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We study electromagnetic pulse propagation in an indium tin oxide nanolayer in the linear and nonlinear

regimes. We use the constitutive relations to reconstruct the effective dielectric constant of the medium, and show

that nonlocal effects induce additional absorption resonances and anisotropic dielectric response: longitudinal

and transverse effective dielectric functions are modulated differently along the propagation direction, and

display different epsilon-near-zero crossing points with a discrepancy that increases with increasing intensity.

We predict that hot carriers induce a dynamic redshift of the plasma frequency and a corresponding translation

of the effective nonlinear dispersion curves that can be used to predict and quantify nonlinear refractive index

changes as a function of incident laser peak power density. Our results suggest that large, nonlinear refractive

index changes can occur without the need for epsilon-near-zero modes to couple with plasmonic resonators.

At sufficiently large laser-pulse intensities, we predict the onset of optical bistability, while the presence of

additional pump absorption resonances that arise from longitudinal oscillations of the free electron gas give way

to corresponding resonances in the second and third harmonic spectra. A realistic propagation model is key to

unraveling the basic physical mechanisms that play a fundamental role in the dynamics.

DOI: 10.1103/PhysRevA.101.053828

I. INTRODUCTION

Typical plasmonic resonators consist of metallic nanopar-
ticles or nanostructures where free electrons oscillate in res-
onance with light. These resonances can produce strong field
amplification and enhanced scattering (absorption) cross sec-
tions, which are key properties for applications in sensing,
detection, energy harvesting, and generic light manipulation
at the nanoscale. However, metals can be either too absorptive
or inadequate in a given wavelength range, and alternative
replacements must be sought. In this work we explore linear
and nonlinear propagation effects that manifest themselves but
are not limited to free-electron systems that may display an
epsilon-near-zero (or ENZ) crossing of the real part of the
dielectric constant. In particular, we study the basic properties
of simple layers composed of degenerate semiconductors like
indium tin oxide (ITO) only a few tens of nanometers in
thickness in order to ascertain basic physical characteristics
that may transfer to more complicated nanostructured geome-
tries. Generally, free-electron systems are centrosymmetric
and are described by a simplistic Drude model. However,
experiments show that in reality these materials possess a
combined Lorentz-Drude-like dielectric response [1] that can
be tuned by controlling doping levels and annealing tem-
peratures. This dual material aspect simultaneously compli-
cates and enriches the dynamics, whose understanding and
description thus require theoretical models that are more com-
prehensive than what may be required in ordinary photonic
structures.

In contrast to noble metals, conducting oxides display

lower losses and may thus substitute or even supplant metals

in certain applications and spectral wavelength ranges. To

date, many aspects related to pulse propagation phenomena in

free-electron systems like noble metals or conducting oxides

remain incomplete. In what follows we describe a model that

simultaneously accounts for: (i) the intrinsic nonlinearities of

background bound charges; (ii) nonlocal effects (pressure and

viscosity of the electron gas); (iii) pump depletion; (iv) the

dynamics that ensue from including an intrinsic, temperature-

dependent effective mass (in the case of conducting oxides)

or free-charge density (in the case of noble metals or semi-

conductors) and related nonlinearities that ultimately manifest

themselves in the form of effective χ (3), χ (5), and higher-

order nonlinear contributions; and (v) surface and magnetic

nonlinearities that are almost always neglected in favor of bulk

nonlinearities. As an example of this theoretical deficiency in

conducting oxides, and to some extent in metals and semicon-

ductors, the nature and magnitude of nonlinear index of re-

fraction changes as a function of incident pump intensity have

not yet been clarified [2,3]. Differing explanations have been

provided regarding the source of third-order phenomena [3,4],

and practically no good insight into second-order, surface, and

magnetic phenomena outside of the context found in Refs. [1]

and [5]. In Ref. [3] third-order phenomena responsible for

nonlinear index changes were attributed to the free-electron

cloud. In Ref. [4] third-harmonic generation (THG) was at-

tributed exclusively to the background crystal. In Ref. [6],

2469-9926/2020/101(5)/053828(11) 053828-1 ©2020 American Physical Society

https://orcid.org/0000-0002-5850-088X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.101.053828&domain=pdf&date_stamp=2020-05-13
https://doi.org/10.1103/PhysRevA.101.053828


MICHAEL SCALORA et al. PHYSICAL REVIEW A 101, 053828 (2020)

THG from an ITO nanolayer was studied theoretically and

experimentally using a generic, dispersionless χ (3) having

no specified origin. Finally, in Ref. [7], the simultaneous

generation of negatively refracted and phase conjugate beams

was experimentally recorded from a structure consisting of

gold nanoantennas patterned on top of a 40-nm-thick ITO

layer displaying an ENZ crossing point. However, the the-

oretical effort tackled only generic aspects of a third-order

nonlinearity present only in the ITO layer, and no detailed

field dynamics. In summary, the picture that emerges from

the detailed microscopic model discussed below is somewhat

more complicated than it would appear in Refs. [3,4,7].

In a recent paper [1] experimental and theoretical results

on second and third-harmonic generation (SHG and THG)

were reported near the ENZ condition of an ITO nanolayer,

which manifested itself near 1240 nm. The pulse propagation

model that was used comprised a hydrodynamic descrip-

tion of the material equations that takes into account free

and bound charges, nonlocal effects, a time-dependent free-

electron plasma frequency, surface, magnetic, and convective

second and third-order nonlinearities, as well as the inclu-

sion of linear and nonlinear contributions of the background

medium to the dielectric constant. A direct comparison of the

SHG spectra and the angular dependence of SH conversion ef-

ficiencies showed good qualitative and quantitative agreement

with experimental results. Good qualitative and quantitative

agreement was also found for the angular dependence of third-

harmonic generation for incident laser pulse power densities

in the 1 GW/cm2 range. In our present effort we provide

further details about the model by: (i) expanding the range of

investigation well into the IR range; (ii) examining the linear

regime in order to ascertain the multifaceted contributions of

nonlocal effects; and (iii) extending our predictions into the

high-intensity regime in an attempt to distinguish between

bound and free (hot) electron contributions.

The local dielectric constant of any material may be ex-

pressed as a superposition of Lorentz and Drude oscillators,

which in the simplest case of two polarization species (one

free and one bound electron contribution, as in the case of

ITO [1]) may be written as follows:

εITO(ω) = 1 −
ω2

p

ω2 + iγ f ω
−

ω2
p,b

ω2 − ω2
0,b

+ iγbω
, (1)

where ω2
p = 4πn0, f e2

m∗
f

is the free-electron plasma frequency;

n0, f the free-electron density; e the electronic charge; γ f

the free-electron damping coefficient; m∗
f the effective free-

electron mass; ωp,b is the bound electron plasma frequency,

defined similarly to the free-electron counterpart to which

there corresponds a bound electron density nb and mass m∗
b;

ω0,b is the resonance frequency; and γb the bound electron

damping coefficient.

If the free-electron effective mass changes approxi-

mately linearly with temperature, as shown below using the

two-temperature model, the equations of motion are repro-

duced from Ref. [1], and may be written as follows:

P̈ f + γ̃ f Ṗ f =
n0, f e2λ2

0

m∗
0c2

E −
eλ0

m∗
0c2

(∇ · P f )E +

⎛

⎝

∑

l=1,2,3

(− �̃)
l

(E · E)l

⎞

⎠E +
eλ0

m∗
0c2

Ṗ f × H

+
3EF

5m∗
0c2

(

∇(∇ · P f ) +
1

2
∇2P f

)

−
1

n0, f eλ0

[(∇ · P f )Ṗ f + (Ṗ f · ∇)Ṗ f ], (2)

P̈b + γ̃bṖb + ω̃2
0,bPb + Pb,NL =

n0,be2λ2
0

m∗
b
c2

E +
eλ0

m∗
b
c2

(Pb · ∇)E +
eλ0

m∗
b
c2

Ṗb × H. (3)

Time and space have been scaled such that temporal and

spatial derivatives are carried out with respect to the fol-

lowing coordinates: ς = y/λ0, ξ = z/λ0, and τ = ct/λ0,

where in our case λ0 = 1 μm is a convenient reference

wavelength. It follows that the coefficients are also scaled:

γ̃ f ,b = γ f ,bλ0/c, ω̃2
0,b = ω2

0,bλ
2
0/c2. Equation (2) describes

the free-electron polarization, P f ;
n0, f e2λ2

0

m∗
0c2 E − eλ0

m∗
0c2 E(∇ · P f )

are Coulomb terms generated by the continuity equation;

(
∑

l=1,2,3 (− �̃)
l
(E · E)l )E, where �̃ is a constant of pro-

portionality, follows from the expansion of the effective

mass as a function of temperature and absorption [1,8]

(as the summation index indicates, looking ahead to our

results our parameter choices demand we retain hot elec-

tron nonlinearities up to seventh order);
eλ0

m∗
0c2 Ṗ f × H arises

from the magnetic Lorentz force; 3EF

5m∗
0c2 (∇(∇ · P f ) + 1

2
∇2P f )

represent pressure and viscosity, respectively, where EF =
h̄2

2m∗
0

(3π2n0, f )2/3 is the Fermi energy and we have ne-

glected damping terms that tend to broaden absorption res-

onances [9], ending with the first-order convective contribu-

tion 1
n0, f eλ0

[(∇ · Ṗ f )Ṗ f + (Ṗ f · ∇)Ṗ f ]. Equation (3) in turn de-

scribes the dynamics of bound electrons; Pb is the bound elec-

trons’ polarization; Pb,NL = α̃PbPb − β̃(Pb · Pb)Pb + · · · is

the bound electron’s nonlinear polarization, depicted here up

to third order;
n0,be2λ2

0

m∗
b
c2 E + eλ0

m∗
b
c2 (Pb · ∇)E are Coulomb terms,

followed by the magnetic Lorentz term, eλ0

m∗
b
c2 Ṗb × H. The

coefficients α̃ and β̃ are tensors that reflect crystal symmetry.

In what follows we assume ITO is centrosymmetric (α̃ = 0)

and isotropic, so β̃ is a constant. Equations (2) and (3) are

integrated together with the vector Maxwell equations, where

the total polarization is expressed as the vector sum of all

polarization components, in this case PTotal = P f + Pb. It is

important to point out that in the sections that follow we never

specify either the dielectric constant or the index of refraction.

The only reason we even contemplate writing Eq. (1) is to

illustrate the point that the ellipsometric data extracted from

any sample may be expressed in that form. However, the

reason we use Eq. (1) to fit the linear dielectric constant data
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FIG. 1. (a) Calculated local and nonlocal pump absorption spectra at 60° angle of incidence. The vertical arrows denote the locations of

additional resonances that are triggered by longitudinal oscillations of the electron gas. The horizontal arrow represents a blueshift of the

resonance triggered by a changing, effective dielectric constant. (b) Absorption calculated in two ways: “full nonlocal,” corresponding to the

curve in (a), and by using a hybrid approach consisting of using the fields calculated from the full model, and the local dielectric constant of

Eq. (1). This comparison illustrates that total absorption must be calculated by including the additional piece of dielectric constant triggered

by nonlocal effects, a quantity that depends on the spatial derivatives of the polarization, i.e., local charge density. Left inset: geometry of the

interaction.

in the local approximation is for the sole purpose of extracting

the necessary effective electron masses, densities, resonance

frequencies, and damping coefficients that are required in

order to integrate Eqs. (2) and (3) in the time domain in the

nonlocal and nonlinear regime. Once this set of coefficients is

established for a given sample, the effective dielectric constant

may then be faithfully reproduced yielding curves that match

Eq. (1) in the linear and local regime, while predictions can be

made in the nonlocal and nonlinear regime, as we will see in

Sec. II B.

We conclude this section with a word about the equations

of motion and the method of integration. Equation (2) was

first derived in the context of harmonic generation from metal

surfaces [10], without hot electron or viscosity contributions

[see Eq. (10) below] while Eq. (3) has been discussed in the

context of harmonic generation from semiconductor surfaces

and nanowire arrays (Ref. [11], and references therein). Both

Eqs. (2) and (3) generally separate into three equations for

complex envelope functions, each representing a harmonic

field. The equations are then solved together with Maxwell’s

equations in the time domain in a two-dimensional spatial

grid using a split-step, fast Fourier transform (FFT) pulse

propagation method described in detail in the references,

using FORTRAN programming code. The calculation of spa-

tial derivatives is accurate to all orders using spectral meth-

ods, while using finite differences computational accuracy

may extend only up to second order. Unlike finite-difference

methods, the FFT-based, split-step method is unconditionally

stable, a crucial point that avoids possible phase errors that

may occur if, for example, the free-space causality condition

δz = cδt is not preserved. For planar structures and incident

plane waves, the computational grid (8×100 000) can be

reduced drastically across the transverse coordinate (8 points),

while for accuracy at large angles the entire pulse should

be contained within the longitudinal grid (100 000 points).

Ultimately, a single pulse propagation event is carried out

using identical scaled time and spatial steps (to avoid phase er-

rors) so that δτ = δξ = 10−3. Since the FFT approach implies

periodic boundary conditions, and allows for inhomogeneities

between the longitudinal and transverse steps sizes, the trans-

verse spatial step is chosen to be δς = 0.1 to maximize the

distance between transverse edge points on the grid. These

scaled quantities correspond to δt ≈ 3.3×10−18s, δz ≈ 1 nm,

and δy ≈ 100 nm. Execution times can last several hours on

an ordinary desktop computer, depending on the angle of

incidence.

II. NONLOCAL EFFECTS

A. Linear absorption

At low incident power densities, in a two-dimensional

geometry (invariant in the x direction; see Fig. 1 for an eluci-

dation of the geometry) only linear, nonlocal effects survive.

The free-electron component Eq. (2) may then be rewritten as

follows:

P̈ f + γ̃ f Ṗ f

=
n0, f e2λ2

0

m∗
0c2

E +
3EF

5m∗
0c2

[(

∂

∂y
ĵ +

∂

∂z
k̂

)(

∂Py

∂y
+

∂Pz

∂z

)

+
1

2

(

∂2

∂y2
+

∂2

∂z2

)

(Py ĵ + Pzk̂)

]

, (4)

where ĵ and k̂ are unit vectors along y and z, respectively.

We continue to assume appropriately scaled Cartesian coordi-

nates, but for clarity we have retained the usual notation. With

the spatial derivatives such that ∂
∂y

→ ik̃y and ∂
∂z

→ ik̃z, after

direct Fourier transformation of Eq. (4) and upon separation

of the polarization’s vector components, we may write:

P̃y =
n0, f e2λ2

0/(m∗
0c2)Ẽy − ηk̃yk̃zP̃z

(

−ω̃2 − iγ̃ f ω̃ + 3
2
ηk̃2

y + η

2
k̃2

z

)

P̃z =
n0, f e2λ2

0/(m∗
0c2)Ẽz − ηk̃yk̃zP̃y

(

−ω̃2 − iγ̃ f ω̃ + 3
2
ηk̃2

z + η

2
k̃2

y

) (5)

η =
3EF

5m∗
0c2

ω̃ =
ω

ω0

k̃y,z = λ0ky,z.
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For typical noble metals and conductive oxides, η ≈ 10−5.

For planar structures, each plane wave represented in Eqs. (5)

refracts at an angle dictated by the magnitudes of k̃y and k̃z.

Equations (5) may be solved and put into the usual form:
(P̃y

P̃z

)

=
(

χyy χyz

χzy χzz

)(Ẽy

Ẽz

)

. While the off-diagonal elements are gen-

erally nonzero, for uniform layers they tend to perturb the

system. Therefore, for the purposes of our discussion, off-

diagonal elements will be neglected, in view of the relatively

small magnitude of η. The form of Eqs. (5) thus demon-

strates that even if the medium is assumed to be isotropic via

Eq. (1), nonlocal effects intervene by introducing an intrinsic

anisotropy [12] that affects propagation and eventually non-

linear interactions at all angles of incidence, and as we will

see below, by triggering dramatic modulation of the transverse

dielectric constant. Below we examine both consequences in

some detail.

Modifications of the dielectric constant due to nonlocal

effects are usually understood and described almost exclu-

sively in terms of a blueshift of the main plasmonic resonance,

in this case centered near the ENZ wavelength, and by the

generation of additional absorption resonances that can be

correlated directly to longitudinal, resonant oscillations of

the free-electron gas prompted by radiation pressure [9]. In

Fig. 1(a) we depict linear pump absorption spectra for 100-fs,

p-polarized pulses incident at a 60° angle on a 20-nm-

thick ITO film suspended in vacuum, for local and nonlocal

regimes. For the pump field, nonlocal effects manifest them-

selves primarily with the aforementioned blueshifted main

peak (horizontal arrow) and additional absorption resonances,

highlighted by the perpendicular arrows near 700 and 900 nm.

In general, absorption cannot be calculated analytically due

to the presence of dynamic pressure and viscosity terms.

In Fig. 1(a) we calculate absorption as the total scattered

(transmitted and reflected) pump energy subtracted from the

total energy contained in the incident pulse. This approach is

exact, since it is based on energy conservation.

An aspect that is often overlooked, but is nevertheless

associated with modifications of the dielectric constant, is

depicted in Fig. 1(b), where we compare the total, nonlocal

absorption shown in Fig. 1(a) with the absorption calculated

using the standard Poynting theorem, but by using the local

dielectric constant. The discrepancy between the curves is

obvious in both amplitude and the near absence of additional

absorption peaks, and is due to the fact that the imaginary

parts of the effective susceptibilities derived from Eqs. (5)

are modified in nontrivial ways. Figure 1(b) thus strongly

suggests that care should be exercised when either linear

or nonlinear absorption are being considered and evaluated

anytime nonlocal effects are relevant. Finally, we note that

peak locations and amplitudes in Fig. 1 depend on incident

angle (see Fig. 11 below).

B. Induced anisotropy and reconstruction of linear

and nonlinear effective dielectric constants

We now wish to discuss a method that allows extrac-

tion of the approximate, effective linear and/or nonlinear

responses of the medium under consideration, and to evaluate

the intrinsic anisotropy suggested by Eqs. (5) in the general

FIG. 2. Longitudinal and transverse local dielectric constants

retrieved using Eqs. (6) and (7), as indicated by the labels. The

dashed curves represent our measured data purposely fitted using a

local Drude-Lorentz model. The equations reproduce the data quite

well over the entire range, including both Drude and Lorentz regions.

In this local case the dielectric constant is isotropic.

case of oblique incidence. Although the dielectric constants

expressed in Eqs. (1) or (5) are never explicitly specified or

introduced, they may be recovered by integrating the system

comprising Eqs. (2) and (3) and Maxwell’s equation in the

time domain, and by exploiting the macroscopic constitutive

relations. For instance, following the development that leads

to Eqs. (5), assuming that the off-diagonal elements continue

to be negligible, for a nearly monochromatic incident field we

may write approximate expressions for the total polarizations:

Py ≈ χyyEy, and Pz ≈ χzzEz. It follows that

εyy ≈ 1 + 4πPy/Ey, (6)

and

εzz ≈ 1 + 4πPz/Ez. (7)

It is understood that fields and polarizations are functions

of position, so that both εyy and εzz in Eqs. (6) and (7) are

spatially modulated by the ratio of the fields. These relations

hold in both linear and nonlinear regimes, conditional on

near monochromaticity of the incident pulse. For practical

purposes, a field may be said to be nearly monochromatic if

its spatial extension is much larger than the structure under

study, and if there are no sharp spectral features that may

either span the bandwidth of the incident pulse, or that more

generally may intrude in the spectral region of interest. Both

conditions are satisfied for ordinary dispersive systems like a

20-nm-thick ITO layer being illuminated by pulses that have

a spatial extension in excess of 30 µm (∼100 fs in duration).

In Fig. 2 we plot the complex dielectric function re-

trieved experimentally via spectroscopic ellipsometry (Wool-

lam, VASE 250–1700 nm) at multiple angles of incidence

(60°–70°) for the 20-nm ITO layer grown on both fused silica

and silicon substrates investigated in Ref. [1], purposely fitted
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FIG. 3. (a) Complex longitudinal and (b) transverse dielectric constants calculated using Eqs. (6) and (7). The angle of incidence is 60°.

In addition to conspicuous edge effects clearly visible in (a), the imaginary component of the transverse dielectric constant takes on negative

values, an indication of transient, local gain, quickly offset by local losses. The alternating sign of the effective imaginary dielectric constant

is more likely an indication that local currents alternate sign within a distance of a Fermi wavelength.

with the local, isotropic permittivity model of Eq. (1), in

order to test our propagation model as outlined above. Using

a Lorentz-Drude model ensures that the retrieved dielectric

constant is consistent with the Kramers-Kronig relations. Also

shown in Fig. 2 are the effective, complex dielectric constants

retrieved by integrating Eqs. (2) and (3) in the time domain,

followed by calculating the dielectric constants defined in

Eqs. (6) and (7), at low power densities (1 MW/cm2) and in

the local approximation (no pressure and viscosity terms.) The

dielectric functions are evaluated when the peak of the pulse

reaches the ITO layer, as denoted by the labels.

For planar structures and arbitrary angle of incidence,

the fields are uniform along the transverse coordinate, and

so it suffices to perform an average along the longitudinal

coordinate: 〈εyy,zz(λ)〉 = 1
L

∫ L

0
εyy,zz(λ, z)dz, where L is

layer thickness. This procedure yields effective parameters

and is equivalent to implementing a kind of numerical

dielectric constant retrieval method on the sample. The results

depicted in Fig. 2 show excellent agreement between the

experimentally retrieved data and our theoretical predictions,

a fact that engenders confidence in our theoretical framework.

Based on the results shown in Fig. 2, one may also

conclude that medium response is local and isotropic,

i.e.,〈εyy(λ)〉 = 〈εzz(λ)〉, as expected, notwithstanding the

presence of the ENZ crossing point.

The introduction of nonlocal effects causes εyy and εzz to

display unusual spatial inhomogeneities (Fig. 3), while the

effective dispersions 〈εyy(λ)〉 and 〈εzz(λ)〉 exhibit discordant

ENZ crossing points (Fig. 4). Mindful of our assumptions

above, in Fig. 3 we plot the complex dielectric constants

as functions of position via Eqs. (6) and (7), inside and

just outside the medium, for the propagation snapshot that

corresponds to the peak of the pulse reaching the ITO layer.

The carrier wavelength of the pulse is ∼1230 nm, and the

incident angle is 60°. Besides edge effects, in Fig. 3(a)

Re[εzz(z)] displays the expected drop to near-zero values

inside the medium. Perhaps surprisingly at first, however, in

Fig. 3(b) the complex εyy(z) exhibits previously unreported,

quite dramatic oscillatory behavior with periodicity of only a

few nanometers.

Thicker layers exhibit similar oscillations near entry and

exit surfaces, accurately reflecting the facts that pressure

and viscosity are felt mostly near interfaces, and that their

neglect comes at the risk of inaccurate depictions of both

edge effects and boundary conditions. Even in a cursory

examination of Fig. 3(b) one cannot avoid ascertaining that

locally it is possible for Im[εyy(z)] to be negative, which

ordinarily might suggest rapid, local gain, offset by equally

rapid, local loss. However, another, perhaps more physically

meaningful way to view these rapid oscillations is to note

that since we are dealing with mostly free electrons, non-

local effects induce currents that alternate direction inside

the layer on the scale of the Fermi wavelength, as predicted

and reported for a cadmium oxide layer [9]. In general, the

connection between conductivity and dielectric constant is

easily established, and may be quantified as follows: σyy =
−iω0

εyy−1

4π
= ω0

4π
{Im[εyy] − i(Re[εyy] − 1)}, and similarly for

σzz. The sign of the imaginary part thus governs the direction

of local current flow. Whether or not these oscillations can

ultimately be measured, possibly by probing the layer with

a soft x-ray beam, is a fact presently not easily determined.

However, from an effective medium standpoint, i.e., ellipsom-

etry, their overall significance may be dismissed just as one

might dismiss the significance of a phase velocity that exceeds

the speed of light, an ordinary occurrence in metals. The fact

is that from an effective medium standpoint, the averages

〈Im[εyy,zz(λ)]〉 = 1
L

∫ L

0
Im[εyy,zz(λ, z)] dz are greater than zero

in all cases we have investigated.

For illustration purposes, in Fig. 4(a) we plot only the

magnitudes of the total, local, and nonlocal effective dielec-

053828-5



MICHAEL SCALORA et al. PHYSICAL REVIEW A 101, 053828 (2020)

0

2

4

6

600 800 1000 1200 1400 1600

|<ε
Local

>|
|<ε

yy, Nonlocal
>|

|<ε
zz, Nonlocal

>|

Incident Wavelength (nm)

|<
ε yy

>
|, 

|<
ε zz

>
|

(b)(a)

0.5

0.6

0.7

1210 1230 1250 1270

|        |
~10nm

|<ε
Local

>|

|<ε
yy, Nonlocal

>|

|<ε
zz, Nonlocal

>|

Incident Wavelength (nm)

FIG. 4. (a) Local and nonlocal longitudinal and transverse dielectric constants are averaged over the thickness of the layer. As shown in

Fig. 2, in the local case longitudinal and transverse dielectric constants are identical. Not so if nonlocal effects are included, which cause a

shift and some degree of anisotropy, as highlighted in (b).

tric constants predicted using our “numerical ellipsometry”

procedure. The minimum in each curve, easily identified in

Fig. 4(b), represents the ENZ crossing point. The longitu-

dinal dielectric constant |〈εzz(λ)〉| departs most from local

behavior and displays the same kind of modulation that pump

absorption displays in Fig. 1(a), an indication that it drives the

dynamics. In Fig. 4(b) we show a detail of the curves shown

in Fig. 4(a), near the respective crossing points. In addition

to an evident degree of anisotropy, the nonlocal curves are

blueshifted with respect to the local dielectric constant and

with respect to each other, with crossing points that are

mismatched by nearly 10 nm. It is also important to note that

at certain wavelengths the difference between 〈εyy(λ)〉 and

〈εzz(λ)〉 approaches zero. These points are typically referred to

either as isoindex or isotropic points, in essence wavelengths

where the medium acts as if it were isotropic. As shown below,

the isotropic (zero-crossing) spectral positions are intensity

dependent and undergo a spectral shift.

Before one can properly estimate how much change the

dielectric constant experiences as a function of incident power

density, one should first quantify how it deviates from local

values when nonlocal effects are introduced. In Fig. 5 we com-

pare the magnitudes of the longitudinal effective dielectric

constant |〈εzz(λ)〉| in the local and nonlocal approximations,

in the linear regime. The plot reveals that |〈δεzz〉| can be

of order unity or larger with respect to the local dielectric

constant. Therefore, it is clear that assertions of demonstra-

tions that |〈δεzz〉| is of order unity necessarily require more

knowledge and context than mere comparisons to the local

dielectric constant.

Now that we have contextualized modifications of the

effective dielectric constant due to nonlocal effects, we are

ready to make predictions as a function of incident power

density. In Fig. 6(a) we plot the amplitude of the longitudinal

dielectric constant in the linear (low-intensity, 1-MW/cm2)

and nonlinear (10 and 20-GW/cm2) high-intensity regimes.

The curves redshift with increasing power density, following

a dynamic redshift of the plasma frequency as a result of

increasing effective electron mass. At these power densities,

numerical stability near the ENZ conditions requires retention

of hot electron nonlinearities up to seventh order (i.e., χ (7)),

notwithstanding the fact that local field intensities inside the

ITO layer are amplified by mere factors of 2 or 3. Given that

in the range shown the curves intersect at least in three places,

0

1

2

3

900 1000 1100 1200 1300 1400

|<ε
zz, Local

>|

|<ε
zz, Nonlocal

>|

|<δε
zz

>|

λ
in
(nm)

|<
ε zz

>
|

FIG. 5. Local and nonlocal longitudinal effective dielectric con-

stants calculated at low intensity, extracted using Eqs. (6) and (7),

and the difference |〈δεzz〉| between the two. The difference can be of

order unity. As a result, care should be exercised when assessing the

magnitude of a nonlinear index change.
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FIG. 6. (a) Effective longitudinal dielectric constant calculated as functions of incident peak power. The redshift occurs as a result of

increasing effective mass and decreasing plasma frequency. (b) Estimated magnitude of induced nonlinear change in dielectric constant |〈δεzz〉|
for two incident power densities with respect to the linear (or low-intensity) regime. Worthy of note in (b) are that: |〈δεzz〉| may be constant

over a wide range of wavelengths, its magnitude can be of order unity, and for certain wavelengths |〈δεzz〉| may be negligible.

the magnitude |〈δεzz〉|, i.e., the difference between dielectric

constants in linear and nonlinear cases plotted in Fig. 6(b)

approaches zero in just as many places, implying a zero index

change at those locations. Therefore, it seems evident that

asking oneself “How much does the index change?” may lead

to ambiguous, if not misleading, answers. Instead, Fig. 6 sug-

gests more relevant questions may be asked regarding, for in-

stance, the amount of redshift as a function of incident power

density, or perhaps whether a range of constant |〈δεzz〉| exists

for a given incident power density. Indeed, |〈δεzz〉| appears to

be nearly constant in the range between 1000 and 1200 nm for

both 10- and 20-GW/cm2 incident power densities.

Nonlinear effects may be ascertained from Fig. 7, where

we display several pump absorption spectra [Fig. 7(a)] as

functions of incident power density. Harmonic spectra of

conversion efficiencies show similar behavior. The effective,

transverse, and longitudinal dielectric constants are plotted

in Fig. 7(b) for 20 GW/cm2. As alluded to above, at these

power densities hot electron nonlinearities dominate the dy-

namics, with evident redshifts that match the redshifting

dispersion curves in Fig. 6(a). In particular, the curve gen-

erated for 25 GW/cm2 is at the threshold for the onset of

optical bistability. The discrepancies in magnitude and ENZ

location between transverse and longitudinal components are

evident in Fig. 7(b), and should be compared with the rel-

atively small differences highlighted in Fig. 4, in the linear

regime.

FIG. 7. (a) Nonlinear pump absorption spectra as functions of incident peak power density. Retention of an effective seventh-order

nonlinearity (χ (7)) is required to stabilize the calculation. The onset of optical bistability is imminent. (b) Effective transverse and longitudinal

dielectric constants as functions of wavelength for 20-GW/cm2 peak power density. The absolute minima represent separate ENZ points and

are ∼100 nm apart.
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FIG. 8. Reflected SHG conversion efficiency spectra for local and nonlocal regimes. The main peaks below 3000 nm found in both local

and nonlocal curves are due to respective ENZ crossing points. Additional spectral features appear in the nonlocal spectrum (inset) due to

longitudinal electron gas oscillation. The local curve displays a third, broad peak near 8000 nm (not shown). While nonlocal effects are clearly

in play, we currently lack the necessary material data in the mid-IR range that would allow us to make definitive statements. Further studies

are required to understand the nature of the nonlocal SHG peak located beyond 4000 nm.

III. SECOND-HARMONIC GENERATION

Recently, experimental observations of SHG and THG

were reported near 1240 nm, the ENZ crossing point of a

20-nm-thick ITO layer, along with predictions that employed

the theoretical framework outlined above [1]. Beginning with

SHG, in our present effort we expand the range of our

predictions at both ends of the spectrum by extrapolating the

available data, by assuming no additional factors intervene to

change the dynamics, and by analyzing harmonic generation

well into the ultraviolet and infrared regimes, in order to

understand the interplay between free and bound electrons.

Since ITO is a centrosymmetric material, second-harmonic

sources are found mainly in the free-electron components,

and consist of surface, magnetic (through the Lorentz force,)

and convective terms, as outlined above. Some SHG can

also come as a result of second- and higher-order nonlocal

terms, the interaction between pump and TH photons, and

are accounted in further development of Eqs. (2) and (3). In

Fig. 8 we show a comparison between reflected, local, and

nonlocal SHG spectra for pump wavelengths in the range

600–5400 nm. Transmitted spectra show similar behavior. In

addition to the main peak near 1240 nm [1], more features

are clearly predicted in both local and nonlocal responses.

The maxima 1 and 2, on the blue side of the main peak,

match the pump absorption resonances displayed in Fig. 1(a),

triggered by longitudinal oscillations of the electron gas. All

the SHG maxima above 1240 nm were hitherto unknown

and have different origin. The ENZ condition occurs when

the pump is tuned near 1240 nm, yielding a SH maximum

near 620 nm. A second main peak occurs for both local and

nonlocal curves when the pump is tuned between 2400 and

2500 nm. Tuning the pump in that range places the SH signal

near 1240 nm, thus yielding a second ENZ condition, this time

for the SH signal. This kind of multiresonant enhancement

has been discussed previously for a generic ENZ material

[13], and for a free-electron cloud that behaves as an ENZ

patina that covers bulk metal layers [14,15]. The effect can be

explained along broad lines by noting that SHG efficiency is

generally proportional to 1/(εω

√
ε2ω ) [13,16]. Finally, the last

maximum located near 5000 nm may be related to a maximum

in the local curve that occurs near 8000 nm (not shown).

However, at this stage we will not pursue that wavelength

range because our available data may not suffice to explain

spectral features in regions that are not shown in Fig. 8.

IV. THIRD-HARMONIC GENERATION

Although we consider all sources of THG, including

cascading from both free and bound electron, second-order

sources, i.e., Coulomb, Lorentz, and convective terms in both

Eqs. (2) and (3), there are two main fonts of TH signal:

(i) hot electrons, via the term − �̃(E · E)E, and (ii) the

bound electron nonlinear polarization component given by

Pb,NL = β̃(Pb · Pb)Pb. The temperature dependence of the

free electron’s effective mass may be quantified by an expres-

sion that connects linearly the effective electron mass to the

electron gas temperature, i.e., m∗
f (Te) ≈ me(0.033 + aKBTe)

[1,8], where me is the free-electron rest mass, a is a constant

of proportionality, KB is Boltzmann’s constant, and Te is the

temperature of the free-electron gas that depends on absorp-

tion. Accordingly, the relative amounts of THG triggered

by either nonlinear term depends on the relative amplitudes

of the scaled coefficients, i.e., �̃ = aKB
n0, f e2λ2

0σ0τ0

m∗
0c2 (where σ0

is the frequency-dependent conductivity and τ0 is incident
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FIG. 9. Predicted effective electron mass as a function of elec-

tron gas temperature for ITO calculated using the two-temperature

model, and estimated by a linear fit, assuming m0 = 0.033me.

pulse duration) and β̃ = ω2
0,bλ

2
0

L2n2
0,b

e2c2 (here L ∼ 0.3 nm is the

approximate lattice constant), as well as proximity to the

ENZ condition and the resonant nonlinearity that is naturally

elicited by the bound electrons, i.e., Lorentz oscillators.

In Fig. 9 we plot the temperature dependence of the ef-

fective free-electron mass extracted from the two-temperature

model, following the prescription in Ref. [2]. The plot shows

that the linear approximation we use is quite adequate, with

a slope aKB = 1.75×10−6. Based on Eq. (2), the number

density and the effective mass determine SH gain. Accord-

ingly, our choices n0, f ∼ 1020cm−3 and m∗
0 ∼ 0.033me (ap-

proximate y intercept) yield SHG amplitudes consistent with

experimental observations for our sample [1].

Keeping in mind that parameters can be adjusted, in Fig. 10

we plot our predictions for transmitted THG spectra using

incident pulses approximately 100 fs in duration, and peak

FIG. 10. Predicted transmitted THG conversion efficiency spec-

tra as functions of scaled third-order coefficients. The magnitudes

and relative amplitudes of β̃ and �̃ determine the range of influence

of each of these components.

power density of 20 GW/cm2. Reflection curves display sim-

ilar behavior. Curve (a) corresponds to the pump absorption

curve in Fig. 7 having the same incident peak power den-

sity, and reflects approximate nominal values associated with

our linear fit of the temperature dependence of the effective

mass and lattice constant, as outlined above. Although not

shown, the dielectric constant in Fig. 2 displays an absorption

resonance near 150 nm, with a corresponding resonant non-

linearity capable of significantly enhancing THG even under

condition of high, nominal absorption [11]. In this case, the

hot electron nonlinearity clearly dominates. The TH peak that

arises from the Lorentzian portion of the dielectric response

resonance is identified by the blue arrow, and is one order of

magnitude smaller compared to the TH originating at the ENZ

resonance. The spectrum exemplified by curve (b) is obtained

by artificially increasing β̃ by one order of magnitude com-

pared to its value in curve (a), so that we may ascertain the

relative impact of the bound electron resonance with respect

to the hot electron contribution. This increase translates to a

two order of magnitude increase in conversion efficiency at the

bound electron resonance, which now dominates over the TH

signal originating at the ENZ peak. This peak displays a much

more modest increase of conversion efficiency compared to

curve (a) because it is located in the evanescent region of the

Lorentz resonance. Finally, in curve (c) we use the parameters

of curve (b) and set �̃ = 0, equivalent to turning off the

hot electron contribution. These results suggest that in the

high-intensity regime the two types of nonlinearities may be

identified, and that hot electrons govern THG by shifting and

distorting the ENZ resonance, and by contributing little near

the Lorentz resonance.

V. ADDITIONAL CONSIDERATIONS AND GENERAL

ASPECTS OF THE MODEL BEYOND ITO

The sensitivity of the dynamics to incident angle may

be ascertained from Fig. 11, where we display both pump

absorption and transmitted THG spectra for three incident

angles in the full, nonlocal regime. The figures clearly suggest

that retrieving the effective dielectric constant should be done

carefully, with the stipulation that experimental characteriza-

tion of each sample should be coupled with in-depth numeri-

cal analysis of the retrieved functions.

An issue that will be addressed in further developments

of the model is the apparently instantaneous nature of the

hot electron dynamics in Eq. (2). The two-temperature

model (TTM) imparts a temporal delay that may to some

extent affect the dynamics. A possible, simple cure for this

shortcoming is to perform the temporal integral of absorption

when estimating the effective mass. While an examination

of Fig. 9 reveals that the mass may be assumed to vary

approximately linearly with temperature, the curve obtained

by applying the TTM may be faithfully reproduced by a

polynomial function of temperature. In our case an expansion

to second order suffices: m∗
f (Te) ≈ m∗

0 (1 + aTe + bT 2
e ),

where, as noted in Ref. [1], temperature is proportional to

fluence: Te(t ) = �
∫ t

−∞ Ṗ f · Edt ′. This formulation implies

that the TTM may need to be used only once at the start in

order to estimate the mass dependence with temperature for

a given geometry, followed by fitting the mass with a simple
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FIG. 11. (a) Pump absorption and (b) transmitted THG spectra for three different incident angles, as indicated by the labels. Reflected

THG displays similar behavior. The sensitivity to incident angle is particularly obvious in the THG spectra, where both resonant (60°) and

antiresonant (30°) behavior can be excited. The minimum predicted at 30° has been experimentally observed and reported in Ref. [1].

polynomial in powers of the temperature, and finally by using

the free-electron current density, Ṗ f , calculated from Eq. (2)

in order to automatically include nonlocal effects.

The validity of Eq. (2) above is predicated on the fact

that the total number of free charges within a specified

volume remains constant, subject to the continuity equation:

ṅ f (r, t ) = − 1
e
∇ · Ṗ f (r, t ). However, in both metals and semi-

conductors the free-charge density can change as a result of

exciting valence electrons into the conduction band. Under

these circumstances, the continuity equation may be modified

to include a source term as follows:

ṅ f = −
1

e
∇ · Ṗ f + �

∂

∂t
E · E. (8)

� is a proportionality constant. Equation (8) may be inte-

grated directly to yield

n f = n0, f −
1

e
∇ · P f + �E · E. (9)

Spatial and temporal dependence are implied but left out for

simplicity. These modifications thus allow the free-electron

number density to increase with increasing peak power den-

sity, and must be applied to the following, unscaled free-

electron equation of motion [10]:

P̈ f −
ṅ f

n f

Ṗ f + (Ṗ f · ∇)

(

Ṗ f

n f e

)

+ γ Ṗ f

=
n f e2

m
E +

e

mc
Ṗ f × B −

e∇p

m
, (10)

where we have retained only the nonlocal pressure term

to illustrate modifications that Eqs. (8) and (9) induce on

nonlocal effects. Equation (2) may be derived directly from

Eq. (10) when � = 0. In the general case, the number density

and the effective mass can undergo changes, especially at high

intensities. However, for simplicity we will neglect effective

mass changes, which are represented in Eq. (2). Using Eqs. (8)

and (9) and the expression that describes quantum pressure,

p = p0(
n f

n0, f
)5/3, with p0 = n0, f EF the new, scaled Eq. (2)

takes the following form:

P̈ f + γ̃ f Ṗ f =
n0, f e2λ2

0

m∗
0c2

E −
eλ0

m∗
0c2

E(∇ · P f ) +
�e2λ2

0

m∗
0c2

(E · E)E +
eλ0

m∗
0c2

Ṗ f × H −
1

n0, f eλ0

[(∇ · Ṗ f )Ṗ f + (Ṗ f · ∇)Ṗ f ]

+
5

3

EF

m∗
0c2

(

∇(∇ · P f ) −
2

3en0, f
λ0

(∇ · P f )∇(∇ · P f ) − 2�eλ0(E · ∇)E

)

+
�

n0, f

Ṗ f

∂

∂τ
(E · E). (11)

The clear outcome of allowing interband transitions is a blueshifted, intensity-dependent plasma frequency,

while convection and nonlocality produce supplementary nonlinear terms that represent new second-order surface

(− 10
9

EF

m∗
0c2

1
3en

0, f
λ0

(∇ · P)∇(∇ · P) − 10
3

e�λ0EF

m∗
0c2 (E · ∇)E) and third-order volume ( �

n0, f
Ṗ f

∂
∂τ

(E · E)) sources, with consequences

for SHG and THG. Future work will include an assessment of the new material equation of motion (11) as it may apply to

metals and semiconductors.
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VI. CONCLUSIONS AND SUMMARY

We have discussed a pulse propagation model that accounts

for hot carriers, pump depletion, surface and volume nonlinear

sources, as well as free and bound electron contributions in

the context of a 20-nm-thick ITO layer. We have predicted that

nonlocal effects induce anisotropic medium response, and that

at high enough intensities optical bistability is triggered. The

method can be used to retrieve effective dielectric response

in both linear and nonlinear regimes, making it possible to

predict the amount of nonlinear index or dielectric change

as functions of incident power density. At sufficiently large

intensities, we are able to discriminate between third-order

free and bound electron contributions to THG. We also predict

spectral features of SHG, partly due to nonlocal effects, and

in part arising from a SH signal tuned to the ENZ condition.

The implication of the induced anisotropy by nonlocal effects

is twofold: on one hand it modifies the linear response and the

propagation inside the medium as shown above, on the other,

it may provide additional tools to tune and enhance nonlinear

phenomena like harmonic generation [17]. Finally, the model

can also account for interband transitions that drive valence

electrons into the conduction band, leading to increased free-

charge density and additional second- and third-order nonlin-

ear sources that may help to shed light on a host of nanoscale

phenomena in both metals and semiconductors.
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