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V. Alan Kostelecký1 and Matthew Mewes2
1Physics Department, Indiana University, Bloomington, Indiana 47405, USA

2Physics Department, Marquette University, Milwaukee, Wisconsin 53201, USA
(Dated: IUHET 527, April 2009; accepted in Physical Review D)

The behavior of photons in the presence of Lorentz and CPT violation is studied. Allowing for
operators of arbitrary mass dimension, we classify all gauge-invariant Lorentz- and CPT-violating
terms in the quadratic Lagrange density associated with the effective photon propagator. The co-
variant dispersion relation is obtained, and conditions for birefringence are discussed. We provide
a complete characterization of the coefficients for Lorentz violation for all mass dimensions via a
decomposition using spin-weighted spherical harmonics. The resulting nine independent sets of
spherical coefficients control birefringence, dispersion, and anisotropy in the photon propagator.
We discuss the restriction of the general theory to various special models, including among others
the minimal Standard-Model Extension, the isotropic limit, the case of vacuum propagation, the
nonbirefringent limit, and the vacuum-orthogonal model. The transformation of the spherical coef-
ficients for Lorentz violation between the laboratory frame and the standard Sun-centered frame is
provided. We apply the results to various astrophysical observations and laboratory experiments.
Astrophysical searches of relevance include studies of birefringence and of dispersion. We use po-
larimetric and dispersive data from gamma-ray bursts to set constraints on coefficients for Lorentz
violation involving operators of dimensions four through nine, and we describe the mixing of polar-
izations induced by Lorentz and CPT violation in the cosmic-microwave background. Laboratory
searches of interest include cavity experiments. We present the general theory for searches with
cavities, derive the experiment-dependent factors for coefficients in the vacuum-orthogonal model,
and predict the corresponding frequency shift for a circular-cylindrical cavity.

I. INTRODUCTION

The properties of electromagnetic radiation have
proved a fertile testing ground for relativity since its in-
ception over a century ago. Tests such as the classic
Michelson-Morley, Kennedy-Thorndike, and Ives-Stilwell
experiments [1–4] were key in establishing Lorentz in-
variance, the foundational symmetry of relativity. The
proposal that minuscule deviations from Lorentz sym-
metry could emerge from an underlying unified theory
[5] has rekindled interest in sensitive relativity tests, and
the past decade has seen a broad variety of searches for
Lorentz violation at impressive sensitivities [6].
Violations of Lorentz symmetry at attainable energies

are described by the Standard-Model Extension (SME)
[7, 8]. The SME is a comprehensive effective field the-
ory that characterizes general Lorentz and CPT viola-
tions. It contains both General Relativity and the Stan-
dard Model, and so it is a realistic theory that can be
applied to analyze observational and experimental data.
A Lorentz-violating term in the Lagrange density of the
SME is an observer scalar density formed by contracting
a Lorentz-violating operator with a coefficient that acts
to govern the term. The operator can be characterized in
part by its mass dimension d, which determines the di-
mensionality of the coefficient and can be used as a naive
guide to the size of the associated effects [9].
The focus of the present work is Lorentz and CPT vio-

lation involving photons. Numerous searches for Lorentz
violation in electrodynamics have been performed, yield-
ing some of the best existing constraints on SME coef-
ficients. One major class of tests consists of laboratory
searches involving electromagnetic resonators or interfer-

ometers [10–18], which can be viewed as contemporary
versions of the classic tests of relativity. Another ma-
jor class of tests consists of astrophysical observations
searching for tiny defects in the propagation of light that
has traveled over cosmological distances [7, 11, 19–23]. A
variety of other analyses involving photons lead to con-
straints on SME coefficients [24]. There is also a substan-
tial literature on various topics in the photon sector of the
SME, including renormalization [25], photon interactions
[26], vacuum Čerenkov radiation [27], the Chern-Simons
term [28], electromagnetostatics [29], and related phe-
nomena involving photons in other contexts [30]. Out-
side the photon sector, the SME serves as the theoretical
underpinning for studies of Lorentz symmetry involving
electrons [31, 32], protons and neutrons [33–35], mesons
[36], muons [37], neutrinos [38], the Higgs [39], and grav-
ity [8, 40].

In this paper, we extend the existing treatment of
Lorentz violation in electrodynamics to include opera-
tors of arbitrary mass dimension d. This further develops
and consolidates previous systematic studies for opera-
tors of renormalizable dimension [7, 11], and it incorpo-
rates many phenomenological models for Lorentz viola-
tion. For definiteness, we focus on an action having the
usual U(1) gauge symmetry and invariance under space-
time translations, so that charge, energy, and momentum
are conserved. If the Lorentz violation is spontaneous,
then the SME coefficients originate as expectation values
of operators in an underlying theory, and the requirement
of invariance under spacetime translations corresponds to
disregarding soliton solutions and any massive or Nambu-
Goldstone (NG) modes [41]. In a more complete treat-
ment including gravity, the NG modes may play the role
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of the graviton [42]. Alternatively, the NG modes may
be interpreted as the photon for Einstein-Maxwell the-
ory embedded in a Lorentz-violating vector model called
bumblebee electrodynamics [8, 43]. The approach dis-
cussed here can readily be adapted to these and other
scenarios, including applications to the photon sector of
the SME in the context of the various topics mentioned
above. Our methods are also relevant for other sectors
of the SME [44].

The motivation for this work comes in part from cur-
rent doctrine, which regards the combination of General
Relativity and the Standard Model as the low-energy
limit of a unified quantum gravity theory that holds
sway at the Planck scale, MPlanck ∼ 1019 GeV. Expe-
rience teaches us to expect a smooth transition from the
known low-energy physics to the underlying theory, so
it is plausible to interpret the low-energy action as the
zeroth-order term in a series approximating the underly-
ing theory. Dimensional analysis suggests that operators
with larger d correspond to higher-order corrections. For
physics involving violations of Lorentz and CPT symme-
try, the complete series is given by the SME action, while
the leading corrections form the action of the minimal
SME. Lorentz-violating operators of larger d are there-
fore likely to be especially relevant in searches involving
very high energies and in theoretical studies of founda-
tional properties such as causality and stability [45]. Un-
der suitable circumstances, nonrenormalizable operators
may even dominate the physics. For example, the action
of noncommutative quantum electrodynamics [46] incor-
porates Lorentz-violating effects associated with a non-
trivial commutator for the spacetime coordinates. When
the action is expressed in terms of conventional photon
fields, a subset of the SME emerges in which the lowest-
order Lorentz-violating operators have mass dimension
six [47]. Similarly, operators of larger d dominate in
Lorentz-violating theories with supersymmetry [48].

A comprehensive investigation of all Lorentz-violating
operators with arbitrary mass dimensions is a challenging
task. Here, we concentrate on terms in the action that
are quadratic in the photon field Aµ and therefore con-
tribute to the propagator, which in practice is the quan-
tity of immediate interest in many searches for Lorentz
violation. Our basic approach consists of constructing
the quadratic action and developing a scheme to classify
the operators. Rotations are a prominent subgroup of the
Lorentz group, and a spherical decomposition can be per-
formed on any Lorentz-violating operator. We use this
fact to classify all Lorentz-violating terms in the action
using nine sets of coefficients for Lorentz violation. The
classification scheme is well matched to the description of
physical Lorentz-violating effects in the photon propaga-
tor, including birefringence, dispersion, and anisotropy.

With this classification scheme taming the infinite
number of operators, specific analyses of observational
and experimental data become feasible. We study a va-
riety of methods for seeking Lorentz violation using pre-
dictions from the quadratic action. The sharpest tests

involve astrophysical birefringence, which involves propa-
gation in the vacuum. Some Lorentz-violating operators
produce no vacuum birefringence at leading order but
nonetheless cause dispersion in the vacuum, and these
can also be studied using astrophysical observations. In
addition, there are many other Lorentz-violating opera-
tors that are undetectable at leading order via astrophys-
ical observations and hence are best sought instead in
laboratory experiments. The analyses in this work yield
several first measurements of coefficients for Lorentz vio-
lation, and numerous interesting arenas emerge for future
exploration.

The structure of this paper is as follows. The ba-
sic theory is discussed in Sec. II, which contains five
subsections. The construction and counting of Lorentz-
violating operators of all mass dimensions is presented
in Sec. II A, while the Lagrange density and constitutive
relations are obtained in Sec. II B. We derive the covari-
ant dispersion relation in Sec. II C, discuss the physics of
birefringence in Sec. II D, and offer general comments on
Lorentz-violating effects in Sec. II E.

The spherical decomposition of the coefficients for
Lorentz violation in terms of spin-weighted spherical har-
monics is performed in Sec. III. We consider various
special limits in Sec. IV, including the minimal SME,
isotropic models, the vacuum limit, nondispersive non-
birefringent ‘camouflage’ models, the vacuum-orthogonal
case, and some limits providing connections to other for-
malisms. The rotation properties of the spherical coeffi-
cients for Lorentz violation are discussed in Sec. V. Other
key properties of the spin-weighted spherical harmonics
are summarized in Appendix A.

The remainder of the paper applies the results to ob-
servations and experiments. Astrophysical observations
are studied in Sec. VI. Vacuum dispersive effects are
discussed in Sec. VIA, where new measurements and a
summary of existing constraints are obtained. Vacuum
birefringence is considered in Sec. VIB, which contains
three subsections. Some basic theory for vacuum birefrin-
gence is presented in Sec. VIB 1. We apply it to point
sources in Sec. VIB 2, using polarimetry from gamma-
ray bursts to obtain new measurements, and also to the
cosmic microwave background in Sec. VIB 3. In both
cases, we tabulate some existing sensitivities.

Laboratory experiments are discussed in Sec. VII. We
construct a general theory for resonant-cavity tests in
Sec. VIIA and apply it in Sec. VII B to derive cavity
factors for nonbirefringent operators and the form of the
fractional frequency shift predicted by Lorentz violation.
Explicit values of some cavity factors for a circular cylin-
drical cavity are calculated in Sec. VII C. Section VIII
provides a summary and discussion of the results in the
paper, including tables compiling essential properties of
the spherical coefficients and various limiting cases. Un-
less otherwise stated, this paper follows the notation and
conventions of Ref. [11].
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II. BASIC THEORY

This section discusses the theory and basic features
of the quadratic action for electrodynamics allowing for
arbitrary Lorentz and CPT violation. We begin with a
discussion of the SME procedure for constructing the La-
grange density associated with the effective photon prop-
agator. Attention is focused primarily on the case with
conventional U(1) gauge invariance and translational in-
variance. The resulting effective field theory conserves
charge, energy, and momentum. It represents an explicit
presentation of all Lorentz-violating operators for pho-
ton propagation that are consistent with observer covari-
ance. Following the construction of the theory, we ex-
tract a complete set of coefficients for Lorentz and CPT
violation and discuss some of their basic properties. A
technique for deriving covariant dispersion relations is
presented and used to obtain a general covariant disper-
sion relation for the photon in the presence of arbitrary
Lorentz and CPT violation. The issue of conditions for
birefringence is considered, and we offer some remarks
about the connections between birefringence, metricity,
and electromagnetic duality.

A. Construction

A low-energy Lorentz-violating theory that is both co-
ordinate independent and consistent with current obser-
vational data can be written as a Lagrange density con-
taining sums of standard polynomial tensor operators
contracted with coefficients for Lorentz violation [7]. The
coefficients may be viewed as background fields inducing
Lorentz violation, and they can correspond to vacuum ex-
pectation values of fundamental tensor fields. Applying
this general idea to source-free linear electrodynamics,
we arrive at an action S that is a quadratic functional
of the photon field Aµ and its derivatives. The action S
can then be expanded in a sum of terms S(d) of the form

S(d) =

∫
d4x Kα1α2α3...αd

(d) Aα1∂α3 . . . ∂αd
Aα2 , (1)

where d is the dimension of the tensor operator. Each
term S(d) violates CPT if d is odd or preserves CPT if d
is even. The coefficients Kα1α2α3...αd

(d) have mass dimen-

sion 4 − d. In general, they can be dynamical and can
depend on spacetime position. We can ensure invariance
of S under spacetime translations, and hence obtain the
usual conservation of energy and momentum, by restrict-
ing attention to the case of constant coefficients. Con-
stant coefficients may arise naturally, but they may also
represent the dominant components of dynamical back-
ground fields or an averaged effect.
Size estimates for the coefficients for Lorentz violation

depend on the details of their origins. Since the effects
are expected to be small, it is natural to suppose the
Lorentz-violating operators are suppressed by some large

mass. The intimate connection between Lorentz sym-
metry and gravity suggests the relevant scale is set by
Planck-scale physics and therefore by the Planck mass
MPlanck. Various scenarios can be imagined, although
the absence of a satisfactory underlying theory combin-
ing gravity and quantum physics, and hence the lack of
specifics concerning possible Lorentz violations, makes
such scenarios a matter of surmise and likely naive. For
example, one simple estimate has coefficients varying as
K(d) ∼ ζM4−d

Planck, where ζ is of order 1. This means oper-
ators of renormalizable dimension d ≤ 4 are unsuppressed
relative to conventional physics. Observations then im-
ply only the operators d ≥ 5 are experimentally viable,
so the dominant new physics is controlled by nonrenor-
malizable terms. Another class of scenarios has Lorentz-
violating effects suppressed by a factor involving some
power of the ratio m/MPlanck, where m is an appropriate
low-energy scale. In these cases, the Lorentz violation
may be related to one or more of the known hierarchies
in nature [9]. For example, taking m ∼ 102 GeV as the
electroweak scale gives a dimensionless suppression factor
of some power of ∼ 10−17 for Lorentz-violating physics
compared to conventional effects.
While a general study of all possible operators of the

form (1) would be of interest, it would be rather cum-
bersome and introduce various features in addition to
Lorentz violations, thereby complicating both theoreti-
cal and experimental considerations. The possibilities
are simplified somewhat by restricting attention to oper-
ators that maintain the conservation of energy, momen-
tum, and electric charge. This implies focusing on the
case of constant coefficients and requiring U(1) gauge in-
variance. The latter imposes certain symmetries on the
Lorentz-violating operators, thereby reducing the total
number of independent coefficients.
The first step in imposing these symmetries is to iden-

tify properties of the coefficients Kα1α2α3...αd

(d) that follow

from the intrinsic structure of S. One property of the co-
efficients is total symmetry in the d−2 indices {α3 . . . αd}.
Another can be displayed by integrating Eq. (1) by parts
d − 2 times. This reveals that the only coefficients con-
tributing to CPT-odd terms are antisymmetric in the
first two indices of Kα1α2α3...αd

(d) , while the only ones con-

tributing to CPT-even terms are symmetric. The same
conclusion follows by considering the contributions to the
variation of the action:

δS(d) =

∫
d4x Kα1α2α3...αd

(d)

(
∂α3 . . . ∂αd

A[α2

)
δAα1]±

+ surface terms, (2)

where the minus and plus signs apply for CPT-odd and
CPT-even terms, respectively, and where the brackets
[ ]± indicate symmetrization and antisymmetrization.
With these intrinsic symmetries understood, term-by-

term gauge invariance can be imposed and the resulting
additional symmetries of S(d) identified. The usual U(1)
gauge invariance, representing symmetry of the action
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(

3 4 · · · d ⊗ 1
)

⊗ 2

= 3 4 · · · d 1 2 (a)

⊕
3 4 · · · d 1
2

(b)

⊕
3 4 · · · d 2
1

(c)

⊕
3 4 · · · d
1 2

(d)

⊕

3 4 · · · d
1
2

(e)

FIG. 1: Representation decomposition for the term S(d) using
Young tableaux.

under the variations δgAα = ∂αΛ, is achieved by requir-
ing that the variation

δgS(d) =−
∫
d4x Kα1α2α3...αd

(d)

× Λ∂α3 . . . ∂αd

(
∂[α1

Aα2]± + 1
2∂[α1

∂α2]±Λ
)

(3)

vanish for an arbitrary scalar function Λ. Direct inves-
tigation of this equation is possible but awkward. To
identify the additional symmetries and hence the coef-
ficients of interest, it is more practical first to perform
representation decompositions of the associated Lorentz-
violating operators. The intrinsic symmetries drastically
limit the number of representations that can appear. The
total symmetry in the last d − 2 indices of Kα1α2α3...αd

(d)

implies that all representations that are antisymmetric
in any pair of these indices are absent. We can therefore
construct the relevant irreducible tensors from a prod-
uct of symmetric representations. It turns out that this
limits the possibilities to only five representations. In
terms of Young tableaux, these five representations are
displayed in Fig. 1.
For CPT-odd coefficients, the antisymmetry condition

on the first two indices and the gauge variation (3) imply
that tableau (a) is irrelevant, since it is symmetric in the
indices {α1α2}. Also, representation (d) is symmetric
under the simultaneous permutation of 1 ↔ 2 and 3 ↔ 4
and so fails to contribute. The antisymmetry in {1, 2, 3}
of representation (e) directly implies gauge invariance, so
it satisfies our restrictions. The remaining two represen-
tations (b) and (c) lead to nonvanishing δgS(d) and are
therefore gauge violating. We conclude that all gauge-
invariant CPT-odd operators are associated with coeffi-
cients Kα1α2α3...αd

(d) belonging to representation (e). These

are antisymmetric in the first three indices and symmet-
ric in the last d − 3. Since dimension d ≤ 1 operators
are absent in a linear theory, we take d ≥ 3 for CPT-odd

operators in what follows.
For CPT-even coefficients, the antisymmetry of

tableau (e) in {1, 2} implies it cannot contribute to Eq.
(2) and therefore is absent in the theory. The antisymme-
try of tableau (d) in {1,3} and {2,4} leads to δgS(d) = 0,
so this representation is gauge invariant and satisfies our
restrictions. The tableau (a) is totally symmetric and
leads to δgS(d) 6= 0, implying gauge violation. Similarly,
tableaux (b) and (c) are also gauge violating. We thus
find that all gauge-invariant CPT-even operators have
coefficients Kα1α2α3...αd

(d) belonging to representation (d).

Note that operators with d = 2 are gauge-violating, so in
what follows we take d ≥ 4 for the CPT-even sector.
To simplify handling and to provide a convenient

match to the usual coefficients for Lorentz violation in
the minimal SME, it is convenient to introduce further
definitions. For the CPT-odd case, the dual coefficients

(k
(d)
AF )κ

α1...α(d−3) ≡ 1
3! ǫκµνρK

µνρα1α2...αd−3

(d) (4)

provide a generalization of the usual coefficients (kAF )κ
in the minimal SME. The symmetries of tableau
(e) translate into total symmetry of the coefficients

(k
(d)
AF )κ

α1...α(d−3)

in the last d − 3 indices, along with

the trace condition (k
(d)
AF )α1

α1...α(d−3)

= 0. Counting the
number of independent components in representation (e)
using standard group-theory techniques [49] yields for di-
mension d the result

N
(d)
AF = 1

2 (d+ 1)(d− 1)(d− 2). (5)

This number can also be obtained by noting that sym-
metry in the last d− 3 indices yields 4(d− 2)(d− 1)d/3!
components while the trace condition given above pro-
vides (d− 3)(d− 2)(d− 1)/3! constraints, and taking the

difference yields N
(d)
AF . Note that the number of these co-

efficients for CPT-odd Lorentz violation grows rapidly as
the cube of d: the usual 4 for d = 3, then 36 coefficients
for d = 5, 120 for d = 7, etc.
For the CPT-even case, it suffices to define

(k
(d)
F )κλµνα1...α(d−4) ≡ Kκµλνα1α2...αd−4

(d) (6)

to obtain coefficients that mimic the definition of
(kF )

κλµν in the minimal SME. The first four indices of

(k
(d)
F )κλµνα1...α(d−4) have the symmetries of the Riemann

tensor, and there is total symmetry in the remaining d−4
indices. Also, one can show that antisymmetrization of

(k
(d)
F )κλµνα1...α(d−4) on any three indices produces zero.

In this case, counting the number of independent com-
ponents for dimension d gives

N
(d)
F = (d+ 1)d(d− 3). (7)

This counting includes the total trace term, which is
Lorentz invariant and represents a scaling factor. Again,
note that the number of these coefficients for CPT-even
Lorentz violation grows as the cube of d: the usual 20
(19 plus a Lorentz-invariant trace) for d = 4, then 126
coefficients for d = 6, 360 for d = 8, etc.
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B. Lagrange density and constitutive relations

The construction outlined in the previous subsection
leads to a general gauge-invariant Lagrange density that
can be written in a form similar to the photon sector of
the minimal SME:

L = − 1
4FµνF

µν + 1
2ǫ

κλµνAλ(k̂AF )κFµν

− 1
4Fκλ(k̂F )

κλµνFµν , (8)

where the differential operators k̂AF and k̂F involve CPT-
odd and CPT-even violations, respectively. These oper-
ators are given by the expansions

(k̂AF )κ =
∑

d=odd

(k
(d)
AF )κ

α1...α(d−3)

∂α1 . . . ∂α(d−3)
, (9)

(k̂F )
κλµν =

∑

d=even

(k
(d)
F )κλµνα1...α(d−4)∂α1 . . . ∂α(d−4)

,

(10)

where the sums range over values d ≥ 3. The co-

efficients (k
(d)
AF )κ

α1...α(d−3)

are defined in Eq. (4), and

they have symmetry properties yielding N
(d)
AF indepen-

dent components as given in Eq. (5). The coefficients

(k
(d)
F )κλµνα1...α(d−4) are defined in Eq. (6) and have N

(d)
F

independent components according to Eq. (7). The usual

minimal SME terms are kAF ≡ k
(3)
AF and kF ≡ k

(4)
F , where

in the latter the overall trace is removed to leave 19 in-
dependent coefficients.
In principle, obtaining and interpreting equations of

motion for a Lagrange density of the form (8) is problem-
atic due to the infinite sum, whose action cannot be var-
ied in the usual way, and also due to Ostrogradski insta-
bilities [50]. However, these issues can be circumvented
by noting that Eq. (8) represents the low-energy limit of a
more fundamental theory, with each successive term rep-
resenting a perturbation on preceding terms. Truncating
the sums at any definite value of d and restricting at-
tention to perturbative effects therefore can be expected
to provide a good approximation to the low-energy be-
havior. Only at extreme energies can qualitatively new
effects and late terms in the sum play an important role.
At these energies, the theory must converge to the un-
derlying fundamental physics, which presumably is free
of these issues. Adopting this truncation, we obtain equa-
tions of motion given by
(
ηµαηνβ∂ν + (k̂AF )νǫ

µναβ + (k̂F )
µναβ∂ν

)
Fαβ = 0. (11)

Note the explicit gauge invariance of these equations.

In the minimal SME, the coefficients k
(3)
AF and k

(4)
F are

known to produce photon behavior analogous to that
of conventional electrodynamics in anisotropic and gy-
rotropic materials [7, 11]. This analogy can be extended
to the present situation involving Lorentz-violating oper-
ators of arbitrary dimension. The first step is to define a
field tensor

Gµν = Fµν − 2ǫµναβ(k̂AF )αAβ + (k̂F )
µναβFαβ , (12)

in terms of which the equations of motion become

∂νG
µν = 0. (13)

Note that the latter equation is gauge invariant, even
though the definition of Gµν depends on the choice of
gauge and is unique only up to a term of the form

ǫµναβ(k̂AF )α∂βΛ for an arbitrary scalar function Λ.
For conventional electrodynamics in macroscopic me-

dia, a constitutive 4-tensor χ is typically introduced
that maps the 2-form field strength F to the macro-
scopic 2-tensor field strength G, via Gµν = χµνρσFρσ.
In the present context, we can reformulate the situa-
tion in terms of a set of unconventional constitutive re-
lations, which may explicitly depend on the choice of
gauge. However, we must generalize the usual notion of
a constitutive 4-tensor to encompass more general oper-
ator constitutive tensors. We now require an operator
4-tensor χ̂µνρσ and an operator 3-tensor X̂µνρ, defined
by

χ̂µνρσ = 1
2 (η

µρηνσ − ηνρηµσ) + (k̂F )
µνρσ ,

X̂µνρ = ǫµνρσ(k̂AF )σ. (14)

Note that the 3-tensor controls CPT violation. The ef-
fective macroscopic field strength G defined in Eq. (12)
is then given by

Gµν = χ̂µνρσFρσ + 2X̂µνρAρ. (15)

As in conventional electrodynamics, the new constitutive
relations remain linear. However, unlike electrodynam-
ics in linear media, the relations (15) inherit a nonlocal
aspect due to their differential nature.
DecomposingGµν into an effective vector displacement

field D and an effective pseudovector magnetic field H in
the usual way, the equations of motion (13) take the same
form as the familiar source-free inhomogeneous Maxwell
equations,

∇ ·D = 0,

∇×H − ∂0D = 0, (16)

where

D = E + 2k̂AF ×A+ κ̂DE ·E + κ̂DB ·B,
H = B − 2(k̂AF )0A+ 2k̂AFA0 + κ̂HB ·B + κ̂HE ·E

(17)

with

(κ̂DE)
jk = −2(k̂F )

0j0k ,

(κ̂HB)
jk = 1

2 (k̂F )
lmrsǫjlmǫkrs, (18)

(κ̂DB)
jk = −(κ̂HE)

kj = (k̂F )
0jlmǫklm.

The latter equations are operator generalizations of the

SO(3) decomposition of the coefficients k
(4)
F into 3 × 3

matrices introduced in Ref. [11].
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Using the fields D and H, the Lagrange density may
be written as

L = − 1
4FµνG

µν = 1
2 (E ·D −B ·H), (19)

which also parallels conventional electrodynamics in
macroscopic media. We remark that the analogy with
electrodynamics breaks down when attempting to con-
struct a conserved energy-momentum tensor. Standard
techniques can be used to build a conserved tensor
that reduces to the conventional symmetrized energy-
momentum tensor in the limit of vanishing Lorentz vi-
olations. However, the resulting tensor takes an uncon-
ventional form in terms of Fµν and Gµν . One possibility
is the tensor

Tα
β = −GαγFβγ − δαβL+ 1

2 (∂βAγ −Aγ∂β)G
αγ . (20)

The first two terms parallel those in conventional elec-
trodynamics, but the addition of the last term is neces-
sary for energy-momentum conservation to hold. This
last term is separately conserved in conventional electro-
dynamics and so can be removed there, but a term of
this type must be present for Tα

β to be conserved in the
presence of general Lorentz violation.

C. Covariant dispersion relation

Much of the propagation behavior of the photon is en-
coded in its dispersion relation, which provides spectral
information for the modes. While standard methods can
be used to find the dispersion relation from the equations
of motion, at least at leading order in the coefficients for
Lorentz violation, handling the gauge freedom typically
entails the loss of observer Lorentz invariance. In this
subsection, we present a technique for deriving the exact
covariant dispersion relation, based on the rank-nullity
properties of the equations of motion. As a concomitant,
the technique provides some insight into the nature of
birefringence, which arises whenever the dispersion rela-
tion has non-degenerate physical solutions.
We begin by adopting the ansatz

Aµ(x) = Aµ(p)e
−ix·p. (21)

This implies the equations of motion (11) can be ex-
pressed in the matrix form

MµνAν = 0 (22)

with

Mµν = (ηµνηαβ − ηµαηνβ + 2(k̂F )
µανβ)pαpβ

− 2iǫµναβ(k̂AF )αpβ

= 2χ̂µανβpαpβ + 2iX̂µναpα, (23)

where it is understood that each occurrence of ∂α in the
operators k̂AF and k̂F is replaced with −ipα. The matrix

Mµν is hermitian, Mµν = (Mνµ)∗. It satisfies the con-
ditions for charge conservation, Mµνpµ = 0, and gauge
symmetry, Mµνpν = 0, which imply that the determi-
nant of Mµν vanishes identically.
The standard method to handle the gauge freedom

and the vanishing determinant involves making a defi-
nite gauge choice, thereby reducing the four-dimensional
problem to a three-dimensional one. The determinant
of the reduced linear equation yields the dispersion rela-
tion. Within the particular gauge choice and for a given
solution to the dispersion relation, one can then solve for
the polarization mode Aµ of the photon. The general
solution for this mode is the sum of this solution and an
arbitrary pure gauge term ∝ pµ. Typically, the gauge
fixing explicitly breaks observer Lorentz invariance. The
alternative method presented below focuses on the rank-
nullity of the linear equation (22), which allows us to
preserve Lorentz covariance throughout the calculation.
We take advantage of the exterior product and its ability
to determine linear independence of a set of vectors. The
reader is reminded that a set of vectors {Aa}, a = 1, 2, . . .
is linearly independent if and only if their exterior prod-
uct is nonzero [51].
Starting with a set of arbitrary basis vectors

{A1, A2, A3, A4} with A1 ∧ A2 ∧ A3 ∧ A4 6= 0, the im-
age space of M is spanned by the vectors Ba = MAa.
The dimensionality of this space is equal to the rank of
M , and it determines the dimension of the solution space
of Eq. (22). In particular, gauge freedom ensures thatM
is rank three or lower. This implies B1∧B2∧B3∧B4 = 0,
which is equivalent to the condition detMµν = 0. So to
find nontrivial solutions, we must impose rank two or less,
which implies Ba ∧Bb ∧Bc = 0 for any a, b, c = 1, 2, 3, 4.
This is the minimum requirement, and it leads to the
covariant dispersion relation.
We can translate the above discussion into conditions

on M by noting that M generates for each n a linear
transformation between n-vectors in its domain and im-
age spaces. The transformation for a given n is denoted
∧nM and is specified by

Ba1 ∧ · · · ∧Ban = (MAa1) ∧ · · · ∧ (MAan)

≡ (∧nM)(Aa1 ∧ · · · ∧Aan). (24)

For each n, the linear ∧nM transformation takes an
arbitrary n-vector ω of the domain space into an n-
vector (∧nM)(ω) of the image space. In a coordinate
basis, we get an explicit expression for the cofactor ten-
sors (∧nM)µ1µ2...µn

ν1ν2...νn controlling the transforma-
tion ∧nM :

(∧nM)µ1µ2...µn

ν1ν2...νn =
1

n!
M[µ1

ν1Mµ2

ν2 · · ·Mµn]
νn .

(25)
The key point for our purposes is that the rank of M
is completely determined by the set of ∧nM transforma-
tions. For any given n, the matrix M is rank n if and
only if ∧nM 6= 0 and ∧n+1M = 0. Note that ∧nM = 0
implies ∧n+1M = 0.
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We can now determine the size of the null space of
M and hence the nature of the solution space for the
equations of motion by using the rank-nullity relation.
Since M is a 4 × 4 matrix, the rank can in principle
range from four down to zero. The five possibilities can
be summarized as follows. The case of rank four has
∧4M 6= 0 and is excluded by gauge invariance, so no
solutions exist. For rank three, which has ∧4M = 0 and
∧3M 6= 0, the nullity is one and hence there is a one-
dimensional solution space. In the present context, it
corresponds to pure-gauge solutions. For rank two we
have ∧3M = 0 and ∧2M 6= 0 with a two-dimensional
null space. This case yields a one-dimensional non-gauge
solution space. For rank one ∧2M = 0, ∧1M 6= 0, and
the nullity is three, so there is a two-dimensional non-
gauge solution space. Finally, for the case of rank 0 we
have ∧1M =M = 0, which is trivial.
The above discussion reveals that the covariant disper-

sion relation ensuring at least one physical solution is

∧3M = 0, (26)

in which case M is rank 2 or less. In a coordinate basis,
this dispersion relation takes the tensor form

1

3!
M[µ1

ν1Mµ2

ν2Mµ3]
ν3 = 0. (27)

Also, if it so happens that requiring ∧3M = 0 also leads
to ∧2M = 0, then a two-dimensional physical solution
space exists. We interpret this situation as follows. Sup-
pose we fix the 3-momenta pj , and find a frequency p0
that solves the dispersion relation (26). If at this fre-
quency ∧2M 6= 0 and hence M has rank two, then there
is exactly one non-gauge polarization mode Aµ associated
with this solution. Other frequencies p0 that solve the
dispersion relation (26) lead to different polarizations and
different phase velocities. The solution Aµ is therefore

birefringent. However, if for a given frequency solution
we find ∧2M = 0 and hence M of rank one, then there
are two independent polarizations that propagate with
the same phase velocity. This situation represents non-
birefringence. We therefore obtain the correspondence

∧2M = 0 ↔ no birefringence, (28)

which provides the explicit condition for the existence of
nonbirefringent modes. The next subsection explores the
issue of birefringence in more detail.

The covariant tensor dispersion relation (26) can be
rewritten as a covariant scalar dispersion relation by the
judicious use of gauge symmetry. To see this, adopt
the special domain basis {A1, A2, A3, p}. Since gauge
invariance implies Mp = 0, the only 3-vectors ω that
yield nonzero values of (∧3M)(ω) must be proportional
to A1 ∧ A2 ∧ A3. Consequently, the transformation
(∧3M)(ω) is one dimensional, and therefore its dual

∧̃3M must also be one dimensional. The hermiticity
of M implies that there is a vector V µ in terms of

which the dual transformation ∧̃3M is determined as
(∧̃3M)µν = V µ∗V ν . Direct calculation with this result

shows that (∧̃3M)µνpν = (∧̃3M)ρρp
µ, and from these re-

lations we find pρpρ(∧̃3M)µν = (∧̃3M)ρρp
µpν . Finally,

this expression implies that the tensor dispersion rela-
tion (26) is satisfied for any nonzero p if and only if the
trace of its dual vanishes. So we arrive at the covariant
dispersion relation

(∧̃3M)ρρ = 0, (29)

which is a scalar density.

In terms of the constitutive tensors (14), the covariant
scalar dispersion relation (29) can be written as

0 = − 1
3 χ̂

µανβ
(
(∧̃2Me)µανβ − 3(∧̃2Mo)µανβ

)

= − 1
3ǫµ1µ2µ3µ4ǫν1ν2ν3ν4pρ1pρ2pρ3pρ4 χ̂

µ1µ2ν1ρ1 χ̂ν2ρ2ρ3µ3 χ̂ρ4µ4ν3ν4 + 8pαpβ(k̂AF )µ(k̂AF )ν χ̂
αµβν . (30)

In this expression, the dual of ∧2M is defined by

(∧̃2M)µανβ ≡ 1
4ǫµαργǫνβσδM

ρσMγδ, (31)

while Me and Mo are, respectively, the CPT-even and
CPT-odd parts of M .
The covariant scalar dispersion relation (30) is a neces-

sary condition for the existence of nontrivial plane-wave
solutions. The first term on the right-hand side of Eq.
(30) is CPT even and matches the result found in Ref.
[52] in the appropriate limit. The last term contains all
CPT-violating contributions. Note that this covariant

scalar dispersion relation is independent of the spacetime
metric ηµν . Note also that the momentum dependence of

the constitutive tensor χ̂µνρσ and of (k̂AF )µ implies that
the dispersion relation (30) is typically a polynomial of
degree greater than four in the frequency p0. As a result,
more eigenfrequencies typically exist in the presence of
Lorentz violation than for the corresponding situation
in conventional electrodynamics, and so more modes can
propagate. However, following a reasoning similar to that
leading to the equations of motion (11), we expect the
solutions of interest to be small perturbations of the lim-
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iting physical solutions in conventional electrodynamics.
It follows that only the corresponding subset of the solu-
tions to the dispersion relation (30) are relevant to low-
energy physics, while the others represent high-frequency
modes that may play a role as Planck-scale energies are
approached.

D. Birefringence

Astrophysical searches for vacuum birefringence in
photon propagation provide sensitivities to Lorentz vi-
olation that are many orders of magnitude beyond those
attainable via other techniques. It is therefore valuable
to classify coefficients for Lorentz violation according to
their birefringence effects. The analysis in the previous
subsection has already provided some insight via the con-
dition (28) for the absence of birefringence. In this sub-
section, we provide a decomposition of coefficients for
Lorentz violation that distinguishes birefringent and non-
birefringent cases. We also offer some remarks about
generic conditions for birefringence and their connection
to the metric and to electromagnetic duality.

1. Coefficients for birefringence

In the minimal SME, leading-order birefringence is
known to be controlled by the d = 3 coefficients (kAF )µ
and by a subset of the d = 4 coefficients (kF )

κλµν [7, 11].
In the present context with Lorentz-violating operators
of any dimension, a similar pattern holds: leading-order
birefringence is associated with all the odd-d coefficients

k̂AF and with some combinations of the even-d coeffi-
cients k̂F . One way to verify this is via the covariant
scalar dispersion relation (30).
To identify the relevant even-d coefficients, it is useful

to introduce the definitions

κ̂e+ = 1
2 (κ̂DE + κ̂HB)− 1

6Tr(κ̂DE + κ̂HB),

κ̂e− = 1
2 (κ̂DE − κ̂HB)− 1

6Tr(κ̂DE − κ̂HB),

κ̂o+ = 1
2 (κ̂DB + κ̂HE),

κ̂o− = 1
2 (κ̂DB − κ̂HE), (32)

κ̂tr+ = 1
6Tr(κ̂DE + κ̂HB),

κ̂tr− = 1
6Tr(κ̂DE − κ̂HB),

which give an experimentally judicious decomposition of
the coefficients for Lorentz violation appearing in Eq.
(18). The first four of these are traceless 3 × 3 matri-
ces, with κ̂e+, κ̂e−, κ̂o− symmetric and κ̂o+ antisymmet-
ric. The last two are SO(3) rotation scalar combinations.
Note that κ̂tr+ can be disregarded in the minimal SME
because it represents a simple Lorentz-invariant scaling
factor in that context, but nonrenormalizable terms of
this type can violate Lorentz symmetry and so must be
included in the present context.

Among the combinations (32), only the matrices κ̂e+
and κ̂o− cause vacuum birefringence at leading order.
This result can be understood in terms of a Weyl decom-
position of the constitutive tensor χ̂µνρσ analogous to the
Weyl decomposition of the Riemann tensor,

χ̂µνρσ = 1
2 (η

µρηνσ − ηνρηµσ)

+ 1
2

(
ηµρ(ĉF )

νσ − ηνρ(ĉF )
µσ

+ ηνσ(ĉF )
µρ − ηµσ(ĉF )

νρ
)
+ Ĉµνρσ . (33)

In this equation, the tensor Ĉµνρσ corresponds to the
Weyl component and is traceless, Ĉµνρσηνσ = 0. The
term corresponding to the Ricci component involves
(ĉF )

αβ , which is defined as the symmetric combination

(ĉF )
αβ ≡ (k̂F )

αµβ
µ − 1

6 (k̂F )
µν

µνη
αβ . (34)

The relations between (ĉF )
αβ , Ĉµνρσ and the κ̂ matrices

are

(ĉF )
00 = 1

2

(
3κ̂tr− + κ̂tr+

)
,

(ĉF )
jk = −(κ̂e−)

jk + 1
2

(
(κ̂tr−)− (κ̂tr+)

)
δjk,

(ĉF )
0j = − 1

2 (κ̂o+)
klǫjkl, (35)

Ĉ0j0k = − 1
2 (κ̂e+)

jk,

Ĉjklm = 1
2 (κ̂e+)

npǫjknǫlmp,

Ĉ0jkl = 1
2 (κ̂o−)

jmǫklm.

We see that the ten independent components of ĉF are
equivalent to the ten independent components of κ̂e−,
κ̂o+, κ̂tr+, and κ̂tr−, while the ten independent compo-

nents of Ĉ match those of κ̂e+ and κ̂o−.
The decomposition (33) reveals that the coefficients

ĉF play the role of a small distortion of the spacetime
metric at leading order. In this respect, they are anal-
ogous to the cαβ coefficients in the matter sector of the
SME, which motivates the notation. As further discussed
below, a small metric distortion leaves unaffected the
usual degeneracy between polarizations and so cannot
cause birefringence at leading order. In contrast, the
non-metric Weyl piece of Eq. (33) breaks the degener-
acy and causes birefringence. Note that the effects of
c-type coefficients in the minimal SME are unobservable
in experiments involving only one sector, since they can
be removed by a judicious coordinate choice. However,
in the present context where ĉF depends on energy and
momentum, dispersion effects may arise that are observ-
able.
The above decomposition and results hold for the vac-

uum, where the Weyl decomposition is performed using
the Minkowski metric. However, the effective metric gµν
for electrodynamics in a macroscopic medium M is no
longer Minkowski, so the above decomposition must be
modified. The Weyl part ĈM is required to be trace-
less with respect to gµν instead, so the assignment of κ̂

matrices to ĈM and ĉMF differs. The attribution of bire-
fringence effects to a coefficient can therefore be medium
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dependent. It also follows that an experiment in a suit-
able medium can achieve sensitivities to different coef-
ficients compared to the same experiment performed in

vacuo.

As an example, consider a uniform isotropic medium
M with refractive index n and permeability µ. Perform-
ing a decomposition of the constitutive tensor reveals
that the relations between ĈM , ĉMF and the κ̂ matrices
become

(ĉMF )00 = 1
2

√
µ(2− n2)κ̂tr+ + 1

2

√
µ(2 + n2)κ̂tr−,

(ĉMF )jk = −
√
µ(n2 + 1)

2n2
(κ̂e−)

jk +

√
µ(n2 − 1)

2n2
(κ̂e+)

jk

+ 1
2

√
µ
(
(κ̂tr−)− (κ̂tr+)

)
δjk,

(ĉMF )0j = − 1
2

√
µ(κ̂o+)

klǫjkl, (36)

(ĈM )0j0k = − 1
4 (n

2 + 1)(κ̂e+)
jk + 1

4 (n
2 − 1)(κ̂e−)

jk,

(ĈM )jklm =
(n2 + 1)

4n2
(κ̂e+)

npǫjknǫlmp

− (n2 − 1)

4n2
(κ̂e−)

npǫjknǫlmp,

(ĈM )0jkl = 1
2 (κ̂o−)

jmǫklm.

For this type of medium, we see that birefringence is
associated with the matrix κ̂e− as well as the matrices
κ̂e+ and κ̂o−. Moreover, the matrix κ̂e+ can now affect
nonbirefringent phenomena at leading order, unlike the
vacuum case. Additional coefficient mixings can be ex-
pected in anisotropic and gyroscopic media.

2. Birefringence, metric, and duality

An interesting challenge is the identification of the min-
imal set of requirements leading to birefringence. For
simple local constitutive relations, nonbirefringence is
known to be associated with a pure-metric constitutive
tensor [53, 54], while electromagnetic duality plays a role
[55]. The idea that the essential properties of electrody-
namics rely on constitutive relations rather than the un-
derlying metric structure of the spacetime is a key aspect
of the premetric approach to electrodynamics [52, 56].
In this subsection, we offer some remarks on the role of
the metric and of electromagnetic duality in determining
birefringence conditions within the context of the general
constitutive relations (14).

Our primary conjecture is that the only nonbirefrin-
gent terms arise from the non-Weyl component of χ̂µνρσ.
We therefore seek a procedure for extracting this com-
ponent. The structure of the Weyl decomposition (33)
suggests the possibility of introducing an effective met-
ric ĝµν in terms of which the Ricci component vanishes.
This would imply a natural decomposition of χ̂µνρσ into
metric and non-metric components or, equivalently, into
nonbirefringent and birefringent components.

We therefore postulate the existence of an effective

metric ĝµν satisfying the eigenproblem

2
3 χ̂

µνρσ ĝνσ = (ĝ−1)µρ, (37)

where the scale factor for ĝµν is chosen so that the propor-
tionality constant in this equation matches the value for
standard electrodynamics. Note that in the present con-
text the effective metric ĝµρ typically depends on the 4-
momentum and therefore cannot be interpreted as a con-
ventional spacetime metric. The existence and unique-
ness of solutions to Eq. (37) is an interesting open issue,
but here we suppose all physically reasonable constitutive
operators χ̂µνρσ lead to a solution that is unique up to a
sign. For practical purposes, this issue is moot because
it suffices to use Eqs. (14) and (37) to find a perturbative
expansion for ĝµν .
The effective metric ĝµν provides a unique Weyl de-

composition of the constitutive tensor χ̂µνρσ, given by

χ̂ = ∧2ĝ−1 + χ̂w, (38)

where χ̂w is the trace-free Weyl component,
(χ̂w)

µνρσ ĝνσ = 0. Our conjecture now identifies
χ̂w as the birefringent component. We can verify this in
special limits. For vanishing χ̂w and no CPT violation,
the dispersion relation (30) reduces to

−
(
(ĝ−1)µνpµpν

)2
/ det ĝ = 0, (39)

as expected. Also, for this case we find that that the co-
factor tensor ∧2M is proportional to (ĝ−1)µνpµpν , which
demonstrates the absence of birefringence. Another limit
of interest involves small Lorentz violation. Solving at

leading order in k̂F , we find

ĝµν ≃ ηµν − (ĉF )µν ,

(χ̂w)
αβµν ≃ Ĉαβµν . (40)

This is also consistent, since it demonstrates that Ĉ
corresponds to the leading-order birefringent component
and ĉF to the nonbirefringent part.
In conventional electrodynamics, electromagnetic du-

ality ensures no birefringence occurs in the vacuum.
Given the 2-form field strength F and the dual 2-form
H = ∗F , the Maxwell equations in vacuo take the com-
pact form dH = 0, dF = 0. Here the ∗-operator is
defined as ∗µνρσ = 1

2ǫµν
ρσ and obeys ∗∗ = −I. In

this language, electromagnetic duality can be under-
stood as the statement that if F is a solution then so is
F ′ = exp(α∗)F = F cosα+H sinα. This can be viewed
as a rotation between F and H . The chiral components
F± = 1

2 (1 ± i∗)F of the field strength are irreducible
representations of these duality rotations and also of the
Lorentz group. The relevance to our discussion is that
duality symmetry excludes birefringence because it im-
plies the space of plane-wave solutions is two dimensional.
There are two independent polarizations that mix under
duality transformations, and the duality symmetry en-
sures that both polarizations propagate with the same
phase velocity, so no evolution of polarization can occur.
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This conventional duality can be generalized to the ef-
fective metric ĝµν relevant in our context. For an arbi-
trary effective metric, we define

∗̂ =
√
− det ĝ ∗ (∧2ĝ−1), (41)

which is normalized to satisfy ∗̂∗̂ = −I as usual. This
operator induces a chiral structure with respect to ĝµν .
The projections of the field strength F onto the chiral
subspaces are now

F± = 1
2 (1± i∗̂)F. (42)

Neglecting CPT-odd terms, the dual field strength

H ≡ ∗G = ∗χ̂F (43)

can also be decomposed into chiral components,

H± = ∗χ̂F± = 1
2 (1 ± i∗̂)H. (44)

According to our primary conjecture, the constitutive
tensor χ provides a natural decomposition of the solu-
tion space. It is therefore plausible that the absence of
birefringence is associated with a duality symmetry gen-
erated by ∗̂, with any nonzero Weyl piece χ̂w or nonzero
CPT violation breaking this symmetry and so causing
birefringence. We can explore this idea for the case of
constitutive relations of the metric type, χ̂ = ∧2ĝ−1.
This form of the constitutive tensor yields the closure
relation ∗χ̂ ∗ χ̂ = 1/ det ĝ. Under these circumstances,
if F represents a solution to the Maxwell equations
dF = dH = 0, then it can be shown that F → ∗χ̂F
is also a solution. This generalizes the result for con-
ventional duality rotations to the ∗̂-chiral subspaces. It
follows that every polarization is associated with a sec-
ond polarization that is also a solution and hence that
birefringence is absent, as expected.
A rigorous derivation of the above results is an open

problem of definite interest, although it lies beyond our
present scope. Note that our arguments hold inside
any simply connected source-free region. We anticipate
that they can also be applied to more general scenar-
ios with inhomogeneous constituent tensors and curved
spacetimes, in which duality would be defined locally.
It is also plausible that duality breaking could arise via
boundary conditions. This could lead, for example, to
a foundational understanding of degeneracy splitting in
resonant cavities. Generalizations of the framework may
also merit investigation. For instance, more complicated
closure relations of the form ∗χ̂ ∗ χ̂ = a+ b ∗ χ̂ for scalar
a and b also result in duality symmetries, and they may
be related to improved decompositions of the constitu-
tive relations. One could also consider a duality at the
potential level, involving mixing of two 1-forms A and B
obeying F = dA and H = dB, which can be found for
any vacuum solution. Such approaches may make it pos-
sible to incorporate CPT-violating effects in this picture.

E. Effects of Lorentz violation

It is of interest to categorize the types of effects pro-
duced by Lorentz violation in various physical situations.
A number of schemes are possible. In this subsection,
we offer some remarks about the categorization used
in later sections, which is based on identifying Lorentz-
violating effects in terms of birefringence, dispersion, and
anisotropy.
In the previous subsections, we have defined birefrin-

gence as the existence of only one low-energy eigenmode
for a particular solution to the covariant dispersion re-
lation (30), and we have conjectured its connection to
a breakdown of duality. This definition contains more
than the notion of rotation of the polarization of light in
the vacuum. The breaking of eigenmode degeneracy can
cause effects in circumstances other than vacuum prop-
agation, such as the splitting of resonant frequencies in
cavities. In the remainder of this work, the term birefrin-
gence is used in the sense of eigenmode nondegeneracy.
In vacuum propagation, this reduces to the usual notion
of rotation of polarization and can be termed vacuum
birefringence.
A similar dichotomy appears in the definition of dis-

persion. In what follows, we adopt the term dispersive to
refer to Lorentz-violating operators in the Lagrange den-
sity that appear with other than two derivatives. Only
operators with mass dimension d = 4 are nondispersive
in this sense. In the momentum-space covariant disper-
sion relation, these operators contribute terms that are
non-quadratic in the momentum. However, this defini-
tion implies more than merely a nonlinear relationship
between the frequency p0 and the momentum p for vac-
uum propagation. As shown explicitly in Sec. IVE, some
operators involving non-quadratic derivative terms and
hence labeled as dispersive according to our usage in fact
produce no leading-order dispersion in vacuum propa-
gation, although they can produce analogous effects in
other situations such as cavity resonators. Throughout
this work, we use the term dispersive to mean d 6= 4, and
we reserve the term vacuum dispersion for modifications
to the usual relation p0 = |p| for vacuum propagation.
In any physical situation, the properties of electro-

magnetic waves are determined by the coefficients for
Lorentz violation, the medium, and the boundary con-
ditions. Some useful intuition can be gained by consid-
ering the interplay between these and the resulting bire-
fringent, dispersive, and anisotropic effects.
Consider first the presence of a macroscopic medium.

We have seen in the previous subsection that a coeffi-
cient controls birefringence if it is associated with CPT
violation or if it contributes to the Weyl piece of the con-
stitutive tensor χ̂µνρσ. The presence of a medium can
affect the Weyl decomposition, as shown in Eq. (36), so
the manifestation of Lorentz-violating birefringence de-
pends on the medium. In contrast, a coefficient controls
Lorentz-violating dispersion according to the derivative
structure of the corresponding operator in the Lagrange
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density, which is unaffected by the medium. Similarly,
Lorentz-violating anisotropic effects are determined by
the rotation properties of the relevant operators, and so
they too are independent of the medium.

The role of the boundary conditions is different. A
given choice of boundary conditions determines which
coefficients for Lorentz violation are measurable. This
feature is similar to a property of conventional electrody-
namics. A given solution, such as a vacuum plane wave or
a cavity eigenmode, is determined by both the Maxwell
equations and by the boundary conditions. Changing
the boundary conditions reveals distinct sets of eigensolu-
tions with different physical properties. One cannot, for
instance, expand vacuum plane waves in terms of cavity
eigenmodes. Similarly, in the presence of Lorentz viola-
tion, a specific choice of boundary conditions fixes certain
eigenmodes as solutions. However, only a suitable subset
of the coefficients for Lorentz violation affects a given set
of eigenmodes. For example, far-field boundary condi-
tions suitable for vacuum radiation yield solutions that
depend on a much reduced subset of coefficients, as is
explicitly identified in Sec. IVC.

Despite their role in determining the observability of
coefficients for Lorentz violation, the boundary condi-
tions have no impact on the associated physical effects.
For example, the birefringence properties of a given oper-
ator are unaffected, essentially because the duality sym-
metry is a local property and therefore is independent
of the boundary conditions. Dispersive properties are
also unaffected because they are associated with position-
space derivatives on the Lorentz-violating operators and
therefore are basically a local feature in position space.
The associated modification of the momentum-space re-
lation between p0 and p reflects an impact on the eigen-
solution space as described above, rather than a change
in the underlying dispersive properties of the operators.
Similarly, the anisotropy properties of Lorentz-violating
operators are fixed by the Lagrange density and are in-
dependent of the boundary conditions.

This feature of the boundary conditions has the in-
teresting implication that a comprehensive search for
Lorentz violation requires multiple observational and ex-
perimental methods, since any one method typically ap-
plies one type of boundary condition and so cannot be
expected to access the whole coefficient space. It also
means there are multiple approaches for categorizing the
coefficients. For example, one can split the coefficient
space into a subset selected by boundary conditions ap-
propriate for vacuum propagation and its complement.
This turns out to be an apposite splitting for several rea-
sons, and we develop it in some detail beginning in Sec.
IV. However, one could in principle consider alternative
splittings of the coefficient space using other boundary
conditions, such as ones for resonant cavities.

III. SPHERICAL DECOMPOSITION

In the previous section, we have demonstrated that
the effects on photon propagation of Lorentz-violating
operators of arbitrary dimension are specified by the
Lagrange density (8) and are determined by the co-

efficients for Lorentz violation (k
(d)
AF )κ

α1...α(d−3)

and

(k
(d)
F )κλµνα1...α(d−4) . A classification of these coefficients

that characterizes the key effects of the corresponding
Lorentz-violating operators is both useful and convenient
for more detailed investigations. The ideal scenario is to
establish a minimal collection of independent coefficients
associated with operators having physical properties of
direct relevance to observation and experiment.

One natural classification scheme takes advantage of
the role of spatial rotations to perform an SO(3) decom-
position of the coefficients for Lorentz violation. This
technique has been applied to obtain first measurements
of certain coefficients relevant to vacuum photon prop-
agation from astrophysical observations of active galax-
ies, gamma-ray bursts, and the cosmic microwave back-
ground [22, 23]. The SO(3) decomposition uses spin-
weighted spherical harmonics [57, 58], which are angular-
momentum eigenstates and so obey relatively simple
transformation rules under rotations. The method has
the advantage that spin-weighted spherical harmonics are
commonly used in some areas of astrophysics [59] and are
well understood. A summary of some properties of spin-
weighted spherical harmonics is provided in Appendix A,
which also derives several mathematical relations used in
what follows.

In this section, we discuss the decomposition of the

coefficients k̂AF and k̂F into spin-weighted components.

For the analysis, the coefficient k̂AF is separated into the

pseudoscalar (k̂AF )0 and the pseudovector k̂AF , while

k̂F is separated into the tensors κ̂DE and κ̂HB and the
pseudotensor κ̂DB defined in Eq. (18). Each of these
five components is expanded in a helicity basis and de-
composed into spin-weighted spherical harmonics. The

symmetries of k̂AF and k̂F then permit extraction of a
minimal collection of spherical coefficients for Lorentz vi-
olation.

The results in this section demonstrate that the mini-
mal collection of spherical coefficients includes nine sets
of coefficients. For convenience, we summarize the no-

tation here. Three sets are extracted from k̂AF and are

denoted (k
(d)
AF )

(0B)
njm , (k

(d)
AF )

(1B)
njm , and (k

¬(d)

AF )
(1E)
njm . Six sets

emerge from k̂F , denoted (c
(d)
F )

(0E)
njm , (k

(d)
F )

(0E)
njm , (k

¬(d)

F )
(1E)
njm ,

(k
¬(d)

F )
(2E)
njm , (k

(d)
F )

(1B)
njm , and (k

¬(d)

F )
(2B)
njm . The symbol c spec-

ifies coefficients associated with nonbirefringent opera-
tors, while k specifies birefringent ones. A negation di-
acritic ¬ denotes coefficients that have no leading-order
effects on the vacuum propagation of light, a property
derived in Sec. IVE. The subscripts n, j, and m deter-
mine the frequency or wavelength dependence, the total
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angular momentum, and the z-component of the angu-
lar momentum, respectively. The allowed ranges of these
three indices and the counting of the coefficients are given
in Tables I, III, IV, and V. The label d gives the mass
dimension of the corresponding operator for Lorentz vi-
olation, while the numerals 0,1, or 2 preceding either E
or B refer to the spin weight of the operator. The su-
perscripts E and B refer to the parity of the operator,
with parity (−1)j labeled as E and parity (−1)j+1 as B.
The phases are chosen so that each spherical coefficient
Kjm for Lorentz violation obeys the complex-conjugation
relation

(Kjm)∗ = (−1)mKj(−m). (45)

Note that this implies that the pair of complex coeffi-
cients Kjm and Kj(−m) are codependent but represent
two real degrees of freedom.

A. General CPT-odd coefficients

We begin the decomposition of (k̂AF )κ by performing

an expansion of the pseudoscalar component (k̂AF )0 in

spherical harmonics. The first step is to separate (k̂AF )0
into pieces with definite frequency and 3-momentum de-
pendence. Denoting the frequency by ω = p0 and the
components of the 3-momentum p by pk, we obtain the
expression

(k̂AF )0 =
∑

d

d−3∑

n=0

(−1)n+(d+1)/2 ( d−3
n )

× (k
(d)
AF )0

0...0k1...kn

ωd−3−npk1 . . . pkn . (46)

Writing the magnitude of the 3-momentum as p = |p|,
we see that each term in the sum involves a factor of
ωd−3−npn. The frequency and wavelength dependence
of each term is therefore controlled by the new index n.
The direction dependence introduced by the components
of p is characterized through the expansion in spherical
harmonics below.
To determine the relevant angular-momentum eigen-

values j for the spherical-harmonic expansion, we can
break the coefficients for each n into a series of three-
dimensional traceless symmetric tensors of rank n, n− 2,
n − 4, . . .. This implies the range of eigenvalues l = n,
n−2, n−4, . . . for the orbital angular momentum. Since

the spin of (k̂AF )0 is zero, the eigenvalue j must also span
this range. An alternative and more elegant approach
makes use of parity. For a given n, the orbital angular
momentum is limited by n. Since the spin is zero, we

must have j ≤ n. Given that (k̂AF )
0 is a pseudoscalar

and p is a vector, each term in the expansion must have
parity (−1)n+1 with only B-type parity occurring. This
imposes the relation (−1)n+1 = (−1)j+1, which implies
that j − n is even. The conclusion is that j = n, n− 2,
n− 4, . . . ≥ 0, as before.

The resulting expansion in spherical harmonics is given
by

(k̂AF )0 =
∑

dnjm

ωd−3−npn 0Yjm(p̂) (k
(d)
AF )

(0B)
njm . (47)

The spherical coefficients for Lorentz violation (k
(d)
AF )

(0B)
njm

are nonzero for the n and j values listed in Table I. As an
example, consider d = 5. In this case, there are two j = 0

singlets, (k
(5)
AF )

(0B)
000 and (k

(5)
AF )

(0B)
200 . There is also one j =

1 triplet (k
(5)
AF )

(0B)
11m , with m = −1, 0, 1. Finally, there is

one j = 2 quintuplet (k
(5)
AF )

(0B)
22m , with m = −2, −1, 0, 1,

2. The total number of coefficients is 1 + 1+ 3 + 5 = 10.
Next, we perform a spherical-harmonic expansion of

the radial component (k̂AF )r = p̂ · k̂AF = êr · k̂AF . This
component is also a pseudoscalar, and the decomposition
follows the same basic steps as above. However, the addi-
tional p̂ factor implies that the total angular momentum
is now limited by j ≤ n+1. Also, the parity of each term
is given by (−1)n = (−1)j+1, yielding the range of j as
j = n+ 1, n− 1, n− 3, . . . ≥ 0. We therefore obtain the
expansion

(k̂AF )r =
∑

dnjm

ωd−3−npn 0Yjm(p̂) (k
(d)
AF )

(0B′)
njm , (48)

involving another set of spherical coefficients (k
(d)
AF )

(0B′)
njm .

However, it turns out that the symmetries of the tensors

(k
(d)
AF )κ

α1...α(d−3)

imply that these new coefficients can
all be expressed as combinations of the other spherical

coefficients occurring in the expansion of (k̂AF )κ. Before
demonstrating this, we first complete the expansion of
k̂AF .
The remaining components of k̂AF have spin weight

±1, (k̂AF )± = ê± · k̂AF . For these cases, we again find
j ≤ n + 1, but now coefficients with both E- and B-
type parities occur. The parity is (−1)n, which implies
j = n+ 1, n− 1, . . . ≥ 1 for the B-type components and
j = n, n − 2, . . . ≥ 1 for the E-type components. Since
the spin weight is ±1, the index j for the total angular
momentum is limited from below by 1. The expansions of

the components (k̂AF )± in terms of spin-weighted spher-
ical harmonics take the forms

(k̂AF )± =
∑

dnjm

ωd−3−npn ±1Yjm(p̂)

× 1√
2j(j+1)

(
± (k

(d)
AF )

(1B)
njm + i(k

¬(d)

AF )
(1E)
njm

)
, (49)

where we introduce a factor of 1/
√
2j(j + 1) for later

convenience. The spherical coefficients for Lorentz vio-

lation (k
(d)
AF )

(1B)
njm and (k

¬(d)

AF )
(1E)
njm represent the remaining

two independent sets. Their ranges are summarized in
Table I.
The symmetries of (k

(d)
AF )κ

α1...α(d−3)

described in Sec.
II B imply certain constraints on the four sets of coeffi-

cients (k
(d)
AF )

(0B)
njm , (k

(d)
AF )

(0B′)
njm , (k

(d)
AF )

(1B)
njm , and (k

¬(d)

AF )
(1E)
njm .
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(k
(d)
AF )

(0B)
njm (k

(d)
AF )

(1B)
njm (k

¬(d)

AF )
(1E)
njm

n j j j

0 0 1

1 1 2 1

2 0 2 1 3 2
3 1 3 2 4 1 3

4 0 2 4 1 3 5 2 4
...

...
. . .

...
. . .

...
. . .

d− 3 0 2 · · · d− 3 1 3 · · · d− 2 2 · · · d− 3

total 1
6
d(d− 1)(d− 2) 1

6
(d− 1)(d2 + d− 3) 1

6
(d+ 1)(d− 1)(d− 3)

TABLE I: Summary of the allowed ranges of indices n and j for the independent spherical coefficients associated with CPT-odd
operators. The dimension d is odd with d ≥ 3, while n ≤ d − 3. The index m satisfies the usual restrictions −j ≤ m ≤ j, so
there are 2j+1 coefficients for each j. For a given dimension d, the number of coefficients of each type is given in the last row.
Adding these gives the expected total of 1

2
(d+ 1)(d− 1)(d− 2).

To determine these constraints, the symmetries must be
formulated in the momentum-space helicity basis. Recall

that the tensors (k
(d)
AF )κ

α1...α(d−3)

are totally symmetric in
the last d−3 indices and that any trace involving the first
index vanishes. The total-symmetry condition is implicit
in the above spherical-harmonic decompositions, but the
trace condition provides a nontrivial constraint.
In momentum space, the trace condition can be written

as the differential equation

0 =
∂

∂pκ
(k̂AF )κ =

∂

∂ω
(k̂AF )0 +∇ · k̂AF

=
∂

∂ω
(k̂AF )0 +∇r(k̂AF )r +∇+(k̂AF )− +∇−(k̂AF )+

=
∂

∂ω
(k̂AF )0 +

(∂
∂p

+
2

p

)
(k̂AF )r

+
1

p

(
J+(k̂AF )− − J−(k̂AF )+

)
, (50)

where we have used the identities (A37). The combi-

nation J+(k̂AF )− − J−(k̂AF )+ is a pseudoscalar that is

generated by the B component of k̂AF and that con-
tains no E component. Consequently, Eq. (50) provides
a symmetry constraint involving only the B-type coef-

ficients (k
(d)
AF )

(0B)
njm , (k

(d)
AF )

(0B′)
njm , and (k

(d)
AF )

(1B)
njm . Insert-

ing the spherical-harmonic expansions into Eq. (50) and
making use of the identity (A35) yields an explicit rela-
tion involving these three coefficient sets. Careful consid-

eration of the index ranges then reveals that (k
(d)
AF )

(0B′)
njm

may be written as

(k
(d)
AF )

(0B′)
njm =

−1

n+ 2

(
(k

(d)
AF )

(1B)
njm

+ (d− 2− n)(k
(d)
AF )

(0B)
(n−1)jm

)
. (51)

We conclude that the auxiliary coefficients (k
(d)
AF )

(0B′)
njm are

completely determined as linear combinations of the in-

dependent coefficients (k
(d)
AF )

(0B)
njm and (k

(d)
AF )

(1B)
njm .

The net yield of the helicity decomposition of (k̂AF )κ is
therefore three independent sets of spherical coefficients
for Lorentz violation, which are the B-type coefficients

(k
(d)
AF )

(0B)
njm and (k

(d)
AF )

(1B)
njm , and the E-type coefficients

(k
¬(d)

AF )
(1E)
njm . These coefficients completely characterize the

CPT-odd Lorentz-violating operators of arbitrary mass
dimension associated with the quadratic action for elec-
trodynamics. All the operators are birefringent. On each
set of coefficients, the label d specifies the (odd) mass di-
mension of the operator. The three indices n, j, and m
determine the frequency or wavelength dependence, the
total angular momentum, and the z-component of the
angular momentum, respectively. The allowed ranges of
these three indices and the counting of the coefficients
are given in Table I. The superscripts E and B refer to
the operator parity, while the superscript numerals 0 or
1 preceding either E or B specify the spin weight of the
operator. The total number of coefficients for given odd
d is 1

2 (d+1)(d− 1)(d− 2), matching the group-theoretic
result from Sec. II.

B. General CPT-even coefficients

The spherical decomposition of the CPT-even Lorentz-

violating operators (k̂F )
κλµν follows a procedure similar

to that for the CPT-odd case discussed in the previous
subsection. However, instead of working directly with

(k̂F )
κλµν , it is more convenient to decompose the three

matrices κ̂DE , κ̂HB , and κ̂DB given in Eq. (18), which
have equivalent content.
We begin by separating the three matrices κ̂DE , κ̂HB ,

κ̂DB into their SO(3)-irreducible trace, symmetric trace-
less, and antisymmetric parts. These irreducible parts
can be expressed in the helicity basis via κab = êa ·κ · êb,
where a, b = +, r,−. Each component can then be ex-
panded in the appropriate spin-weighted spherical har-
monics, recalling that κ̂DE , κ̂HB are tensors while κ̂DB

is a pseudotensor. At this stage, we find the results can
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(κ
(d)
DE)

(0E)
njm , (κ

(d)
HB)

(0E)
njm , (κ

(d)
DE)

(1E)
njm , (κ

(d)
HB)

(1E)
njm , (κ

(d)
DE)

(2E)
njm , (κ

(d)
HB)

(2E)
njm ,

(κ
(d)
DB)

(0B)
njm (κ

(d)
DB)

(1B)
njm (κ

(d)
DB)

(2B)
njm (κ

(d)
DE)

(0E′)
njm , (κ

(d)
HB)

(0E′)
njm

n j j j j

0 0 2 2 2 0
1 1 3 1 3 3 1

2 0 2 4 2 4 2 4 0 2
3 1 3 5 1 3 5 3 5 1 3

4 0 2 4 6 2 4 6 2 4 6 0 2 4
...

...
. . .

...
. . .

...
. . .

...
. . .

d− 4 0 2 · · · d− 2 2 4 · · · d− 2 2 4 · · · d− 2 0 2 · · · d− 4

(κ
(d)
DE)

(1B)
njm , (κ

(d)
HB)

(1B)
njm (κ

(d)
DE)

(2B)
njm , (κ

(d)
HB)

(2B)
njm

(κ
(d)
DB)

(1E)
njm , (κ

(d)
DB)

(1E′)
njm (κ

(d)
DB)

(2E)
njm (κ

(d)
DB)

(0E′)
njm (κ

(d)
DB)

(1B′)
njm

n j j j j

0 1 1

1 2 2 0 2 1
2 1 3 3 1 3 2

3 2 4 2 4 0 2 4 1 3
4 1 3 5 3 5 1 3 5 2 4
...

...
. . .

...
. . .

...
. . .

...
. . .

d− 4 1 3 · · · d− 3 3 · · · d− 3 1 3 · · · d− 3 2 · · · d− 4

TABLE II: Summary of the allowed ranges of indices n and j for the 20 sets of codependent spherical coefficients associated
with general CPT-even operators. The dimension d is even with d ≥ 4, while n ≤ d − 4. The index m satisfies the usual
restrictions −j ≤ m ≤ j, so there are 2j + 1 coefficients for each j.

be expressed as 13 equations involving sums over twelve
sets of E-type and eight sets of B-type coefficients, for
a total of 20 sets of codependent coefficients. The chal-
lenge is to use these equations and the symmetries of

(k̂F )
κλµν to identify the independent sets of coefficients

among the 20 codependent ones. The 13 equations are
given explicitly below. In them, all sums are restricted
to even dimensions d ≥ 4. The maximum range of the
indices spans 0 ≤ n ≤ d − 4 for n and 0 ≤ j ≤ n + 2,
−j ≤ m ≤ j for the eigenvalue indices of the angular mo-
mentum. Details of the allowed index ranges for each of
the 20 sets of codependent coefficients are given in Table
II.

For the matrix κ̂DE , six sets of coefficients are needed,
and the result is

(κ̂DE)rr =
∑

dnjm

ωd−4−npn 0Yjm(p̂)

×
(
(κ

(d)
DE)

(0E)
njm + (κ

(d)
DE)

(0E′)
njm

)
, (52a)

(κ̂DE)+− =
∑

dnjm

ωd−4−npn 0Yjm(p̂)

×
(
− 1

2 (κ
(d)
DE)

(0E)
njm + (κ

(d)
DE)

(0E′)
njm

)
, (52b)

(κ̂DE)±r =
∑

dnjm

ωd−4−npn ±1Yjm(p̂)

× 1√
2j(j+1)

(
± (κ

(d)
DE)

(1E)
njm + i(κ

(d)
DE)

(1B)
njm

)
,

(52c)

(κ̂DE)±± =
∑

dnjm

ωd−4−npn ±2Yjm(p̂)

×
√

(j−2)!
(j+2)!

(
(κ

(d)
DE)

(2E)
njm ± i(κ

(d)
DE)

(2B)
njm

)
.

(52d)

In this decomposition, the coefficients (κ
(d)
DE)

(0E′)
njm emerge

from the trace component of κ̂DE .

Another six sets of coefficients are needed for the ma-
trix κ̂HB . The corresponding equations are

(κ̂HB)rr =
∑

dnjm

ωd−4−npn 0Yjm(p̂)

×
(
(κ

(d)
HB)

(0E)
njm + (κ

(d)
HB)

(0E′)
njm

)
, (53a)

(κ̂HB)+− =
∑

dnjm

ωd−4−npn 0Yjm(p̂)

×
(
− 1

2 (κ
(d)
HB)

(0E)
njm + (κ

(d)
HB)

(0E′)
njm

)
, (53b)
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(κ̂HB)±r =
∑

dnjm

ωd−4−npn ±1Yjm(p̂)

× 1√
2j(j+1)

(
± (κ

(d)
HB)

(1E)
njm + i(κ

(d)
HB)

(1B)
njm

)
,

(53c)

(κ̂HB)±± =
∑

dnjm

ωd−4−npn ±2Yjm(p̂)

×
√

(j−2)!
(j+2)!

(
(κ

(d)
HB)

(2E)
njm ± i(κ

(d)
HB)

(2B)
njm

)
.

(53d)

The coefficients (κ
(d)
HB)

(0E′)
njm correspond to the trace com-

ponent of κ̂HB .
Finally, eight sets of coefficients are required in the

expansion of κ̂DB. The results are

(κ̂DB)rr =
∑

dnjm

ωd−4−npn 0Yjm(p̂) (κ
(d)
DB)

(0B)
njm , (54a)

(κ̂DB)±∓ =
∑

dnjm

ωd−4−npn 0Yjm(p̂)

×
(
− 1

2 (κ
(d)
DB)

(0B)
njm ∓ i(κ

(d)
DB)

(0E′)
njm

)
, (54b)

(κ̂DB)r± =
∑

dnjm

ωd−4−npn ±1Yjm(p̂)

× 1√
2j(j+1)

(
± (κ

(d)
DB)

(1B)
njm + i(κ

(d)
DB)

(1E)
njm

± (κ
(d)
DB)

(1B′)
njm − i(κ

(d)
DB)

(1E′)
njm

)
,

(54c)

(κ̂DB)±r =
∑

dnjm

ωd−4−npn ±1Yjm(p̂)

× 1√
2j(j+1)

(
± (κ

(d)
DB)

(1B)
njm + i(κ

(d)
DB)

(1E)
njm

∓ (κ
(d)
DB)

(1B′)
njm + i(κ

(d)
DB)

(1E′)
njm

)
,

(54d)

(κ̂DB)±± =
∑

dnjm

ωd−4−npn ±2Yjm(p̂)

×
√

(j−2)!
(j+2)!

(
(κ

(d)
DB)

(2B)
njm ± i(κ

(d)
DB)

(2E)
njm

)
.

(54e)

The sets of coefficients (κ
(d)
DB)

(1B′)
njm , (κ

(d)
DB)

(1E′)
njm , and

(κ
(d)
DB)

(0E′)
njm are associated with the antisymmetric part

of κ̂DE , which corresponds to κ̂o+ in Eq. (32).
The next step is to use the symmetries of the ten-

sors (k
(d)
F )κλµνα1...α(d−4) to determine the independent

sets of coefficients. These symmetries are described in
Sec. II, following Eq. (6). As in the CPT-odd case, the
independent coefficients can be identified by expressing
the symmetries as differential equations in momentum

(k
(d)
F )

(1B)
njm (k

¬(d)

F )
(2B)
njm

n j j

0 2

1 1 3 2

2 2 4 3
3 1 3 5 2 4

4 2 4 6 3 5
...

...
. . .

...
. . .

d− 4 2 4 · · · d− 2 3 · · · d− 3

total 1
6
(d3 − 4d − 18) 1

6
(d+ 3)(d− 2)(d− 4)

TABLE III: Summary of the allowed ranges of indices n and
j for the independent B-type spherical coefficients associated
with CPT-even birefringent operators. The dimension d is
even with d ≥ 4, while n ≤ d − 4. The index m satisfies the
usual restrictions −j ≤ m ≤ j, so there are 2j+1 coefficients
for each j. For a given dimension d, the number of coefficients
of each type is given in the last row.

space. It turns out that all the symmetries of k
(d)
F are im-

plicit in the above 13 equations, except for the condition
of vanishing antisymmetrization on any three indices of

(k
(d)
F )κλµνα1...α(d−4) . In momentum space, this symmetry

can be imposed by requiring

0 = ∂[ρ(k̂F )
µν]κλ, (55)

where ∂κ = ∂/∂pκ. In terms of κ̂ matrices, this require-
ment becomes the four conditions

∇b(κ̂HB)
ab = 0,

∇b(κ̂DB)
ab = 0,

∂

∂ω
(κ̂DB)

ab = εbcd∇c(κ̂DE)d
a
,

∂

∂ω
(κ̂HB)

ab = −εbcd∇c(κ̂DB)d
a

(56)

in the notation of the Appendix. Note the similarity to
the Maxwell equations.
The symmetry constraints (56) lead to relations among

the 20 codependent coefficients in the expansions (52),
(53), and (54). The procedure for determining these re-
lations involves expressing the differential equations (56)
in terms of the operators ∂/∂ω, ∂/∂p, and J±, and then
inserting the expansions. Following this procedure, we
find that Eq. (56) provides nine constraints on the eight
B-type coefficients and eleven constraints on the twelve
E-type coefficients. However, these constraints are not
all independent.
Some calculation with the nine constraints on the B-

type coefficients shows that there exist only two linearly
independent sets of B-type coefficients for Lorentz viola-

tion, which we denote by (k
(d)
F )

(1B)
njm and (k

¬(d)

F )
(2B)
njm . The

index ranges for these two sets are summarized in Table
III. All the corresponding Lorentz-violating operators
produce birefringent effects. In terms of these two sets,
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the eight codependent B-type coefficients appearing in
the expansions (52), (53), and (54) are given by

(κ
(d)
DE)

(1B)
njm = (d− 3− n)n(k

(d)
F )

(1B)
(n−1)jm, (57a)

(κ
(d)
DE)

(2B)
njm = −(d− 3− n)(j + 2)(j − 1)(k

(d)
F )

(1B)
(n−1)jm

− (d− 3− n)(d− 2− n)(k
¬(d)

F )
(2B)
(n−2)jm, (57b)

(κ
(d)
HB)

(1B)
njm = (n+ 2)(k

¬(d)

F )
(2B)
njm , (57c)

(κ
(d)
HB)

(2B)
njm = −(n+ 2)(n+ 3)(k

¬(d)

F )
(2B)
njm , (57d)

(κ
(d)
DB)

(0B)
njm = (n+ 1)(k

(d)
F )

(1B)
njm , (57e)

(κ
(d)
DB)

(1B)
njm = − 1

2 (n(n+ 3) + j(j + 1))(k
(d)
F )

(1B)
njm

− 1
2 (d− 3− n)(k

¬(d)

F )
(2B)
(n−1)jm, (57f)

(κ
(d)
DB)

(1B′)
njm = − 1

2 ((n+ 2)(n+ 3)− j(j + 1))(k
(d)
F )

(1B)
njm

+ 1
2 (d− 3− n)(k

¬(d)

F )
(2B)
(n−1)jm, (57g)

(κ
(d)
DB)

(2B)
njm = 1

2 (n+ 3)(j + 2)(j − 1)(k
(d)
F )

(1B)
njm

+ (d− 3− n)(n+ 2)(k
¬(d)

F )
(2B)
(n−1)jm. (57h)

The same procedure applied to the eleven constraints
on the E-type coefficients reveals that there are four lin-
early independent sets of E-type coefficients for Lorentz
violation. In this case, however, some components of the
corresponding operators are birefringent while others are
nonbirefringent. For ease of application in searches for
Lorentz violation, it would be useful to have a decom-
position that separates birefringent and nonbirefringent
components. At leading order, this separation is achieved
by the Weyl decomposition (33). Unfortunately, the rep-
resentations from the Weyl decomposition are incompati-
ble with the E-type coefficient representations contained
in the symmetry constraints (55). Although the latter
indeed include some operators that are purely birefrin-
gent and others that are purely nonbirefringent, there
are typically also birefringent operators with coefficients
that contribute to the nonbirefringent matrices κ̂e−, κ̂o+,
κ̂tr+, and κ̂tr−. Among the four independent sets of E-
type coefficients for Lorentz violation, there are thus ones
that contribute to (ĉF )

µν , ones that contribute to Ĉκλµν ,
and ones that contribute to both. However, we do find
that only a small fraction of the coefficients contribute
solely to Ĉκλµν . Consequently, it is reasonable to seek a
decomposition separating the nonbirefringent terms ap-
pearing only in (ĉF )

µν from the birefringent terms con-

tributing to Ĉκλµν and possibly also to (ĉF )
µν .

We first consider the nonbirefringent case. With zero

(c
(d)
F )

(0E)
njm

n j

0 0

1 1
2 0 2

3 1 3
4 0 2 4
...

...
. . .

d− 2 0 2 4 · · · d− 2

total 1
6
(d+ 1)d(d− 1)

TABLE IV: Summary of the allowed ranges of indices n and
j for the independent spherical coefficients associated with
CPT-even nonbirefringent operators. The dimension d is even
with d ≥ 4, while n ≤ d− 4. The index m satisfies the usual
restrictions −j ≤ m ≤ j, so there are 2j + 1 coefficients for
each j. For a given dimension d, the number of coefficients is
given in the last row.

leading-order birefringence, Lorentz violation associated
with the quadratic action for electrodynamics is com-
pletely characterized by (ĉF )

µν via

(k̂F )
µνρσ → 1

2

(
ηµρ(ĉF )

νσ − ηνρ(ĉF )
µσ

+ ηνσ(ĉF )
µρ − ηµσ(ĉF )

νρ
)
. (58)

The symmetry constraints (55) applied to this expression
yield the equation 0 = ∂[ρ(ĉF )

µ]ν in the nonbirefringent
case. The form of this constraint suggests solving via a
scalar potential Φ̂F , where

(ĉF )
µν → ∂µ∂νΦ̂F , (59)

where the derivatives act in momentum space. This re-
sult holds in the nonbirefringent case but is false in gen-
eral. Expanding the potential Φ̂F in spherical harmonics,

Φ̂F =
∑

dnjm

ωd−2−npn 0Yjm(p̂) (c
(d)
F )

(0E)
njm , (60)

we arrive at the minimal set (c
(d)
F )

(0E)
njm of nonbirefringent

spherical coefficients for Lorentz violation. This expan-
sion reveals that no B-type spherical coefficients appear
in the absence of leading-order birefringence. The in-
dex ranges and component counting for the coefficients

(c
(d)
F )

(0E)
njm are summarized in Table IV.

Using the expansion (60), the coefficients (ĉF )
µν can be

expressed in terms of the spherical coefficients (c
(d)
F )

(0E)
njm .

We can also find the contributions to the matrix compo-
nents in the expansions (52), (53), and (54) in the absence
of birefringence. Some of these components vanish and
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(k
(d)
F )

(0E)
njm (k

¬(d)

F )
(1E)
njm (k

¬(d)

F )
(2E)
njm

n j j j

0 2

1 1 3 2

2 0 2 4 1 3 2
3 1 3 5 2 4 3

4 0 2 4 6 1 3 5 2 4
...

...
. . .

...
. . .

...
. . .

d− 4 0 2 · · · d− 2 1 3 · · · d− 3 2 4 · · · d− 4

total 1
6
(d3 − d− 30) 1

6
(d− 4)(d2 + d+ 3) 1

6
(d− 4)(d2 − 2d− 9)

TABLE V: Summary of the allowed ranges of indices n and j for the independent E-type spherical coefficients associated with
CPT-even birefringent operators. The dimension d is even with d ≥ 4, while n ≤ d − 4. The index m satisfies the usual
restrictions −j ≤ m ≤ j, so there are 2j + 1 coefficients for each j. For a given dimension d, the number of coefficients of each
type is given in the last row.

others become equal, yielding

(κ
(d)
DB)

(1E)
njm → 0,

(κ
(d)
DB)

(2E)
njm → 0,

(κ
(d)
DE)

(0E)
njm ↔ −(κ

(d)
HB)

(0E)
njm ,

(κ
(d)
DE)

(1E)
njm ↔ −(κ

(d)
HB)

(1E)
njm ,

(κ
(d)
DE)

(2E)
njm ↔ −(κ

(d)
HB)

(2E)
njm . (61)

These conditions lead to vanishing κ̂e+ and κ̂o−, as re-
quired by nonbirefringence. The nonzero contributions
are given by

(κ
(d)
DE)

(0E′)
njm ⊇ −(n+2)(n+3)+j(j+1)

3 (c
(d)
F )

(0E)
(n+2)jm

+ (d−3−n)(d−2−n)(c
(d)
F )

(0E)
njm , (62a)

(κ
(d)
DE)

(0E)
njm ⊇ −2n(n+2)−j(j+1)

3 (c
(d)
F )

(0E)
(n+2)jm, (62b)

(κ
(d)
DE)

(1E)
njm ⊇ (n+1)j(j+1)(c

(d)
F )

(0E)
(n+2)jm, (62c)

(κ
(d)
DE)

(2E)
njm ⊇ −(j+2)(j+1)j(j−1)

2 (c
(d)
F )

(0E)
(n+2)jm, (62d)

(κ
(d)
HB)

(0E′)
njm ⊇ −2(n+2)(n+3)+2j(j+1)

3 (c
(d)
F )

(0E)
(n+2)jm, (62e)

(κ
(d)
HB)

(0E)
njm ⊇ 2n(n+2)+j(j+1)

3 (c
(d)
F )

(0E)
(n+2)jm, (62f)

(κ
(d)
HB)

(1E)
njm ⊇ −(n+1)j(j+1)(c

(d)
F )

(0E)
(n+2)jm, (62g)

(κ
(d)
HB)

(2E)
njm ⊇ (j+2)(j+1)j(j−1)

2 (c
(d)
F )

(0E)
(n+2)jm, (62h)

(κ
(d)
DB)

(0E′)
njm ⊇ (d−3−n)(n+1)(c

(d)
F )

(0E)
(n+1)jm, (62i)

(κ
(d)
DB)

(1E′)
njm ⊇ −(d−3−n)j(j+1)(c

(d)
F )

(0E)
(n+1)jm. (62j)

The above analysis completely characterizes the nonbire-
fringent Lorentz-violating operators associated with the
quadratic action for electrodynamics.
In the presence of birefringence, three additional in-

dependent sets of E-type coefficients appear. We can
therefore seek four mutually independent sets of spherical

coefficients, with one given by (c
(d)
F )

(0E)
njm and the remain-

ing three covering the birefringent portion of coefficient
space. It turns out that the three new sets of coeffi-
cients for birefringence have spin weights zero, one, and

two, and we denote them by (k
(d)
F )

(0E)
njm , (k

¬(d)

F )
(1E)
njm , and

(k
¬(d)

F )
(2E)
njm . The index ranges and component counting

for these three sets are summarized in Table V.
Imposing the symmetry conditions (56), a lengthy cal-

culation yields explicit expressions in terms of (k
(d)
F )

(0E)
njm ,

(k
¬(d)

F )
(1E)
njm , and (k

¬(d)

F )
(2E)
njm for the twelve sets of codepen-

dent E-type coefficients appearing in the expansions (52),
(53), and (54). We find contributions to the codependent
coefficients arising from the trace components of κ̂DE and
κ̂HB given by

(κ
(d)
DE)

(0E′)
njm ⊇ (n+2)(n+3)−j(j+1)

3 (k
(d)
F )

(0E)
njm

+ (d−3−n)(d−2−n)(k
(d)
F )

(0E)
(n−2)jm

− 2(d−3−n)((n+1)(n+2)+(j+2)(j−1))
3 (k

¬(d)

F )
(1E)
(n−1)jm

− 2(d−3−n)(d−2−n)
3 (k

¬(d)

F )
(2E)
(n−2)jm, (63a)

(κ
(d)
HB)

(0E′)
njm ⊇ −2((n+2)(n+3)−j(j+1))

3 (k
(d)
F )

(0E)
njm . (63b)

The contributions to the remaining codependent coeffi-
cients in κ̂DE are

(κ
(d)
DE)

(0E)
njm ⊇ 2n(n+2)+j(j+1)

3 (k
(d)
F )

(0E)
njm

+ 2(d−3−n)(4(n+1)(n+2)+(j+2)(j−1))
3 (k

¬(d)

F )
(1E)
(n−1)jm

+ 2(d−3−n)(d−2−n)
3 (k

¬(d)

F )
(2E)
(n−2)jm, (64a)
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(κ
(d)
DE)

(1E)
njm ⊇ −(n+1)j(j+1)(k

(d)
F )

(0E)
njm

− 2(d−3−n)((n+1)(n+2)+(j+2)(j−1))(n+1)(k
¬(d)

F )
(1E)
(n−1)jm

− 2(d−3−n)(d−2−n)(n+1)(k
¬(d)

F )
(2E)
(n−2)jm, (64b)

(κ
(d)
DE)

(2E)
njm ⊇ (j+2)(j+1)j(j−1)

2 (k
(d)
F )

(0E)
njm

+ (d−3−n)(j+2)(j−1)(2(n+2)2+(j+2)(j−1))(k
¬(d)

F )
(1E)
(n−1)jm

+ (d−3−n)(d−2−n)(2(n+2)2+(j+2)(j−1))(k
¬(d)

F )
(2E)
(n−2)jm,

(64c)

while the contributions to the remaining codependent co-
efficients in κ̂HB are

(κ
(d)
HB)

(0E)
njm ⊇ 2n(n+2)+j(j+1)

3 (k
(d)
F )

(0E)
njm

+ 2(n+3)(n+4)(k
¬(d)

F )
(2E)
njm , (65a)

(κ
(d)
HB)

(1E)
njm ⊇ −(n+1)j(j+1)(k

(d)
F )

(0E)
njm

− 2(n+3)2(n+4)(k
¬(d)

F )
(2E)
njm , (65b)

(κ
(d)
HB)

(2E)
njm ⊇ (j+2)(j+1)j(j−1)

2 (k
(d)
F )

(0E)
njm

+ (2(n+3)2−j(j+1))(n+3)(n+4)(k
¬(d)

F )
(2E)
njm . (65c)

Finally, the contributions to κ̂DB are

(κ
(d)
DB)

(0E′)
njm ⊇ (d−3−n)(n+1)(k

(d)
F )

(0E)
(n−1)jm

− (n+2)(n+3)(n+4)(k
¬(d)

F )
(1E)
njm , (66a)

(κ
(d)
DB)

(1E′)
njm ⊇ −(d−3−n)j(j+1)(k

(d)
F )

(0E)
(n−1)jm

+ (n+2)2(n+3)(n+4)(k
¬(d)

F )
(1E)
njm , (66b)

(κ
(d)
DB)

(1E)
njm ⊇ −n(n+2)(n+3)(n+4)(k

¬(d)

F )
(1E)
njm

− 2(d−3−n)(n+2)(n+3)(k
¬(d)

F )
(2E)
(n−1)jm, (66c)

(κ
(d)
DB)

(2E)
njm ⊇ (j+2)(j−1)(n+2)(n+3)(n+4)(k

¬(d)

F )
(1E)
njm

+ 2(d−3−n)(n+2)(n+3)2(k
¬(d)

F )
(2E)
(n−1)jm. (66d)

The above twelve equations completely characterize the
birefringent CPT-even Lorentz-violating operators asso-
ciated with the quadratic action for electrodynamics.
To summarize this subsection, we find that the coef-

ficients controlling the CPT-even Lorentz-violating op-
erators separate into one set of nonbirefringent E-type
spherical coefficients, three sets of birefringent E-type
spherical coefficients, and two sets of birefringent B-type
spherical coefficients. The component counting for each
of these sets can be found in Tables III, IV, and V.

Adding the totals from each table, we find a net total
of (d + 1)d(d − 3) independent spherical coefficients at
each even dimension d. As expected, this matches the
group-theoretic result obtained in Sec. II. Some proper-
ties of all these coefficients are summarized in Table XVII
of Sec. VIII.

IV. SPECIAL MODELS

For a given observational or experimental procedure,
particular sensitivity may be achieved to specific combi-
nations of spherical coefficients. Also, the nine basic sets
of spherical coefficients contain a large number of inde-
pendent components, which suggests that some types of
analyses may be challenging to perform in the general
context. It is therefore useful to identify special models
that are limiting cases and are relevant to specific mea-
surements.
In this section, we first present several convenient lim-

iting cases. Five basic types of model are considered.
One is the minimal SME, which restricts attention to
renormalizable terms. Another is the isotropic limit, in
which rotational invariance is preserved in a preferred
frame. A third is the vacuum model, which encompasses
the subset of effects detectable in searches using disper-
sion or birefringence from astrophysical sources. The
fourth is the nonbirefringent nondispersive model, for
which the Lorentz-violating photon propagation exhibits
several parallels to the conventional case. The fifth is the
vacuum-orthogonal model, which is the complement of
the vacuum model and contains coefficients that can be
detected only in laboratory experiments. In a final sub-
section, we identify particular subsets of the spherical
SME coefficients that correspond to some special cases
appearing in the literature.

A. Minimal SME

The first limiting case we consider is the pure-photon
sector of the minimal SME, obtained by restricting at-
tention to Lorentz-violating operators of renormalizable
dimension d ≤ 4. Numerous measurements of the cor-
responding coefficients have been performed to date [6],
with most analyses using cartesian components rather
than spherical ones. Discussions of the minimal SME can
be found in the literature [7, 11], so we restrict the fo-
cus of this subsection to establishing the relationship be-
tween cartesian and spherical coefficients. Working in a
fixed inertial frame with cartesian coordinates (t, x, y, z),
we determine the linear combinations of spherical coeffi-
cients that correspond to the cartesian coefficients.
For the Lorentz-violating operators with d = 3, which

are CPT odd, there are four cartesian components of

(k
(3)
AF )

κ. They are linear combinations of the four spher-

ical coefficients (k
(3)
AF )

(0B)
000 and (k

(3)
AF )

(1B)
01m , where m =
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(k
(3)
AF )

(0B)
000 (k

(3)
AF )

(1B)
011 (k

(3)
AF )

(1B)
010

(k
(3)
AF )

(1B)

01(−1)

−k(3)(V )00 2k
(3)

(V )11 2k
(3)

(V )10 2k
(3)

(V )1(−1)

(k
(3)
AF )

t 1 0 0 0

(k
(3)
AF )

x 0
q

3
8

0 −
q

3
8

(k
(3)
AF )

y 0 i
q

3
8

0 i
q

3
8

(k
(3)
AF )

z 0 0 −
q

3
4

0

TABLE VI: Matrix elements relating cartesian to spherical
coefficients in the CPT-odd part of the photon sector in the
minimal SME. Note that an overall factor of

p

1/4π is omit-
ted.

0,±1. In terms of a 4 × 4 matrix S, we can write the
relationship generically as

Kcartesian =
1√
4π

S · Kspherical, (67)

where Kcartesian and Kspherical are four-dimensional col-
umn matrices containing the cartesian and spherical com-
ponents, respectively. Table VI gives the elements of the
matrix S. This table also displays the correspondence be-

tween the four spherical coefficients (k
(3)
AF )

(0B)
000 , (k

(3)
AF )

(1B)
01m

and the four vacuum coefficients k
(3)
(V )jm, which are de-

fined in Eq. (84d) below in the context of the vacuum
model discussed in Sec. IVC.
As an example from Table VI, consider the cartesian

coefficient (k̂AF )
x. In terms of spherical coefficients, the

table gives

(k̂AF )
x =

1√
4π

(√
3
8 (k

(3)
AF )

(1B)
011 −

√
3
8 (k

(3)
AF )

(1B)
01(−1)

)

=
1√
4π

(√
3
2 k

(3)
(V )11 −

√
3
2 k

(3)
(V )1(−1)

)
. (68)

Note that the spherical coefficients are complex in gen-

eral, but the property (k
(3)
AF )

(0B)
011 = −[(k

(3)
AF )

(0B)
01(−1)]

∗ con-

tained in the phase condition (45) ensures a total of four

real degrees of freedom. Indeed, the components (k̂AF )
x

and (k̂AF )
y correspond, respectively, to the real and

imaginary parts of the spherical coefficient (k
(3)
AF )

(0B)
011 .

For the renormalizable CPT-even Lorentz-violating

operators, all of which have d = 4, the operator k̂F con-
tains 20 real independent constants. From Tables III,
IV, and V, we see that these include two scalar singlets

(c
(4)
F )

(0E)
000 and (c

(4)
F )

(0E)
200 , one triplet (c

(4)
F )

(0E)
11m , and three

quintuplets (c
(4)
F )

(0E)
22m , (k

(4)
F )

(0E)
22m , (k

(4)
F )

(1B)
22m . In terms of

the κ̂ matrices of Eq. (18), the two singlets can be viewed
as corresponding to the two trace components, while the
triplet corresponds to the antisymmetric part of κ̂DB.
The three quintuplets match to the traceless parts of κ̂DE

and κ̂HB and the symmetric part of κ̂DB.
We can again write the relationship between cartesian

and spherical coefficients using the generic form (67).

The elements of the matrix S connecting the parity-even
coefficients κ̂DE and κ̂HB and the spherical coefficients
are given in Table VII. The elements of S for the parity-
odd coefficients κ̂DB are given in Table VIII. These ta-
bles also relate the 20 spherical coefficients with d = 4

to the relevant 20 vacuum coefficients c
(4)
(I)jm, k

(4)
(E)jm,

k
(4)
(B)jm, which are defined in Eqs. (84a), (84b), and (84c)

in the context of the vacuum model presented in Sec.
IVC.

In the photon sector of the minimal SME, the non-
birefringent operators are controlled by the ten spherical

coefficients (c
(4)
F )

(0E)
njm , as shown in Sec. III B. Nine combi-

nations of these have been measured in laboratory-based
experiments. The remaining coefficient combination,

κ̂tr+ = 1√
4π

[
(c

(4)
F )

(0E)
000 − 3(c

(4)
F )

(0E)
200

]
, (69)

is Lorentz invariant and leads to a rescaling of the elec-
tric and magnetic fields. This combination is therefore
typically taken to vanish, which implies the condition

(c
(4)
F )

(0E)
000 = 3(c

(4)
F )

(0E)
200 . (70)

This property has been assumed in constructing the en-
tries for Table VII.

Using the matrix elements in Tables VI, VII, and VIII,
it is comparatively straightforward to convert between
cartesian and spherical representations of the photon-
sector coefficients in the minimal SME. Note, how-
ever, that the spherical coefficients represent angular-
momentum eigenstates and therefore have simpler rota-
tional properties. The behavior of the spherical coeffi-
cients under rotations is discussed in Sec. V.

B. Isotropic models

In any given inertial frame, a small subset of Lorentz-
violating operators preserve rotational invariance. Re-
stricting attention to these operators defines an interest-
ing limiting case of the general theory. In these mod-
els, sometimes called ‘fried-chicken’ models due to their
popularity and simplicity, the isotropic inertial frame
must be specified because observer boosts to other frames
destroy the rotational invariance. One natural choice
for the preferred frame is the frame of the cosmic mi-
crowave background (CMB), but other choices are pos-
sible. Note, however, that isotropy in the CMB frame
implies anisotropy in a Sun-centered frame and in labo-
ratory experiments.

Within our analysis, imposing rotational invariance is
immediate. The general isotropic model is obtained by
imposing the condition that all spherical coefficients van-
ish in the preferred frame, except those with j = 0. This
condition drastically reduces the number of available co-
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(c
(4)
F

)
(0E)
200 (c

(4)
F

)
(0E)
222 (c

(4)
F

)
(0E)
221 (c

(4)
F

)
(0E)
220

(c
(4)
F

)
(0E)
22−1 (c

(4)
F

)
(0E)
22−2 (k

(4)
F

)
(0E)
022 (k

(4)
F

)
(0E)
021 (k

(4)
F

)
(0E)
020

(k
(4)
F

)
(0E)
02−1 (k

(4)
F

)
(0E)
02−2

1
4
c
(4)

(I)00
c
(4)

(I)22
c
(4)

(I)21
c
(4)

(I)20
c
(4)

(I)2−1
c
(4)

(I)2−2
−k

(4)
(E)22√

6

−k
(4)
(E)21√

6

−k
(4)
(E)20√

6

−k
(4)
(E)2−1√

6

−k
(4)
(E)2−2√

6

(κ
(4)
DB)

xx 4 −
q

15
2

0
√
5 0 −

q

15
2

q

15
2

0 −
√
5 0

q

15
2

(κ
(4)
DE)

xy 0 −i
q

15
2

0 0 0 i
q

15
2

i
q

15
2

0 0 0 −i
q

15
2

(κ
(4)
DE)

xz 0 0
q

15
2

0 −
q

15
2

0 0 −
q

15
2

0
q

15
2

0

(κ
(4)
DE)

yy 4
q

15
2

0
√
5 0

q

15
2

−
q

15
2

0 −
√
5 0 −

q

15
2

(κ
(4)
DE)

yz 0 0 i
q

15
2

0 i
q

15
2

0 0 −i
q

15
2

0 −i
q

15
2

0

(κ
(4)
DE)

zz 4 0 0 −2
√
5 0 0 0 0 2

√
5 0 0

(κ
(4)
HB)

xx −4
q

15
2

0 −
√
5 0

q

15
2

q

15
2

0 −
√
5 0

q

15
2

(κ
(4)
HB)

xy 0 i
q

15
2

0 0 0 −i
q

15
2

i
q

15
2

0 0 0 −i
q

15
2

(κ
(4)
HB)

xz 0 0 −
q

15
2

0
q

15
2
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TABLE VII: Matrix elements relating cartesian to spherical coefficients in the CPT-even and parity-even part of the photon

sector in the minimal SME. We have assumed (c
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TABLE VIII: Matrix elements relating cartesian to spherical coefficients in the CPT-even and parity-odd part of the photon
sector in the minimal SME. Note that an overall factor of

p

1/4π is omitted.

efficients. The only nonzero coefficients are:

(̊c
(d)
F )n = (c

(d)
F )

(0E)
n00 ,

(̊k
(d)
F )n = (k

(d)
F )

(0E)
n00 ,

(̊k
(d)
AF )n = (k

(d)
AF )

(0B)
n00 . (71)

Following standard convention [38], these isotropic co-
efficients are identified by a ring diacritic. Note that

the coefficient (̊c
(d)
F )n controls isotropic nonbirefringent

Lorentz-violating operators in the preferred frame, while
the others control leading-order birefringent effects.
In the general isotropic model, the nonzero components

of k̂AF are

(k̂AF )0 =
∑

dn

ωd−3−npn√
4π

(̊k
(d)
AF )n, (72a)
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(k̂AF )r = −
∑

dn

ωd−3−npn√
4π

(d− 2− n)

n+ 2
(̊k

(d)
AF )(n−1).

(72b)

For the κ̂ matrices, we find the expressions

(κ̂DE)rr =
∑

dn

ωd−4−npn√
4π

[
− (n+ 1)(n+ 2)

×
(
(̊c

(d)
F )(n+2) − (̊k

(d)
F )n

)

+ (d− 3− n)(d− 2− n)

×
(
(̊c

(d)
F )n + (̊k

(d)
F )(n−2)

)]
, (73a)

(κ̂DE)+− =
∑

dn

ωd−4−npn√
4π

[
(−1)(n+ 2)

×
(
(̊c

(d)
F )(n+2) − (̊k

(d)
F )n

)

+ (d− 3− n)(d− 2− n)

×
(
(̊c

(d)
F )n + (̊k

(d)
F )(n−2)

)]
, (73b)

(κ̂HB)rr =
∑

dn

ωd−4−npn√
4π

(−2)(n+ 2)

×
(
(̊c

(d)
F )(n+2) + (̊k

(d)
F )n

)
, (73c)

(κ̂HB)+− =
∑

dn

ωd−4−npn√
4π

(−1)(n+ 2)2

×
(
(̊c

(d)
F )(n+2) + (̊k

(d)
F )n

)
, (73d)

(κ̂DB)±∓ =
∑

dn

ωd−4−npn√
4π

(∓i)(d− 3− n)(n+ 1)

×
(
(̊c

(d)
F )(n+1) + (̊k

(d)
F )(n−1)

)
. (73e)

The index ranges and component counting for the
isotropic coefficients can be determined from the j = 0
columns of Tables I, III, IV, and V. For a given even di-

mension d, there are d/2 coefficients (̊c
(d)
F )n and (d−4)/2

coefficients (̊k
(d)
F )n, for a total of (d − 2) independent

components. For odd d, there are (d − 1)/2 coefficients

(̊k
(d)
AF )n. A summary of the properties of these coefficients

is provided as part of Table XVIII in Sec. VIII.

C. Vacuum models

For observations of light from distant sources, far-field
solutions apply. The electromagnetic fields are well ap-
proximated by vacuum plane waves with ω = p. Al-
though Lorentz-violating operators typically generate a
nontrivial dispersion relation with ω 6= p, we can im-

pose ω = p in the operators k̂F and k̂AF to obtain
leading-order results. The resulting vacuum coefficients

for Lorentz violation comprise the set of linear combina-
tions of spherical coefficients relevant for photon prop-
agation in the vacuum. They are of direct interest for
studies of light from astrophysical sources, and they can
also be important in Earth-based tests.

Imposing ω = p in the expansions (9) and (10) for k̂AF

and k̂F dramatically simplifies the spherical-harmonic
structure. It turns out that the relevant combinations
of coefficients are those associated with the Stokes pa-
rameters of the eigenmodes for vacuum photon propaga-
tion, because these eigenmodes characterize the effects
of Lorentz violation on the overall photon polarization
[11]. To find the eigenmodes, we first need plane-wave
solutions of the modified Maxwell equations (11).
At leading order, the covariant dispersion relation Eq.

(30) becomes

(pµpµ − (ĉF )
µνpµpν)

2 − 2(χ̂w)
αβγδ(χ̂w)αµγνpβpδp

µpν

− 4(pµ(k̂AF )µ)
2 ≃ 0. (74)

The two solutions at leading order can be written as

p0 ≃
(
1− ς0 ±

√
(ς1)2 + (ς2)2 + (ς3)2

)
p, (75)

where the three rotationally invariant dimensionless com-
binations

ς0 = 1
2 (ĉF )

µνpµpν/ω
2,

(ς1)2 + (ς2)2 = 1
2 (χ̂w)

αβγδ(χ̂w)αµγνpβpδp
µpν/ω4,

ς3 = −pµ(k̂AF )µ/ω
2 (76)

contain coefficients for nonbirefringent CPT-even, bire-
fringent CPT-even, and birefringent CPT-odd effects, re-
spectively. The three combinations ς1, ς2, ς3 turn out to
determine the Stokes parameters of the two eigenmodes.
The momentum structure of Eq. (76) reveals that the
vacuum coefficients for odd d are simply obtained as the

totally symmetric and traceless part of (k
(d)
AF )

κα1...α(d−3) .
For even d, a similar result holds for the vacuum coeffi-
cients (ĉF )

µν controlling nonbirefringent effects.
The procedure for finding the Stokes parameters

(s1, s2, s3) = (Q,U, V ) associated with the two solutions
in Eq. (75) follows the same basic steps as in Ref. [11].
Using the plane-wave equation (22), we find a solution
with unique polarization for each of the signs in Eq. (75).
It is advantageous to work in the temporal gauge, for
which A0 = 0 and E ∝ A. We can then construct the
specific Stokes parameters for each eigenmode. Adopting
the orthonormal spherical coordinate system described in
Appendix A2, we define a general Stokes vector s and
its corresponding three Stokes parameters by

s =



s1

s2

s3


 =




|Eθ|2 − |Eφ|2
2ReEθ∗Eφ

2ImEθ∗Eφ


 . (77)

This Stokes vector completely characterizes the polariza-
tion of an electromagnetic wave. It is also useful to define
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a fourth Stokes parameter:

s0 = |Eθ|2 + |Eφ|2, (78)

which corresponds to the intensity I.
Due to their orthogonality, the specific Stokes vectors

for the two plane-wave solutions differ by a sign. It there-
fore suffices to construct a single specific Stokes vector ς,
which can be associated with the faster of the two bire-
fringent modes. In spherical coordinates, this vector is
given by

ς =



ς1

ς2

ς3


 ≃




− 1
2

(
(κ̂e+)

θθ − (κ̂e+)
φφ

)
− (κ̂o−)θφ

−(κ̂e+)
θφ + 1

2

(
(κ̂o−)θθ − (κ̂o−)φφ

)

−
(
(k̂AF )

0 − (k̂AF )
r
)
/ω


 ,

(79)
where we have adopted a convenient normalization. At
leading order, the components of ς are consistent with the
combinations (76). In spherical coordinates, the fourth
combination is

ς0 ≃ − 1
2 (κ̂e−)

rr + (κ̂tr−) + (κ̂o+)
θφ

= 1
2 (κ̂DE − κ̂HB + iκ̂DB + iκ̂HE)+− (80)

at leading order. This combination is analogous to the
scalar Stokes parameter s0.
The combinations ς0 and ς3 are invariant under rota-

tions about the direction p̂ of the photon 3-momentum,
like the general Stokes parameters. They therefore have
zero spin weight. The remaining combinations ς1 and
ς2 transform under rotations as a rank-2 traceless tensor
in the tangent space of the sphere and so are combina-
tions of components with spin weight ±2. As a result,
the expansion in spin-weighted spherical harmonics of the
Stokes parameters for Lorentz-violating photon propaga-
tion takes the form [22, 23]

ς0 =
∑

djm

ωd−4(−1)j 0Yjm(p̂) c
(d)
(I)jm,

ς1 ± iς2 =
∑

djm

ωd−4(−1)j ±2Yjm(p̂)
(
k
(d)
(E)jm ∓ ik

(d)
(B)jm

)
,

ς3 =
∑

djm

ωd−4(−1)j 0Yjm(p̂) k
(d)
(V )jm. (81)

This result is independent of the index n because at lead-
ing order we can take ω = p in Eq. (76). We remark that

the notation c
(d)
(I)jm adopted here for one of the sets of

vacuum coefficients differs from that of Ref. [23], where
the quantity

k
(d)
(I)jm ≡ c

(d)
(I)jm (82)

is used instead. The improved present notation c
(d)
(I)jm re-

flects the absence of birefringence from the corresponding
Lorentz-violating operators. Also, the factors of (−1)j in
Eq. (81) have been introduced for convenience and to

match the definitions in Ref. [23]. The point is that vac-
uum models are well suited for studies involving radiation
from astrophysical sources, for which the source direction
n̂ is normally specified rather than the propagation di-
rection p̂ = −n̂. For these studies, it is therefore more
natural to work with spin weight defined with respect to
n̂ instead of p̂. The correspondence

(−1)jsYjm(p̂) = −sYjm(n̂), (83)

which follows from Eq. (A7), can be used to transform
between the two pictures.
The net result of the above discussion is that the vac-

uum behavior is controlled by four sets of vacuum co-

efficients c
(d)
(I)jm, k

(d)
(E)jm, k

(d)
(B)jm, and k

(d)
(V )jm. These are

related to the general coefficients for Lorentz violation by
taking the limit ω = p in the various expansions provided
in Sec. III. Via this limit, we find the results

c
(d)
(I)jm =

∑

n

1
2 (−1)j

(
− 1

2 (κ
(d)
DE)

(0E)
njm + 1

2 (κ
(d)
HB)

(0E)
njm

+ (κ
(d)
DE)

(0E′)
njm − (κ

(d)
HB)

(0E′)
njm + 2(κ

(d)
DB)

(0E′)
njm

)
, (84a)

k
(d)
(E)jm =

∑

n

1
2 (−1)j+1

√
(j−2)!
(j+2)!

×
(
(κ

(d)
DE)

(2E)
njm + (κ

(d)
HB)

(2E)
njm + 2(κ

(d)
DB)

(2E)
njm

)
, (84b)

k
(d)
(B)jm =

∑

n

1
2 (−1)j

√
(j−2)!
(j+2)!

×
(
(κ

(d)
DE)

(2B)
njm + (κ

(d)
HB)

(2B)
njm − 2(κ

(d)
DB)

(2B)
njm

)
, (84c)

k
(d)
(V )jm =

∑

n

(−1)j+1
(

d
n+3 (k

(d)
AF )

(0B)
njm + 1

n+2 (k
(d)
AF )

(1B)
njm

)
.

(84d)

As expected, no frequency or wavelength dependence ap-
pears in these expressions. These equations reveal that
the vacuum coefficients are linear combinations of the
general coefficients involving identical d, j, m indices but
different n values.
The index ranges for the vacuum coefficients c

(d)
(I)jm,

k
(d)
(E)jm, k

(d)
(B)jm, and k

(d)
(V )jm can be found using general

symmetry arguments or the relations (84). For even d,

there are (d − 1)2 coefficients c
(d)
(I)jm, (d − 1)2 − 4 coeffi-

cients k
(d)
(E)jm, and (d−1)2−4 coefficients k

(d)
(B)jm, giving a

total of 3(d−1)2−8 independent components associated
with CPT-even Lorentz violation in vacuum propagation.

For odd d, the coefficients k
(d)
(V )jm for CPT-odd Lorentz

violation have (d − 1)2 independent components. Some
properties of these coefficients are summarized as part of
Table XVIII in Sec. VIII.
The phenomenological effects controlled by each set of

vacuum coefficients are different. The coefficients k
(d)
(E)jm

and k
(d)
(B)jm are associated with CPT-even operators that
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lead to birefringence, with the propagating modes being

linearly polarized. The coefficients k
(d)
(V )jm control CPT-

odd birefringence, and the corresponding eigenmodes are
circularly polarized. In contrast, the CPT-even opera-

tors associated with the coefficients c
(d)
(I)jm are nonbire-

fringent. These physical differences suggest it may be of
value to introduce special vacuum models as particular
limiting cases. For example, a nonbirefringent vacuum

model involving only nonzero coefficients c
(d)
(I)jm can be

countenanced. This model has Lorentz-violating oper-
ators only in even dimensions d = 4, 6, 8, . . ., with the
number of independent coefficients being 9, 25, 49 . . .,
respectively. Another model of interest can be obtained
as a hybrid of the general vacuummodel and the isotropic
limit, by introducing a preferred frame in which atten-
tion is restricted only to j = 0 coefficients. This vac-

uum isotropic model involves only the coefficients c
(d)
(I)00

and k
(d)
(V )00. It therefore contains exactly one Lorentz-

violating operator for each value of d.

D. Camouflage models

The vacuum models considered in the previous sub-
section are well suited for astrophysical observations. In
this and the following subsections, we consider instead
the subset of spherical coefficients that are challenging
to detect via studies of astrophysical birefringence or dis-
persion but that produce observable effects in laboratory
experiments. We begin here by focusing on Lorentz-
violating models without leading-order birefringent or
vacuum-dispersive effects, which we call camouflage mod-
els. The next subsection generalizes this treatment to
identify explicitly all vacuum-orthogonal coefficients, in-
cluding ones that control non-vacuum birefringence. The
key idea motivating these constructions is that studies of
astrophysical birefringence yield among the best sensitiv-
ities to Lorentz violation in any sector, due to the accu-
mulation of polarization changes that occur over the cos-
mological propagation times. This also applies to studies
of astrophysical dispersion, albeit typically at lesser sen-
sitivity. As a result, searches for Lorentz violation can
naturally be split into ones sensitive to operators gen-
erating vacuum birefringence or vacuum dispersion and
ones with sensitivity to other operators.
We begin by restricting attention to operators without

leading-order birefringence, which are associated with the

spherical coefficients (c
(d)
F )

(0E)
njm . Some key results for this

case are discussed in Sec. III B above. Following Eq. (58),
the Lagrange density reduces to

L = − 1
4FµνF

µν − 1
2Fµρ(ĉF )

µνFν
ρ. (85)

Note that CPT invariance holds because k̂AF = 0, and
that only even-dimensional operators with E-type parity
contribute.

Using Eqs. (52) and (62), we can write the κ̂ matrices

in terms of the coefficients (c
(d)
F )

(0E)
njm by taking the equal-

ity in (62). However, it is often more convenient to use
the explicit expansion (59) and (60) via the generating

function Φ̂. The results are summarized as

1
2

(
3κ̂tr− + κ̂tr+

)
=

∑

dnjm

ωd−4−npn 0Yjm(p̂)

× (d− 2− n)(d− 3− n) (c
(d)
F )

(0E)
njm , (86a)

3
2

(
κ̂tr− − κ̂tr+

)
=

∑

dnjm

ωd−4−npn 0Yjm(p̂)

×
(
(n+ 2)(n+ 3)− j(j + 1)

)
(c

(d)
F )

(0E)
(n+2)jm, (86b)

(κ̂e−)rr = −2(κ̂e+)+− =
∑

dnjm

ωd−4−npn 0Yjm(p̂)

× −(2n(n+2)+j(j+1))
3 (c

(d)
F )

(0E)
(n+2)jm, (86c)

(κ̂e−)±r = (κ̂e−)r± =
∑

dnjm

ωd−4−npn ±1Yjm(p̂)

× (±1)(n+ 1)

√
j(j+1)

2 (c
(d)
F )

(0E)
(n+2)jm, (86d)

(κ̂e−)±± =
∑

dnjm

ωd−4−npn ±2Yjm(p̂)

× −1
2

√
(j+2)!
(j−1)! (c

(d)
F )

(0E)
(n+2)jm, (86e)

(κ̂o+)+− = −(κ̂o+)−+ =
∑

dnjm

ωd−4−npn 0Yjm(p̂)

× (−i)(d− 3− n)(n+ 1) (c
(d)
F )

(0E)
(n+1)jm, (86f)

(κ̂o+)±r = −(κ̂o+)r± =
∑

dnjm

ωd−4−npn ±1Yjm(p̂)

× (−i)(d− 3− n)

√
j(j+1)

2 (c
(d)
F )

(0E)
(n+1)jm. (86g)

Recall that the matrix κ̂e− is traceless and symmetric,
while κ̂o+ is antisymmetric. For no leading-order bire-
fringence, the relations

κ̂DE = κ̂e− + κ̂tr− + κ̂tr+,

κ̂HB = −κ̂e− − κ̂tr− + κ̂tr+,

κ̂DB = κ̂o+ (87)

also hold.
The next step is to consider dispersive effects. For

dimensions d > 4, only a subset of independent combi-

nations of the coefficients (c
(d)
F )

(0E)
njm are associated with

leading-order vacuum dispersion. The nondispersive op-
erators are precisely the ones of interest that define the
camouflage models. At leading order, the condition that
ensures no vacuum dispersion is

0 = pµpν(ĉF )
µν |p2=0. (88)
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(c¬(d)
F )

(0E)
njm

n j

0 0

1 1
2 0 2

3 1 3
4 0 2 4
...

...
. . .

d− 4 0 2 4 · · · d− 4

total 1
6
(d− 1)(d− 2)(d− 3)

TABLE IX: Summary of the allowed ranges of indices n and j
for the independent camouflage coefficients. The dimension d
is even with d ≥ 4, while n ≤ d−4. The index m satisfies the
usual restrictions −j ≤ m ≤ j, so there are 2j+1 coefficients
for each j. For a given dimension d, the total number of
coefficients is given in the last row.

This is satisfied if the generating function Φ̂F in Eq. (60)

is of the form Φ̂F = p2Φ̃F . We can therefore define the

camouflage coefficients (c¬(d)
F )

(0E)
njm through the expansion

Φ̃F =
∑

dnjm

ωd−4−npn 0Yjm(p̂) (c¬(d)
F )

(0E)
njm . (89)

This result leads to the comparatively simple relation

(c
(d)
F )

(0E)
njm = (c¬(d)

F )
(0E)
njm − (c¬(d)

F )
(0E)
(n−2)jm (90)

in the limit of no leading-order birefringence or vacuum
dispersion.
The index ranges for the camouflage coefficients

(c¬(d)
F )

(0E)
njm are given in Table IX. For each even di-

mension d, there are (d − 1)(d − 2)(d − 3)/6 indepen-
dent components. They represent combinations of the

(d + 1)d(d − 1)/6 coefficients (c
(d)
F )

(0E)
njm that are comple-

mentary to the (d− 1)2 vacuum coefficients c
(d)
(I)jm intro-

duced in Sec. IVC. Note that a subset of the camouflage
operators are rotation invariant, so a hybrid camouflage
isotropic model exists that has (d− 2)/2 independent co-
efficients for each even d.
The camouflage coefficients (c¬(d)

F )
(0E)
njm are challenging

to detect via astrophysical observations of birefringence
or dispersion because their effects arise only at higher or-

der. Along with the minimal-SME coefficients (c
(4)
F )

(0E)
njm ,

they are best sought via alternative methods such as lab-
oratory experiments. A class of experiments sensitive to
the effects of these coefficients is discussed in Sec. VII.

E. Vacuum-orthogonal models

In Sec. IVC, we identified the subset of spherical co-
efficients relevant for photon propagation in the vacuum.

These are the vacuum coefficients c
(d)
(I)jm, k

(d)
(E)jm, k

(d)
(B)jm,

and k
(d)
(V )jm. The number of independent vacuum coeffi-

cients grows as d2 for large d, whereas the total number of
coefficients grows as d3. Consequently, the vacuum coeffi-
cients comprise a comparatively small portion of the total
coefficient space. In this subsection, we construct a com-
plete set of independent coefficients spanning the comple-
mentary part of the coefficient space. We refer to these as
the vacuum-orthogonal coefficients. At leading order, the
corresponding vacuum-orthogonal operators induce nei-
ther dispersion nor birefringence for photon propagation
in the vacuum. Instead, these Lorentz-violating effects
can become relevant whenever the boundary conditions
or the properties of macroscopic media differ from those
for vacuum propagation.

To extract the vacuum-orthogonal coefficients, we be-

gin by considering the E-type vacuum coefficients c
(d)
(I)jm

and k
(d)
(E)jm. Expanding Eqs. (84a) and (84b) in terms

of the general spherical coefficients, we find that each

is a combination of (c
(d)
F )

(0E)
njm , (k

(d)
F )

(0E)
njm , (k

¬(d)

F )
(1E)
njm , and

(k
¬(d)

F )
(2E)
njm . Careful consideration shows that the restric-

tion k
(d)
(E)jm = 0 can be achieved by writing (k

(d)
F )

(0E)
njm

as combinations of (k
¬(d)

F )
(1E)
njm and (k

¬(d)

F )
(2E)
njm and a new

set of vacuum-orthogonal coefficients (k
¬(d)

F )
(0E)
njm . The net

result is the replacement of (k
(d)
F )

(0E)
njm with (k

¬(d)

F )
(0E)
njm in

the nine sets of general coefficients, implemented via the
substitution

(k
(d)
F )

(0E)
njm → (k

¬(d)

F )
(0E)
njm − (k

¬(d)

F )
(0E)
(n+2)jm

− a1(k
¬(d)

F )
(1E)
(n+1)jm − a2(k

¬(d)

F )
(2E)
njm , (91)

where the numerical factors a1 and a2 are

a1 = (d−5−n)(2(n+4)2+(j+2)(j−1))+2(n+3)(n+4)(n+5)
j(j+1) ,

a2 = 1
(j+2)(j+1)j(j−1)

[
(d−5−n)(d−4−n)(2(n+4)2+(j+2)(j−1))

+4(d−4−n)(n+3)(n+4)2+(2(n+3)2−j(j+1))(n+3)(n+4)
]
.

(92)

The result (91) represents combinations of E-type coeffi-
cients that are complementary to the vacuum coefficients

k
(d)
(E)jm. The index ranges and counting for the vacuum-

orthogonal coefficients (k
¬(d)

F )
(0E)
njm are given in Table X.

The restriction c
(d)
(I)jm = 0 yields a similar result for

the coefficients (c
(d)
F )

(0E)
njm ,

(c
(d)
F )

(0E)
njm → (c¬(d)

F )
(0E)
njm − (c¬(d)

F )
(0E)
(n−2)jm − b1(k

(d)
F )

(0E)
(n−2)jm

+ b2(k
¬(d)

F )
(1E)
(n−1)jm + b3(k

¬(d)

F )
(2E)
njm . (93)
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(k
¬(d)

F )
(0E)
njm

n j

0

1 1

2 0 2
3 1 3

4 0 2 4
...

...
. . .

d− 4 0 2 4 · · · d− 4

total 1
6
(d− 1)(d− 2)(d− 3)− 1

TABLE X: Summary of the allowed ranges of indices n and j

for the E-type vacuum-orthogonal coefficients (k
¬(d)

F )
(0E)
njm as-

sociated with CPT-even nonbirefringent operators. The di-
mension d is even with d ≥ 4, while n ≤ d− 4. The index m
satisfies the usual restrictions −j ≤ m ≤ j, so there are 2j+1
coefficients for each j. For a given dimension d, the number
of coefficients is given in the last row.

where the numerical factors b1, b2, and b3 are

b1 = (d−3−n)(d−2−n)+2(d−2−n)n+n(n+1)−j(j+1)
(d−3)(d−2) ,

b2 = (d−3−n)(2(n+1)(n+2)+(j+2)(j−1))+2(n+1)(n+2)(n+3)
(d−3)(d−2) ,

b3 = (d−5−n)(d−4−n)−(n+3)(n+4)
(d−3)(d−2) . (94)

The coefficients (c¬(d)
F )

(0E)
njm appearing in Eq. (93) are the

camouflage coefficients introduced in the previous sub-
section. Their index ranges and counting are given in

Table IX. Note that (k
(d)
F )

(0E)
njm appears in Eq. (93), so

the expression (91) is needed to fully reduce (c
(d)
F )

(0E)
njm .

Note also that Eq. (93) generalizes Eq. (90) to include co-
efficients for birefringent operators that leave unaffected
vacuum propagation at leading order. This shows explic-
itly that these operators contribute both to birefringent
and to nonbirefringent effects, an effect discussed in Sec.
III B.

Determining the combinations of spherical coefficients

that are complementary to the vacuum coefficient k
(d)
(B)jm

is more straightforward. We can write

k
(d)
(B)jm =

∑

n

(−1)j+1(d−1)
2

√
(j−2)!
(j+2)!

(
(d− 2)(k

¬(d)

F )
(2B)
njm

+ (j + 2)(j − 1)(k
(d)
F )

(1B)
njm

)
. (95)

Taking into account the index ranges of (k
(d)
F )

(1B)
njm and

(k
¬(d)

F )
(2B)
njm , we find that a suitable set of coefficients com-

patible with the restriction k
(d)
(B)jm = 0 is obtained by

replacing (k
(d)
F )

(1B)
njm with a new set (k

¬(d)

F )
(1B)
njm of vacuum-

orthogonal coefficients. The combination leading to van-

(k
¬(d)

F )
(1B)
njm

n j

0

1 1

2 2
3 1 3

4 2 4
...

...
. . .

d− 4 2 4 · · · d− 4

total 1
6
d(d− 2)(d− 4)

TABLE XI: Summary of the allowed ranges of indices n and j

for the B-type vacuum-orthogonal coefficients (k
¬(d)

F )
(1B)
njm as-

sociated with CPT-even nonbirefringent operators. The di-
mension d is even with d ≥ 4, while n ≤ d− 4. The index m
satisfies the usual restrictions −j ≤ m ≤ j, so there are 2j+1
coefficients for each j. For a given dimension d, the number
of coefficients is given in the last row.

ishing k
(d)
(B)jm is given by

(k
(d)
F )

(1B)
njm → (k

¬(d)

F )
(1B)
njm − (k

¬(d)

F )
(1B)
(n+2)jm

− (d−2)
(j+2)(j−1) (k

¬(d)

F )
(2B)
(n+1)jm. (96)

The index ranges and counting for the coefficients

(k
¬(d)

F )
(1B)
njm are given in Table XI. Note that the coeffi-

cients (k
¬(d)

F )
(1B)
njm and (k

¬(d)

F )
(2B)
njm are absent from Eq. (93),

so the corresponding operators have no nonbirefringent
effects.
Finally, we construct the combinations of spherical co-

efficients that are complementary to k
(d)
(V )jm. Although

the vacuum coefficients k
(d)
(V )jm have the comparatively

simple form (84d), finding combinations that cover the

coefficient space under the restriction k
(d)
(V )jm = 0 involves

some calculation. It turns out to involve two new sets

(k
¬(d)

AF )
(0B)
njm , (k

¬(d)

AF )
(1B)
njm of vacuum-orthogonal coefficients,

which appear via the substitutions

(k
(d)
AF )

(0B)
njm → (d−2−n)(n+3)

d(d−2−n+j)

(
(k
¬(d)

AF )
(0B)
njm − (k

¬(d)

AF )
(0B)
(n−2)jm

)

− 1
n+1 (k

¬(d)

AF )
(1B)
(n−1)jm, (97)

(k
(d)
AF )

(1B)
njm → j(n+2)

d−3−n+j

(
(k
¬(d)

AF )
(0B)
(n+1)jm − (k

¬(d)

AF )
(0B)
(n−1)jm

)

+ d
n+4 (k

¬(d)

AF )
(1B)
njm . (98)

The index ranges and the numbers of indepen-
dent components for the vacuum-orthogonal coefficients

(k
¬(d)

AF )
(0B)
njm and (k

¬(d)

AF )
(1B)
njm are shown in Table XII.

To summarize, in this subsection we have completed
the decomposition of the original nine sets of general
spherical coefficients into those that generate leading-
order effects in the vacuum propagation of light and those
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(k
¬(d)

AF )
(0B)
njm (k

¬(d)

AF )
(1B)
njm

n j j

0 0 1

1 1 2

2 0 2 1 3
3 1 3 2 4

4 0 2 4 1 3 5
...

...
. . .

...
. . .

d− 4 1 3 · · · d− 4 2 4 · · · d− 3

total 1
6
(d− 1)(d− 2)(d− 3) 1

6
(d+ 1)(d− 1)(d− 3)

TABLE XII: Summary of the allowed ranges of indices n

and j for the vacuum-orthogonal coefficients (k
¬(d)

AF )
(0B)
njm and

(k
¬(d)

AF )
(1B)
njm associated with CPT-odd nonbirefringent opera-

tors. The dimension d is even with d ≥ 4, while n ≤ d − 4.
The index m satisfies the usual restrictions −j ≤ m ≤ j, so
there are 2j +1 coefficients for each j. For a given dimension
d, the number of coefficients is given in the last row.

that comprise the complementary subset. The four sets

of vacuum coefficients are c
(d)
(I)jm, k

(d)
(E)jm, k

(d)
(B)jm, and

k
(d)
(V )jm. They are discussed in Sec. IVC. The com-

plement consists of the nine reduced sets of vacuum-

orthogonal coefficients (c¬(d)
F )

(0E)
njm , (k

¬(d)

F )
(0E)
njm , (k

¬(d)

F )
(1E)
njm ,

(k
¬(d)

F )
(2E)
njm , (k

¬(d)

F )
(1B)
njm , (k

¬(d)

F )
(2B)
njm , (k

¬(d)

AF )
(0B)
njm , (k

¬(d)

AF )
(1B)
njm ,

and (k
¬(d)

AF )
(1E)
njm . Note that these are nonzero only for

d > 4. This decomposition is summarized as part of
Table XVIII in Sec. VIII.

Except for the camouflage coefficients (c¬(d)
F )

(0E)
njm dis-

cussed in the previous subsection, all the vacuum-
orthogonal coefficients control birefringence effects that
cannot be detected at leading order via vacuum propaga-
tion. To measure these coefficients, alternative methods
such as laboratory experiments are therefore desirable.
In contrast, all four sets of vacuum coefficients are de-
tectable in astrophysical tests involving birefringence or
dispersion, with the exception of the special d = 4 coef-

ficients c
(4)
(I)jm. The latter have been extensively studied

through a variety of different methods [12–17].

Note also that various hybrid models involving the
vacuum-orthogonal coefficients can be countenanced.
For example, a general vacuum-orthogonal isotropic
model is obtained upon further restricting attention

to the isotropic coefficients (c¬(d)
F )

(0E)
n00 , (k

¬(d)

F )
(0E)
n00 , and

(k
¬(d)

AF )
(0B)
n00 . This model has (d − 2)/2 nonbirefringent

and (d − 4)/2 birefringent operators for even d, along
with (d− 3)/2 birefringent operators for odd d.

F. Connections to other formalisms

Several specialized models involving particular
Lorentz-violating photon operators with d > 4 have
been considered in the literature. The generality of the
SME implies that any realistic model for the photon
propagator compatible with standard field theory is

encompassed via special values of the coefficients k̂F
and k̂AF . In this subsection, we outline some of these
connections. For a selection of specific models defined
via field theory, we provide explicit limiting values of the
SME coefficients for Lorentz violation that reproduce
the models. We also offer here some remarks about
the relationship between the SME and the kinematical
approach to Lorentz violation, which is based on altering
the transformation laws. Comments on the links between
the photon sector of the SME and Lorentz-violating
modifications of the photon dispersion relation outside
the context of standard field theory can be found in Sec.
VIA.

1. Field-theoretic models

We begin by discussing models defined via a Lagrange
density in field theory. Several specialized models exist
that involve photon fields with a small number of specific
Lorentz-violating operators of mass dimensions d = 5 and
in some cases also d = 6. We provide here brief comments
identifying the match between these models and the SME
coefficients for Lorentz violation.
One such model is presented by Gambini and Pullin

[60]. Lorentz violation in this model is controlled by the
parameter χlP . To see the connection to the SME, we
can make the field redefinition

E + 2χlP∇×E → E. (99)

This model then is equivalent to taking the special limit

of the SME with the nonzero coefficients being (k
(5)
AF )

0jk

and (k
(6)
F )jklmpq , given by

(k
(5)
AF )

0jk = 2χlP δ
jk,

(k
(6)
F )jklmpq = −4χ2l2P (ǫ

jknǫnlmδpq − 1

4
ǫjk(pǫq)lm).

(100)

This model involves only isotropic Lorentz violations, so
it is a special limit of the isotropic models discussed in
Sec. IVB. In terms of the coefficients for Lorentz viola-
tion defined in Eq. (71), the match

(̊k
(5)
AF )2 = −2

√
4π χlP ,

(̊c
(6)
F )2 = (̊k

(6)
F )2 = −

√
4π χ2l2P /5 (101)

provides a complete specification of this model within the
SME. It involves three nonzero isotropic coefficients con-
taining a single degree of freedom. A nonlinear general-
ization of this model is obtained in Ref. [61], in which the
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propagator component is a special limit of the isotropic
models discussed in Sec. IVB with three degrees of free-
dom.
Another specialized model incorporating photon-sector

Lorentz violation is introduced by Myers and Pospelov
[62]. This model has a unit timelike background vector
nµ that defines a preferred frame and a parameter ξ/MP

setting the scale of the Lorentz violation. Only one d = 5
Lorentz-violating operator affects the photon propagator.
In terms of SME coefficients, the model is obtained by
taking the nonzero coefficients for Lorentz violation to be

(k
(5)
AF )

κµν = − ξ

MP
(nκnµnν − 1

5
n2n(µην)κ). (102)

In the preferred frame, the vector takes the form nµ =
(1, 0, 0, 0). This model can therefore also be defined
uniquely in terms of isotropic Lorentz violation and un-
derstood as a special limit of the isotropic models dis-
cussed in Sec. IVB. It is equivalent to taking as nonzero

only the coefficient (̊k
(5)
AF )0, with the specific choice

(̊k
(5)
AF )0 =

3ξ
√
4π

5MP
. (103)

A model focusing on a Lagrange density that is explic-
itly gauge invariant and involves Lorentz-violating oper-
ators with d = 5 is considered by Bolokhov and Pospelov
[63]. By construction, the component of the model rel-
evant to the photon propagator is restricted to Lorentz
violation affecting leading-order vacuum propagation. It
consists of d = 5 operators governed by a totally sym-
metric and traceless parameter Cµνρ. This parameter
has 16 independent components, corresponding to the

16 vacuum coefficients k
(5)
(V )jm among the 36 independent

coefficients (k
(5)
AF )

µνρ for Lorentz violation at d = 5 in
the SME. In terms of the latter coefficients, the model is
fixed by

k
(5)
(V )jm ∼ (k

(5)
AF )

µνρ
∣∣∣
symmetric
traceless

= −2Cµνρ, (104)

where the correspondence on the left-hand side is de-
termined by matching Eqs. (76) and (81), and the re-

striction to the 16 relevant coefficients in (k
(5)
AF )

µνρ is
obtained by imposing total symmetry and tracelessness.
The 20 SME coefficients at d = 5 that are absent
from this model are the vacuum-orthogonal coefficients

(k
¬(5)

AF )
(0B)
njm , (k

¬(5)

AF )
(1B)
njm , and (k

¬(5)

AF )
(1E)
njm , which leave un-

affected leading-order vacuum propagation but nonethe-
less produce leading-order effects in suitable laboratory
experiments.
The series structure of the SME Lagrange density (8)

implies that models defined via nonpolynomial but ana-
lytic functionals of field operators can be matched to the
SME by Taylor expansion. This includes models with
apparent singularities, provided the expansion is taken
about a nonsingular point. In the latter case, distinct an-
alytic continuations may correspond to different values of

SME coefficients, which may lead to unusual dynamical
effects.
As an illustration, consider the class of Lorentz-

violating models called very special relativity (VSR) [64],
in which the Lorentz group is broken explicitly to the
four-parameter subgroup SIM(2). It is useful to intro-
duce the operator Nµ = nµ/(n · ∂), where nµ is a unit
null vector that establishes a preferred lightlike frame. It
follows that the combination N ·T involving a tensor field
operator T is SIM(2) covariant but violates Lorentz co-
variance. We can construct a generic on-shell linear VSR
electrodynamics preserving gauge invariance by specify-
ing field equations of the form

∂µF
µν +Kµ(N)Fµν = 0, (105)

where Kµ(N) is a nontrival 4-vector function of Nµ that
can also depend on the metric, the Levi-Civita tensor,
and derivatives. Note that it is problematic to obtain a
gauge-invariant action for these equations.
To investigate the correspondence to the SME, it is

convenient to work in momentum space, where the op-
erator iNµ = nµ/(n · p) is singular whenever n · p = 0.
Matching the momentum-space version of the VSR elec-
trodynamics (105) to the momentum-space version of the
SME equations of motion (11) therefore involves expand-
ing Kµ(iN)Fµν(p) about a nonsingular point Q in mo-
mentum space. Assigning coordinates pµQ to Q, we find
the expansion converges either for 0 < n · p < 2n · pQ
or for 2n · pQ < n · p < 0, corresponding to two differ-
ent analytic continuations of Kµ. Each expansion can be
matched to a set of SME coefficients, but the two sets of
coefficients differ. This implies the VSR electrodynamics
(105) is represented by two different limits of the SME,
according to the value of the photon momentum relative
to the preferred lightlike frame.

2. Robertson-Mansouri-Sexl model

In a different vein, some authors adopt a kinematical
approach to Lorentz violation that is based on modifica-
tions of the transformation laws. An older test model of
this type that is encompassed by the SME approach is
the kinematical formalism of Robertson, Mansouri, and
Sexl (RMS) [65, 66]. This approach assumes that there
is a preferred universal inertial frame U in which light
propagates conventionally as measured using a definite
set of rods and clocks. In other frames, which include
any inertial frame E relevant for experiment, light can
behave anisotropically with respect to the boosted rods
and clocks. The RMS approach assumes that the lengths
of rods and the ticking rates of clocks are invariant in
inertial frames related to U by RMS coordinate trans-
formations T µ

ν . These are deformations of the Lorentz
transformations involving three functions of the boost v,
conventionally denoted as a(v), b(v), d(v).
The RMS formalism can be translated into the SME

framework. Consider first the preferred universal frame
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U. Since light is conventional in U by definition, the
Maxwell action must be valid in this frame, so that

Lphoton
RMS, U = − 1

4η
µρηνσFµνFρσ. (106)

This Lagrange density is Lorentz invariant, so all Lorentz
violation in this frame resides in the physics describing
the chosen rods and clocks. For the photons, we can
match the RMS formalism to the SME by imposing the
condition

Lphoton
SME, U = Lphoton

RMS, U, (107)

which eliminates all Lorentz-violating effects in the pho-
ton sector of the SME as seen in U.
For the RMS rods and clocks, any realistic set is made

of constituent particles and fields. Since the SME de-
scribes general Lorentz violation for all particles and
fields, it follows that the properties of any definite set of
rods and clocks can be derived from the full SME action,
at least in principle. This action contains infinitely many
coefficients for Lorentz violation outside the photon sec-
tor, so there is plenty of room for anomalous behavior.
However, to preserve the observed isotropy of light in U
required by the RMS formalism for any possible choice of
rods and clocks, only violations of Lorentz invariance in
U that produce isotropic effects on the rods and clocks
should be countenanced. We conclude that the match
between the RMS formalism and the SME in the frame
U requires restricting the SME to a subset of coefficients
outside the photon sector. For definiteness in what fol-
lows, we denote these SME coefficients collectively by
{k}. Note that {k} can include anisotropic coefficients,
provided they have no anisotropic effects on the chosen
rods and clocks.
Next, consider an experimentally relevant frame E that

is moving with velocity v relative to U. In the RMS for-
malism, the properties of light in E are obtained by per-
forming an RMS coordinate transformation using T µ

ν .
This leads to a modified Maxwell action with

Lphoton
RMS, E = − 1

4

√
|gRMS| (g−1

RMS)
µρ(g−1

RMS)
νσFµνFρσ ,

(108)
where

(gRMS)µν = ηρσ(T
−1)ρµ(T

−1)σν (109)

is an effective metric that depends on the three functions
a, b, d. Note that physically different choices for the rods
and clocks in the frame U imply different invariant RMS
transformations and hence different a, b, d.
In contrast, the SME properties of light and the

boosted rods and clocks in the frame E are obtained by
performing a particle Lorentz transformation with the

velocity v. Since Lphoton
SME, U is invariant under particle

Lorentz transformations, light in the SME must obey
conventional electrodynamics in the frame E too. How-
ever, the rods and clocks involve Lorentz-violating oper-
ators that change under the particle Lorentz transforma-
tion. This produces a deformation of the standard rods

and clocks in E that depends on the SME coefficients
{k}.
We thus find that the RMS formalism and the SME

naturally generate two different coordinate systems for
describing physics in the frame E. To relate the two, we
can redefine the length and time intervals specified by the
boosted SME rods and clocks to match numerically those
of the boosted RMS rods and clocks, and we can choose
the SME synchronization to match the RMS one. The
redefinition can be implemented by scaling the spacetime
coordinates. In the photon sector of the SME, the scaling
produces an effective metric (gSME, eff)µν that depends
on the coefficients {k}. Since measurements made with
rods and clocks using either coordinate system now agree,
this metric must match the RMS metric (109) in the
frame E. This yields the result

(gSME, eff)µν({k}) = (gRMS)µν(a, b, d), (110)

which provides a direct correspondence between the SME
coefficients and the RMS functions.
The above match shows that the RMS formalism can

be understood as a special limit of the SME in which nor-
mal light behavior together with Lorentz violation affect-
ing rods and clocks isotropically are assumed in the frame
U. This limit excludes infinitely many Lorentz-violating
effects. Since the RMS formalism is a special-relativistic
test model, the gravitational sector of the SME must also
be disregarded. Note that the three functions a, b, d can
be expanded in powers of the velocity to yield a triple
infinity of constant parameters, which can be absorbed
into the multiple infinity of coefficients {k}. In the ideal-
ized case of rods and clocks formed from a scalar particle
with only one isotropic dimension-zero coefficient k for
Lorentz violation in the frame U, explicit expressions for
the three RMS functions in terms of k are given in Sec.
III C of Ref. [11].
Another point of interest is that physically different

rods and clocks are associated with different functions a,
b, d, and so involve different combinations of the coeffi-
cients {k}. Within the RMS formalism, measurements of
a, b, d in a given experiment cannot meaningfully be com-
pared to those in another experiment unless physically
identical rods and clocks are used in both. Note that the
rods and clocks must also be in the same physical state,
since state changes in the presence of Lorentz violation
can deform physical properties. This major disadvantage
of the RMS formalism is circumvented by the SME. The
SME coefficients for Lorentz violation are specific to par-
ticles and interactions and can therefore be reported in
an experiment-independent way in a conveniently chosen
frame, which conventionally is taken as the Sun-centered
frame described in Sec. V.
To illustrate the above reasoning with an explicit ex-

ample, we can consider a scenario in which the photons,
the chosen rods, and the chosen clocks each have proper-
ties governed by different effective metrics. Following the
RMS assumptions, the effective metric (gphoton, U)µν for
photons in the frame U must be taken as the Minkowski
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metric, while the effective metric (grod, U)µν for the rods
and the effective metric (gclock, U)µν for the clocks char-
acterize the Lorentz-violating physics in U. We examine
here a simple model for which

(gphoton, U)µν = ηµν ,

(grod, U)µν = ηµν − (crod, U)µν ,

(gclock, U)µν = ηµν − (cclock, U)µν . (111)

The quantities (crod, U)µν and (cclock, U)µν can be viewed
as effective coefficients for Lorentz violation defined in the
frame U. Depending on the nature of the chosen rods and
clocks, these coefficients can be identified either directly
with specific SME coefficients or indirectly as suitable
combinations of SME coefficients. We also assume the
conditions

(crod, U)j0 = (crod, U)0k = 0,

(crod, U)jk =
1

3
(crod, U)00δjk,

(cclock, U)j0 = (cclock, U)0k = 0,

(cclock, U)jk =
1

3
(cclock, U)00δjk, (112)

which ensure isotropic properties of the rods and clocks
in U, as required by the RMS formalism. For simplicity,
the coefficients are taken to be independent of spacetime
position or, equivalently, independent of frequency and
momentum. This simple model therefore has only two
degrees of freedom controlling Lorentz violation.
Suppose for definiteness that the experimentally rele-

vant frame E is moving with velocity v = (v, 0, 0) relative
to U. Following the general reasoning above, we can ob-
tain the SME description of the model in E by performing
a standard particle Lorentz transformation Λ from U to
E. The resulting effective metrics in E are given by ex-
pressions of the form

gE = Λ−1T gUΛ
−1. (113)

In the frame E, light remains conventional but the rods
and clocks are distorted. To match to the RMS formal-
ism, we must therefore seek alternative coordinates in E
in which the rods are isotropic and of the same length as
in U, and in which the clocks tick at the original rate in
U. The appropriate coordinate transformation C leaves
the origin of E in place but acts on the effective metrics
as

gE → C−1 T gEC
−1 ≡ C−1 TΛ−1T gUΛ

−1C−1. (114)

Since the components (grod)jk determine the rod length
and the component (gclock)00 determines the clock ticking
rate, and since both these quantities are assumed invari-
ant in the RMS formalism, the required transformation
C is fixed by demanding that

[C−1TΛ−1T (grod,U)Λ
−1C−1]jk = (grod,U)jk,

[C−1TΛ−1T (gclock,U)Λ
−1C−1]00 = (gclock,U)00. (115)

With the usual definition γ ≡ 1/
√
1− v2, we find that

the nonzero elements of C take the form

C0
0 =

√
1− (cclock, U)00γ2(1 +

1
3v

2)

1− (cclock, U)00
,

C1
1 =

√
1 + (crod, U)00γ2(

1
3 + v2)

1 + 1
3 (crod, U)00

,

C2
2 = C3

3 = 1, (116)

which amounts to performing different dilations of time
and of space in the direction of the boost.
With this information in hand, we can construct the

RMS transformation T ≡ CΛ from U to E. This provides
the direct correspondence between the SME coefficients
and the RMS functions a, b, d for this simple model. We
obtain

a =
1

γ

√
1− (cclock, U)00γ2(1 +

1
3v

2)

1− (cclock, U)00
,

b = γ

√
1 + (crod, U)00γ2(

1
3 + v2)

1 + 1
3 (crod, U)00

,

d = 1,

ǫ =
−aγ2v
b

, (117)

where ǫ is the RMS synchronization function in Einstein
synchronization. Unlike the elementary single-coefficient
example given in Ref. [11], the present model has a 6= 1/b.
It also has d = 1, but allowing frequency dependence in
(crod, U)00 can generate d 6= 1 via the mixing of frequency
with momentum resulting from the Λ boost and its con-
sequent effects on C. A frequency or momentum depen-
dence may arise directly from the inclusion of matter-
sector operators of nonrenormalizable dimension [44], or
indirectly from combinations of SME coefficients of renor-
malizable dimension when the motions of the component
particles in the rod are incorporated.
Expanding the above results for a, b, d to leading or-

der in v2 and to leading order in coefficients for Lorentz
violation yields

a ≈ 1 + αv2, α = − 1
2 − 5

12 (cclock, U)00,

b ≈ 1 + βv2, β = 1
2 + 7

12 (crod, U)00,

d ≈ 1 + δv2, δ = 0. (118)

The combination of the RMS parameters α, β, δ that can
be tested in Michelson-Morley experiments is known to
be [66]

β + δ − 1
2 = 7

12 (crod, U)00, (119)

and the combination tested in Kennedy-Thorndike ex-
periments is

α− β + 1 = − 7
12 (crod, U)00 − 5

12 (cclock, U)00, (120)
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while Ives-Stilwell experiments are sensitive to α. Evi-
dently, two of the three types of experiments are required
to disentangle all effects, even for this simple model.
Various special cases can be considered. For example,
if either (crod, U)00 or (cclock, U)00 vanishes, then either
Michelson-Morley or Ives-Stilwell experiments have no
signal. If (crod, U)00 = (cclock, U)00, all experiments have
interdependent signals.
The example verifies that the RMS formalism concerns

Lorentz-violation residing in the matter sector rather
than in the photon sector. Note that different choices
of rods and clocks generically involve different values of
(crod, U)00 and (cclock, U)00 and therefore are associated
with distinct Lorentz-violating effects, confirming that
results from RMS experiments performed using differ-
ent rods and clocks cannot meaningfully be compared.
Note also that (crod, U)00 and (cclock, U)00 are defined in
the frame U, which typically differs from the canonical
Sun-centered frame S in which SME coefficients are re-
ported. A conventional particle Lorentz boost from U
to S can be implemented to identify the relevant coeffi-
cient combinations in S. Interpreting experiments in the
RMS formalism requires a choice of U, which is often
taken as the frame of the cosmic microwave background,
in which case the relevant boost to S is of order 10−3 and
so to a good approximation (crod, U)00 = (crod, S)TT and
(cclock, U)00 = (cclock, S)TT . Alternatively, the frame U
can simply be chosen to be the frame S, since to date no
compelling evidence for anisotropic Lorentz violation in S
has been identified. Other choices are also possible. The
requirement that U be specified to fix the RMS formal-
ism is a disadvantage that is avoided in the SME, where
any universal frame U is acceptable and moreover the ex-
istence of U is unnecessary for interpreting experimental
data.

3. Deformed special relativities

Another kinematical approach involves requiring the
invariance of all physics under some specified modifica-
tion of the Lorentz transformations. Recent efforts along
these lines are generically called deformed special rela-
tivity (DSR), or in some cases doubly special relativ-
ity or kappa-deformed relativity [67]. They posit that
all physics is invariant under a set of deformed nonlin-
ear Lorentz transformations, usually one that introduces
a maximum energy scale. A generic DSR model is de-
fined by replacing the 4-momentum pµ with a modified
4-momentum πµ, typically with a Planck-scale suppres-
sion factor for the deformation [68]. The momentum-
space Lorentz transformations act conventionally on πµ.
This induces unconventional DSR transformations on pµ,
which are required to leave invariant the physics of the
model.
Since the SME contains arbitrary polynomial Lorentz-

violating operators at all mass dimensions, it must be
possible to express any nonsingular DSR model involving

realistic fields in the SME framework. The deformations
normally are assumed to preserve rotation invariance, in
which case the match to the SME involves the isotropic
coefficients discussed in Sec. IVB. Within the context of
the present work, we can investigate this correspondence
explicitly in the photon sector.
Consider a generic DSR model in which the replace-

ment of the 4-momentum pµ is specified by the nonlinear
transformation

pµ → πµ =Mµ
ν(p)pν (121)

acting in momentum space, where M ν
µ (p) is a nonsin-

gular matrix that is a deformation of the identity. By
definition, the Lorentz transformations Λα

β in momen-
tum space act on πµ as usual, πµ → π′

µ = Λµ
νπν . It

follows that the expressions

pµ → p′µ = Sµ
νpν , Sµ

ν = (M−1ΛM)µ
ν

(122)

specify the nonlinear DSR transformations Sµ
ν of pµ.

In the photon sector, we can determine the DSR-
covariant dispersion relation for the photon by applying
the replacement (121) to the standard Maxwell disper-
sion relation pµη

µνpν = 0. This gives

pµ(g
−1
DSR)

µνpν = 0, (123)

where the effective metric

(gDSR)µν = ηρσ(M
−1)µ

ρ
(M−1)ν

σ
(124)

is defined in momentum space. By construction, the dis-
persion relation (123) is invariant under the DSR trans-
formations Sµ

ν in Eq. (122).
In the SME context, the DSR dispersion relation (123)

is recovered as a limiting case of the scalar covariant dis-
persion relation (30). The match arises in the special

limit with (k̂AF )µ = 0 and with the momentum-space

operator (k̂F )
µνρσ given by

(k̂F )
µνρσ =

√
gDSR (g−1

DSR)
µρ(g−1

DSR)
νσ

− 1
2 (η

µρηνσ − ηνρηµσ). (125)

We see that the nonlinear transformation M ν
µ (p) gen-

erates a subset of the Lorentz-violating operators in the
SME, typically in the form of an infinite series.
An alternative derivation yielding the same result can

be performed at the level of field theory. We can con-
struct the DSR-invariant modified action for this generic
model by taking the Maxwell action in momentum space
and implementing the replacement (121). The transfor-
mation of the photon field under Sµ

ν is taken as

Aµ(p) → A′
µ(p

′) = Sµ
ν(p)Aν(p), (126)

corresponding to the replacement Aµ → Mµ
νAν . This

gives the momentum-space Lagrange density

Lphoton
DSR (p) = − 1

4

√
|gDSR| (g−1

DSR)
µρ(g−1

DSR)
νσFµνFρσ ,

(127)
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where the effective metric (gDSR)µν in momentum space
is given by Eq. (124). By construction, the Lagrange
density (127) is invariant under the DSR transforma-
tions Sµ

ν in Eq. (122). In the SME context, this same
Lagrange density is obtained as the special limit of the
SME photon sector of the form

Lphoton
SME

∣∣∣
DSR

≡ Lphoton
DSR

= − 1
4F

µνFµν − 1
4Fµν(k̂F )

µνρσFρσ, (128)

where the momentum-space operator (k̂F )
µνρσ is given

by Eq. (125). This SME construction applies for a generic
DSR model, and it confirms that the nonlinear transfor-
mation M ν

µ (p) produces a series of SME coefficients for
Lorentz violation.
Although the model (128) transforms nontrivially un-

der conventional particle Lorentz transformations, ob-
servable physical effects cannot arise. This is because
in any frame the inverse momentum replacement can be
applied to all particles and fields to recover an action
of the usual Lorentz-invariant form in terms of the mo-
mentum πµ, and any experiment naturally identifies this
momentum as the physical one. The situation in this re-
spect differs from that of the RMS formalism, where only
the rods and clocks are assumed invariant under modi-
fied Lorentz transformations while light behaves differ-
ently, so physical effects can arise. It also differs from
the SME, where distinct particles and fields can break
Lorentz symmetry in different ways and only a subset of
coefficients are unobservable. The absence of observable
effects when the conventional momentum is adopted is
a known characteristic of DSR models [69], which fol-
lows from their definition as nonlinear momentum-space
representations of the usual Lorentz transformations.
More generally, the above considerations reveal that

modifications of the dynamics are unphysical whenever
they arise from a universal and reversible momentum
substitution. Observable effects might in principle be
possible in special models if singularities in the physics
obstruct the recovery of the usual 4-momentum via the
inverse momentum replacement, although the require-
ment of physical singularities seems unappealing. How-
ever, an alternative approach does exist. Observable ef-
fects in models with deformed Lorentz transformations
can be obtained by imposing the deformed invariance
only on a subset of particles or fields, while either conven-
tional Lorentz invariance or a different deformed invari-
ance holds for others. This idea has not been investigated
in the literature, perhaps because the idea of two or more
mutually incompatible invariances in nature runs counter
to the DSR philosophy. Note that any such models are
subsets of the SME, so constraints from SME coefficients
apply.
As one simple exotic example of a model with multiple

invariances, one can consider ‘spinning’ special relativity
in which the deformed symmetry differs for fermions and
bosons. The quadratic action for a fermion would then
be invariant under one transformation, while that for a

boson would have a different invariance. The deformed
transformations can also be chosen to depend explicitly
on the representation, so that multiple invariances would
be involved in the various pieces of the quadratic action.
Different versions of this idea could be considered. For in-
stance, ‘flavorful’ and ‘colorful’ special relativities could
be constructed by choosing the deformations to vary with
the particle species, or more specifically with the repre-
sentation of the internal symmetry group. In any case,
the full action generically breaks the individual invari-
ances, thereby leading to detectable signals. As before,
any subgroup of the deformed transformations that leaves
invariant the full action is associated with unobservable
effects.

V. REFERENCE FRAMES AND ROTATIONS

For comparative purposes, it is useful to adopt a stan-
dard inertial frame in reporting measurements of coeffi-
cients for Lorentz violation. The canonical frame used
in the literature is a Sun-centered celestial equatorial
frame [11, 34]. Cartesian coordinates in this frame are
denoted (T,X, Y, Z). The Z axis lies along the rotation
axis of the Earth, while the X-Y plane coincides with the
Earth’s equatorial plane. The X axis is directed from the
Earth to the Sun at the vernal equinox. One advantage
of this conventional choice is that transforming between
the Sun-centered frame and a laboratory frame is com-
paratively simple.

In a typical application, a measurement of coefficients
for Lorentz violation is made in a laboratory frame of ref-
erence. However, the rotation and revolution of the Earth
imply this frame is noninertial, so the coefficients for
Lorentz violation in the laboratory vary with time. These
varying coefficients are related to the constant ones in
the Sun-centered frame by an observer Lorentz transfor-
mation, which predominantly involves rotations. In this
section, we construct the relevant rotation transforma-
tions to an arbitrary laboratory reference frame, includ-
ing one based on a rotating turntable. We apply the re-
sults to obtain the transformation of spherical coefficients
for Lorentz violation between the laboratory and Sun-
centered frames. Since the spherical coefficients repre-
sent a decomposition based on angular momentum, their
transformation is comparatively straightforward. More-
over, the spin weight is unaffected by rotations because
helicity commutes with the angular momentum J . The
only index that changes under rotations is therefore the
Jz eigenvalue m.

A. Rotation matrices

To construct the rotation transformations, we adopt
Euler angles α, β, and γ that relate two arbitrary
cartesian frames with coordinates (x, y, z) and (x′, y′, z′)
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through the rotation

R = e−iαJze−iβJye−iγJz . (129)

This rotation can be visualized by starting with the two
frames coinciding, rotating the second frame by γ about
the z axis, then by β about the y axis, and finally by
α about the z axis again. Acting on coordinates, this
combination of rotations can be shown to be implemented
by the matrix equation



x′

y′

z′


 =




cos γ sin γ 0

− sin γ cos γ 0

0 0 1







cosβ 0 − sinβ

0 1 0

sinβ 0 cosβ




×




cosα sinα 0

− sinα cosα 0

0 0 1






x

y

z


 . (130)

Note that this result implies that the net rotation can
alternatively be viewed as a rotation by α about z, fol-
lowed by a rotation by β about the rotated y axis, and
then by a rotation by γ about the rotated z axis.
To determine the rotation rules for spherical harmon-

ics, consider a spin-weighted function sf expanded in
both coordinate systems:

sf =
∑

jm

fjm sYjm(Ω) =
∑

jm

f ′
jm sYjm(Ω′). (131)

The spherical harmonics are related by

sYjm(Ω′) = R sYjm(Ω), (132)

which implies the transformation

fjm =
∑

m′

D
(j)
mm′(α, β, γ)f

′
jm′ ,

f ′
jm =

∑

m′

D
(j)
mm′(−γ,−β,−α)fjm′ . (133)

In these expressions, the quantities

D
(j)
mm′(α, β, γ) =

∫
sY

∗
jme

−iαJze−iβJye−iγJz
sYjm′ dΩ

(134)
are the Wigner rotation matrices [70]. It can be shown
that these matrices are independent of s, which is to be
expected because J commutes with the helicity operator.
Consequently, all spherical coefficients are rotated using
the same set of matrices, regardless of their spin weight.
The Wigner matrices are often written in the form

D
(j)
mm′(α, β, γ) = e−iαme−iγm′

d
(j)
mm′(β), (135)

where d
(j)
mm′(β) = D

(j)
mm′(0, β, 0) are called the little

Wigner matrices. The phases in this equation corre-

spond to the two rotations about the z axis, while d
(j)
mm′

accounts for the rotation about y. Explicitly, the little-
matrix elements are given by

d
(j)
mm′(β) =

∑

k

(−1)k+m+m′
√

(j+m)!(j−m)!(j+m′)!(j−m′)!
(j−m−k)!(m−m′+k)!(j+m′−k)!k!

×
(
cos β

2

)2j(
tan β

2

)2k+m−m′
,

(136)

where the sum is restricted to all k for which the argu-
ments of the factorials are nonnegative.

B. Laboratory frame

We next apply the Wigner matrices to relate the coef-
ficients for Lorentz violation in the laboratory frame to
those in the Sun-centered frame. For this purpose, it is
useful to work with a canonical laboratory frame [11].
Cartesian coordinates in this frame are denoted (x, y, z).
The z direction is directed towards the zenith, and the
x axis lies at an angle φ measured east of south. The
colatitude of the laboratory is denoted χ. The orienta-
tion of the laboratory with respect to the Sun-centered
coordinates (X,Y, Z) is determined by the local sidereal
time T⊕. Since the Z axis points towards the celestial
north pole while the X and Y axes lie in the equato-
rial plane with right ascension 0◦ and 90◦, respectively,
it follows that the laboratory z axis points toward right
ascension ω⊕T⊕, where ω⊕ ≃ 2π/(23 hr 56 min) is the
Earth’s sidereal frequency.
With these conventions, the angles φ, χ, and ω⊕T⊕

represent three Euler angles giving the relevant net rota-
tion between frames. From the perspective of the Sun-
centered frame, the laboratory frame is obtained by ro-
tating by φ about Z, then by χ about Y , and lastly
by ω⊕T⊕ about Z. The Euler angles relating the Sun-
centered frame to the laboratory frame are therefore

α = ω⊕T⊕, β = χ, γ = φ. (137)

It follows that the explicit rotation relating the two sets
of coordinates is


x

y

z


 =




cosφ sinφ 0

− sinφ cosφ 0

0 0 1







cosχ 0 − sinχ

0 1 0

sinχ 0 cosχ




×




cosω⊕T⊕ sinω⊕T⊕ 0

− sinω⊕T⊕ cosω⊕T⊕ 0

0 0 1






X

Y

Z


 . (138)

The spherical coefficients in the laboratory frame can now
be expressed as Sun-frame coefficients through the rela-
tion

Klab
jm =

∑

m′

D
(j)
mm′(−φ,−χ,−ω⊕T⊕)KSun

jm′

=
∑

m′

eimφeim
′ω⊕T⊕d

(j)
mm′(−χ)KSun

jm′ , (139)
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where Klab
jm and KSun

jm represent arbitrary spherical coef-
ficients for Lorentz violation in the laboratory and Sun-
centered frames, respectively.

The result (139) is auspicious. A key signal in many
experiments is the sidereal variation introduced by the
rotation of the Earth. Here, this rotation is expressed in
a simple form involving time-dependent phases eimω⊕T⊕ .
Only the colatitude χ appears in the little Wigner ma-

trices d
(j)
m′m(−χ), which are time independent. Conse-

quently, for typical applications these time-independent
factors need be calculated only once for a given experi-
ment at fixed χ.

Some experiments involve turntables rotating about
the vertical axis. This situation can be incorporated into
the above rotation by fixing the laboratory frame with re-
spect to the turntable. This implies the azimuthal angle
acquires a time dependence of the form φ = ωttTtt, where
ωtt is the turntable rotation frequency and Ttt is mea-
sured from a time when the x axis points south. Again,
the time dependence enters through simple phases.

As a simple example, consider the rotations of vector
coefficients in an experiment involving a turntable. Cal-
culating the Wigner matrices for j = 1, we find that the
rotation between spherical coefficients in the laboratory
and Sun-centered frames is given by




Klab
11

Klab
10

Klab
1(−1)


 =



eiωttTtt 0 0

0 1 0

0 0 e−iωttTtt




×




cos2 χ
2 − 1√

2
sinχ sin2 χ

2
1√
2
sinχ cosχ − 1√

2
sinχ

sin2 χ
2

1√
2
sinχ cos2 χ

2




×



eiω⊕T⊕ 0 0

0 1 0

0 0 e−iω⊕T⊕







KSun
11

KSun
10

KSun
1(−1)


 (140)

in matrix form.

In some situations, it may be convenient to define a
third frame that is fixed with respect to the appara-
tus. The advantage of this third frame is that it may
be chosen to simplify calculations. For example, a labo-
ratory apparatus often has a symmetry axis, so adopting
a third apparatus frame with one coordinate axis along
the symmetry direction may be convenient. To incorpo-
rate this in the above formalism, it suffices to identify
a suitable apparatus frame and to determine the corre-
sponding Euler angles relating it to the laboratory frame.
The laboratory-frame and apparatus-frame spherical co-
efficients are then related through Eq. (133). Thus, if
the apparatus-frame coordinates (x′, y′, z′) are related to

laboratory-frame coordinates by



x′

y′

z′


 =




cos γ sin γ 0

− sin γ cos γ 0

0 0 1







cosβ 0 − sinβ

0 1 0

sinβ 0 cosβ




×




cosα sinα 0

− sinα cosα 0

0 0 1






x

y

z


 , (141)

where α, β, γ are appropriate Euler angles, then the
apparatus-frame spherical coefficients can be written
in terms of the laboratory-frame spherical coefficients
through

Kapp
jm =

∑

m′

D
(j)
mm′(−γ,−β,−α)Klab

jm′ . (142)

Assuming the orientation of the system is fixed in the
laboratory frame, the Wigner matrices for this rotation
are constant.
As a simple illustration, consider a system with sym-

metry axis oriented along the x axis of the laboratory
frame. In this case, it may be beneficial to choose an ap-
paratus frame having angular-momentum projection axis
z′ aligned with the symmetry axis. This can be achieved
by taking x′ = −z, y′ = y, and z′ = x. A suitable choice
of Euler angles is then given by α = 0, β = 90◦, and
γ = 0.

VI. ASTROPHYSICAL TESTS

In this section, we discuss searches for Lorentz viola-
tion involving observation of radiation from sources at
cosmological distances. Due to the large baselines in-
volved, searches for birefringent and dispersive effects can
in principle achieve high sensitivities to almost all the

vacuum coefficients c
(d)
(I)jm, k

(d)
(E)jm, k

(d)
(B)jm, and k

(d)
(V )jm

introduced in Sec. IVC.
Where relevant, vacuum birefringence provides consid-

erably greater sensitivity than vacuum dispersion, as is
shown below. It is therefore natural to separate the rel-
evant Lorentz-violating operators into two classes. The

first class is controlled by the vacuum coefficients k
(d)
(E)jm,

k
(d)
(B)jm, k

(d)
(V )jm and produces leading-order birefringence.

The second consists of vacuum operators causing disper-
sion without leading-order birefringence, and is associ-

ated with the coefficients c
(d)
(I)jm for d > 4. Observations

of dispersion are therefore well suited to measurements

of c
(d)
(I)jm, while studies of birefringence are appropriate

for measurements of the remaining coefficients.
We begin in Sec. VIA with a discussion of dispersion

tests. The basic theory and results are summarized, and
new constraints are obtained using recent results. In Sec.
VIB, we consider birefringence tests. A general treat-
ment is first outlined, and then applications to point
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sources and to the cosmic microwave background (CMB)
are presented. We obtain new constraints from gamma-
ray bursts on coefficients of mass dimensions five, seven,
and nine, and we discuss some general features of the
effects of Lorentz violation on the CMB.

A. Dispersion tests

Frequency-dependent photon velocities arise from
Lorentz-violating operators with d 6= 4, which cause wave
dispersion. Astrophysical searches for vacuum dispersion
seek these differences in the velocity of light at differ-
ent wavelengths. Typical searches involve explosive or
pulsed sources of radiation, such as gamma-ray bursts,
pulsars, or blazars, that produce light over a wide range
of wavelengths in a short period of time. Assuming the
temporal structure of the emission is sufficiently well un-
derstood, observed but unexpected arrival-time differ-
ences can be interpreted as wavelength dependences in
the velocity. Even if detailed frequency information is
unavailable, limits can still be obtained from the pulse
width because dispersion results in a spreading of wave
packets.
A number of astrophysical searches for a modified pho-

ton dispersion relation have been performed. Most of
these studies assume isotropic Lorentz violation. To
make the connection between these approaches and the
SME, we momentarily restrict our attention to the vac-
uum isotropic model discussed in Sec. IVC, which is the
relevant limit for astrophysical studies of isotropic vio-
lations. Recall that this model has exactly one nonzero
spherical coefficient for Lorentz violation at each d, con-

sisting of c
(d)
(I)00 for even d and k

(d)
(V )00 for odd d. In the

isotropic limit, the velocity defect arising from Eq. (75)
is given by

δv ≃ 1√
4π

∑

d

Ed−4
(
− c

(d)
(I)00 ± k

(d)
(V )00

)
, (143)

in terms of the photon energy E. The coefficients c
(d)
(I)00

are associated with CPT-even operators producing dis-
persion but no leading-order birefringence, while nonzero

coefficients k
(d)
(V )00 imply birefringence and corresponding

changes in polarization. Among the studies involving
modified dispersion relations with isotropic Lorentz vio-
lation, it follows that only those with odd d and birefrin-
gence or even d and no birefringence are consistent with
linear effective field theory in flat spacetime [71].
Isotropic Lorentz-violating effects in modified disper-

sion relations are sometimes described using a velocity
deviation of the form δv = ±ξ1E, where ξ1 is a constant
[62, 72]. This model is phenomenologically equivalent

to the single SME coefficient k
(5)
(V )00 =

√
4π ξ1. How-

ever, because this particular combination causes bire-
fringence, its best constraints currently come from po-
larimetry observations, which are discussed in the next

subsection. An isotropic higher-order correction of the
form δv = ξ2E

2 has also been considered [73]. This case

corresponds to the d = 6 coefficient c
(6)
(I)00 = −

√
4π ξ2.

Bounds on this term from the active galaxy Markarian
501 are currently of order 10−21 GeV−2 [23], though some
evidence for nonzero dispersion from this source exists
[74]. Other cases that are sometimes considered involve
an isotropic nonbirefringent linear defect δv = ξ1E [75]
or an isotropic birefringent defect δv = ±ξ2E2, where
the sign indicates helicity [76]. Both these cases are in-
consistent with the present general analysis and may be
problematic.
In principle, searches for Lorentz violation via disper-

sion are sensitive to all coefficients with d 6= 4. How-
ever, considerably greater sensitivities to coefficients as-
sociated with birefringence are typically accessible via
polarimetry. This can be understood as follows. In a vac-
uum dispersion study involving a source at baseline dis-
tance L, the quantity of interest is the change δt ≃ δvL
in arrival time of the signal, which implies a sensitiv-
ity to δv given by δt/L. In contrast, for a polarimetric
study of the same astrophysical source, the quantity of
interest is the phase difference δφ ≃ EδvL of the eigen-
modes, which yields sensitivity δφ/LE. Comparing these
two results, we see that dispersive sensitivity depends on
the difference in arrival time, while polarimetric sensi-
tivity depends on the periodicity ∝ 1/E of the source
radiation. Consequently, to achieve similar sensitivity,
an astrophysical dispersion test requires a time resolu-
tion comparable to the inverse frequency of the photons,
which is infeasible.
We can therefore conclude that astrophysical disper-

sion studies are best suited to searches for the nonbire-
fringent vacuum coefficients c

(d)
(I)jm. Note, however, that

birefringence also causes a spreading of wave packets, due
to the differences in velocity of the two birefringent eigen-
modes. Moreover, all birefringent operators with d 6= 4
are also dispersive. A definitive interpretation of an ob-
served arrival-time difference as a dispersive nonbirefrin-

gent effect associated with the vacuum coefficients c
(d)
(I)jm

therefore requires a polarimetric study of the signal or
elimination of possible contributions from the other vac-
uum coefficients via independent studies.
Setting all other coefficients to zero, the velocity defect

including anisotropies is given by

δv ≃ −ς0 = −
∑

djm

Ed−4
0Yjm(n̂) c

(d)
(I)jm. (144)

Note that this involves only even-dimensional Lorentz-
violating operators and that the d = 4 case involves no
dispersion. For operators with d > 4, the sensitivities
increase with energy and so high-frequency sources can
be expected to yield the sharpest results. Note also that
limiting attention to isotropic dispersion disregards a to-
tal of (d2− 2d− 2) independent types of vacuum Lorentz
violation at each d.
The difference in velocity between photons of different
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Model Coefficients Result System

Vacuum
˛

˛

P

jm 0Yjm(99.7◦, 240◦) c
(6)
(I)jm

˛

˛ < 1× 10−16 GeV−2 GRB 021206
P

jm 0Yjm(50.2◦, 253◦) c
(6)
(I)jm 3+1

−2 × 10−22 GeV−2 Markarian 501
P

jm 0Yjm(147◦, 120◦) c
(6)
(I)jm < 3.2× 10−20 GeV−2 GRB 080916C

˛

˛

P

jm 0Yjm(330◦,−30◦) c
(6)

(I)jm

˛

˛ < 7.4× 10−22 GeV−2 PKS 2155-304

˛

˛

P

jm 0Yjm(99.7◦, 240◦) c
(8)
(I)jm

˛

˛ < 3× 10−13 GeV−4 GRB 021206
P

jm 0Yjm(147◦, 120◦) c
(8)
(I)jm < 2.6× 10−23 GeV−4 GRB 080916C

Vacuum isotropic
˛

˛c
(6)
(I)00

˛

˛ < 4× 10−16 GeV−2 GRB 021206

c
(6)
(I)00 10+4

−7 × 10−22 GeV−2 Markarian 501

c
(6)
(I)00 < 1.1× 10−19 GeV−2 GRB 080916C

˛

˛c
(6)
(I)00

˛

˛ < 2.6× 10−21 GeV−2 PKS 2155-304

˛

˛c
(8)
(I)00

˛

˛ < 9× 10−13 GeV−4 GRB 021206

c
(8)
(I)00 < 9.2× 10−23 GeV−4 GRB 080916C

TABLE XIII: Constraints on spherical coefficients from astrophysical dispersion studies. The first five rows give constraints on
the vacuum coefficients with d = 6, 8. The next five rows give the constraints on coefficients in the isotropic limit, for which
there is exactly one nonzero coefficient for each d. Except for the limits from GRB 080916C and PKS 2155-304, which are
obtained in the text, all results in the table are taken from the analysis of Ref. [23], which used data from Refs. [74] and [77].
The bounds shown are at the 95% confidence level.

energies leads to an arrival-time difference given by [23]

t2 − t1 ≈
∫ z

0

v1 − v2
Hz

dz

≈ (Ed−4
2 − Ed−4

1 )

∫ z

0

(1 + z)d−4

Hz
dz

∑

jm

0Yjm c
(d)
(I)jm,

(145)

where the source redshift is z and t1, t2 are the propa-
gation times for photons with observed energies E1, E2

and velocities v1, v2. Also,

Hz = H0[Ωr(1 + z)4 +Ωm(1 + z)3 +Ωk(1 + z)2 +ΩΛ]
1/2

(146)
is the Hubble expansion rate at z, expressed in terms of
the present-day Hubble constantH0 ≃ 71 km s−1Mpc−1,
radiation density Ωr ≃ 0.015, matter density Ωm ≃ 0.27,
vacuum density ΩΛ ≃ 0.73, and curvature density Ωk =
1−Ωr−Ωm−ΩΛ. In Ref. [23], these expressions are used
to place direction-dependent bounds on combinations of

the coefficients c
(6)
(I)jm and c

(8)
(I)jm, using observations of

GRB 021206 [77] and of the blazar Markarian 501 [74].
These results are summarized in Table XIII.
As an illustration, consider the recent measurements

made by the Fermi Observatory on the source GRB
080916C [78]. This exceptionally energetic source pro-
duced a burst of photons with observed energies ranging
to 13.22+0.70

−1.54 GeV, all of which arrived within 16.54 s
of the initial detection of low-energy photons. The high
photon energies and the large redshift of z = 4.35± 0.15
make this burst a sensitive probe of Lorentz violation.
A conservative bound on the vacuum coefficients for

Lorentz violation can be obtained using the 2σ lower lim-
its for the energy and redshift. Performing the integral
(145) for d = 6 and assuming the lower energy is negligi-
ble, we find the constraint
∑

jm

0Yjm(147◦, 120◦) c(6)(I)jm < 3.2× 10−20 GeV−2 (147)

on a direction-dependent combination of operators for
Lorentz violation of mass dimension d = 6. Taking in-
stead operators of mass dimension d = 8, we obtain the
constraint
∑

jm

0Yjm(147◦, 120◦) c(8)(I)jm < 2.6×10−23 GeV−4. (148)

Note that these are one-sided bounds that suppose
the higher-energy photons propagate more slowly and
that disregard possible burst-timing structure from the
source. Under the assumption that the observed time dif-
ference is due to Lorentz-violating effects, a careful study
of the leading edge of the high-energy photons might also
permit the derivation of a lower positive bound for each
of the above coefficient combinations.
Another example is provided by the recent data ob-

tained for the active galaxy PKS 2155-304 by the High
Energy Stereoscopic System (HESS) [79]. This source
has redshift z = 0.116 and a light curve spanning an en-
ergy range of a few TeV, with time delays of a few tens of
seconds. The reported analysis places a constraint of 41
s TeV−2 at the 95% confidence level on dispersion effects
quadratic in the energy. Performing the integral (145)
as before and identifying the reported constraint with
(t2 − t1)/(E

2
2 − E2

1) implies a conservative bound on a
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direction-dependent combination of vacuum coefficients
for Lorentz violation with d = 6. We obtain

∣∣∣
∑

jm

0Yjm(330◦,−30◦) c(6)(I)jm

∣∣∣ < 7.4× 10−22 GeV−2

(149)
at the 95% confidence level. A more complete study of
the existing data from this source could yield additional
constraints involving operators of mass dimension d ≥ 8.
The above analyses demonstrate that a single point

source provides sensitivity to only a limited number
of direction-dependent combinations of coefficients for
Lorentz violation. Multiple sources are needed to ac-
cess all coefficients for a given value of d. For example,

there are 25 coefficients c
(6)
(I)jm and 49 coefficients c

(8)
(I)jm,

and so even when birefringence is neglected we see that
a corresponding number of sources at different locations
on the sky is required to constrain fully these coefficients
and the corresponding types of Lorentz violation. Data
from gamma-ray bursts and other burst sources obtanied
by existing telescopes, including Fermi, HESS, the Major
Atmospheric Gamma-ray Imaging Cherenkov Telescope
(MAGIC) [74], and the Very Energetic Radiation Imag-
ing Telescope Array System (VERITAS) [80], or by fu-
ture telescopes such as the Advanced Gamma-ray Imag-
ing System (AGIS) [81], the Cherenkov Telescope Array
(CTA) [82], and the High Altitude Water Cherenkov Ex-
periment (HAWC) [83], could be combined to measure

completely the coefficients c
(d)
(I)jm for various fixed values

of d ≥ 6.

In contrast, in the limit of rotation invariance we re-
cover the vacuum isotropic model, which reduces the
number of coefficients to one for each d. This implies
that a single source suffices to place constraints when
only one value of d is considered at a time. For exam-
ple, in the vacuum isotropic model a single constraint
< 10−22 GeV−2 in any location on the sky suffices to
exclude the suggestion of a signal for d = 6 Lorentz vi-
olation from Markarian 501, whereas the general SME
treatment requires at least 25 independent sources at
this constraint level. For the limiting case of the vacuum
isotropic model, the above bounds from Fermi reduce to
the one-sided constraints

c
(6)
(I)00 < 1.1× 10−19 GeV−2, (150)

and

c
(8)
(I)00 < 9.2× 10−23 GeV−4, (151)

while the one from HESS reduces to

∣∣c(6)(I)00

∣∣ < 2.6× 10−21 GeV−2. (152)

Both the isotropic and the anisotropic constraints ob-
tained from GRB 080916C and PKS 2155-304 are also
included in Table XIII.

B. Birefringence tests

In birefringent scenarios, the two eigenmodes propa-
gate at slightly different velocities. This implies that the
superposition of the modes is altered as light propagates
in free space. Since the two modes differ in polarization,
the change in superposition causes a change in the net
polarization of the radiation. This provides a signature
of Lorentz violation. In the present subsection, we out-
line the theory of these polarization changes and discuss
birefringence tests based on polarimetry using both point
sources and the CMB.

1. Theory

The direction of a Stokes vector s = (s1, s2, s3)T in
the abstract Stokes-parameter space uniquely character-
izes the polarization of the associated plane wave [84].
A Stokes vector in the s1-s2 plane corresponds to linear
polarization, while a Stokes vector along the s3 axis rep-
resents circular polarization. Other directions represent
general elliptical polarizations.
In this picture, birefringence can be understood as a

rotation of the Stokes vector s = (s1, s2, s3)T about the
birefringence axis ς = (ς1, ς2, ς3)T . The birefringence
axis represents the polarization of the eigenmodes and is
determined by the properties of the medium. The total
angle of rotation is equivalent to the change in the relative
phase between the two eigenmodes. With the normaliza-
tion adopted in Eq. (81), we can write this rotation in
differential form:

ds/dt = 2Eς × s = −iΣ · s, (153)

where E is the photon energy and Σjk = −2iEǫjklς l

represents the rotation generators.
Some basic features of birefringence in the context of

Lorentz violation can be extracted from this picture [11].
If CPT is conserved, then ς lies in the s1-s2 plane, and so
the birefringent eigenmodes are linearly polarized. Lin-
early polarized radiation therefore typically rotates out of
the s1-s2 plane and becomes elliptically polarized. Sim-
ilarly, circularly polarized radiation rotates away from
the s3 axis, becomes elliptical, and may eventually ro-
tate through a linear polarization. In contrast, if CPT is
violated, then the birefringent eigenmodes are circularly
polarized with one being left-handed and the other right-
handed. The rotation axis ς is therefore aligned with the
s3 axis in this case. As a result, linear polarizations re-
main linear, but a change in the linear-polarization angle
occurs. However, circular polarizations remain circular
because they are eigenmodes of the propagation.
In a typical application, one considers a distant source

of polarized light and integrates the rotation (153) from
emission to detection. This yields changes in polarization
that can depend on both energy and direction of propa-
gation. To search for birefringence, we can either model
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the polarization at the source and seek discrepancies in
the observed polarization, or we can test for unexpected
energy dependence in the polarization parameters.
Since we are characterizing Lorentz violation using

spin-weighted spherical coefficients, it is convenient to
reformulate the rotation of the Stokes vector in terms of
spin-weighted Stokes parameters. We can decompose the
components of the Stokes vector according to their spin
weight with respect to the line of sight n̂. This yields
s(0) = s3 as a Stokes parameter of spin weight 0 and

s(±2) = s1 ∓ is2 as two Stokes parameters having spin
weight ±2.
In the Stokes basis with s = (s(+2), s(0), s(−2))

T , the
rotation generators are given in matrix form as

Σ = 2E




ς(0) −ς(+2) 0

− 1
2 ς(−2) 0 1

2 ς(+2)

0 ς(−2) −ς(0)


 . (154)

Here, ς = (ς(+2), ς(0), ς(−2))
T is the birefringence axis in

this basis, with components given by

ς(±2) =
∑

djm

Ed−4
±2Yjm(n̂)

(
k
(d)
(E)jm ± ik

(d)
(B)jm

)
,

ς(0) =
∑

djm

Ed−4
0Yjm(n̂) k

(d)
(V )jm. (155)

Since the rotation of the Stokes vector is determined by
the combination Eς, the effects of birefringence enter
with an energy dependence of Ed−3. This implies that
an increased sensitivity to coefficients with d > 3 can be
achieved by using higher-energy photons. We also see
that unconventional energy dependence is a signal for
Lorentz violation. Only the d = 3 case leads to energy-
independent birefringence.
For many astrophysical sources, cosmological expan-

sion is significant during the time of flight and must be
incorporated in the analysis. We implement this by ex-
pressing the differential rotation in terms of redshift:

ds =
iΣz · s

(1 + z)Hz
dz, (156)

where Σz represents the rotation matrix at the
blueshifted energy (1 + z)E and source direction n̂. To
obtain the net polarization change, we then integrate this
expression from source redshift z to 0.
Some searches for Lorentz violation investigate

Lorentz-violating operators of a specified mass dimen-
sion d. With this assumption, the calculation of the net
rotation is simplified because the energy integral is inde-
pendent of the matrix multiplication. In the CPT-odd
case with a single odd value of d, the rotations of the
Stokes vector about the s3 axis lead to a change in the
linear-polarization angle ψ without affecting the degree
of linear or circular polarization. The rotation is diago-
nal in the spin-weighted basis, and we obtain the simple

result

s(±2) = e∓i2δΨz s(±2)z,

s(0) = s(0)z , (157)

relating the present-day polarization to the original po-
larization at redshift z. Here, the change δΨz in polar-
ization is given by the integral

δΨz = Ed−3

∫ z

0

(1 + z)d−4

Hz
dz

∑

jm

0Yjm(n̂) k
(d)
(V )jm.

(158)
The linear-polarization angle ψ at the present epoch is
then related through

ψ = ψz + δΨz (159)

to the blueshifted angle ψz.
In the CPT-even case with a single even value of d,

the eigenmodes are linearly polarized and the rotation is
more complicated. It is convenient in this case to define
the direction-dependent phase

e−iξ(n̂) =
ς(+2)(n̂)

|ς(+2)(n̂)|
, (160)

which controls the evolution of the polarization. The
phase angle ξ is twice the polarization angle of the eigen-
mode of propagation. Consequently, linear polarizations
with angle ψ = ξ/2 or ψ = ξ/2 + 90◦ remain unaffected
as the radiation propagates. Calculation shows that the
redshift integral can be expressed using this phase and
the angle

Φz = Ed−3

∫ z

0

(1 + z)d−4

Hz
dz

×
∣∣∣∣
∑

jm

2Yjm(n̂)
(
k
(d)
(E)jm ± ik

(d)
(B)jm

)∣∣∣∣. (161)

The net rotation is given by

s = mz · sz , (162)

where the Müller matrix mz takes the form

mz =




cos2 Φz −i sin 2Φze
−iξ sin2 Φze

−2iξ

− i
2 sin 2Φze

iξ cos 2Φz
i
2 sin 2Φze

−iξ

sin2 Φze
2iξ i sin 2Φze

iξ cos2 Φz




(163)
in the spin-weighted Stokes basis.

2. Point sources

We next use the above theoretical results to obtain
bounds on spherical coefficients from polarimetry of as-
trophysical point sources. Some of the tightest existing
constraints on Lorentz violation have been achieved in
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FIG. 2: Spectropolarimetry bounds from GRB 930131 on
spherical coefficients corresponding to Lorentz-violating op-
erators of mass dimensions d = 5, 7, 9. The source di-
rection is given by the angles n̂ = (98.2◦, 182.1◦). The
solid curve represents the effective degree of polarization
Πeff =

p

〈s1〉2 + 〈s2〉2. The effective polarization angle
ψeff = tan−1〈s2〉/2〈s1〉 in degrees is displayed with crosses.
The shaded area is the disallowed region with Πeff < 35%.
All coefficients are in units of GeV4−d.

birefringence searches involving high-frequency sources
such as gamma-ray bursts [21, 72, 76, 85]. However,
point sources have the disadvantage that a single line of
sight n̂ is involved, which provides sensitivity to only a
restricted portion of the space of coefficients for Lorentz
violation. As with astrophysical dispersion tests, multi-
ple sources are therefore required to perform a compre-
hensive search, even for a fixed value of d. For example,
for the case of d = 3 a multiple-source search involving a
large number of radio galaxies [19] has placed a limit on a

quantity pα ≡ −2(k
(3)
AF )α corresponding to the constraint

∣∣∣
∑

jm

0Yjmk
(3)
(V )jm

∣∣∣ < 6× 10−43 GeV (164)

at the 95% confidence level in terms of spherical co-
efficients. In the isotropic limit, this gives the limit

k
(3)
(V )00 < 2 × 10−42 GeV, although sharper bounds have

recently emerged from CMB polarimetry as discussed be-
low. Multiple-source searches for the case of d = 4 have
also been performed [11, 20, 21, 23]. For example, a
search using 16 sources [11] places a limit that translates
in the present context to the rotationally invariant con-
straint

√∑

m

(|k(4)(E)2m|2 + |k(4)(B)2m|2) < 5× 10−32 (165)

at the 95% confidence level. For larger values of
d, multiple-source birefringence analyses offer excellent
prospects for systematic tests of Lorentz violation at ex-
treme sensitivity.
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FIG. 3: Spectropolarimetry bounds from GRB 960924 on
spherical coefficients corresponding to Lorentz-violating op-
erators of mass dimensions d = 5, 7, 9. The source di-
rection is given by the angles n̂ = (87.3◦, 37.3◦). The
solid curve represents the effective degree of polarization
Πeff =

p

〈s1〉2 + 〈s2〉2. The effective polarization angle
ψeff = tan−1〈s2〉/2〈s1〉 in degrees is displayed with crosses.
The shaded area is the disallowed region with Πeff < 50%.
All coefficients are in units of GeV4−d.

In this subsection, we illustrate the procedure and ob-
tain first constraints on some spherical coefficients with
larger d, by analyzing the recent evidence for significant
polarized components in the radiation from the gamma-
ray bursts GRB 930131 and GRB 960924 [86]. Obser-
vations of gamma rays associated with these two sources
suggest that they are polarized at levels of Π930131 > 35%
and Π960924 > 50%, respectively. Ideally, if we knew
the degree of polarization and polarization angles at the
source, we could search directly for changes due to bire-
fringence. Without this information, however, we can
still place limits on decoherence effects caused by bire-
fringence. The point is that significant birefringence
would lead to large differences in observed polarizations
at slightly different frequencies, effectively unpolarizing
the radiation. Evidence for polarization can therefore be
used to constrain the frequency-dependent birefringence
caused by violations with dimension d > 3.

Figures 2 and 3 show the calculated effective degrees
of polarization and the changes in the polarization an-
gles for the above two gamma-ray bursts in scenar-
ios with nonzero spherical coefficients corresponding to
CPT-odd Lorentz-violating operators of mass dimensions
d = 5, 7, 9. In constructing these plots, we assume the
radiation is initially 100% linearly polarized, which is a
maximally conservative assumption in the present con-
text. The displayed results are then obtained by numer-
ically calculating the change in the effective polarization
Πeff =

√
〈s1〉2 + 〈s2〉2 smeared over observed frequen-

cies, following the basic procedure outlined in Ref. [21].
The shaded regions in Figs. 2 and 3 show the ranges of
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Model Coefficients GRB 930131 GRB 960924

Vacuum
˛

˛

P

jm 0Yjm(n̂) k
(5)
(V )jm

˛

˛ < 7× 10−33 GeV−1 < 4× 10−33 GeV−1

˛

˛

P

jm 0Yjm(n̂) k
(7)
(V )jm

˛

˛ < 2× 10−24 GeV−3 < 5× 10−25 GeV−3

˛

˛

P

jm 0Yjm(n̂) k
(9)
(V )jm

˛

˛ < 6× 10−16 GeV−5 < 1× 10−16 GeV−5

Vacuum isotropic
˛

˛k
(5)

(V )00

˛

˛ < 2× 10−32 GeV−1 < 1× 10−32 GeV−1

˛

˛k
(7)
(V )00

˛

˛ < 7× 10−24 GeV−3 < 2× 10−24 GeV−3

˛

˛k
(9)
(V )00

˛

˛ < 2× 10−15 GeV−5 < 4× 10−16 GeV−5

Vacuum
˛

˛

P

jm 2Yjm(n̂)
`

k
(4)
(E)jm + ik

(4)
(B)jm

´

˛

˛ ∼< 10−37

∼< 10−37

˛

˛

P

jm 2Yjm(n̂)
`

k
(6)
(E)jm + ik

(6)
(B)jm

´

˛

˛ ∼< 10−29 GeV−2

∼< 10−29 GeV−2

˛

˛

P

jm 2Yjm(n̂)
`

k
(8)

(E)jm
+ ik

(8)

(B)jm

´

˛

˛ ∼< 10−20 GeV−4

∼< 10−20 GeV−4

TABLE XIV: Constraints on spherical coefficients from polarization observations of the gamma-ray bursts GRB 930131 and
GRB 960924. The first three rows give constraints on the vacuum coefficients for the CPT-odd cases with d = 5, 7, 9. The
arguments of the spherical harmonics are n̂ = (98.2◦, 182.1◦) for GRB 930131 and n̂ = (87.3◦, 37.3◦) for GRB 960924. The
next three rows give the constraints on coefficients in the isotropic limit, for which there is exactly one nonzero coefficient for
each d. The final three rows give the approximate sensitivities achieved for vacuum coefficients in the CPT-even cases with
d = 4, 6, 8. Unlike the constraints in the first six rows, the results in the final three rows cannot be interpreted as definitive
bounds because the amount of birefringence in the CPT-even case depends on details of the source polarization. All constraints
are at the 95% confidence level.
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FIG. 4: Spectropolarimetry bounds from GRB 930131 on
spherical coefficients corresponding to Lorentz-violating op-
erators of mass dimensions d = 4, 6, 8. The source direction
is given by the angles n̂ = (98.2◦, 182.1◦). The shaded area
is the disallowed region with Πeff < 35%. All coefficients are
in units of GeV4−d.

coefficient space that are excluded by the observation of
polarization in the radiation from these sources. Coeffi-
cients lying in these regions would cause depolarization
beyond what is observed. The resulting constraints for
the vacuum coefficients and for the limiting case of the
vacuum isotropic model are summarized in Table XIV.

In the CPT-even case, the linear polarization of the
source could in principle coincide with one of the eigen-
modes of propagation. This situation occurs when the
phase angle ξ(n̂) is twice the initial polarization angle
ψ0, as discussed above. Consequently, the results for any
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FIG. 5: Spectropolarimetry bounds from GRB 960924 on
spherical coefficients corresponding to Lorentz-violating op-
erators of mass dimensions d = 4, 6, 8. The source direction
is given by the angles n̂ = (87.3◦, 37.3◦). The shaded area is
the disallowed region with Πeff < 50%. All coefficients are in
units of GeV4−d.

given point source contain unbounded regions of coeffi-
cient space, and so definitive constraints on the spheri-
cal coefficients cannot be obtained. However, the analy-
sis does achieve high sensitivities to Lorentz violation in
certain regions of coefficient space. Figures 4 and 5 show
the portions of coefficient space excluded by the obser-
vations of GRB 930131 and GRB 960924 for CPT-even
operators of mass dimensions d = 4, 6, 8 [87]. The shaded
areas in these figures represent disallowed regions. Their
shape and extent demonstrates that part of the coefficient
space is excluded at high sensitivity, while emphasizing
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the need for simultaneous analysis of multiple sources to
obtain definitive constraints. The approximate sensitiv-
ities to the vacuum coefficients achieved from the two
sources are summarized in Table XIV.
The above examples show that high-frequency po-

larimetry of gamma-ray bursts has the ability to probe
Lorentz violation at extreme sensitivity. The use of mul-
tiple sources offers the potential to constrain all of the

vacuum coefficients k
(d)
(E)jm, k

(d)
(B)jm, and k

(d)
(V )jm associ-

ated with leading-order birefringent Lorentz violation at
large d. In the CPT-odd case, the limits can completely
constrain the single vacuum isotropic coefficient at each
odd d because the direction of propagation is irrelevant.
The power of this type of analysis is apparent in com-

paring the sensitivities in Table XIV to those achieved
via the astrophysical dispersion tests discussed in Sec.
VIA. For d = 6, the polarimetry of gamma-ray bursts
attains a sensitivity roughly a million times beyond that
of the dispersion tests involving Markarian 501, despite
the million-fold difference in energy. This confirms the
suitability of dispersion tests to constrain instead only

the vacuum coefficients c
(d)
(I)jm, which are associated with

Lorentz-violating operators that have no leading-order
birefringence.

3. CMB tests

In principle, an extended source can provide access
to all birefringent Lorentz-violating operators and hence
bypass the major limitation of point sources described
above. A prime example of an extended source is the
CMB. Since the CMB is the oldest observable untainted
radiation and hence represents the longest available base-
line, an analysis of CMB polarization might be expected
to yield high sensitivities to Lorentz violation. However,
this expectation may fail for operators at larger d due
to the comparatively low CMB frequencies. Nonethe-
less, the CMB does provide interesting opportunities for
lower-dimensional violations, and in particular it is the
best available source for studies of coefficients with d = 3.
In this subsection, we discuss and illustrate some of the
unusual features that can arise in the CMB in the event
of significant birefringence [22, 23, 88].
The accepted description of the CMB uses a decompo-

sition of the temperature T and the Stokes parameters
into spin-weighted spherical harmonics [59], analogous to
the discussion in Sec. IVC. Typically, power spectra are
introduced to characterize the strength of each mode and
the correlations between them, according to

CX1X2

j =
1

2j + 1

∑

m

〈(a(X1)
jm )∗a(X2)

jm 〉, (166)

where X1, X2 range over T,E,B, V and where a
(X)
jm are

the coefficients in the spherical-harmonic expansion of
X . While temperature anisotropies have been firmly es-
tablished, the detection of polarization in the CMB by

several experiments [89–92] is of more significance in the
present context.

In the conventional Lorentz-invariant picture, temper-
ature and density fluctuations at recombination provide
the necessary anisotropies to produce a net polarization
[93]. In addition, these processes lead to a correlation
between temperature and the E-parity component of the
CMB. The E component makes up only a tiny fraction
of approximately 10−6 of the total radiation. Several
measurements of this small degree of polarization have
been made. The B-type polarization is expected to be
even smaller and uncorrelated with temperature. The
standard picture predicts no significant V polarization
because Thomson scattering produces only linear polar-
ization.

The presence of Lorentz violation may alter many of
the above properties. It can introduce unexpected types
of polarization, and it can induce mixing between initially
uncorrelated modes during the nearly 14 billion years of
propagation. The associated violations of rotational sym-
metry can also cause mixing across multipoles in j and
m, including for modes of the same polarization type.
Here, we provide a discussion of general features based
on a numerical survey of some Lorentz-violating models
exhibiting these effects. The calculations parallel those
presented in Refs. [22, 23].

Some qualitative features can be determined directly
using the intuition provided by the Stokes rotations de-
scribed in Sec. VIB 1. For example, the vacuum coef-

ficients k
(d)
(V )jm are associated with CPT-violating oper-

ators and produce local rotations of the Stokes vector
about the s3 axis. This causes a global mixing of the
linearly polarized E and B modes. The result can be un-
conventionally large B polarization, although no circular
V modes can appear. In contrast, the vacuum coefficients

k
(d)
(E)jm and k

(d)
(B)jm associated with CPT-even operators

cause both mixing between E and B modes and also
the emergence of V modes, since in this case the Stokes
vector rotates out of the s1-s2 plane. Consequently, mix-
ing between the three types of polarization are possible
in this scenario, although details of the mixing depend
strongly on the specifics of the Lorentz-violating opera-
tors involved.

Other key features that may be present for some
types of violations include dependences on the photon
frequency and birefringence varying with the direction
of propagation. Only the d = 3 vacuum coefficients
lead to frequency-independent rotations. Also, only the
j = 0 coefficients generate direction-independent rota-
tions. Consequently, the isotropic vacuum coefficient

k
(3)
(V )00 provides a particularly simple special case. It

causes a frequency-independent mixing that is uniform
across the sky and that leads to a simple rotation be-
tween E and B modes. Using Eq. (158), we estimate
this rotation for CMB radiation to be

δΨ ≃ k
(3)
(V )00 1043 degree/GeV. (167)
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Coefficients Result Reference

|k(3)
AF

| (15± 6)× 10−43 GeV [22]

(10+4
−8)× 10−43 GeV [23]

k
(3)

(V )00
(6.0± 4.0) × 10−43 GeV [94]

(2.5± 3.0) × 10−43 GeV [95]

(12± 7)× 10−43 GeV [22]

(1.2± 2.2) × 10−43 GeV [96]

(2.6± 1.9) × 10−43 GeV [97]

< 2.5× 10−43 GeV [98]

(2.3± 5.4) × 10−43 GeV [23]

(−1.4± 0.9± 0.5) × 10−43 GeV [99]

TABLE XV: Constraints on spherical coefficients with d = 3
from CMB studies. The table lists some existing 1-σ results

for the scalar magnitude |k(3)
AF

| defined in Eq. (168) and for

the isotropic component k
(3)
(V )00, all obtained via CMB anal-

yses. Constraints on these quantities from other sources are
compiled in the data tables of Ref. [6].

Simple frequency-independent rotations of this type have
been considered by several groups [22, 23, 94–99], and the
existing measurements are listed as part of Table XV.
Figure 6 illustrates the type of mixing that results. We
see that initial E power partially rotates into B power.
Also, the initial TE correlation induces a TB correlation.
Furthermore, since the B polarization is generated from
the original E polarization, these two modes become cor-
related and so a significant EB component emerges.

Other isotropic rotations from CPT-odd operators of
larger d, such as the one associated with the isotropic

vacuum coefficient k
(5)
(V )00, lead to similar effects. How-

ever, the frequency dependence introduced by coefficients
at larger d implies that the amount of rotation depends
on the photon frequency. Spectral signatures of this type
should be accessible to observations having sensitivity to
a wide range of frequencies.

Any CPT-odd Lorentz-violating operator with nonzero
j produces direction-dependent rotations. An example is
shown in Fig. 7, where a comparatively large value of the

anisotropic vacuum coefficient k
(3)
(V )10 has been chosen to

illustrate the effects. While the local polarization rota-
tions are similar to those from the presence of a nonzero

k
(3)
(V )00, the anisotropies in this case cause the correlations

to disappear globally. The effects saturate for large rota-
tions, and the net result is roughly equal amounts of E
and B. The overall degree of polarization is unaltered,
and there is little correlation between any two modes.

Birefringent operators that are CPT-even are necessar-
ily both frequency dependent and anisotropic, resulting
in similar behavior to the previous case. However, a dis-
tinctive feature of CPT-even violations is the mixing of
linear and circular polarizations. Figure 8 illustrates the
generation of V polarization in the presence of a nonzero

vacuum coefficient k
(4)
(E)20. In this case, we find that the
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FIG. 6: Correlation spectra for isotropic CPT-odd Lorentz
violation. Circles show the effects of Lorentz violation due to
the spherical coefficient k

(3)
(V )00 = 12× 10−42 GeV, while lines

show the Lorentz-invariant case. Power is transferred from E
to B, and an EB correlation is generated. Also, the initial
TE correlation induces a TB correlation. As expected for
CPT-odd Lorentz violation, no significant V polarization or
correlation appears. The coefficients Cj have units of µK2.

anisotropic mixing causes a depletion of E polarization,
which is rotated into roughly comparable amounts of B

and V polarization. As in the case of nonzero k
(3)
(V )10 and

indeed in all cases we have studied involving nonzero coef-
ficients with j 6= 0, the anisotropic effects tend to deplete
correlations when Lorentz violations are large.

Our survey reveals that similar features as those illus-
trated above also recur for other vacuum coefficients for
Lorentz violation that control birefringent operators. We
thereby find that generic signals of Lorentz violation in
the CMB can incorporate one or more of the following
basic features: (a) a depletion in the EE and TE spectra;
(b) the introduction of unconventionally large B polar-
ization; (c) the appearance of TB or EB correlations;
(d) the development of significant V polarization; and
(e) frequency dependences of the power spectra.

None of these basic features is readily apparent in the
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FIG. 7: Correlation spectra for anisotropic CPT-odd Lorentz
violation. Circles show the effects of Lorentz violation due to
a large value of the spherical coefficient k

(3)

(V )10
= 64 × 10−42

GeV, while lines show the Lorentz-invariant case. Power is
transferred from E to B, and a loss of TE correlation is evi-
dent. As expected for CPT-odd Lorentz violation, no signif-
icant V polarization or correlation appears. The coefficients
Cj have units of µK2.
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FIG. 8: Correlation spectra for anisotropic CPT-even Lorentz
violation at photon frequency ω = 380 GHz. Circles show
the effects of Lorentz violation due to a large value of the

spherical coefficient k
(4)

(E)20 = 16× 10−29, while lines show the

Lorentz-invariant case. Power is transferred from E to B and
V , while no significant correlations appear. The coefficients
Cj have units of µK2.

observed data, which suggests that any Lorentz viola-
tion in the CMB must be small. A study of the high-
frequency BOOMERANG data [91] places constraints
on several of the vacuum coefficients with d ≤ 6, find-
ing some evidence for nonzero Lorentz violation [22]. A
more recent analysis of the d = 3 coefficients using the
five-year data from the Wilkinson Microwave Anisotropy
Probe [90] finds no evidence for isotropic violations in-

volving the coefficient k
(3)
(V )00, but uncovers some support

for nonzero anisotropic vacuum coefficients k
(3)
(V )1m [23].

This study constrains the coefficients k
(3)
(V )jm at the level

of 10−43 GeV. For purposes of reporting constraints, the
spherical coefficients with d = 3 can conveniently be sep-

arated into the isotropic component k
(3)
(V )00 and the scalar

magnitude

|k(3)
AF

| = 1√
4π

(
6|k(3)(V )11|

2 + 3|k(3)(V )10|
2
)1/2

. (168)

Table XV lists existing constraints on these quantities
obtained from studies of the CMB. Other limits are given
in the data tables of Ref. [6]. Improved sensitivities can
be expected from future CMB data to be obtained by
various experiments and missions including, for example,
the Planck satellite [100], the Q/U Imaging Experiment
(QUIET) [101], the CMBPol mission [102], the E and
B Experiment (EBEX) [103], the Experimental Probe
of Inflationary Cosmology (EPIC) [104], and the Spider
balloon observatory [105].

VII. CAVITY EXPERIMENTS

Laboratory experiments provide alternative methods
to search for Lorentz violation in electrodynamics and
have the ability to probe many coefficients inaccessible in
astrophysical searches. The most common Earth-based
tests are contemporary versions of the classic Michelson-
Morley [1] and Kennedy-Thorndike [2] experiments and
are based on electromagnetic resonant cavities [12–17]. In
this section, we discuss possible laboratory studies of the
effects of Lorentz-violating operators of arbitrary mass
dimension d. We outline a theoretical approach for de-
termining the resonance frequency of a cavity in the pres-
ence of Lorentz violation. The approach is illustrated by
applying it in the context of the camouflage model, for
which the Lorentz violation has no leading-order birefrin-
gent or dispersive effects in astrophysical photon propa-
gation. As a specific example of the techniques, we de-
rive an explicit result for the fractional frequency shift
of the TM010 mode in a cylindrical cavity with circular
cross section, including the time dependence induced in
the signal by the rotation of the Earth. While we focus
specifically on resonant cavities, many of the ideas dis-
cussed here are generic and can be applied in the context
of other laboratory-based experiments, including space-
based missions such as the Atomic Clock Ensemble in
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Space (ACES) [106] or the Space and Time Anisotropy
Tests (STAT) combining the former Space Time Asym-
metry Research (STAR) and OPTIS missions [107].

A. General theory

The strategy behind many laboratory tests of Lorentz
invariance is a search for minute variations in some ob-
servable with changes in the orientation or velocity of the
apparatus. For cavity experiments, a suitable observable
is typically the fractional frequency shift δν/ν induced by
the Lorentz violation [11]. At leading order in coefficients
for Lorentz violation, the fractional frequency shift takes
the generic form δν/ν =

∑
jm MjmKjm, where Mjm is

an experiment-dependent matrix factor and Kjm repre-
sents the relevant spherical coefficients for Lorentz viola-
tion discussed in Sec. III.
Normally the experiment-dependent matrix factors are

determined in a cavity frame that is fixed with respect
to the system in question. In this frame, the matrices
are denoted Mcav

jm and are constant. However, since this
frame is noninertial, the cavity-frame coefficients Kcav

jm

for Lorentz violation vary with changes in the orientation
and velocity of the apparatus with respect to the stan-
dard Sun-centered frame. In practice, boost effects are
suppressed by one or more powers of the typically small
velocities ∼ 10−4 involved, so for simplicity in what fol-
lows we neglect boost effects and focus on violations of
rotation invariance.
The rotations relating spherical coefficients in the cav-

ity, laboratory, and Sun-centered frames are given in Eqs.
(139) and (142). Since the rotation between the cavity
frame and the laboratory frame is often constant, it is
convenient to define laboratory-frame matrices Mlab

jm via

Mlab
jm =

∑

m′

Mcav
jm′D

(j)
m′m(−γ,−β,−α). (169)

In terms of these and the spherical coefficients in the Sun-
centered frame, the fractional frequency shift takes the
form

δν

ν
=

∑

jmm′

Mlab
jme

imφeim
′ω⊕T⊕d

(j)
mm′(−χ)KSun

jm′ , (170)

which explicitly reveals the sidereal dependence. For ex-
periments involving turntables, where the cavity and lab-
oratory frames rotate relative to each other, the varia-
tions resulting from the turntable rotation are incorpo-
rated through the phase φ = ωttTtt.
Manipulation of the modified Maxwell equations (16)

leads to a perturbative estimate for the fractional fre-
quency shift given by [11]

δν

ν
≈ − 1

4〈U〉

∫
d3x

(
E∗ · δD −B∗ · δH

)
(171)

=
1

8〈U〉

∫
d3xF ∗

µν(δG)
µν ,

where

〈U〉 = 1

4

∫
d3x (E∗ ·D +B∗ ·H) (172)

is the unperturbed energy inside the resonator. This for-
mulation allows for a general linear and lossless medium
inside the cavity in addition to modifications due to
Lorentz violation. The fields E, B, D, and H are un-
derstood to be solutions of conventional electrodynamics
in the absence of Lorentz violation, while

δD = κ̂DE ·E + κ̂DB ·B + 2k̂AF ×A,

δH = κ̂HE ·E + κ̂HB ·B − 2(k̂AF )0A+ 2k̂AFA0

(173)

represent leading-order perturbations to the D and H
fields due to Lorentz violation. The result (171) assumes
that the fields vanish outside the cavity volume V . For
simplicity in what follows, we suppose that the resonant
modes under consideration are nondegenerate. In the
case of degenerate resonances, Eq. (171) yields a weighted
average value for the fractional frequency shift.
To express the fractional frequency shift in terms of

the spherical coefficients introduced in Sec. III, we next
convert to momentum space. However, some care is re-
quired to avoid divergences arising from discontinuities
at the boundary of the cavity. This technical issue stems

from the differential nature of the operators k̂F and k̂AF .
Although the fields are taken to be continuous through-
out the interior volume V of the cavity, they may be dis-
continuous across the surrounding surface S. As a result,
the fields may not be strictly differentiable over all space,
and the derivatives in Eq. (173) may be associated with
δ-function behavior on the surface S. The usual recipro-
cal nature of position and momentum spaces then leads
to momentum-space representations that fail to vanish
sufficiently rapidly at infinite momentum, which intro-
duces divergences in the integral. This issue is absent
in the minimal SME with d = 3 and d = 4 because no
derivatives appear in the constitutive relations for that
case, but it is endemic for Lorentz-violating operators
with d ≥ 5 and requires a procedure to eliminate the
divergences.
One way to address this technical issue is to define new

everywhere-differentiable fields E and B that are equal
to E and B inside V but that may be nonzero in the
region outside V where the original fields E and B van-
ish. We then have two sets of fields, both satisfying the
Maxwell equations inside V . Derivatives of the extended
fields E andB remain finite everywhere, including on the
surface S of the cavity, but E and B need not satisfy the
Maxwell equations outside the cavity. Using both sets of
fields, we can construct a finite version of the fractional
frequency shift (171) by replacing the fields in Eq. (173)
with their extended versions. This procedure removes
the divergences at the cavity boundaries.
Performing a Fourier transform, we obtain a conver-

gent momentum-space expression for the fractional fre-
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quency shift (171) given by

δν

ν
= − 1

4〈U〉

∫
d3p

(
E∗ · κ̂DE ·E −B∗ · κ̂HB ·B

+E∗ · κ̂DB ·B −B∗ · κ̂HE ·E

+
2i

ω2
(ωk̂AF − p(k̂AF )0) · (E∗ ×E)

)
. (174)

This result is independent of gauge choice, as expected.
Since the fields and their extensions agree inside V , the
cavity energy 〈U〉 can be calculated using either of the
forms

〈U〉 = 1

4

∫
d3p (E∗ ·D +B∗ ·H)

=
1

4

∫
d3p (E∗ ·D +B∗ ·H) . (175)

Note that both sets of fields are needed in the integral
(174) for this procedure to work. The extended fields
control divergences in momentum space, while the unex-
tended fields restrict the integration to the volume V of
the cavity in position space.
The general procedure for determining the effects of

Lorentz violation on the resonant frequency of a given
cavity then involves the following steps. First, obtain
the fields E, B, D, H in the cavity in the context of
conventional electrodynamics, incorporating in the usual
way any permittivity and permeability of the media in-
volved. Next, construct extensions of the fields that
are everywhere smooth beyond the cavity volume. Per-
form the Fourier transform to derive the correspond-
ing momentum-space fields. Then, using the spherical-

harmonic expansions of k̂AF and the κ̂matrices described
in Sec. III, calculate the cavity-frame matricesMcav

jm from
Eq. (174). Finally, combine the results using Eq. (170)
to extract the desired fractional frequency shift δν/ν dis-
playing the explicit sidereal time dependences.

B. Example: camouflage model

A general analysis of cavity experiments incorporating
all spherical coefficients for Lorentz violation is challeng-
ing due to the large variety of effects. Moreover, although
terrestrial tests can provide valuable independent and
fully controlled checks on vacuum birefringence and dis-
persion, the high sensitivities attainable in astrophysical
searches for birefringence and dispersion make it reason-
able to neglect effects from vacuum coefficients in the con-
text of resonator experiments. Laboratory searches using
cavities are therefore well suited to study the vacuum-
orthogonal coefficients for Lorentz violation, which play
no role in the vacuum propagation of light.
In this subsection, we illustrate the treatment of the

spherical coefficients in the derivation of the cavity-
frame matrices Mcav

jm . For simplicity, we focus primarily
on Lorentz-violating operators that produce no leading-
order birefringence or vacuum dispersion. For d = 4, this

class of operators includes ones corresponding to the co-

efficients c
(4)
(I)jm that have already been widely studied in

cavity experiments [12–17]. For general d, it corresponds

to the special subset of the coefficients (c
(d)
F )

(0E)
njm formed

by the camouflage coefficients (c¬(d)
F )

(0E)
njm introduced in

Sec. IVD.
We begin by considering a scenario involving the coef-

ficients (c
(d)
F )

(0E)
njm controlling nonbirefringent effects. We

seek an expression for the fractional frequency shift of
the form

δν

ν
=

∑

dnjm

M(d)
(cF )njm(c

(d)
F )

(0E)
njm . (176)

To find the matrices M(d)
(cF )njm, note that the fractional

frequency shift in the nonbirefringent case may be written
as

δν

ν
=

1

4〈U〉

∫
d3p F ∗

µνF
µ
ρ(ĉF )

νρ

=
1

4〈U〉

∫
d3p F ∗

µνF
µ
ρ∂

ν∂ρΦ̂F , (177)

where Φ̂F is given by Eq. (60) and the derivatives act in
momentum space, ∂ν = ∂/∂pν. Separating explicitly the
temporal and spatial components gives

δν

ν
=

1

4〈U〉

∫
d3p

[
−E∗ ·E ∂2

∂ω2

+
(
B∗ ×E −E∗ ×B

)a∇a
∂
∂ω

+ 1
2

(
(E∗)(aEb) + (B∗)(aBb)

− 2gabB∗ ·B
)
∇a∇b

]
Φ̂F . (178)

Inserting the spherical-harmonic expansion (60) of Φ̂F

and using the identities in Appendix A2, we can deter-
mine the contribution to the fractional frequency shift

from each coefficient (c
(d)
F )

(0E)
njm and hence identify the ma-

trices M(d)
(cF )njm.

To obtain an explicit integral expression for the ma-

trices M(d)
(cF )njm, we can eliminate the magnetic fields

using the momentum-space Faraday law ωB = p × E.

This determines the matrices M(d)
(cF )njm as integrals over

the fields E and E. In terms of the coordinate basis de-
scribed in Appendix A2, there are six field combinations
contributing to the integrals. They can be specified as

s0 = (E+)
∗E+ + (E−)

∗E−,

s(±2) = 2(E±)
∗E∓,

s̃(±1) = E∗
rE∓ + (E±)

∗Er,

s̃(0) = (Er)
∗Er, (179)

where

E± =
1√
2
(Eθ ± iEφ). (180)
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The combinations s0 and s(±2) represent smoothed ver-

sions of the usual Stokes parameters s0 and s(±2).
The combinations s̃(±1) and s̃(0) are helicity-(±1) and
helicity-0 combinations, which provide two new trans-

verse Stokes parameters vanishing when Er = Er = 0.
In terms of these quantities, the explicit integral expres-

sion for the matrices M(d)
(cF )njm is

M(d)
(cF )njm =

ωd−4−n

4〈U〉

∫
d3p pn−2

[
1
4 (ω

2 − p2)
√

(j+2)!
(j−2)!

(
+2Yjm(p̂) s(+2)(p) + −2Yjm(p̂) s(−2)(p)

)

−
(
(n− 1)ω2 + (d− 2− n)p2

)√ j(j+1)
2

(
+1Yjm(p̂) s̃(+1)(p)− −1Yjm(p̂) s̃(−1)(p)

)

+
(
(n− j(j+1)

2 )(ω2 − p2)− (d− 2− n)(d− 3− 3n)p2 − n(n− 1)p2
)
0Yjm(p̂) s0(p)

+
(
n(n− 1)ω2 − (d− 2− n)(d− 3− n)p2

)
0Yjm(p̂) s̃(0)(p)

]
, (181)

where ω is the usual resonant angular frequency.
The result (181) applies both to empty cavities and to

ones containing a material medium, provided the medium
is lossless. The form of the integral reveals that the sensi-
tivity to Lorentz violation depends both on the shape of
the cavity and on the properties of any material medium
it contains. This means that different geometries or me-
dia can be adopted to access different combinations of
coefficients for Lorentz violation. For example, parity-
breaking resonators may be used to access parity-odd
Lorentz violations that cannot be detected at unsup-
pressed levels using parity-symmetric systems [108]. The
properties of the resonator enter implicitly through the
conventional fields E, which are determined by solving
the conventional Maxwell equations inside the cavity in
the presence of the medium, if any. We emphasize that
the frequency ω is fixed for a given mode, but any mo-
mentum p can contribute to the integral and hence to

the matrices M(d)
(cF )njm.

Next, we focus attention specifically on the combina-

tions of the coefficients (c
(d)
F )

(0E)
njm that govern nondisper-

sive effects. For d = 4, the (c
(4)
F )

(0E)
njm coefficients corre-

spond directly to the vacuum coefficients c
(4)
(I)jm, as de-

scribed in Sec. IVA. The matrices M(4)
(I)jm can therefore

be expressed in terms of the matrices M(4)
(cF )njm. We find

M(4)
(I)00 =

3

4
M(4)

(cF )000 +
1

4
M(4)

(cF )000,

M(4)
(I)1m = −2M(4)

(cF )11m,

M(4)
(I)2m = M(4)

(cF )22m. (182)

For d > 4, the relevant matrices are associated with the

camouflage coefficients (c¬(d)
F )

(0E)
njm instead. Using the re-

lation (90), we find

M(d)

(c¬F )njm
= M(d)

(cF )njm −M(d)
(cF )(n+2)jm. (183)

With these results and Eq. (181), the sensitivity of any
given cavity to camouflage operators for Lorentz violation
can be determined.
Typically, the above analysis is performed in the cav-

ity frame, although many of the equations hold for an
arbitrary inertial frame. Given the results for the cavity-
frame matrices M, the corresponding expressions for the
laboratory-framematrices follow from Eq. (169) and from
the orientation of the cavity in the laboratory. Applying
Eq. (170), we finally obtain the fractional frequency shift

δν

ν
=

∑

dnjmm′

M(d) lab

(c¬F )njm
eimφeim

′ω⊕T⊕d
(j)
mm′(−χ) (c¬(d)

F )
(0E)
njm′

+
∑

jmm′

M(4) lab
(I)jm e

imφeim
′ω⊕T⊕d

(j)
mm′(−χ) c(4)(I)jm′

(184)

which exhibits the variation with sidereal time.

C. Example: circular-cylindrical cavity

As an explicit illustration, we calculate in this sub-
section a number of elements of the matrix M for the
TM010 mode of a cylindrical cavity with circular cross
section. The cavity is centered at the origin of a cavity
frame, with the z′ direction aligned with the symmetry
axis. For definiteness, let R be the cavity radius and 2R
be its length, so that its ends lie at z′ = ±R. Here, we
consider the case of a vacuum cavity for simplicity. The
solutions for the TM010 mode in the absence of Lorentz
violation are given by

E =

{
J0(ρ

′x01/R)ρ̂′ inside V ,

0 outside V ,
(185)

where x01 is the first zero of the Bessel function J0, and
where ρ̂′ represents the radial unit vector.
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The electric field E is discontinuous at the ends of the
cavity, and its derivatives are discontinuous at the sides
ρ′ = R. We therefore must seek a differentiable extension
E of the electric field of the type described in Sec. VIIA.
This is relatively straightforward to find in the present
case because we have an analytic solution that could be
extended to infinity. However, for the purposes of nu-
merical calculation it is beneficial to construct instead a
field E that vanishes outside a larger volume V ′ contain-
ing the cavity volume V . With a field of this type, the
Fourier transforms can be accurately determined by nu-
merical integration over only a finite region V ′ of space.
An extension suitable for numerical work can be con-

structed with the aid of the Cq smoothing function
gq(x; a, b), defined by gq(x; a, b) ≡ 0 for x < a < b or
b < a < x, gq(x; a, b) ≡ 1 for a < b < x or x < b < a, and

gq(x; a, b) =
(2q + 1)!

(b− a)2q+1

q∑

n=0

(x− a)q+1+n(b− x)q−n

(q + 1 + n)!(q + n)!

(186)
otherwise. This function continuously interpolates from
0 at x = a to 1 at x = b, is constant outside that inter-
val, and is q-times differentiable everywhere. Note that
C∞ functions of this type also exist, but for numerical
calculations the above polynomial is easier to handle and
suffices for our purposes.
Using this smoothing function, we can define an ex-

tended electric field by

E = gq(ρ
′; 2R,R)gq(z

′; 2R,R)gq(z
′;−2R,−R)

× J0(ρ
′x01/R)ρ̂′. (187)

Taking the integration volume V ′ as a cube of side length
4R, we see that the extended field E matches E inside
cavity volume V , vanishes outside V ′, and is q-times dif-
ferentiable. The value of q that is required to ensure the
finiteness of the integrals depends on the mass dimen-
sion d of the Lorentz-violating operators being consid-
ered. For a given dimension d, the matrices κ̂DE , κ̂HB ,
and κ̂DB involve d − 4 derivatives. Use of the Faraday
law to eliminate the magnetic field B introduces another
derivative. Consequently, the extended field E must be
at least Cd−3, so choosing q > d− 4 should be sufficient.
The next step involves obtaining the Fourier trans-

forms of the field components Ex′ , Ey′ , Ez′ , Ex′ , Ey′ ,
Ez′ . We implement these via fast Fourier transform over
an N ×N ×N grid in the volume V ′. We use the trans-
formed fields to determine the momentum-space Stokes
parameters from Eq. (179), and we then perform numer-
ical integration to evaluate the integral (181) and obtain

values for M(d) cav
(cF )njm. Lastly, we use Eqs. (182) and (183)

to determine the components of interest for the matrices

M(4) cav
(I)jm and M(d) cav

(c¬F )njm
. As expected, the results con-

verge to stable q-independent values for large N , pro-
vided q is sufficiently large. Table XVI summarizes the
results obtained through this procedure for d = 4, 6, 8.
Note that the symmetry of the mode implies no contri-
bution from parity-breaking coefficients with odd j or

j m M(4) cav

(I)jm

0 0 -0.28

2 0 0.32

n j m M(6) cav

(c¬F )njm

0 0 0 -13

2 0 0 13

2 2 0 -12

n j m M(8) cav

(c¬F )njm

0 0 0 -150

2 2 0 26

4 0 0 150

4 2 0 -170

4 4 0 56

TABLE XVI: Nonzero matrix elements M(4) cav
(I)jm and

M(d) cav

(c¬F )njm
for the fundamental mode of a circular cylindrical

cavity. Values for the cases d = 4, 6, 8 are displayed. The
units are R4−d, where R is the radius and half the length of
the cavity.

from coefficients with m 6= 0, a result that is recovered
numerically.
Cavity experiments searching for Lorentz violation

typically compare two identical cavities with different ori-
entations. In the present example, the cavity-frame ma-
tricesM are then identical for the two cavities. However,
their differing orientation implies their laboratory-frame
values would differ. This leads to the slight frequency
difference that constitutes the signal for Lorentz viola-
tion.

VIII. SUMMARY AND DISCUSSION

In this paper, we derive and study gauge-invariant
Lorentz- and CPT-violating terms associated with the
effective photon propagator in the Lagrange density of
the SME, allowing for operators of arbitrary mass di-
mension d. We begin by showing that Lorentz viola-
tion at mass dimension d is characterized by a set of
(d + 1)(d − 1)(d − 2)/2 independent coefficients for the
CPT-odd case and another set of (d + 1)d(d − 3) inde-
pendent coefficients for the CPT-even case. The compact
Lagrange density (8) incorporates these effects for all d.
It includes and extends the pure-photon sector of the
minimal SME [7, 11].
The Lagrange density (8) implies the equations of mo-

tion (11) for the photon field. An interpretation of these
equations is elaborated in terms of electrodynamics in
macroscopic media via the introduction of the operator
constitutive tensors (14). We derive the covariant scalar
dispersion relation (30), which must be satisfied by non-
trivial plane-wave solutions. For the CPT-even viola-
tions, we extend the widely used κ matrices [11] of the
minimal SME to general κ̂ operators (32) that are rele-
vant for studies at arbitrary d.
The unconventional properties of the Lorentz-violating

eigenmodes can be characterized in terms of birefrin-
gence, dispersion, and anisotropy. All CPT-odd oper-
ators lead to birefringence. We study the conditions for
leading-order birefringence from CPT-even operators via
a Weyl decomposition of the constitutive tensor. For
this case, we conjecture that nonbirefringent terms are
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uniquely associated with the non-Weyl part of the con-
stitutive tensor when the decomposition is expressed in
terms of a suitable effective metric. For arbitrary Lorentz
violation, we introduce a duality symmetry determined
by the effective metric and argue that birefringence is a
consequence of the breaking of this symmetry.

In Sec. III, we obtain a complete classification of the
coefficients for Lorentz violation at arbitrary d, using an
SO(3) decomposition in terms of spin-weighted spheri-
cal harmonics. A review of the spin-weighted spherical
harmonics and derivations of some useful mathematical
results are provided in Appendix A, along with a dis-
cussion of the relationships to angular momentum, he-
licity, and parity. The SO(3) decomposition reveals a
total of nine independent sets of spherical coefficients for
Lorentz violation that control birefringence, dispersion,
and anisotropy in the photon propagator. Table XVII
lists these spherical coefficients and displays the ranges
of their indices and their counting. The labels and indices
on a given spherical coefficient identify the key proper-
ties of the corresponding Lorentz-violating operator, and
their interpretation is summarized in the paragraph con-
taining Eq. (45). More detailed properties of these nine
sets are compiled in Tables I, III, IV, and V.

Table XVII reveals the existence of several classes of
operators that are absent in the minimal SME, which
is restricted to d = 3 and d = 4. The CPT-odd case
at d = 3 involves two sets containing four independent
spherical coefficients, while the CPT-even case at d = 4
involves three sets with 20 coefficients, one of which is
an unobservable constant. However, the CPT-odd case
at d = 5 has 35 coefficients distributed among three sets

rather than two. The additional set (k
¬(5)

AF )
(1E)
njm controls

E-parity CPT-odd effects, which are absent in the mini-
mal SME. Similarly, the CPT-even case at d = 6 has 126
coefficients distributed among six sets rather than three.

The additional sets (k
¬(6)

F )
(1E)
njm , (k

¬(6)

F )
(2E)
njm , (k

¬(6)

F )
(2B)
njm gov-

ern E-parity spin-one operators and also spin-two oper-
ators with both E- and B-type parities, all associated
with qualitatively new effects.

For applications to observation and experiment, it is
valuable to define various limiting cases of the general
theory. Sec. IV presents several of these limits, while
Table XVIII summarizes their specific content in terms
of spherical coefficients for Lorentz violation. The most
widely studied limit to date is the minimal SME, which
involves a total of 23 independent nontrivial spherical co-
efficients. The explicit connections between the spherical
coefficients and the usual cartesian coefficients for the
minimal SME is provided via Tables VI, VII, and VIII.

Another useful limit involves the specification of a pre-
ferred frame in which all Lorentz violation is isotropic.
The corresponding isotropic or ‘fried-chicken’ models are
discussed in Sec. IVB. The isotropic requirement elim-
inates all but three sets of spherical coefficients and re-
duces the growth of coefficient numbers to be linear in-
stead of cubic at large d. For CPT-odd isotropic oper-

ators with d = 3, 5, 7 . . . there are only 1, 2, 3 . . . types
of Lorentz violation, all of which are birefringent. Simi-
larly, for CPT-even isotropic operators with d = 4, 6, 8 . . .
only 2, 4, 6 . . . coefficients arise, of which 0, 1, 2 . . . are
associated with leading-order birefringence. Note that
isotropic CPT-even birefringence is a physical feature
only for d ≥ 6.

A third useful limiting subset of the general theory is
obtained by restricting attention to Lorentz-violating op-
erators that are nonbirefringent and also are nondisper-
sive in the vacuum at leading order. Sec. IVD constructs
the corresponding camouflage models. These models in-
volve effects that are challenging to detect in astrophys-
ical studies of birefringence and dispersion. They are

described by the single subset of coefficients (c¬(d)
F )

(0E)
njm

appearing at even d and hence associated with CPT-even
Lorentz violation. Table IX summarizes some properties
of these coefficients. For d = 4 only a Lorentz-invariant
trace appears, so for most purposes it suffices to take
d > 4. The camouflage coefficients then govern effects
outside the minimal SME. For operators of larger mass
dimension d = 6, 8, 10 . . . there are 10, 35, 84 . . . indepen-
dent effects, with the number of independent coefficients
growing rapidly as the cube of d for large d. Also, for
d = 4, 6, 8 . . . there are 1, 2, 3 . . . isotropic camouflage
coefficients, which therefore also belong to the general
isotropic model.

The extreme sensitivities to Lorentz violation available
via studies of birefringence and dispersion of astrophysi-
cal sources provides motivation for a further refinement
in the classification of spherical coefficients, based on sep-
arating those coefficients that affect the propagation of
light in the vacuum from all others. We refer to the
former as vacuum coefficients and to the complement
as vacuum-orthogonal coefficients, and we identify the
latter by a negation diacritic ¬. This classification is
summarized in Table XVIII. The vacuum-orthogonal
coefficients appear only for d ≥ 5, so they represent
qualitatively new effects that are absent in the minimal
SME. Moreover, the numbers of vacuum and vacuum-
orthogonal coefficients grow as d2 and d3 for large d, re-
spectively, so the vacuum-orthogonal coefficients repre-
sent most of the coefficient space for large d. For exam-
ple, the vacuum coefficents govern all the physical effects
in the minimal SME for which d = 3 and d = 4, but for
d = 5 they span only 16 of the 36 possibilities and for
d = 6 only 67 of 126.

The vacuum coefficients are constructed in Sec. IVC.
At leading order, they are identified by requiring that
the radiation fields are plane waves. This restricts at-

tention to four sets of coefficients c
(d)
(I)jm, k

(d)
(E)jm, k

(d)
(B)jm,

k
(d)
(V )jm. The coefficients c

(d)
(I)jm are associated with CPT-

even Lorentz violation that is nonbirefringent at leading

order but dispersive for d > 4. The coefficients k
(d)
(E)jm

and k
(d)
(B)jm control CPT-even birefringent effects that are

also dispersive for d > 4. Only k
(d)
(V )jm is associated with
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coefficient d n j number

CPT even, d even (c
(d)
F )

(0E)
njm ≥ 4 0, 1, . . . , d− 2 n, n− 2, n− 4 . . . ,≥ 0 (d+1)d(d−1)

6

(d+ 1)d(d− 3) (k
(d)
F )

(0E)
njm ≥ 4 0, 1, . . . , d− 4 2 for n = 0, d3−d−30

6

n+ 2, n, n− 2 . . . ,≥ 0 for n 6= 0

(k
¬(d)

F )
(1E)
njm ≥ 6 1, 2, . . . , d− 4 n+ 1, n− 1, n− 3 . . . ,≥ 1 (d−4)(d2+d+3)

6

(k
¬(d)

F )
(2E)
njm ≥ 6 2, 3, . . . , d− 4 n, n− 2, n− 4 . . . ,≥ 2 (d−4)(d2−2d−9)

6

(k
(d)
F )

(1B)
njm ≥ 4 0, 1, . . . , d− 4 n+ 2, n, n− 1 . . . ,≥ 1 d3−4d−18

6

(k
¬(d)

F )
(2B)
njm ≥ 6 1, 2, . . . , d− 4 n+ 1, n− 1, n− 3 . . . ,≥ 2 (d+3)(d−2)(d−4)

6

CPT odd, d odd (k
(d)
AF )

(0B)
njm ≥ 3 0, 1, . . . , d− 3 n, n− 2, n− 4 . . . ,≥ 0 d(d−1)(d−2)

6

(d+1)(d−1)(d−2)
2

(k
(d)
AF )

(1B)
njm ≥ 3 0, 1, . . . , d− 3 n+ 1, n− 1, n− 3 . . . ,≥ 1 (d−1)(d2+d−3)

6

(k
¬(d)

AF )
(1E)
njm ≥ 5 1, 2, . . . , d− 3 n, n− 2, n− 4 . . . ,≥ 1 (d+1)(d−1)(d−3)

6

TABLE XVII: Summary of spherical coefficients for Lorentz-violating operators of arbitrary mass dimension. The first column
specifies the CPT property and the total number of independent operators at each d. The corresponding spherical coefficient
sets are listed in the second column. The remainder of the table provides the allowed ranges for the indices d, n, j and the
number of independent components for each coefficient set.

limit coeff. d n j number

vacuum c
(d)

(I)jm even, ≥ 4 – 0, 1, . . . , d− 2 (d− 1)2

k
(d)
(E)jm even, ≥ 4 – 2, 3, . . . , d− 2 (d− 1)2 − 4

k
(d)
(B)jm even, ≥ 4 – 2, 3, . . . , d− 2 (d− 1)2 − 4

k
(d)
(V )jm odd, ≥ 3 – 0, 1, . . . , d− 2 (d− 1)2

vacuum orthogonal (c¬(d)
F )

(0E)
njm even, ≥ 4 0, 1, . . . , d− 4 n, n− 2, n− 4 . . . ,≥ 0 (d−1)(d−2)(d−3)

6

(k
¬(d)

F )
(0E)
njm even, ≥ 6 1, 2, . . . , d− 4 n, n− 2, n− 4 . . . ,≥ 0 (d−1)(d−2)(d−3)

6
−1

(k
¬(d)

F )
(1E)
njm even, ≥ 6 1, 2, . . . , d− 4 n+ 1, n− 1, n− 3 . . . ,≥ 1 (d−4)(d2+d+3)

6

(k
¬(d)

F )
(2E)
njm even, ≥ 6 2, 3, . . . , d− 4 n, n− 2, n− 4 . . . ,≥ 2 (d−4)(d2−2d−9)

6

(k
¬(d)

F )
(1B)
njm even, ≥ 6 1, 2, . . . , d− 4 n, n− 2, n− 4 . . . ,≥ 1 d(d−2)(d−4)

6

(k
¬(d)

F )
(2B)
njm even, ≥ 6 1, 2, . . . , d− 4 n+ 1, n− 1, n− 3 . . . ,≥ 2 (d+3)(d−2)(d−4)

6

(k
¬(d)

AF )
(0B)
njm odd, ≥ 5 0, 1, . . . , d− 4 n, n− 2, n− 4 . . . ,≥ 0 (d−1)(d−2)(d−3)

6

(k
¬(d)

AF )
(1B)
njm odd, ≥ 5 0, 1, . . . , d− 4 n+ 1, n− 1, n− 3 . . . ,≥ 1 (d+1)(d−1)(d−3)

6

(k
¬(d)

AF )
(1E)
njm odd, ≥ 5 1, 2, . . . , d− 3 n, n− 2, n− 4 . . . ,≥ 1 (d+1)(d−1)(d−3)

6

camouflage (c¬(d)
F )

(0E)
njm even, ≥ 4 0, 1, . . . , d− 4 n, n− 2, n− 4 . . . ,≥ 0 (d−1)(d−2)(d−3)

6

isotropic (̊c
(d)
F )n even, ≥ 4 0, 2, . . . , d− 2 0 d/2

(̊k
(d)
F )n even, ≥ 4 2, 4, . . . , d− 4 0 (d− 4)/2

(̊k
(d)
AF )n odd, ≥ 3 0, 2, . . . , d− 3 0 (d− 1)/2

minimal SME c
(4)
(I)jm 4 – 0, 1, 2 9

k
(4)
(E)jm 4 – 2 5

k
(4)
(B)jm 4 – 2 5

k
(3)

(V )jm
3 – 0, 1 4

TABLE XVIII: Summary of limiting cases. The first column specifies the limit, while the corresponding spherical coefficient
sets are listed in the second column. The remainder of the table provides the allowed ranges for the indices d, n, j and the
number of independent components for each coefficient set.
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CPT-odd effects, which are also birefringent and disper-
sive. For any given d, the numbers of each type of vacuum
coefficients are roughly the same. For example, at d = 6

there are 25 coefficients in c
(6)
(I)jm and 21 each in k

(6)
(E)jm

and k
(6)
(B)jm.

The vacuum-orthogonal models are introduced in Sec.
IVE. There are nine sets of vacuum-orthogonal coeffi-
cients, of which four are identical to and five are reduced
subsets of the nine sets in the general analysis. One of
the latter consists of the camouflage coefficients. Some
properties of the remainder are provided in Tables X,
XI, and XII. Except for a single constant scale factor
in d = 4, the vacuum-orthogonal coefficients appear only
for d > 4. They govern Lorentz-violating operators that
produce no leading-order birefringence or dispersion in
vacuum propagation, although birefringent or dispersive
effects can appear in other physical contexts. For exam-
ple, all 20 vacuum-orthogonal coefficients for d = 5 and
49 of the 59 for d = 6 are associated with birefringent
and dispersive effects in suitable circumstances. The re-
maining 10 for d = 6 are camouflage coefficients, which
govern nonbirefringent effects.

The remainder of the paper is concerned with applica-
tions of the theory to observation and experiment. Re-
sults of measurements are conventionally reported in the
canonical Sun-centered frame, so for some applications it
is necessary to perform transformations relating spheri-
cal coefficients in the Sun-centered frame to a laboratory
or other frame. These transformations are provided ex-
plicitly in Sec. V for the case where the boost component
is negligible.

Section VI describes some applications in the astro-
physical context. We focus on astrophysical studies
of vacuum birefringence and dispersion. Birefringence
studies offer extreme sensitivity to many vacuum coef-
ficients, while dispersion tests access the remainder at
lesser but nonetheless impressive sensitivities. Disper-
sion constraints are discussed in Sec. VIA. We obtain
expressions applicable to both isotropic and anisotropic
dispersion, and we use the recent measurements of GRB
080916C made by the Fermi Observatory to obtain new
constraints on Lorentz violation involving operators of
mass dimension six and eight. A summary of existing
constraints from astrophysical dispersion tests is pro-
vided in Table XIII.

Birefringence constraints are considered in Sec. VIB.
The general theory is outlined, and the net rotation
induced by arbitrary spherical coefficients is described
quantitatively in terms of Stokes parameters. We use po-
larimetric data from the gamma-ray bursts GRB 930131
and GRB 960924 to set tight constraints on spherical
coefficients associated with Lorentz-violating operators
of mass dimensions four through nine. A summary of
current limits from GRB polarimetry is provided in Ta-
ble XIV. We also consider constraints obtained from
polarimetric studies of the CMB. The maximal photon-
propagation distances and the photon frequencies make

the CMB particularly well-suited for measurements of
spherical coefficients with d = 3. A survey is per-
formed to categorize the mixing of polarizations in the
CMB induced by Lorentz violation. Table XV compiles
some existing limits from the CMB on both isotropic and
anisotropic Lorentz violation.
Section VII discusses applications in the laboratory

context, focusing on the use of resonant cavities to search
for Lorentz violation. These systems offer sensitivities
to spherical coefficients that are challenging to access
in studies of vacuum birefringence and vacuum disper-
sion. A general theoretical procedure for deriving the
fractional frequency shift in a cavity is presented in Sec.
VIIA. In the following subsections, the results are ap-
plied to nonbirefringent Lorentz violation and in par-
ticular to the camouflage coefficients, for which some
relevant experiment-dependent factors are explicitly ob-
tained. For the specific case of a circular-cylindrical cav-
ity, we provide in Eq. (184) the fractional frequency shift
including the explicit time dependence.
The analysis in this work demonstrates that a com-

prehensive search for Lorentz violation is best performed
with multiple types of measurements. The most sensi-
tive tests use astrophysical birefringence, which provides
access to some vacuum coefficients. Astrophysical disper-
sion offers high sensitivity to the remaining vacuum co-
efficients. However, the bulk of effects involves vacuum-
orthogonal coefficients. Direct sensitivity to these re-
quires non-vacuum boundary conditions and hence lab-
oratory studies. Disentangling the various birefringence,
dispersion, and anisotropy effects requires a variety of
laboratory experiments involving different boundary con-
ditions and different media, and also the exploitation of
signals from different rotations and boosts. Even if at-
tention is limited to coefficients with comparatively low
values of d, considerable room remains for investigations
via both astrophysical observations and laboratory ex-
periments.
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APPENDIX A: SPHERICAL HARMONICS

Angular-momentum eigenstates are irreducible repre-
sentations of rotations, so tensors in three dimensions
can be decomposed into components with definite or-
bital angular momentum and spin. For spin-zero scalars,
the spherical harmonics Yjm provide a basis for this de-
composition. For nontrivial tensors, more general tensor
spherical harmonics are needed to incorporate the spin.
Among the most widely used are the spin-weighted spher-
ical harmonics [57, 58], denoted sYjm. In this Appendix,



50

we briefly review the definitions and basic features of
these spin-weighted spherical harmonics. We also obtain
some mathematical properties that are used in Sec. III.

1. Spin-weighted spherical harmonics

A key concept underlying the spin-weighted spherical
harmonics is the notion of spin weight. To introduce
this idea, consider the problem of characterizing radia-
tion propagating inward toward the Earth from a distant
point source in the sky. The electric-field vector E is
oriented perpendicular to the line of sight, so it lies in
the tangent space of a sphere surrounding the Earth. In
spherical polar coordinates, the angular components of
E are Eθ and Eφ. However, the alternative components
E± ∝ Eθ ∓ iEφ can be considered instead. These have
the advantage of transforming elegantly as E± → e∓iδE±
under a rotation of the local coordinates by an angle δ
about the line of sight. The irreducible combinations E±
are said to be spin-weighted functions of spin weight ±1.
More generally, a function sf is said to have spin weight
s if it transforms according to sf → e−isδ

sf under a local
rotation about the line of sight.
The generator of rotations is the the angular-

momentum operator J . Denoting the radial unit vector
as n̂, the generator of local rotations about the line of
sight is the operator n̂ · J . This is the helicity opera-
tor with respect to the line of sight. We see that the spin
weight can be understood as the eigenvalue of the helicity
operator. For instance, the irreducible combinations E±
in the above example are components of definite helicity
with respect to the line of sight. In this particular exam-
ple, the light propagates in the 3-momentum direction
p̂ = −n̂, so the helicity operator n̂ ·J is equivalent up to
a sign to the helicity operator with respect to the momen-
tum, p̂ ·J . However, this equivalence fails for non-radial
propagation. So in general there are two basic options
for defining spin weight, as the eigenvalue up to a sign
of either n̂ · J or p̂ · J . The choice of definition can be
made based on suitability for the problem at hand.
The helicity operator p̂ ·J or n̂·J commutes with both

the squared total angular momentum J2 and the com-
ponent Jz, where by convention we choose the projection
axis to be the z direction. It is therefore possible to intro-
duce simultaneous eigenfunctions for all three operators.
We show in the next subsection that these simultaneous
eigenfunctions are the spin-weighted spherical harmon-
ics sYjm. However, typical discussions [57–59] of sYjm
are based on raising and lowering operators for the spin
weight, which connect different harmonics. In this sub-
section, we define these operators and provide explicit
expressions for sYjm.
Acting on a function sf of spin weight s, the raising

and lowering operators are given by

{
ð

ð̄

}

sf = − sin±s θ(∂θ ± i csc θ∂φ) sin
∓s θ sf. (A1)

The raising operator ð acts on a function of spin weight
s to yield a function of spin weight s+ 1. Similarly, the
lowering operator ð̄ decreases spin weight by one. The
spin-weighted spherical harmonics sYjm of spin weight s
can be generated from the usual scalar spherical harmon-
ics Yjm = 0Yjm by raising or lowering the spin weight |s|
times:

sYjm =






√
(j−s)!
(j+s)! ð

s
0Yjm, 0 < s ≤ j,

(−1)s
√

(j+s)!
(j−s)! ð̄

s
0Yjm, −j ≤ s < 0.

(A2)

As discussed in the following subsection, the index j cor-
responds to the eigenvalue of the squared total angular
momentum J2 = j(j +1) and m to the eigenvalue of Jz.
The functions sYjm are nonvanishing for index values

|m| ≤ j, as usual. Since the helicity is limited by j, they
are also nonvanishing for j ≥ |s|. They satisfy a relation
analogous to that obeyed by the usual scalar spherical
harmonics,

s1Yj1m1 s2Yj2m2 =
∑

s3j3m3

√
(2j1+1)(2j2+1)

4π(2j3+1)

× 〈j1j2(−s1)(−s2)|j3(−s3)〉
× 〈j1j2m1m2|j3m3〉 s3Yj3m3 , (A3)

where the symbols 〈j1j2m1m2|j3m3〉 represent the
Clebsch-Gordan coefficients. This implies orthogonality
of harmonics of equal spin weight,

∫
sY

∗
jm(n̂) sYj′m′(n̂) sin θdθdφ = δjj′δmm′ . (A4)

Note, however, that this orthogonality does not extend
to sYjm of different spin weight. The harmonics sYjm
also satisfy the completeness relations

∑

jm

sY
∗
jm(n̂) sYjm(n̂′) = δ(n̂− n̂′) . (A5)

Here, we adopt phase conventions ensuring

sY
∗
jm = (−1)s+m

−sYj(−m) (A6)

under complex conjugation and

sYjm(−n̂) = (−1)j −sYjm(n̂) (A7)

under parity.
Although Eq. (A2) can be used to generate the spin-

weighted spherical harmonics, in practice it is often easier
to use the explicit expression

sYjm(θ, φ) =
[
2j+1
4π

(j+m)!(j−m)!
(j+s)!(j−s)!

] 1
2

eimφ sin2j θ
2

×
∑

r

(−1)j+m+s+r ( j−s
r )

(
j+s

r+s−m

)
cot2r+s−m θ

2 , (A8)

where (mn ) denotes the binomial coefficients. However,
this expression can be numerically troublesome for high
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values of j. One strategy for numerical applictions is
to use Eq. (A8) to generate the low-j harmonics but in-
stead to use recursion relations derived from Eq. (A3)
to extract the higher-j ones. We find that two re-
cursion relations are useful for this purpose. Taking
s1 = 0, j1 = 1,m1 = 1, and m2 = ±j2 in Eq. (A3),
we obtain the recursion

sYj(±j) = ∓
√

j(2j+1)
2(j2−s2)e

±iφ sin θsY(j−1)(±j∓1), (A9)

which relates harmonics with j = |m|. Also, taking
s1 = 0, j1 = 1,m1 = 0 in Eq. (A3) leads to the recursive
formula

sYjm =

√
j2((2j)2−1)

(j2−m2)(j2−s2)

[
(cos θ + ms

j(j−1) ) sY(j−1)m

−
√

((j−1)2−m2)((j−1)2−s2)
(j−1)2(2j−1)(2j−3) sY(j−2)m

]
,

(A10)

which permits the calculation of higher-j harmonics from
lower-j ones with the same m. A practical procedure for
determining numerical values of spin-weighted spherical
harmonics then involves first using Eq. (A8) to find val-
ues for j = |s|, followed by using Eq. (A9) to obtain
harmonics with j = |m|, and finally using Eq. (A10) to
fill in all remaining values up to the desired maximum j.

2. Covariant angular momentum

In this subsection, we further explore the relation-
ships between angular momentum, helicity, and the spin-
weighted spherical harmonics. For definiteness, we con-
sider helicity with respect to the momentum direction p̂,
but the following discussion remains valid if n̂ is substi-
tuted for p̂ throughout. Note also that we adopt a metric
with positive signature when working with 3-dimensional
tensors.
We introduce standard angles in spherical polar coor-

dinates, so that the momentum direction can be written
as

p̂ = sin θ cosφ êx + sin θ sinφ êy + cos θ êz, (A11)

where êx, êy, êz form the cartesian basis vectors. The
orthonormal basis vectors in the spherical polar coordi-
nates are taken as

êr = êr = p̂, êθ = êθ, êφ = êφ, (A12)

where êθ and êφ are the coordinate unit vectors asso-
ciated with the spherical coordinates θ and φ. We also
define complex helicity-basis vectors

êr = êr = p̂, ê± = ê∓ = 1√
2
(êθ ± iêφ), (A13)

where an explicit choice of phase has been made. Other
phase choices would change some of the relations below.

With this definition, a rotation of the local coordinates
about p̂ by an angle δ generates a phase shift in the
helicity-basis vectors, ê± → e∓iδê±.
Using the helicity basis, we can readily decompose

any tensor into components of definite helicity and spin
weight. For example, a vector V has 0-helicity compo-
nent Vr = V ·êr and ±1-helicity components V ± = V∓ =
V ·ê±, the latter corresponding to spin-weight = ∓1. The
spin weight and helicity of any tensor component is read-
ily obtained by simple counting, since each ∓ contravari-
ant or ± covariant index adds ±1 to the spin weight.
To construct operators acting to raise or lower the

spin weight, it is convenient first to introduce directional
derivatives in momentum space with respect to arbitrary
basis vectors êa, according to

∂a = êa · ∂, ∂ap = êa. (A14)

The metric is

gab = êa · êb, (A15)

and we define covariant directional derivatives ∇a with
connection

Γc
ab = (∂aêb) · êc, (A16)

as usual. For example, acting with∇a on the components
of a vector V gives

∇aV
b = ∂aV

b+Γb
acV

c, ∇aVb = ∂aVb−Γc
abVc. (A17)

In the helicity basis {ê+, êr, ê−}, we find the metric takes
the explicit form

gab = gab =




0 0 1

0 1 0

1 0 0


 , (A18)

while the nonzero connection elements are

Γ±
±r = −Γr

±∓ = p−1,

Γ±
±± = −Γ±

∓± = (
√
2 p tan θ)−1, (A19)

where p = |p|. The point is that the derivative ∇+ op-
erating on an arbitrary tensor acts to create tensor com-
ponents whose spin weight is increased by one, while ∇−
lowers the spin weight by one.
Our goal is a decomposition in angular momentum, so

we seek a covariant description of the angular-momentum
operators. In momentum space, the orbital angular mo-
mentum L has components

La = −iεabcpb∇c (A20)

and obeys the algebra

[La, Lb] = −iεabcLc. (A21)

Here, εabc is the totally antisymmetric tensor, which in
the helicity basis satisfies

ε+r− = −ε+r− = i. (A22)
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In particular, we have

Lr = 0, L± = ±p∇±, (A23)

which implies that orbital angular momentum is perpen-
dicular to p̂, as expected.
To complete the description of angular momentum, it

is useful to define a covariant spin operator S with com-
ponents Sa. Acting on a vector Va, we define

SaVb = −Sc
abVc, SaV

b = Sb
acV

c, (A24)

where

Sc
ab = iεcab. (A25)

This provides a covariant formulation of the general spin
relation

(V 1 · S)V 2 = iV 1 × V 2 = (V1)
aê b(Sa(V2)b). (A26)

The spin operator acting on more general tensors obeys
rules like those of the connection. For example, we obtain

SaT
b
c = Sb

adT
d
c − Sd

acT
b
d. (A27)

Since the Sa are covariant operators rather than matrix
operators, they obey slightly modified commutation re-
lations

[Sa, Sb] = −iεabcSc. (A28)

With the above definitions, we can introduce a covari-
ant operator for the total angular momentum as

Ja = La + Sa. (A29)

Like the covariant derivative, this operator has the ad-
vantage of maintaining the explicit tensor nature of ex-
pressions when operating on tensor components. It obeys
the modified commutation relations

[Ja, Jb] = −iεabcJc. (A30)

An interpretation of these operators is as follows. The
radial angular momentum Jr = Sr is the helicity, which
is the negative of the spin weight. The operator J+ raises
the helicity and J+ raises the spin weight, while J− low-
ers the helicity and J− lowers the spin weight. These
operators are equivalent to the raising and lowering op-
erators Eq. (A1) via the correspondence

J+ = −ð/
√
2, J− = ð̄/

√
2. (A31)

The spin-weighted spherical harmonics sYjm are eigen-
functions of the commuting operators

−Jr = s, J2 = j(j + 1), Jz = m. (A32)

The ladder operators J± can be shown to commute with
J2 and Jz. In fact, J± commutes with V · J for any

covariantly constant vector V , so that ∇aVb = 0. Also,
the commutator

[J±,−Jr] = iε±r∓J
∓ = ∓J±, (A33)

implies that J+ and J− raise and lower the spin weight,
respectively, while leaving j and m unaltered. The lad-
der nature of the J± can thus be seen either from the
differential geometry or from the operator algebra.
Since the spin-weight ladder operators J± are analo-

gous to the conventional ladder operators that raise and
lower the eigenvalue of the z component of the angu-
lar momentum, many of the usual techniques and results
apply. For example, the standard normalization scheme
gives

J± sYjm = −
√

1
2

(
j(j + 1)− s(s± 1)

)
s±1Yjm, (A34)

where the phase is chosen to match the conventional def-
initions when expressed in terms of ð and ð̄. Repeated
application gives the useful expressions

0Yjm = (−1)s2|s|/2
√

(j−|s|)!
(j+|s|)! (J±)

|s|
∓|s|Yjm, (A35)

and

±|s|Yjm = (−1)s2|s|/2
√

(j−|s|)!
(j+|s|)! (J±)

|s|
0Yjm, (A36)

which are equivalent to Eq. (A2).
In practical terms, the above formalism leads to the

simple results

∇r = ∂/∂p,

∇± = ±(J± − S±)/p, (A37)

which will be used extensively in Section III. Note, how-
ever, that some care is needed when using the results
(A37) since they are non-tensorial relations, valid only
in the helicity basis. For example, the ± indices on the
right-hand side are noncovariant once applied, so further
manipulations with covariant operators such as ∇a, Sa,
Ja are inappropriate.
As a simple illustration of the above formalism, con-

sider the covariant momentum-space laplacian acting on
a scalar ψ:

∇a∇aψ =
(
∇r∇r +∇+∇+ +∇−∇−)ψ

=
(
∂2

∂p2 + 1
p (J+ − S+)∇+ − 1

p (J− − S−)∇−)ψ.
(A38)

Using the results

Sa∇bψ = Sb
ac∇cψ = −iεabc∇cψ,

∇±ψ = ∓ 1
p (J

± − S±)ψ = ∓ 1
pJ

±ψ,

(J+J
+ + J−J

−)ψ = J2ψ, (A39)
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we can reexpress ∇a∇aψ as follows:

∇a∇aψ =
(
∂2

∂p2 + 1
p (J+∇

+ +∇r)− 1
p (J−∇

− −∇r)
)
ψ

=
(
∂2

∂p2 + 2
p
∂
∂p − 1

p2 (J+J
+ + J−J

−)
)
ψ

=
(
∂2

∂p2 + 2
p
∂
∂p − 1

p2J
2
)
ψ. (A40)

We thereby recover the familiar expression for ∇a∇aψ
involving the angular momentum.
It has been noted in the literature that the operators

ð and ð̄ are equivalent to covariant derivatives in the
two-dimensional tangent space of the sphere [57]. In our
present language, this can be made apparent by defining
a new covariant derivative as

∇̃a = ∇a − iεarbS
b/p, (A41)

which in the helicity basis gives nonzero connection ele-
ments

Γ̃±
±± = −Γ̃±

∓± = (
√
2 p tan θ)−1. (A42)

The derivative ∇̃a corresponds to the projection of the
usual three-dimensional geometry onto the embedded 2-
sphere. In terms of this derivative, we can express the
ladder operators as

J± = ±∇̃±/p. (A43)

This relates our three-dimensional picture to the two-
dimensional one.

3. Parity

In a typical application of the above formalism, a ten-
sor is decomposed by considering its components in the
helicity basis, which are spin-weighted functions, and ex-
panding them using spin-weighted spherical harmonics.
In many cases, it is useful to decompose further the re-
sults in terms of parity properties [57]. This subsection
contains a brief summary of the latter procedure, along
with some figures providing insight into the structure of
the resulting modes.
Let t represent an arbitrary tensor component with

spin weight s. Its expansion then takes the form

t(p̂) =
∑

jm

tjm sYjm(p̂). (A44)

By exchanging all the + and − indices on t, we obtain
another tensor component of spin weight −s. Denoting
this component as t̄, we can expand it as

t̄(p̂) =
∑

jm

t̄jm −sYjm(p̂). (A45)

The two components t and t̄ are parity conjugates, inter-
changing under parity according to

t(p̂) ↔ (−1)s t̄(−p̂). (A46)

In terms of spherical coefficients, the parity transforma-
tion gives

tjm ↔ (−1)s+j t̄jm. (A47)

It is then useful to define

tjm = Ejm + iBjm ,

t̄jm = (−1)s(Ejm − iBjm). (A48)

The result is a splitting of t and t̄ into modes with so-
called electric-type parity or E-type parity,

Ejm → (−1)jEjm, (A49)

and ones with magnetic-type parity or B-type parity,

Bjm → (−1)j+1Bjm, (A50)

where the nomenclature is borrowed from radiation the-
ory.
As a simple example, consider a scalar function

S(p̂) =
∑

jm

Ejm 0Yjm(p̂). (A51)

Under parity, S transforms according to

S(p̂) → S(−p̂), (A52)

which in conjunction with Eq. (A7) confirms that scalar
functions contain only E-type components. Figure 9 il-
lustrates the angular distribution obtained by considering
each mode E00, E10, E11, E20, E21, E22 of a real scalar
field in turn. For example, the real scalar field S(E11)
associated with real E11 is

S(E11) = E11(0Y11 − 0Y1(−1)). (A53)

For each of the six images in Fig. 9, the three arrows per-
pendicular to the spherical surface represent rectangular
right-handed coordinate axes with ẑ vertical. The solid
disks represent positive values of the scalar, while the
rings represent negative ones. The radius of each disk or
ring is proportional to the magnitude of the scalar at that
point. The images reveal the angular and parity symme-
tries of each scalar mode. Consider, for example, the E10

scalar mode. The figure shows that this mode has ex-
tremal magnitudes at the poles and equator and is sym-
metric under rotations about ẑ, all of which are features
of a distribution with j = 1 and m = 0. Also, the sign
of the mode changes on interchanging any two antipodal
points, matching its negative parity. Note that the distri-
butions are plotted for real amplitudes Ejm. Inclusion of
a phase in an amplitude rotates the corresponding figure
about ẑ.
An example with both E- and B-type content is pro-

vided by the components

V± =
∑

jm

(±Ejm + iBjm)±1Yjm (A54)
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E00 E20

E10 E21

E11 E22

FIG. 9: Angular distributions for electric-type scalar compo-
nents.

of a vector field V in the tangent bundle of the sphere.
Figure 10 displays the angular distributions for a real
vector field for each separate mode E00, E10, E11, E20,
E21, E22. For example, the components of the real vector
field V (E11) associated with real E11 are

V+(E11) = E11(1Y11 − 1Y1(−1)),

V−(E11) = −E11(−1Y11 − −1Y1(−1)). (A55)

In the figure, the vector tangent to a sphere at a given
point represents the corresponding mode. The angular
and parity symmetries of each vector mode can be seen
by inspection. For instance, the E10 vector mode has ex-
tremal magnitudes at the poles and equator and is sym-
metric under rotations about ẑ, as expected for a mode
with j = 1 and m = 0. Also, inspection reveals that ap-
plying the parity operation reverses the flow of vectors on
the sphere, as is appropriate for a mode with E-type par-
ity and j = 1. Note that the E-type modes are curl free
while the B-type modes are divergence free, matching the
usual properties in electrodynamics. Note also that for
given values of j and m the E- and B-mode field lines are
perpendicular everywhere, reflecting the orthogonality of
the modes.
For a symmetric traceless 2-tensor, we can consider the

components

T±± =
∑

jm

(Ejm ± iBjm)±2Yjm. (A56)

E10 B10

E11 B11

E20 B20

E21 B21

E22 B22

FIG. 10: Angular distributions for electric- and magnetic-type
vector components.

Figure 11 provides representations of each the six modes
E20, E21, E22, B20, B21, B22 for a real tensor. The
figure takes advantage of the spectral theorem applied to
the decomposition of a real symmetric traceless tensor T
that lies in in the tangent bundle of the sphere and has
nonzero components T±±. In terms of its two orthogonal
eigenvectors v and w lying tangent to the sphere, we can
write

T = v ⊗ v −w ⊗w, (A57)

where the eigenvalues of T are |v|2 and −|w|2 = −|v|2.
The tensor T can therefore be represented at each point
on the sphere by the two vectors v and w. We denote
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E20 B20

E21 B21

E22 B22

FIG. 11: Angular distributions for electric- and magnetic-type
tensor components.

the vector v by a thick line and the vector w by a thin
one, noting that the vector orientations are unspecified

by Eq. (A57) and so the vectors are best represented
by unoriented line segments. The angular and parity
symmetries of each tensor mode are visible in the figure.
For example, the extremal magnitudes of the E20 tensor
mode occur at the poles and equator, and the mode is
symmetric under rotations about ẑ, as expected for a
mode with j = 2 and m = 0. The symmetry under
interchange of two antipodal points is a consequence of
the positive parity of this mode. The orthogonality of
the E and B modes for given values of j and m implies
that each E-B pair of modes is related by interchanging
a plus with a cross at each point. As an aside, we remark
that this visualization has a parallel in general relativity,
where the orthogonality of the plus and cross modes for
gravitational radiation also arises from a symmetric real
2-tensor tangential to the direction of propagation.
We can also consider various types of pseudotensors.

All these acquire an additional sign under parity, which
implies that the roles of the E- andB-type coefficients are
interchanged in the parity decomposition. For example,
pseudoscalars contain only B-type components. Also,
the parity decomposition of a pseudovector V ′ leads to
components with spin weight ±1 of the form

V ′
± =

∑

jm

(±Bjm + iEjm)±1Yjm (A58)

instead. Similarly for a pseudotensor T ′, we have

T ′
±± =

∑

jm

(Bjm ± iEjm)±2Yjm. (A59)
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[5] V.A. Kostelecký and S. Samuel, Phys. Rev. D 39, 683
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