fact, Volterra's general theory
holds in much more general spaces). If we consider space-time as originally
given, the electromagnetic field is, as we saw in § 7, not completely determined
by it; we may say that there is an infinity of possible electromagnetic
fields which are given by the expressions (7.6) involving the arbitrary con-
stant y. All these "associated" fields will have, obviously, the same singular
lines but the residue of such a line will be different for different fields;
it will depend on the constant y; if q = e + y. V—1 is its value for y = 0
its value for an arbitrary y will be, in consequence of (7.6),

s cos y + x V — 1 sin yV — 1 + xV — 1 cos y + s sin ;' V — 1
(10.1) __ _

= ie+xV— 1 ) (cosy + sin yV—\ ) = oe^'.

All these numbers have the same modulus | q j = Vé + x2, so that we
may say that only the modulus of the residue is determined by the cur-
vature field.

If we have but one singular line (one electron) we can so choose the
constant y as to make the residue real; or, we may say, among the possible
fields there is just one (or, more precisely, two of opposite signs) for which
the magnetic charge vanishes. We can agree always to choose this field
as the existing electromagnetic field; by this two difficulties would be solved
at one stroke; the electromagnetic field would be entirely determined by
the curvature field, and the fact that the nagnetic charge is zero would
be explained, as the result of our agreement.

But there exists more than one electron; if we have several singular lines
the situation is not as simple as in the case of one singular line. If we choose
our constant y so as to make the imaginary part of the residue of one line
zero we do not see immediately why the imaginary parts of the residues
of other lines also should vanish; in other words, why the arguments of
all residues should have values differing only by multiples of re. But we
know from experimental physics that there are no magnetic charges; that
means, that the existing electromagnetic field (i. e.. one of the possible
electromagnetic fields) has only real residues and from (10.1) it follows then,
since g is real, that for the possible field which corresponds to the value ;'
of the constant the argument is either y or n-\-y. It is important to notice
that this experimental fact that the differences between the arguments of the

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1925] ELECTRODYNAMICS AND GENERAL RELATIVITY 133

residues of different singular lines in every possible field is a multiple of n
is a property of the space-time, because the totality of possible fields is
given by the curvature field of space-time. There may be a question whether
this fact can be accounted for on the general theory of relativity as it is
now (i. e., whether it is a consequence of the conditions which must be
satisfied by the curvature field of space-time, and which we found by
eliminating the electromagnetic tensor from the energy relation and the
Maxwell equations, viz. (4.71), (4.8), (8.4) and (8.5)) or whether it must be
taken as an additional assumption; however this may be (see the next section)
we have to consider the underlined statement as expressing an established
property of space-time; but then we can determine the electromagnetic field
which corresponds to a given space-time by the condition that its residues
must be real. The result is the same as in the case of only one singular line.
We have thus proved oui- contention that, under the assumptions which we
have made, the electromagnetic field is entirely determined by the curvature
field of space-time.   These assumptions are the following:

1. In no region do the invariants of the electromagnetic field strictly vanish.
2. The underlined statement above.

11.  Non-linearity of the field and possible consequences
Before we treat in the next section a simple example illustrating the

foregoing general discussion, we cannot help indicating some speculative
reasonings which bear on the assumptions just mentioned.

Considering the analogy with the theory of functions it may be hoped
that the first of these assumptions will be deduced from the equations of
the field (besides, this assumption may not be necessary because the treat-
ment of the second canonical form of the electromagnetic tensor (3.31) may
lead to the same results).

As to the second assumption there may be hope of throwing some light
on it by the consideration of an essential difference which exists between
the theory of the electromagnetic field and the theory of analytic functions.
This difference is given by the fact that the conditions which define the
electromagnetic field of the general relativity theory are not linear (see
"First Note", p. 125); therefore we connot, if two different fields are given,
obtain, in general, a new field by adding, say, the components in the
corresponding points. In the. case of analytic functions, and also in the
case of electromagnetic fields of special relativity theory, we may obtain
a field with two singularities by adding two fields, each of which has one
singularity; there can be, in this case, no necessary connection, no inter-
dependence between two singularities of a field, because we can choose the
constants characterizing the singularities in the two fields, which are being

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



134 G. Y. RAINICH [January

added, quite arbitrarily, independently each of the other. Not so in the
case of the electromagnetic field of the general relativity theory; we cannot
add here two fields with given singularities and be sure that the result is
again a field which satisfies our conditions ; the fields which are being added
must satisfy some additional condition if their sum is to be such a field, and
there seems to be nothing impossible in the assumption that this additional
condition may bear on the constants which characterize the singularities,
for instance, that it may lead to the result that the arguments of the residues
can differ only by a multiple of tt—and, moreover, that the moduli of the
residues are equal; this would account for the equality of charges of different
electrons. This additional condition may even affect the paths, i. e., the
shape of singular lines.

To make this speculation more concrete we may consider two spaces given
by their g's; the equations (4.7), (4.81), (8.4), (8.5) which must be satis-
fied by the curvature tensor field will give us equations of the second and
fourth order in the g's and these equations are not linear in the g's. Suppose
now each system of the g's defines a space with one singularity but involves
arbitrary constants ; if we add the corresponding g's and determine a new
space by the sums, we will have some additional condition which must
be satisfied by the two systems of the <7's and this condition may result
in relations between the constants of the two systems of the g's which are
being added. Of course all this must be worked out in full detail and cannot
be considered at the present time as being more than a vague suggestion.

Meanwhile we are able to treat by the preceding method only the simplest
case of one singular Une; we will see in the next section that we come
thus to a solution which has already been obtained several times by
different methods.

12. The centro-symmetric solution
We shall try to find a centrosymmetric field which satisfies our equations.

In this case the expression for the line element can be taken in the form

— ds2 = ? (r) dr2+r2dä-2+r2 sin# • dip2— r¡ (r) ■ dt2,

and the mixed components of the contracted Riemann tensor are, according
to the calculations of F. Kottier (Annalen der Physik, vol. 56 (1918),
p. 433),
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all the other components being zero. We see that the 2,3 plane is a plane
of invariable directions with the characteristic number Fl = Ft; this plane
being a space-plane we must have Fl = Fl = — w2 and, if our geometric
conditions (4.43) are to be satisfied, the perpendicular plane must also be
a plane of invariable directions and have +«2 for its characteristic number;
both Fx and Ft must therefore be equal to w2 so that we have

(12.2) Ft=FÎ, Ft+Fl^O.

The same result could have been obtained algebraically: equation (4.71)
shows that the square of each of the numbers F¡ is equal to w* and (4.8)
that the sum of these numbers is zero; since we know that F2 = Fl, we
conclude that Fx and Ft must be equal to each other and have the sign
opposite to that of Fl = Fl.   The equation Fx — Ft gives

(12.3) Jl + jI^o,?      n
whence
(12.4) ïf = 1,

where we gave the value 1 to the constant of integration by choosing
appropriately the unit of time. If we use (12.3) and (12.4), the last two
terms of the expression for F\ (see (12.1)) destroy each other and the first
two can be written as —i¡'lr; the equation Fx-\-Fl = 0 takes the form

1 /i        \       >   1        >   1       !»       n lnr*\"      t?(l-!)-17-ï7-iï" = 0        or        (Y)"1'
whence

(12.5) , = i + A+« ?== -1-r      r 1 + ^ + 4
r      r8

We obtain thus the known solution representing the line-element corre-
sponding to a point charge, found for the first time by Weyl (Annalender
Physik, vol.54 (1917), p. 117) and then by Nordstrom, Jeffery and others.

Substituting the expressions for 5 ana r¡ in the first of (12.1) we find

m   _ ft _ _.
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The next task is to find the vector q. Somewhat lengthy but elementary
calculations lead to the result, which is practically evident geometrically,
that in our case q = 0; <p is therefore an arbitrary constant and the electro-
magnetic tensor is

fix) = -^—sin<p{i(jx)—j(ix)}-\-— cosy {k(lx) — l(kx)},

where k, I are two mutually perpendicular unit vectors which are perpendicular
to the line joining the point considered with the electron,j is a unit vector
in the direction of that line and i the unit time-vector; it is clear that the
residue will be real if we choose 9 = 0; in this case the only components
which are different from zero are

fl= -Jl V2a
>.«       '

the indices 2 and 3 corresponding, as above, to the coordinates xp and #,
and an integration over a sphere shows that a is proportional to the square
of the charge, but this, of course, is very well known. Incidentally, a is
thus proportional to the square of the modulus of the residue.

Johns Hopkins University,
Baltimore, Md.
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