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1. INTRODUCTION AND RATIONALE

Many electrodynamicists with an engineering orientation quite often
present their immediate work without pointing out its relation to the
foundations of the theory. This might be justified in a succinct pro-
fessional article, but unfortunately it also permeates to the classroom
too. While most educators agree that electrodynamics and special rel-
ativity should be presented as one integrated entity, the efficient tools
to carry out the task in a reasonable time are lacking. It is therefore
proposed here to present Special Relativity in a topsy-turvy manner,
taking the postulates and the consequences of the theory, as presented
by Einstein [1], and usually followed in all textbooks, and turn them
around. This produces a much more coherent structure, and is easier
to teach and to learn, as proven by the present author.

Another conceptual aspect arises when the spatiotemporal and spec-
tral representations are compared. It is shown below that the space-
time transformations, and the Doppler effect (i.e., frequency-
wavenumber transformations) in the spectral domain, are essentially
equivalent. One could therefore start electrodynamics and special rel-
ativity in the spectral (Fourier transform) representation space, and
obtain the spatiotemporal domain expressions as consequences. This
duality allows for more flexibility in the presentation and subsequent
understanding of the theory, but also involves the crucial argument
whether electrodynamics is fundamentally “time-domain” or “fre-
quency-domain.” This question came to the front with the massive
amount of research on time-domain methods, currently appearing in
professional periodicals. The present assertion is that electrodynamics
is fundamentally a spectral, i.e., “frequency-domain” theory. This is
due to the spatial and temporal dispersion existing for most materi-
als, and is associated with the fact that electrodynamics, by its very
nature, is a nonlocal and noninstantaneous theory, allowing for signals
to propagate from one event, or world point (spatiotemporal point),
to another with a finite speed. Thus only in nondispersive systems
which allow local instantaneous interaction, a time-domain approach
is exactly applicable.

In a natural way, electrodynamics and special relativity tie up to
the question of the constitutive relations in various inertial frames.
Assuming the constitutive relations to be given in the comoving frame
of reference where the medium is at rest, what will be the relevant
relations in another inertial system where the medium is in motion
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(so called “laboratory system”)? In the case of nonlinear systems,
the problem is even more complicated, because the very question of a
first principle statement of the constitutive relations in the comoving
frame of reference is lacking. It is attempted here to define general
nonlinear Minkowski constitutive relations. The problem of stating a
general approach towards this problem is even more important than the
question of the range of validity of the constitutive relations involved
in individual problems.

Some of the ideas appearing in the present study have been men-
tioned in earlier works, and are brought here into a coherent context,
focusing on the points stated in the title above.

2. SPATIOTEMPORAL DOMAIN ELECTRODYNAMICS
AND SPECIAL RELATIVITY MODELS

The statement of Maxwell’s equations for the electromagnetic field in
the contemporary conventional form and involving the MKS system of
units appears in many books, see Stratton [2], and Kong [3], to name
a few. This is not the form used by the originator Maxwell, or by later
researchers. The historical background is described by Berkson [4].

Here we present the basic equations in the form:

∂x ×E = −∂tB− jm
∂x ×H = ∂tD + je
∂x ·D = ρe

∂x ·B = ρm

(1)

where ∂x and ∂t , denote the space derivative (Del), and the time
derivative, operators, respectively, and all the fields are space and time
dependent, e.g., E = E(X) . Here X = X(x, ict) symbolizes the space-
time dependence, actually X denotes the event (world point) in the
sense of a Minkowski-space location vector, where c is the universal
constant of the speed of light, and i is the unit imaginary complex
number i2 = −1 . For symmetry and completeness, in the present
representation, the Maxwell equations include the usual (index e) as
well as the fictitious magnetic (index m) current and charge density
sources.

Special relativity theory has been announced by Einstein [1], how-
ever he considers there only free space (“vacuum”) electrodynamics.
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Einstein’s Special Relativity theory postulates (relevant statements
are denoted by S):

(S–1). Light speed c is a universal constant observed in all inertial
frames.

(S–2). Maxwell’s equations provide the model or “law of nature” for
describing the electromagnetic field, i.e., the theory recognizes
(1) above.

(S–3). Maxwell’s equations existing for all observers in inertial frames
of reference have the same functional structure (henceforth:
covariance). This means that if (1) exists for an observer in
one frame of reference, in another inertial frame (the “primed”
frame), Maxwell’s equations have the form:

∂x′ ×E′ = −∂t′B′ − j′m
∂x′ ×H′ = ∂t′D′ + j′e
∂x′ ·D′ = ρ′e
∂x′ ·B′ = ρ′m

(2)

where now E′ = E′(X′) , and the primed space-time coordinate system
is denoted by X′ = X′(x′, ict′) , which is also a Minkowski location
four-vecor.

The consequences of the above three postulates follow:

(S–i). From (1), i.e., the constancy of the speed of light, the Lorentz
space-time transformations X′ = X′[X] are developed in the
form:

x′ = Ũ · (x− vt)

t′ = γ(t− x · v/c2)
(3)

Here v is the velocity by which the primed frame of reference is mov-
ing, as observed from the unprimed frame of reference, and we define

γ = (1− β2)−1/2, β = v/c, v = |v|,
Ũ = Ĩ + (γ − 1)v̂v̂, v̂ = v/v

(4)

where the tilde denotes dyadics and Ĩ is the unit dyadic. From this
follows the transformation ∂X′ = ∂X′ [∂X] of the space-time differential
operators,

∂x′ = Ũ · (∂x + v∂t/c2)
∂′t = γ(∂t + v · ∂x)

(5)
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from which we establish that the four-gradient operator,

∂X = ∂X

(
∂x,−

i

c
∂t

)
(6)

is a four-vector.
(S–ii). From the axioms (2), (3) above, the transformation formulas

for the fields are derived in the following form:

E′ = Ṽ · (E + v ×B)

B′ = Ṽ · (B− v ×E/c2)

D′ = Ṽ · (D + v ×H/c2)

H′ = Ṽ · (H− v ×D)

Ṽ = γĨ + (1− γ)v̂v̂

(7)

where E′ = E′(X′) and E = E(X) , etc., and X , and X′

are related by the Lorentz transformation X′ = X′[X] given
above. Similarly, for the sources we derive the transformation
formulas:

j′e,m = Ũ·(je,m − vρe,m)

ρ′e,m = γ(ρe,m − v · je,m/c2)
(8)

for the corresponding e or m sources, respectively.

Topsy-turvy (T) Special Relativity is stated in inverse order:

(T–1) Instead of assuming the constancy of the speed of light (S-1
above), we assume the validity of the Lorentz transformation
(S-i), i.e., (3), (4).

(T–2) Here too we start with the same postulate (S-2) on the validity
of equation (1).

(T–3) We postulate the validity of the formulas for the transforma-
tions of fields as given by (7), (8), i.e., what above constituted
(S-ii).

The consequences are:

(T–i) From (T-1) we derive the constancy of the speed of light, i.e.,
(S-1) in the first model.

(T–ii) From (T-2), (T-3) we derive the covariance of Maxwell’s equa-
tions, i.e., (S-3) of the previous model.

One might argue that the present model loses the motivation for
universality and simplicity, displayed in the S-model. While this is
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true, it is compensated by the fact that the T-model is much easier
to handle in the classroom [5], and the S-model can be mentioned in
retrospect, showing how the two models are equivalent.

3. SPECTRAL DOMAIN ELECTRODYNAMICS

In order to effect an algebraization of Maxwell equations, a four-
dimensional Fourier transform is used, which we denote by:

f(K) =
∫

(d4X)f(X)e−iK·X (9)

together with its inverse transform

f(X) = (2π)−4

∫
(d4K)f(K)eiK·X (10)

Here d4K implies a four-dimensional integration with respect to the
components of k and the (angular) frequency ω , which are grouped
into one quadruple K . We use the same symbol f on both sides of a
formula, and whether the X or the K space is meant becomes clear
from its argument. From the definition of the Fourier transform and
in order to have the convenient form of the phase of a plane wave, we
choose for the exponent,

K ·X = k · x− ωt (11)

which implies that
K = (k, iω/c) (12)

but this does not automatically mean that K is a four-vector. How-
ever, by applying the four-gradient operator (6) to (10), we get

∂Xf(X) = (2π)−4

∫
(d4K)f(K)iKeiK·X (13)

By inspection of (13) it is concluded that according to (6) the left
hand side (13) is a four-vector, therefore on the right hand side K as
well must be a four-vector. Consequently the relevant transformations
K′ = K′[K] corresponding to the Lorentz transformations (3), are now
given by

k′ = Ũ·(k− vω/c2)
ω′ = γ(ω − k · v)

(14)
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This is the celebrated relativistic Doppler effect. Obviously this is a
two way street: we could have started from the Doppler effect (14),
and through the Fourier transformation arrive at the Lorentz transfor-
mation (3). Therefore, without losing its general properties, the theory
of Special Relativity could have been started in the spectral domain.

At this point it is worthwhile to realize that indeed this was the
case: Abraham [6], see also Pauli [7], before the advent of Einstein’s
theory, already derived the relativistically correct results for reflection
by a moving mirror.

Applying (10) to (1) yields

ik×E = iωB− jm
ik×H = −iωD + je
ik ·D = ρe

ik ·B = ρm

(15)

where E = E(K) etc. We can of course apply (1) also to (2) and
obtain

ik′ ×E′ = iω′B′ − j′m
ik′ ×H′ = −iω′D′ + j′e
ik′ ·D′ = ρ′e
ik′ ·B′ = ρ′m

(16)

and here E′ = E′(K′) , etc. A cardinal question arising at this point
is whether the field transformation formulas (7), (8) hold in the repre-
sentation space K , and in what sense? Transforming the two sides of
the first equation (7), we now get,

E′(X′) = (Ṽ) · (E(X) + v ×B(X)) = (2π)−4

∫
(d4K′)E′(K′)eiK

′·X′

= Ṽ · (2π)−4

∫
(d4K)(E(K) + v ×B(K))eiK·X (17)

and the question before us is whether the integrands are identical,
which is not obvious, [8]. By identifying the dummy integration vari-
ables as the proper spectral domain variables, obeying K′ = K′[K] as
above in (14), the exponentials become identical. Furthermore, it is
easily shown that the change of variable involves a Jacobian whose
value is unity, hence we get∫

(d4K)[E′(K′)− Ṽ · (E(K) + v ×B(K))]eiK·X = 0 (18)
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implying that in general the expression in brackets in the integrand
vanishes, hence (7), (8) apply in the transform space too, provided
(14) is understood.

4. CONSTITUTIVE RELATIONS IN THE COMOVING
FRAME

So far we have not raised the question of deriving solutions for Max-
well’s equations, or mentioned constitutive relations. It is also noted
that up to this point the symmetry between the spatiotemporal and
spectral domains is preserved, in the sense that the transformations
are reciprocal and one can switch from one representation to the other
without any loss of information.

Clearly Maxwell’s equations (1) or (15) are indeterminate, in the
sense that we have more variables than equations. Therefore we need
to heuristically add an appropriate set of relations for the problem at
hand, which will render the system determinate. Such equations, re-
ferred to as constitutive relations, depend on the physical nature of
the materials involved and are not considered an integral part of the
Maxwell equations. There are two methods by which constitutive rela-
tions enter our problem: (a) Constitutive relations can be postulated,
and, (b) Constitutive relations can be derived. For example, a heuris-
tic theoretical argument, or curve fitting applied to empirical results
can suggest a model for constitutive relations. As an example of a
derived constitutive relation, consider the case of a one particle model
for a lossless, unmagnetized cold plasma (i.e., the simplest model for
the ionosphere). In addition to (1) we assume the validity of Newton’s
law for a particle of charge q and mass m , moving with a velocity
v in an electric field E . After linearization (replacing of total time
derivatives with partial ones) we obtain

qE = m∂tv (19)

In order to continue we need either to transform into the spectral
domain, using ∂tv⇔ −iωv , or define the inverse operator of the time
derivative and solve for v in (19) in the form

v = (q/m)∂−1
t E (20)

In general the calculus of such operators is quite complicated, see for
example Felsen and Marcuvitz [9], who also present instructive ex-
amples of deriving constitutive operators for a one-component fluid
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model of a plasma field, in which more complicated operator calculus
is involved. From (20) the current density is defined as j = Nqv =
(Nq2/m)∂−1

t E and substituted into (1), and after some manipulation,
the first equation (1) attains the form

∂x ×H = ∂tε0εr(∂−1
t )E

εr(∂−1
t ) = 1 + ω2

p∂
−1
t ∂−1

t , ω2
p = Nq2/mε0

(21)

involving the defined plasma frequency ωp and a differential operator.
The practical meaning of a differential operator as in the special case
(21), is that the operator should be substituted in the equation (first
eq. (21) in the present case), and both sides judiciously manipulated
and multiplied by the inverse operator, in order to finally obtain a
conventional differential equation. Thus in the first equation (21) we
obtain ∂t∂t∂

−1
t ∂−1

t = 1 and the inverse time derivative vanishes, while
additional time derivatives appear. It follows that the success of such
a procedure depends on deriving inverse operators which we know how
to handle [9]. Henceforth it will be assumed that this is the case. We
have therefore derived something similar to a constitutive relation,

D(X) = ε(∂X)E(X) (23)

but in a differential operator form. In the spectral domain the operator
becomes algebraic, with the substitution ∂−1

t = −1/iω , as a part of
the general analogy ∂X ⇔ iK , and the corresponding constitutive
relation is found,

D(K) = ε(iK)E(K) (24)

where for (21) we obtain,

ε(iK) = ε0εr = ε0(1− ω2
p/ω

2) (25)

It is therefore clear that spatiotemporal dispersivity of the consti-
tutive parameters, i.e., their dependence on K , corresponds to the
appearance of differential operators involving components of ∂X in
the spatiotemporal domain.

The sequence leading from the spectral representation (24) back to
the spatiotemporal domain representation (23) is straightforward. The
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Fourier transform (10) is applied to (24), yielding:

D(X) = (2π)−4

∫
(d4K)D(K)eiK·X

= (2π)−4

∫
(d4K)E(K)ε(∂X)eiK·X

= ε(∂X)(2π)−4

∫
(d4K)E(K)eiK·X

= ε(∂X)E(X)

(26)

and provided we know how to deal with the resultant operator ε(∂X) ,
the problem is considered as solved.

As mentioned, the constitutive equations can also be heuristically
postulated. Here the problem is that the physicality of the definition
must be justified for each case individually, a point which is sometimes
overlooked. As long as the statement on the constitutive relation is
initiated in K , the spectral space, no problem arises. For example,
consider a dielectric scalar constitutive relation defined in the form,

D(K) = ε(K)E(K) (27)

The problem can be dealt with either in the spectral domain, using
(15), or, if we know how to use the ensuing operator, we can recast
(27) in the form (24), i.e., in terms involving components of iK and
then invoke the process shown in (26), and using (1) work in the spa-
tiotemporal domain. Another way of dealing with forms like (27) is to
represent the inverse transformation as a four-fold convolution, withX1

as the four-dimensional integration (dummy) variable

D(X) =
∫

(d4X1)ε(X1)E(X−X1) (28)

and substitute (28) in (1), thus working again in the spatiotemporal do-
main. Two problems arise in this context: Firstly, solving (1) with (28)
involves an integro-differential set of equations, which might be more
complicated than computing a solution in the spectral domain, and sec-
ondly, one must be careful with the limits of integration in (28) so that
causality in the relativistic sense is preserved. There are two spatiotem-
poral events involved in (1), namely X and X1 . The field D(X) is
effected by E(X−X1) at a different point, i.e., this shows that the
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electromagnetic field is non-local and non-instantaneous, which is not
surprising at all, it just is a manifestation of the finite speed of propa-
gation of signals encountered in electrodynamics. This prescribes that
|X−X1| ≤ 0 . i.e., the events are within the light cone, in the special-
relativistic jargon. This proviso can be met by prescribing the limits
of integration, or by judiciously defining ε(X1) so that it is only non-
vanishing in the range satisfying |X−X1| ≤ 0 .

5. THE QUESTION OF SPATIOTEMPORAL DOMAIN
CONSTITUTIVE RELATIONS

In many physical situations the attributes of media vary in space and
time, and one would like to be able to take these properties into ac-
count. There are two avenues to approach this problem: (a) If it
is possible, one divides the problem into homogeneous sub-domains,
derives infinite domain solutions for the individual sub-domains, and
connects all these sub-domains by satisfying the appropriate boundary
and initial conditions. (b) If the inhomogeneity of the medium varies
slowly in space and time, one can resort to ray methods, e.g., Hamilto-
nian ray theory [10], further considered subsequently. The question as
to the range of validity of spatiotemporal domain methods is central
to the present study.

It is noticed that the indeterminate Maxwell equations are com-
pletely equivalent in the spatiotemporal and the spectral domains.
Thus (1) and (2), and (15) and (16), respectively, are equivalent and
inversive, each in its pertinent inertial frame of reference. The trans-
formation formulas (7), (8) display the same property. However, the
constitutive relations do not possess this symmetry.

Using a simple example (thus avoiding fancy tensor relations that
might be more general, but also distract us from the fundamental is-
sues in question), a dispersive constitutive relation (27) has been pos-
tulated, and its corresponding forms in the spatiotemporal domain,
(23) and (28), were considered. Although in (27) ε(K) amounts to
an inhomogeneous medium in the spectral domain, we are still dealing
with a homogeneous material system in the spatiotemporal domain.

Let us consider imposing on (1) a constitutive relation describing
an inhomogeneous medium, in the form,

D(X) = ε(−iX)E(X) (29)
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Substitution in (19) yields the analog of (23) in the form,

D(K) = ε(∂K)E(K) (30)

where the operator
∂K = (∂k,−ic∂ω) (31)

can be shown to be a four-vector [5], with relativistic appropriate trans-
formation formulas (cf. (3), (5), (14)),

∂k′ = Ũ · (∂k + v∂ω)

∂′ω = γ(∂ω + v · ∂k/c
2)

(32)

The other alternative is to represent (29) in the spectral domain, in
analogy with (28),

D(K) =
∫

(d4K1)ε(K1)E(K−K1) (33)

In this form it appears that the spectral event K interacts with other
values K1 .Whether one considers (30), involving differentiations in the
spectral domain, or (33) with its K-domain non-local interactions, in
any case these forms seem to have no bearing on physical models as we
know them. It is noted that interactions in spectral space are possible
in the case of nonlinear systems, discussed below, but not in the present
case of linear systems.

The special case of nondispersive materials deserves special atten-
tion. Such circumstances exists for free space (vacuum), but might
also be considered in other special cases as an adequate approxima-
tion. Here ε(K) in (27) becomes a constant, which is equivalent to
ε(X1) = εδ(X1 −X) in (28), and the four-dimensional impulse func-
tion causes the integral to collapse, resulting in D(X) = εE(X) . But
this special case refers once more to a homogeneous medium!

If we reject forms like (30), (33) as inadequate for describing phys-
ically meaningful constitutive relations, the unavoidable conclusion is
that spatiotemporal constitutive relations like (29) are invalid. This
sweeping conclusion still allows for approximation methods like the
Hamiltonian ray theory mentioned above. The implementation of such
constitutive relations will be discussed below. It follows that Maxwell’s
equations are to be viewed fundamentally as a model for homogeneous
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systems, and any departure from this statement can only be valid in
the context of an appropriate approximation.

6. GENERALIZED MINKOWSKI CONSTITUTIVE RELA-
TIONS FOR LINEAR SYSTEMS

Sommerfeld [11] indicates that historically the extension of Maxwell’s
theory to moving systems played a central role, and the fact that
Minkowski [12] (See Pauli [7] for more references) finally answered this
problem. For relevant studies and literature references see also Post
[13], Hebenstreit [14, 15], and Hebenstreit and Suchy [16]. Generally
speaking, many researchers asked the suggestive question: If consti-
tutive parameters (e.g., dielectric and permeability parameters) are
given in a medium’s comoving (rest) frame of reference, what are the
corresponding constitutive parameters for an observer in the laboratory
system where the medium is moving? On the other hand, the phi-
losophy of Minkowski was different: Given Maxwell’s equations and
constitutive relations in the comoving system of reference, what are
the relations between the fields in the laboratory system? I.e., con-
stitutive relations, according to Minkowski, should render Maxwell’s
equations as a determinate system, but there is no physical import to
the constitutive parameters per se. Minkowski’s constitutive relations
are mentioned by Pauli [7], Sommerfeld [11], and Censor [5], but all
these derivations actually aim at showing that moving media manifest
bi-anisotropic behavior of the form

D = α̃1 ·E + α̃2 ·H
B = α̃3 ·E + α̃4 ·H

(34)

where α̃1....α̃4 denote appropriate dyadics. It is not always possible
or convenient to represent the additional constitutive relations in the
form (34). This has been encountered before [17], and this approach is
adopted here too. Namely, we strive to transform the relations for the
fields in the comoving frame to the laboratory frame, but do not bother
to find explicit expressions of the form (34). Given in the primed,
comoving frame, sufficient constitutive relations whose general implicit
form is

Fi(D′,B′,E′,H′, j′e, ρ
′
e, j
′
m, ρ

′
m; ∂X′) = 0 (35)

where i , the number of scalar constitutive relations, depends on the
number of equations and independent scalar variables involved, ∂X′ ,
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signifies that constitutive differential operators in the sense of (23)
are involved. In order to contract the notation, (35) is written in the
shorthand form,

F(Z′(X′); ∂X′) = 0 (36)

with Z′(X′) symbolizing all the fields involved in (35). The relativistic
covariance of Maxwell’s equations, i.e., the equivalence of (1) and (2)
as explained above, allows us to start either from (1) or (2). Follow-
ing the above given argument, in the spatiotemporal domain we start
from (2) in the primed comoving system of the medium at rest. To
obtain a determinate system of equations constitutive expressions as
symbolized by (35), (36) are introduced. In the spatiotemporal do-
main they stand for expressions like (21), or more generally like (23),
given now in terms of the comoving frame, i.e., the primed frame of
reference. Hence we are dealing here with differential operators. As
in (2), we have now in (35), (36) functions E′ = E′(X′) , etc., where
X′ = X′(x′, ict′) . Carrying out this scheme, a determinate system is
now defined in the primed frame. We now use the transformation equa-
tions for the fields, (7), (8), and the transformations ∂X′ = ∂X′ [∂X′ ] for
the differential operators, (5). This finally yields a corresponding set
of equations for the laboratory unprimed frame of reference in terms of
variables X = X(x, ict) . This constitutes the general implementation
of Minkowski’s approach towards electrodynamics in moving media.

The corresponding spectral domain K = (k, iω/c) analysis is now
straightforward. The constitutive expressions symbolized by (36) now
take the form

F(Z′(K′);K′) = 0 (37)

Here we start with (16), involving variables K′ = (k′, iω′/c) , which
transforms to (15) in terms of unprimed fields and independent vari-
ables K = (k, iω/c) . For the present case (37) is assumed to be given
in terms of algebraic forms, and fields Z′ = Z′(K′) as functions of
K′ = (k′, iω′/c) , to which we apply the field transformation formulas
(7), (8), in the spectral domain. The dielectric parameters (i.e. coef-
ficients appearing in (37)) are functions of K′ = (k′, iω′/c) , and are
substituted by the Doppler effect formulas K′ = K′[K] , namely (14),
so that finally a determinate system involving unprimed fields in terms
of the laboratory system components of K is obtained.

In the Minkowski approach to electrodynamics in moving media, a
crucial idea is involved, which needs close scrutiny: Generally speak-
ing, simply substituting the transformation formulas for variables and
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operators only means that we have recast the expressions in terms of
other variables, i.e., a mere change of variables has been effected. This
does not automatically mean that the new set of equations represents
the physical measurable quantities in the unprimed frame. Here is
an example: By starting with a given expression for the electric field
E′ = E′(X′) , and substituting the Lorentz transformation for the coor-
dinates X′ = X′[X] , we end up with a new expression E′ = E′(X′[X])
which might be denoted as E(X) . Obviously all we have achieved is
merely a change of variables, and the new representation E(X) does
not define the electric field in the unprimed frame. If we are inter-
ested in E(X) , as measurable by an observer in the unprimed frame
of reference, we have to use (7) and then substitute the Lorentz trans-
formation,, i.e.,

E(X) = Ṽ · (E′(X′[X])− v ×B′(X′[X])) (38)

The question one has to ask is whether the Minkowski approach is
merely a change of variables as in the above example leading to E(X) ,
or is it also a change of physical observation from one (the primed,
comoving) frame of reference to another (the unprimed, laboratory)
frame of reference. In view of the equivalence of (1) and (2), referred
to as the covariance of Maxwell’s equations, the latter applies, i.e., the
Minkowski approach automatically takes the transformations of fields
as exemplified by (38), into account. The same argument applies to
the spectral domain as well.

7. NONLINEAR CONSTITUTIVE RELATIONS

We start this discussion in the comoving frame where the medium is
at rest, and for the time being, this will be the unprimed frame of ref-
erence. Loosely speaking, nonlinear media are characterized by consti-
tutive parameters depending on fields. This gives rise to a plethora of
new phenomena, both academically interesting per se, and of interest
for applications. Paramount are the phenomena of harmonic genera-
tion, which one finds also in nonlinear lumped elements (e.g., magnetic
materials which become saturated when flux increases, or electronic de-
vices possessing nonlinear voltage-current characteristic curves), and
new wave-specific phenomena of self-focusing. In the latter, due to the
field dependent constitutive parameters, the wave, depending on the
intensity profile, “creates for itself” a “lens”, thus a self-focusing phe-
nomenon appears. Constitutive parameters for nonlinear media are
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mostly (heuristically) defined, thus belonging to category (a) above.
Attempts of defining nonlinear constitutive parameters from first prin-
ciples usually lead to Volterra’s series of functionals [17, 18]. For addi-
tional literature references and related work see [19-28]. A postulated
model [29], applied to numerical simulation of rays in nonlinear media,
was used in conjunction with experimental data [30] given in the liter-
ature, and close agreement of the experimental and simulation results
was found.

Our prototype linear model for constitutive relations is given by
(23), or its spectral equivalent in one of the forms (24) or (27),
whichever is more convenient at a given time, or the spatiotempo-
ral convolution integral equivalent (28). The corresponding nonlinear
model (which is usually postulated, i.e., belongs to category (a) above)
should satisfy a “correspondence principle” and reduce to the linear
case in the limit of vanishing nonlinearity. Moreover, the model should
indicate the various modes of nonlinear interaction. This will facilitate
the investigation of effects caused by specific modes, and in many cases
indicate a hierarchy of such effects. If this is achieved, certain leading
effects can be investigated.

Accordingly, instead of the convolution integral (28) we seek now a
more general relation, which for simplicity of the discussion we fashion
after (23) or (28), i.e., dielectric media,

D(X) =
∞∑
n=1

Dn(X) =
∞∑
n=1

Pn{X,E} (39)

where the series suggests a hierarchy of increasingly complex nonlinear
interactions, such that the most significant ones are the leading terms,
and Pn{X,E} are adequate functionals depending on the coordinates
X and the fields E . A quite natural candidate for such a model is
the Volterra series of functionals, which is the functional counterpart
and generalization of the Taylor series for functions, thus providing
an adequate model for a hierarchical system that in practice can be
truncated after a certain number of terms:

D(n)(X) =
∫

(d4X1) · · ·
∫

(d4Xn)ε̃(n)(X1, · · · ,Xn)

...E(X−X1) · · ·E(X−Xn)
(40)

In (40) we have n four-fold integrations which for n = 1 reduce to
the linear case (28), the n-th order constitutive parameter ε̃(n) is
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now a dyadic (in the generic sense, some would refer to it as a tensor)
acting on the indicated fields. The symbol ... denotes all the inner
multiplications of the constitutive dyadic and the fields. Relativistic
causality as discussed above must be incorporated into the model, i.e.,
|X−Xn| ≤ 0 . Inasmuch as the Volterra functionals have an inverse
Fourier transformation, the relation in K space follows:

D(n)(K) =(2π)4(1−n)

∫
(d4K1) · · ·

∫
(d4Kn−1)ε̃(n)(K1 · · ·Kn)

...E(K1) · · ·E(Kn)
(41)

This now is an n− 1 four-fold integration expression which for n = 1
reduces to the algebraic linear case (27). A scrutiny of (41) reveals that
Kn is undefined, indeed, (41) must be supplemented by the constraint

K = K1 + · · ·Kn (42)

i.e., k = k1 + · · · + kn , ω = ω1 + · · · + ωn . This is a remarkable
relation. In the quantum-mechanical context it is an expression of
conservation of energy (for frequencies) and momenta (for wave vec-
tors). Moreover, as far as nonlinear processes are concerned, (42) is a
statement of the production of harmonics and mixing of frequencies,
and the production of new propagation vectors for these waves. The
Volterra model is therefore very plausible for the purposes of modeling
nonlinear constitutive relations.

An outline of the proof for the Fourier transform leading from (40)
to (41) in conjunction with (42) is given in Appendix A.

8. DIFFERENTIAL OPERATOR REPRESENTATION
FOR NONLINEAR CONSTITUTIVE RELATIONS

A quite natural question at this stage concerns the generalization of
the linear forms (35)-(37) (now without motion, i.e., in the unprimed
frame which is also the frame in which the medium is at rest) to the
case of nonlinear media. Here we observe that at least symbolically,
the differential form (23) is equivalent to its integral counterpart (28).
It follows that the generalization of (28), as expressed in the Volterra
functionals series (39), (40), should now be written as

D(n)(X) =ε̃(n)(∂X1 |X1=X, · · · , ∂Xn |Xn=X)
...E(X1) · · ·E(Xn)

(43)
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which entails differential operations on the fields indicated, followed by
substitutions X1 = X, . . . ,Xn = X for all independent variables Xn

involved. As far as the present author is aware, this seems to constitute
a novel representation for nonlinear constitutive differential operators.
Its implementation to specific cases of interest will be considered in
a later study. According to (43), we now recast the generalized form
(36) symbolically as

F(n)(Z(X); ∂X1 |X1=X, · · · , ∂Xn |Xn=X) = 0 (44)

Here we understand (44) to constitute an array F(n) where the su-
perscript denotes the order of nonlinear interaction, as in (39)-(41),
involving Z(X) as a product of n fields to which the appropriate
differential operators are applied, in terms of multivariate dyadic dif-
ferential operators, and finally X1 = X etc. are inserted. Once (44)
is available, the Volterra series representation as in (40) is straightfor-
ward, and can be reconstructed from (44).

In the spectral domain we trace back the same argument as used
for the linear case, with the appropriate modifications.

9.MINKOWSKI’S CONSTITUTIVE RELATIONS AND
NONLINEAR SYSTEMS

The strategy discusses above for linear systems can be straightfor-
wardly extended to nonlinear Volterra systems as well. Similarly to
the linear system, we start with Maxwell’s equations (2) in the primed
comoving system of reference, but instead of the linear constitutive
relations (35), or in its contracted notation (36), we now invoke the
nonlinear analog (44), in the comoving frame, i.e., in the form:

F(n)(Z′(X′); ∂X′1 |X′1=X′ , · · · , ∂X′n |X′n=X′) = 0 (46)

Like the linear case before, the various transformation formulas for
fields and operators are applied, to finally derive the corresponding
determinate system of equations in the laboratory (unprimed) frame
of reference.

Obviously for the spectral domain treatment, the analogy leads to
a more complicated form. This is due to the fact that unlike the linear
case, where (37) becomes algebraic, in the nonlinear case the transform
(41) and similar forms involving fields will still be functionals with
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respect to the fields involved. Consequently the implementation for
specific cases might lead to more complicated forms. However, the least
we can say is that the general feasibility of the Minkowski approach
carries over to the present case too.

10. RAY-THEORETIC APPROXIMATIONS FOR
CONSTITUTIVE RELATIONS

We have argued above that for fundamental reasons spatiotemporal
dependence of the constitutive parameters in dispersive media must be
excluded, in general. See (29) and the related discussion. Obviously
mixed forms like

D(K,X) = ε(K,X)E(K,X) (47)

are even more problematic, because they involve the fundamental un-
certainty principle, which plays an important role in quantum theory
for the very same reasons. Accordingly, we cannot simultaneously spec-
ify the values of both K,X . However, in the context of the eiconal
approximation and Hamiltonian ray theory, such forms are legitimate
for media slowly varying in space and time [10, 31, 32].

In the context of the eiconal approximation, we start with an ansatz
that the solutions for the fields be represented by a product of a slowly
varying amplitude and an oscillatory exponential, thus describing a
quasi harmonic locally and instantaneously plane wave form for all the
fields appearing in (1), e.g.,

E(K,X) = E0(K,X)eiθ(K,X) (48)

etc., constituting a narrow band wave packet characterized by a carrier
eiθ(K,X) possessing a central value K , and a slowly tapering envelope
E0(K,X) . The phase function θ(K,X) is defined in terms of a four-
dimensional line integral,

θ(K,X) =
∫ X

X0

K(K,X1) · dX1 (49)

where now K(K,X1) changes slowly in the spatiotemporal domain.
It is assumed that

∂Xθ(K,X) = K(K,X) (50)
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i.e., that the integral (49) is independent of the path of integration
chosen between the limits.. Subject to these restrictions, one can intro-
duce spatiotemporally varying constitutive relations for linear media,
similarly to (36),

F(Z(K,X);∂X;K,X) = 0 (51)

where Z(K,X) possess the form given in (48) and the last K,X in
(51) indicates that the constitutive relations can depend on these pa-
rameters, in addition to the differential operators involved. By sub-
stitution of (48), with (49) understood, for the fields appearing in the
Maxwell equations (1), and performing the indicated differentiations,
one obtains (15), into which constitutive relations similar to (37) can
be substituted, now having the form,

F(Z(K,X);K,X) = 0 (52)

where the operations ∂X produce factors iK(K,X) which are already
taken into account in (52).

Similarly for nonlinear constitutive relations one must modify (44)
appropriately. This has been verified previously for periodic quasi har-
monic solutions [17–25, 28, 29].

The above discussions regarding the general Minkowski constitutive
relations carry over in a straightforward manner, and need not be
discussed in detail.

12. CONCLUDING REMARKS

It would be presumptuous to profess that the whole of electrody-
namics and special relativity can be summarized in this short paper.
What was attempted here was to bring together under one roof all the
fundamental issues mentioned in the title of this paper, and indicate
their interdependence.

The attention of the reader is drawn to an alternative method of
dealing with special relativity, particular as regards relativistic elec-
trodynamics in a manner more amenable to the needs of students.

The origin of constitutive relations and their validity is often under-
played both in textbooks and research. This is especially important
for research where it is attempted to analyze dispersive systems in the
time, or more generally, in the spatiotemporal domain. It is argued
above that constitutive relations are basically differential operators in
the spatiotemporal domain. This includes nonlinear Volterra systems
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as defined above. In the spectral domain, algebraic expressions are
obtained for linear systems, and integral constitutive relations are ob-
tained for Volterra systems.

Akin to the questions regarding constitutive relations is the problem
of electrodynamics in moving systems. This problem was for decades
considered central to the formulation of electromagnetism. Minkowski
[12] in 1908 realized that the problem is not to define constitutive re-
lations for the laboratory frame of reference, which will describe the
medium in terms of properties resulting from the motion, but to pro-
vide a set of sufficient number of equations to solve for the number
of field components (dependent variables) involved. The feasibility of
generalizing Minkowski’s approach to linear and nonlinear constitutive
relations of arbitrary form is demonstrated.

Finally, we return to spatiotemporally varying media, and the fea-
sibility of solving wave propagation problems involving such media.
The solution of a problem as a patchwork of finite domains for which
we have an infinite domain solution, and the ”stitching together” of
such solutions into an overall solution by using boundary and initial
conditions is obvious. This prescribes that subdomains be treated as
uniform, so for a general spatiotemporally varying system, this is an
approximation. Another approach is the treatment of spatiotempo-
rally slowly varying media in the ray regime, as summarized above.
This will allow, within the range of validity of the approximation, to
deal with constitutive relations varying in both K,X domains.

APPENDIX A: FOURIER TRANSFORMATION OF THE
VOLTERRA SERIES

In order to avoid cumbersome notation, consider (40) for n = 2 , i.e.,

D(2)(X) =
∫

(d4X1)
∫

(d4X2)ε̃(2)(X1,X2)

...E(X−X1) · · ·E(X−X2)
(A1)

and show that accordingly we obtain as in (41) in the form,

D(2)(K) = (2π)−4

∫
(d4K1)ε̃(2)(K1,K2) ...E(K1)E(K2) (A2)

The proof for n > 2 follows the same pattern. Incorporating (42) for
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the present case into (A2), it is now recast in the form,

D(2)(K) =(2π)−4

∫
(d4K1)

∫
(d4K2)δ(K1 + K2 −K)

ε̃(2)(K1,K2) ...E(K1)E(K2)
(A3)

The spectral representation of the four-dimensional unit impulse func-
tion is given by,

δ(K) = (2π)−4

∫
(d4X)e−iK·X (A4)

Substituting for the unit impulse function in (A3) we further have,

D(2)(K) =(2π)−8

∫
(d4X)e−iK·X

∫
(d4K1)

∫
(d4K2)ei(K1+K2)·X

ε̃(2)(K1,K2) ...E(K1)E(K2)
(A5)

hence according to (9), we obtain,

D(2)(X) =(2π)−8

∫
(d4K1)

∫
(d4K2)ei(K1+K2)·X

ε̃(2)(K1,K2) ...E(K1)E(K2)
(A6)

Each of the integrals in (A6) defines a transform of a product, according
to (10), which in the X domain corresponds to a convolution integral
of the kind shown in (28), hence finally (A1) is obtained.

From (A6), if we slightly change the notation from ε̃(2)(K1,K2)
to ε̃(2)(iK1, iK2) , then in the integral one can replace ε̃(2)(iK1, iK2)
by ε̃(2)(∂X1 |X1=X∂X2 |X2=X) according to (43), and take it outside the
integrations. The remaining integrals, according to (10), finally yield
(43) in the explicit form,

D(2)(X) = ε̃(2)(∂X1 |X1=X∂X2 |X2=X) ...E(X1)E(X2) (A7)
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