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Abstract

We present electroelastic modeling, analytical and numerical solutions, and experimental

validations of piezoelectric energy harvesting from broadband random vibrations. The

modeling approach employed herein is based on a distributed-parameter electroelastic

formulation to ensure that the effects of higher vibration modes are included, since broadband

random vibrations, such as Gaussian white noise, might excite higher vibration modes. The

goal is to predict the expected value of the power output and the mean-square shunted

vibration response in terms of the given power spectral density (PSD) or time history of the

random vibrational input. The analytical method is based on the PSD of random base

excitation and distributed-parameter frequency response functions of the coupled voltage

output and shunted vibration response. The first of the two numerical solution methods

employs the Fourier series representation of the base acceleration history in an ordinary

differential equation solver while the second method uses an Euler–Maruyama scheme to

directly solve the resulting electroelastic stochastic differential equations. The analytical and

numerical simulations are compared with several experiments for a brass-reinforced PZT-5H

bimorph under different random excitation levels. The simulations exhibit very good

agreement with the experimental measurements for a range of resistive electrical boundary

conditions and input PSD levels. It is also shown that lightly damped higher vibration modes

can alter the expected power curve under broadband random excitation. Therefore, the

distributed-parameter modeling and solutions presented herein can be used as a more accurate

alternative to the existing single-degree-of-freedom solutions for broadband random vibration

energy harvesting.

1. Introduction

Vibration-based energy harvesting for low-power electricity

generation has been heavily researched over the past

decade [1–5]. The motivation in this research field is due to the

reduced power requirement of small electronic components,

such as the wireless sensor networks used in passive and active

monitoring applications. The goal is to eliminate the need

for battery replacement and disposal by enabling autonomous

wireless electronic systems. Among the basic transduction

mechanisms that can be used for vibration-to-electricity

conversion (electromagnetic, electrostatic, piezoelectric, and

magnetostrictive conversion methods as well as the use of

electroactive polymers [6–16]), piezoelectric transduction has

received the greatest attention due to the high-power density

and ease of application of piezoelectric materials [4].

Most of the existing electromechanical modeling efforts

on vibration-based energy harvesting have been based on

10964-1726/13/015002+14$33.00 c© 2013 IOP Publishing Ltd Printed in the UK & the USA

http://dx.doi.org/10.1088/0964-1726/22/1/015002
mailto:alper.erturk@me.gatech.edu
http://stacks.iop.org/SMS/22/015002


Smart Mater. Struct. 22 (2013) 015002 S Zhao and A Erturk

the assumption that the vibrational input is deterministic,

as in the typical case of harmonic excitation of linear and

nonlinear energy harvesters at or around resonance [6–16].

Closed-form expressions for the optimal conditions have

been developed by several authors for deterministic forms

of excitation [17–20]. These efforts contribute to the design

and performance evaluation of linear and nonlinear energy

harvesters under harmonic excitation.

Harmonic excitation is a simple and rather idealized

representation of real-world ambient vibrations. In many

cases, ambient vibrational energy is non-harmonic or entirely

stochastic, with broad frequency content. As compared to the

literature of harvesting deterministic forms of energy, rather

few research groups have investigated energy harvesting from

random vibrations and employed different electromechanical

models. Typically, the excitation source is assumed to be ideal

white noise, which is a broadband random signal that has a

flat power spectral density (PSD) in the frequency domain.

Single-degree-of-freedom (SDOF) modeling is the most

commonly used approach in the theoretical exploration of

energy harvesters driven by broadband random excitation.

Halvorsen [21] derived closed-form expressions for the power

output, optimal load, and proof mass displacement based on

linear SDOF modeling, and verified the resulting expressions

by solving the Fokker–Planck equation. The results were also

compared with those obtained from the same model under

harmonic excitation and differences were reported. Adhikari

et al [22] also used a linear SDOF model to describe the

stochastic dynamics for the fundamental vibration mode of

an energy harvester. Analytical expressions of the harvested

power and optimal load were derived, and illustrated using

numerical examples. Scruggs [23] investigated the optimal

control of a linear energy harvester network for increased

power flow to a storage system under random excitation.

Daqaq [24] considered hardening stiffness in the SDOF

formulation for electromagnetic energy harvesting and

concluded that the monostable Duffing oscillator did not

provide an enhancement over the typical linear oscillators

under Gaussian white and colored random excitations, and

contemporaneous experiments by Barton et al [25] for

electromagnetic energy harvesting provided consistent results.

Based on SDOF modeling, Gammaitoni et al [26] suggested

that carefully designed nonlinear oscillators could potentially

outperform the linear ones under noise excitation for both

bistable and monostable configurations.

Ferrari et al [27] numerically studied a bistable SDOF

energy harvesting system under broadband random excitation

using the Euler–Maruyama method. Litak et al [28]

numerically simulated a bistable piezomagnetoelastic energy

harvester (introduced by Erturk et al [29]) under Gaussian

white noise and observed a positive correlation between

standard deviations of the random excitation and of the

voltage output. In particular, they [28] focused on the potential

of exploiting ‘stochastic resonance’ in energy harvesting, as

formerly discussed by McInnes et al [30] through another

SDOF representation. Ali et al [31] developed a linearized

SDOF model for broadband random excitation of bistable

piezomagnetoelastic energy harvesters. They showed that

there existed a cut-off standard deviation of the input

excitation below which the power output was very low.

Daqaq [32] gave a theoretical study on the response of

an inductive SDOF bistable energy harvester to white and

exponentially correlated Gaussian noise. For Gaussian white

noise excitation, the exact probability distribution function

was expressed in order to obtain a closed-form expression of

mean power output.

Nguyen et al [33] studied a wideband MEMS elec-

trostatic energy harvester using a lumped-parameter model.

They experimentally compared the PSD of voltage output

for different levels of broadband random inputs. They also

examined the relationship between the output power and

PSD of excitation in addition to providing finite-element

simulations. Some research groups also utilized SPICE, a

numerical circuit simulator, to simulate the harvested energy

in response to random vibrations [34–36]. Tvedt et al [37]

also considered broadband vibration excitation when they

investigated the nonlinear behavior of an electrostatic energy

harvester, along with the effect of bias voltage.

As an alternative to the aforementioned SDOF modeling

and analysis efforts, in this paper, distributed-parameter

electroelastic modeling, analytical and numerical solutions,

and experimental validations of piezoelectric energy harvest-

ing from broadband random vibrations are presented. The

motivation for distributed-parameter modeling emerges from

the fact that broadband random vibrations can in fact excite

higher vibration modes of an electroelastic energy harvester,

which can be significant for a configuration with lightly

damped higher modes. In the following sections, first the

distributed-parameter electroelastic model employed in the

analytical and numerical simulations is summarized. Then the

expected power and mean-square shunted vibration response

are expressed in terms of the base acceleration PSD and

the electroelastic frequency response functions (FRFs) in the

analytical solution. After that, the numerical electroelastic

solutions are presented based on two separate approaches.

The deterministic approach represents the base acceleration

history in terms of its Fourier series expansion to use in

the first-order electroelastic equations, while the stochastic

approach directly employs an Euler–Maruyama scheme to

solve the resulting first-order stochastic differential equations.

Experimental results are then presented to validate analytical

and numerical predictions. Electrical power generation and its

shunt damping effect at different random vibration levels are

investigated.

2. Governing electroelastic equations and harmonic
excitation

2.1. Distributed-parameter electroelastic modeling

Figure 1 shows symmetric bimorph piezoelectric energy

harvester configurations excited by base motion in the form

of a translational displacement, g(t), with a superimposed

small rotational displacement, h(t). The wires originating

from negligibly thin and perfectly conductive electrode pairs

covering the surfaces of the piezoceramic layers are connected
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to a resistive electrical load (Rl). The distributed-parameter

electroelastic formulation summarized in this section is based

on the Euler–Bernoulli beam assumptions [11, 38]. Therefore,

the energy harvesters considered herein are assumed to be thin

structures so that the shear distortion and rotary inertia effects

are negligible (we note that [38, 39] present modeling of

piezoelectric energy harvesters with moderate thickness). As

a consequence, the tensorial form of the linear piezoelectric

constitutive equations can be given in the plane-stress form as

{

T1

D3

}

=

[

c̄E
11 −ē31

ē31 ε̄S
33

] {

S1

E3

}

(1)

where T1 is the stress component, D3 is the electric

displacement component, S1 is the strain component, E3 is

the electric field component, the 3-direction is the poling

direction (z-direction in figure 1), and the 1-direction is

the axial direction (x-direction in figure 1). In addition, ē31

is the effective piezoelectric stress constant, c̄E
11 is elastic

stiffness component (Young’s modulus) at constant electric

field, and ε̄S
33 is the permittivity component at constant strain;

an over-bar denotes that the respective parameter is reduced

for the plane-stress conditions. Thus, for a beam-like thin

cantilever, the plane-stress elastic, piezoelectric and dielectric

parameters can be given in terms of the 3-D electroelasticity

components as

c̄E
11 = 1/sE

11, ē31 = d31/sE
11,

ε̄S
33 = εT

33 − d2
31/sE

11

(2)

where sE
11 is the elastic compliance at constant electric field,

d31 is the commonly referred piezoelectric strain constant, and

εT
33 is the permittivity component at constant stress. Note that

the substructure material is typically an isotropic metal.

The governing linear electroelastic equations of a

bimorph piezoelectric energy harvester (figure 1) in the

physical coordinates are [11, 38]

D
∂4wrel(x, t)

∂x4
+ cs

∂5wrel(x, t)

∂x4∂t
+ cm

∂wrel(x, t)

∂t

+ m
∂2wrel(x, t)

∂t2
− ϑv(t)

[

dδ(x)

dx
−

dδ(x − L)

dx

]

= − [m + Mtδ(x − L)]
∂2wb(x, t)

∂t2
(3)

C
eq
p

dv(t)

dt
+

v(t)

Rl
+ ϑ

∫ L

0

∂3wrel(x, t)

∂x2∂t
dx = 0 (4)

where wb(x, t) = g(t)+xh(t) is the effective base displacement

as the excitation input, wrel(x, t) is the vibration response

(transverse displacement of the neutral axis relative to

the moving base at position x and time t), v(t) is the

voltage response across the external resistive load, D is

the bending stiffness of the beam, m is the mass per unit

length of the beam, cm is the external damping coefficient

(mass-proportional damping), cs is the internal damping

coefficient of the composite structure (stiffness-proportional

damping), Mt is the tip mass, C
eq
p is the equivalent capacitance

of the piezoceramic layers, ϑ is the electromechanical

Figure 1. Bimorph piezoelectric energy harvester configurations
under base excitation: (a) series and (b) parallel connection of the
piezoelectric layers.

coupling term in the physical coordinates, and δ(x) is the

Dirac delta function. The electromechanical coupling term is

ϑ = ē31b(hp + hs)/2 if the piezoelectric layers are connected

in series and ϑ = ē31b(hp + hs) if the piezoelectric layers

are connected in parallel (where b is the width of the layers,

hp is the thickness of each piezoceramic layer, and hs is the

thickness of the substructure layer). Likewise the equivalent

capacitance is C
eq
p = ε̄S

33bL/2hp for series connection and

C
eq
p = 2ε̄S

33bL/hp for parallel connection (where L is the

overhang length).

If the vibration response (relative to its moving base)

in the physical coordinates is expressed in terms of the

mass-normalized eigenfunctions (mode shapes), φr(x), and

the modal coordinates, ηr(t), for the rth mode such that

wrel(x, t) =
∞
∑

r=1

φr(x)ηr(t) (5)

where the eigenfunctions are obtained from the undamped

and electromechanically uncoupled problem [11, 38], then,

following the analytical modal analysis procedure [40], the

electromechanically coupled ordinary differential equations in

the modal coordinates are obtained as

η̈r(t) + 2ζrωrη̇r(t) + ω2
r ηr(t) − θ̃rv(t) = fr(t) (6)

C
eq
p v̇(t) +

v(t)

Rl
+

∞
∑

r=1

θ̃rη̇r(t) = 0. (7)

Here, an over-dot ( ˙ ) represents differentiation with respect

to time, ζr is the modal mechanical damping ratio, ωr is

the undamped natural frequency (close to the short-circuit

resonance frequency, ωsc
r , for the light mechanical damping

condition: ζr ≪ 1), θ̃r is the modal electromechanical

coupling term, and fr(t) is the modal mechanical forcing

function, which depends on the forms of g(t) and h(t).

2.2. Steady-state response to harmonic excitation

If the motion of the vibrating base in figure 1 is harmonic of

the form g(t) = W0ejωt and h(t) = θ0ejωt (where W0 and θ0 are

the translational and small rotational displacement amplitudes

3
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Table 1. Modal electromechanical coupling and equivalent
capacitance terms for the (a) series and (b) parallel connection cases.

(a) Series connection

θ̃r ē31(hp + hs)bφ′
r(L)/2

C
eq
p ε̄S

33bL/2hp

(b) Parallel connection

θ̃r ē31(hp + hs)bφ′
r(L)

C
eq
p 2ε̄S

33bL/hp

of the base, respectively, ω is the excitation frequency, and

j is the unit imaginary number), hence fr(t) = Frejωt, the

steady-state voltage response (v(t) = Vejωt, where V is the

complex voltage) of the cantilevers shown in figure 1 can be

given as [11, 38]

v(t) = Vejωt =

∑∞
r=1

−jωθ̃rFrejωt

ω2
r −ω2+j2ζrωrω

1
Rl

+ jωC
eq
p +

∑∞
r=1

jωθ̃2
r

ω2
r −ω2+j2ζrωrω

. (8)

Here, the modal electromechanical coupling (θ̃r) and the

equivalent inherent capacitance (C
eq
p ) terms for the series and

parallel connections of the piezoceramic layers are given in

table 1 (where φ′
r(x) is the derivative of φr(x) with respect to

x).

In equation (8), the modal mechanical forcing term due

to base excitation is

Fr = ω2W0

(

m

∫ L

0

φr(x) dx + Mtφr(L)

)

+ ω2θ0

(∫ L

0

xφr(x) dx + MtLφr(L)

)

. (9)

The electromechanically coupled vibration response of the

energy harvester beam (relative to its moving base) at steady

state is then

wrel(x, t) =
∞
∑

r=1

[fr(t) + θ̃rv(t)]φr(x)

ω2
r − ω2 + j2ζrωrω

=
∞
∑

r=1

[Fr + θ̃rV]φr(x)e
jωt

ω2
r − ω2 + j2ζrωrω

(10)

which includes the effect of piezoelectric shunt damping due

to the θ̃rv(t) term, where v(t) is given by equation (8). Using

equations (8) and (10), it is possible to define electroelastic

FRFs.

2.3. Electroelastic FRFs: voltage output and shunted
vibration response

If the base is assumed to be not rotating (h(t) = 0), i.e. θ0 = 0

in equation (9), but translating with g(t) = W0ejωt, the modal

mechanical forcing function becomes

Fr = −σrω
2W0 = σrA0 (11)

where A0 is the base acceleration amplitude and σr is a modal

forcing parameter:

σr = −m

∫ L

0

φr(x) dx − Mtφr(L). (12)

One can then define the multi-mode voltage output-to-

base acceleration FRF and the vibration response-to-base

acceleration FRF as follows:

α(ω) =
v(t)

A0ejωt
=

∑∞
r=1

−jωθ̃rσr

ω2
r −ω2+j2ζrωrω

1
Rl

+ jωC
eq
p +

∑∞
r=1

jωθ̃2
r

ω2
r −ω2+j2ζrωrω

(13)

β(ω, x) =
wrel(x, t)

A0ejωt
=

∞
∑

r=1

[

σr + θ̃rα(ω)

]

φr(x)

ω2
r − ω2 + j2ζrωrω

. (14)

The foregoing exact analytical solutions are typically

truncated (in the simulations) after taking a sufficient number

of modes (M modes) to represent the system dynamics in a

given frequency range such that

α(ω) ∼=

∑M
r=1

−jωθ̃rσr

ω2
r −ω2+j2ζrωrω

1
Rl

+ jωC
eq
p +

∑M
r=1

jωθ̃2
r

ω2
r −ω2+2ζrωrω

(15)

β(ω, x) ∼=

M
∑

r=1

[σr + θ̃rα(ω)]φr(x)

ω2
r − ω2 + j2ζrωrω

. (16)

If the energy harvester beam is excited close to a natural

frequency, i.e., ω ∼= ωr, the contribution of all vibration modes

other than the rth mode can be ignored in the summation terms

of equations (15) and (16) as an approximation. One can then

establish the single-mode voltage output-to-base acceleration

FRF and the vibration response-to-base acceleration FRF as

follows:

α̂(ω) =
−jωRlθ̃rσr

(1 + jωRlC
eq
p )(ω2

r − ω2 + j2ζrωrω) + jωRlθ̃2
r

(17)

β̂(ω, x)

=
(1 + jωRlC

eq
p )σrφr(x)

(1 + jωRlC
eq
p )(ω2

r − ω2 + j2ζrωrω) + jωRlθ̃2
r

(18)

where a hat ( ˆ ) denotes that the respective expression is

reduced for a single vibration mode (mode r) only. It should

be noted that the foregoing single-mode relations are valid for

excitation frequencies in the vicinity of the respective natural

frequency only (ω ≈ ωr). Typically, the fundamental vibration

mode is of interest (hence r = 1) and the single-mode FRFs

become

α̂(ω) =
−jωRlθ̃1σ1

(1 + jωRlC
eq
p )(ω2

1 − ω2 + j2ζ1ω1ω) + jωRlθ̃
2
1

(19)

β̂(ω, x)

=
(1 + jωRlC

eq
p )σ1φ1(x)

(1 + jωRlC
eq
p )(ω2

1 − ω2 + j2ζ1ω1ω) + jωRlθ̃
2
1

. (20)

4
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3. Broadband random excitation: analytical solution

3.1. Expected value of the electrical power output

We consider the base excitation to be Gaussian white

noise-type random signal, which has a constant PSD of S0.

That is, the input PSD covers the entire frequency band

with constant amplitude. Using this property of the excitation

along with the electroelastic FRFs summarized in the previous

section, the analytical solution for the expected (mean) power

can be derived.

Recalling that the electrical power output is simply

v2(t)/Rl, the expected value of the power output is

E[P(t)] =

∫ ∞

−∞

S0

Rl
|α(ω)|2 dω. (21)

Therefore, the multi-mode analytical solution for the expected

power output is obtained from

E[P(t)]

=

∫ ∞

−∞

S0

Rl

∣

∣

∣

∣

∣

∣

∣

∑∞
r=1

−jωθ̃rσr

ω2
r −ω2+j2ζrωrω

1
Rl

+ jωC
eq
p +

∑∞
r=1

jωθ̃2
r

ω2
r −ω2+j2ζrωrω

∣

∣

∣

∣

∣

∣

∣

2

dω (22)

which is the exact representation considering the entire

spectrum of excitation and all vibration modes of the

harvester.

For a compact and closed-form representation, the single-

mode solution of the expected power (for the fundamental

vibration mode) is estimated from

E[P(t)] ∼= E[P̂(t)] =

∫ ∞

−∞

S0

Rl
|α̂(ω)|2 dω. (23)

Employing equation (19) in (23) yields

E[P̂(t)] =

∫ ∞

−∞

S0

Rl

×

∣

∣

∣

∣

∣

−jωRlθ̃1σ1

(1 + jωRlC
eq
p )(ω2

1 − ω2 + j2ζ1ω1ω) + jωRlθ̃
2
1

∣

∣

∣

∣

∣

2

× dω. (24)

Using the integration tables [41], equation (24) can be reduced

to

E[P̂(t)] = {πS0Rlθ̃
2
1 σ 2

1 }{Rlθ̃
2
1 + 2ζ1ω1[(1 + R2

l θ̃
2
1 C

eq
p )

+ (2ζ1 + RlC
eq
p ω1)(RlC

eq
p ω1)]}

−1 (25)

which is analogous to the SDOF derivations given by

Halvorsen [12] and Adhikari et al [13]. Equation (25)

excludes all vibration modes other than the fundamental mode

in the calculation of the expected power. This single-mode

approximation leads to a simple estimate for the optimal

electrical load (R∗
l ) for the maximum power output:

∂

∂Rl
{E[P̂(t)]}

∣

∣

∣

∣

Rl=R∗
l

= 0 → R∗
l =

1
√

(C
eq
p )2ω2

1 + C
eq
p θ̃2

1

. (26)

Back substitution yields the following expression for the

single-mode estimate of the optimal expected power output:

E[P̂(t)]Rl=R∗
l

=

{

πS0σ
2
1 θ̃2

1

√

(C
eq
p )2ω2

1 + C
eq
p θ̃2

1

}

{

4C
eq
p θ̃2

1 ω1ζ1 + 4(C
eq
p )2ω3

1ζ1

+ (θ̃2
1 + 4C

eq
p ω2

1ζ
2
1 )

√

(C
eq
p )2ω2

1 + C
eq
p θ̃2

1

}−1

. (27)

Note that, when computing analytical solutions (particu-

larly the multi-mode solution) by performing the frequency-

domain integration numerically, the frequency range is set to

be [−ω̄, ω̄] such that

E[P(t)] =

∫ ω̄

−ω̄

S0

Rl
|α(ω)|2 dω (28)

where ω̄ is large enough to ensure the coverage of major

vibration modes contributing to the power output given the

input PSD.

3.2. Mean-square value of the shunted vibration response

The multi-mode solution for the mean-square value of the

vibration response (in the displacement form) relative to

moving base at point x is

E[w2
rel(x, t)] =

∫ ∞

−∞

S0|β(ω, x)|2 dω (29)

yielding

E[w2
rel(x, t)] =

∫ ∞

−∞

S0

∣

∣

∣

∣

∣

∞
∑

r=1

[σr + θ̃rα(ω)]φr(x)

ω2
r − ω2 + j2ζrωrω

∣

∣

∣

∣

∣

2

dω. (30)

The single-mode approximation for the fundamental vibration

mode is

E[w2
rel(x, t)] ∼= E[ŵ2

rel(x, t)] =

∫ ∞

−∞

S0|β̂(ω, x)|2 dω. (31)

Using equation (20) in (31) yields

E[ŵ2
rel(x, t)] = {πS0σ

2
1 φ2

1(x)[(C
eq
p )2R2

l ω
2
1

+ 2ζ1C
eq
p Rlω1 + 1]}{ω2

1[2(C
eq
p )2R2

l ω
3
1ζ1

+ 2C
eq
p R2

l θ̃
2
1 ω1ζ1 + 4C

eq
p Rlω

2
1ζ

2
1

+ Rlθ̃
2
1 + 2ζ1ω1]}

−1 (32)

from which the optimal electrical load (R∗∗
l ) of maximum

shunt damping is obtained as

∂

∂Rl
{E[ŵ2

rel(x, t)]}

∣

∣

∣

∣

Rl=R∗∗
l

= 0 → R∗∗
l =

1

ω1C
eq
p (1 − 2ζ1)

.

(33)

Back substitution leads to the minimum mean-square

vibration response for the electrical load of the maximum

shunt damping:

E[ŵ2
rel(x, t)]Rl=R∗∗

l
=

2πS0C
eq
p σ 2

1 (1 − ζ1)φ
2
1(x)

ω1(θ̃
2
1 − 4C

eq
p ω2

1ζ
2
1 + 4C

eq
p ω2

1ζ1)
. (34)

5
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In the experiments, it is common practice to measure

the velocity response (rather than displacement) of the

cantilever relative to the fixed reference frame (rather than

moving base). Therefore, it is useful to modify the theoretical

vibration response to predict the velocity measurement rather

than post-processing the experimental data. The multi-mode

solution for the mean-square velocity response at the free end

of the bimorph is given by

E[ẇ2(L, t)] =

∫ ∞

−∞

S0|β
modified(ω, L)|2 dω (35)

where βmodified(ω, L) is the absolute tip velocity FRF that

can be obtained by modifying the relative tip displacement-

to-base FRF, β(ω, L), [10, 24]:

βmodified(ω, L) =
1

jω
+ jωβ(ω, L). (36)

Due to the first term in equation (36), the velocity FRF tends

to infinity around 0 Hz as a singularity. Therefore a small

frequency range of [−ε, ε] is excluded in the integration of

equation (35) to give

E[ẇ2(L, t)] =

∫ −ε

−ω̄

S0|β
modified(ω, L)|2 dω

+

∫ ω̄

ε

S0|β
modified(ω, L)|2 dω (37)

where ε ≪ ω1. Physically, this is well justified in the

experiments since the shaker (excitation source) does not

emulate motion at zero frequency (rigid body motion)

and the neighborhood of 0 Hz is indeed excluded in

the excitation signal. Using equation (20) in (36) yields

single-mode solution for the modified absolute tip velocity

FRF, and substituting the latter into equation (37) yields

the single-mode solution for the mean-square tip velocity

response.

4. Broadband random excitation: numerical
solutions

4.1. Fourier series-based Runge–Kutta solution

The first numerical solution approach treats the given time

series of the excitation in a deterministic fashion through its

Fourier series representation. The excitation is then combined

with the first-order equations for the numerical solution of the

electroelastic response in the time domain.

The electroelastic state variables for the rth vibration

mode are extracted from equations (6) and (7) as [38]

u(1)
r = ηr(t), u(2)

r = η̇r(t), u(3) = v(t) (38)

where u
(1)
r is the modal displacement, u

(2)
r is the modal

velocity, and u(3) is the voltage output. Then the governing
differential equations in the modal coordinates are expressed
in the first-order form using 2M + 1 equations as

[

u̇
(1)

1 u̇
(1)

2 · · · u̇
(1)
M u̇

(2)

1 u̇
(2)

2 · · · u̇
(2)
M u̇(3)

]t

=







































u
(2)

1

u
(2)

2

.

.

.

u
(2)
M

−2ζ1ω1u
(2)

1 − ω2
1u

(1)

1 + θ̃1u(3) + σ1a(t)

−2ζ2ω2u
(2)

2 − ω2
2u

(1)

2 + θ̃2u(3) + σ2a(t)

.

.

.

−2ζMωMu
(2)
M − ω2

Mu
(1)
M + θ̃Mu(3) + σMa(t)

−u(3)/RlC
eq
p − θ̃1u

(2)

1 /Ceq
p − θ̃2u

(2)

2 /Ceq
p − · · · − θ̃Mu

(2)
M /Ceq

p







































(39)

where a(t) is the random base acceleration in the transverse

direction (a(t) = g̈(t)), superscript t stands for the transpose

and the solution is truncated after M modes. Note that three

initial conditions are required for the state variables in mode

r (we assume zero initial conditions in the simulations of this

paper).

The random base acceleration history is represented as a

deterministic input by using its Fourier series representation:

a(t) ∼= p0 +
N

∑

k=1

[

pk cos

(

k
2π t

T

)

+ qk sin

(

k
2π t

T

)]

(40)

where T is the length of the time history of base acceleration,

p0 is its mean value, while pk and qk (k = 1, 2, . . . are positive

integers) are the Fourier coefficients given by

p0 =
1

T

∫ T

0

a(t) dt,

pk =
2

T

∫ T

0

a(t) cos

(

k
2π t

T

)

dt,

qk =
2

T

∫ T

0

a(t) sin

(

k
2π t

T

)

dt.

(41)

In the Fourier series representation, the number of terms N is

half of the total data points in the base acceleration history and

p0 is negligible for time typical acceleration data of ambient

vibrations (hence zero mean value is assumed hereafter: p0 =

0). Note that the foregoing representation and the resulting

solution are strictly valid for the time interval of [0, T] only.

Equation (39) is then treated as a set of ordinary differential

equations (ODEs). The computation is carried out by using an

ODE solver, such as the ode45 algorithm in MATLAB, which

uses an explicit Runge–Kutta formulation.

The time histories of the voltage output and modal

velocities are obtained from the system of electroelastic

ODEs. If the acceleration history has zero mean value, it is

known that the response forms also have zero mean value.

Thus the expected value of power output can be computed by

using

E[P(t)] =
1

T

∫ T

0

v2(t)

Rl
dt =

σ 2
v

Rl
(42)

where σv is the standard deviation of the voltage response.
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Having obtained the modal coordinates, the tip velocity

relative to moving base can be computed using

ẇrel(x, t) ∼=

M
∑

r=1

φr(x)η̇r(t) = φ1(x)η̇1(t)

+ φ2(x)η̇2(t) + · · · + φM(x)η̇M(t). (43)

Once again, comparison with the experimental results requires

obtaining the absolute tip velocity response (relative to the

fixed reference frame). Therefore, the velocity of the moving

base is first computed from the base acceleration history by

analytically integrating equation (40) and assuming p0 = 0

(zero mean value for the base acceleration):

ẇbase(t) ∼=

N
∑

k=1

[

pkT

2πk
sin

(

k
2π t

T

)

−
qkT

2πk
cos

(

k
2π t

T

)]

.

(44)

Superposing the time history of the base velocity to the

relative tip velocity, the absolute tip velocity is obtained and

its mean-square value can be calculated using

E[ẇ2(L, t)] =
1

T

∫ T

0

ẇ2(L, t) dt = σ 2
ẇ (45)

where σẇ is the standard deviation of the absolute tip velocity

of the cantilever.

4.2. Euler–Maruyama solution

An alternative approach for the solution of equation (39) is to

treat the problem as a set of stochastic differential equations

(SDEs) and to use the Euler–Maruyama method [42] as done

by Ferrari et al [27] and Litak et al [15], among others, for the

SDOF problem, which is extended to cover multiple vibration

modes here.
The voltage output and modal velocities are approxi-

mated by using the Euler–Maruyama scheme [42]:
[

du
(1)

1 du
(1)

2 · · · du
(1)
M du

(2)

1 du
(2)

2 · · · du
(2)
M du(3)

]t
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(2)
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dt

+
[

0 0 · · · 0 σ1 σ2 · · · σM 0
]T

dW (46)

where dW is the increment of Wiener process and is

approximated as

dW = a(t) dt. (47)

Since the Euler–Maruyama method requires a very fine

time increment, the original time history of excitation input

a(t) is interpolated using a much higher sampling frequency of

about 1 MHz (as compared to the original sampling frequency

of 2560 Hz in the following experiments). The interpolated

acceleration history is then checked to ensure that its standard

deviation and mean remain the same as the original history.

Following the Euler–Maruyama scheme, after obtaining the

time histories of voltage and modal coordinates, the expected

value of power output can be computed using equation (42),

and the time history of tip velocity relative to the moving base

can be computed using equation (43). In order to obtain the

absolute tip velocity (relative to the fixed reference frame),

we again use the Fourier series representation of the velocity

of the base, as done in the previous section. The base velocity

is also interpolated (and checked for its mean and standard

deviation) and then superimposed on the relative tip velocity,

and the mean-square value of the absolute tip velocity is

calculated using equation (45).

5. Experimental validations

5.1. Experimental setup and bimorph cantilever

A brass-reinforced PZT-5H piezoelectric bimorph (T226-H4-

103X by Piezo Systems Inc.) is employed for the model

validation experiments. In the experimental setup (figure 2),

the bimorph is clamped at one end (shaker side) and free

at the other end. The bimorph cantilever (figure 3(a)) is

composed of two PZT-5H layers (with thin nickel electrodes

covering the transverse faces) bracketing a brass layer, as

shown in the close-up side view photo of figure 3(b),

and its basic properties are listed in table 2. The brass

layer provides the electrical conductivity between the inner

electrodes of the oppositely poled PZT-5H layers, and

therefore the configuration employs the series connection of

the piezoelectric layers (figure 1(a)). An accelerometer is

attached on the top surface of the aluminum clamp and the

clamp is attached onto the armature of an electromechanical

shaker. Since the clamp is assumed to behave like a rigid body

in the frequency range of interest, the accelerometer measures

the base acceleration, a(t). A laser vibrometer measures the

tip velocity in the lateral (vertical) direction. A resistor box

is connected to the electrode terminals of the bimorph and

the voltage across the electrical load is measured for several

resistance values ranging from the short-circuit to open-circuit

conditions. Three input channels of the data acquisition

system are used. The first channel (the reference channel)

records the acceleration processed by a signal conditioner,

the second channel records the voltage measured across the

resistive load, and the third channel measures the tip velocity

measured by the laser vibrometer.

5.2. Experimental and analytical electroelastic FRFs

Prior to the broadband random vibration experiments,

low-amplitude chirp excitation tests are conducted for the

purpose of obtaining the linear electroelastic response FRFs

of the system. Figure 4 shows that the analytical voltage

and tip velocity FRFs are in very good agreement with

7
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Figure 2. Details of the experimental setup: (a) computer with data acquisition software; (b) accelerometer on the clamp mounted to the
armature of the shaker; (c) piezoelectric bimorph cantilever; (d) laser vibrometer; (e) signal conditioner; (f) resistor box; (g) shaker;
(h) power supply/amplifier; and (i) data acquisition hardware.

Figure 3. (a) Close-up view of the brass-reinforced bimorph cantilever shown in figure 2(c) and (b) its side view displaying the thicknesses
of piezoelectric and substructure layers. The brass layer provides the electrical conductivity between the inner electrodes of the oppositely
poled piezoelectric layers.

the experimental results for a set of resistors ranging

from short-circuit to open-circuit conditions. Note that the

base acceleration in these FRFs is given in terms of the

gravitational acceleration, g = 9.81 m s−2. Close-up views

around the fundamental vibration mode are also displayed

in these figures, verifying the accuracy of the distributed-

parameter model in predicting the shift in the fundamental

resonance frequency with changing load resistance. Recall

that the analytical multi-mode FRFs are due to equations (13)

and (36) for the voltage and the absolute velocity response,

respectively. The modal mechanical damping ratios of the

first and the second modes covered in the experimental

measurements are obtained as 0.64% and 0.75%, respectively,

i.e., ζ1 = 0.0064 and ζ2 = 0.0075. It is important to note

8
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Table 2. Geometric and material properties of the PZT-5H bimorph cantilever used in experiments.

Piezoceramic
(PZT-5H)

Substructure
(brass)

Length (mm) 27 27
Width (mm) 3.2 3.2
Thickness (mm) 0.258 (each) 0.115

Mass density (kg m−3) 7500 9000
Elastic modulus (GPa) 60.6 105

Piezoelectric constant (C m−2) −16.6 —

Permittivity constant (nF m−1) 25.55 —

Figure 4. Experimental validation of the electroelastic FRFs:
(a) voltage and (b) tip velocity FRFs of the PZT-5H bimorph for a
set of resistors (100�, 1 k�, 10 k�, 91 k�, 500 k�, and 910 k�).
Solid lines are the analytical predictions and dots are the
experimental measurements.

that these are the purely mechanical damping ratios in

the absence of electrical (shunt) damping. Typically, it is

convenient to identify these damping ratios in short-circuit or

open-circuit conditions if conventional methods (half-power

points, logarithmic decrement, etc) [40] are to be used

instead of electromechanical identification expressions in the

presence of finite shunt resistance [19].

The extension of the analytical FRF simulations to cover

the frequency range of 0–10 kHz (hence the first three

vibration modes) is shown in figure 5, where the damping

ratios for mode 3 as well as higher modes which are outside

the range of 0–10 kHz are calculated by using the identified

damping ratios of the first two modes in the proportional

(Rayleigh) damping equations [38, 43]. Having validated

the electroelastic FRFs of the system, broadband random

excitation experiments are conducted next.

Figure 5. Analytically obtained (a) voltage and (b) tip velocity
FRFs of the PZT-5H bimorph for a set of resistors in the frequency
range of 0–10 kHz.

5.3. Broadband random excitation

In the random excitation experiments, the base excitation is

intended to cover a broad range of excitation frequencies to

be as close to white noise as possible within the limitations of

the electromechanical shaker and other hardware. A sample

of time history of acceleration in a broadband random

excitation test is shown in figure 6 along with its PSD. Several

experiments (not discussed here) show that the PSD of base

acceleration is fairly flat up to 3 kHz (which covers the first

two vibration modes of the harvester) and gradually decays

above this value due to device (mainly shaker) limitations,

although the software used in signal generation is theoretically

capable of feeding signal input up to 20 kHz.

A resistor sweep from 500 � (close to short-circuit

condition) to 1 M� (close to open-circuit condition) is

performed. Note that these resistance values are, respectively,

close to short- and open-circuit conditions for the specific

9
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Figure 6. (a) A sample of time history of the measured random
base acceleration (approximate PSD:1.7 mg2 Hz−1) and (b) its PSD
for a broad frequency range.

bimorph cantilever and the range of excitation frequencies

studied here. In each set of experiments, base acceleration,

voltage output, and tip velocity are recorded for 3.2 s. For each

resistive load, the test is repeated five times. From equations

(42) and (45), the expected (mean) power and mean-square

tip velocity are computed. The same experimental procedure

is repeated for three different excitation levels sent to the

shaker. While the data acquisition system (SigLab) extracts

the PSD of base acceleration, we also estimate this PSD

from the time history using the Welch method in MATLAB,

which is a commonly used algorithm in PSD estimation. A

sampling frequency of 2560 Hz is used in the estimation.

Shown in figure 7 are the experimentally extracted PSD (from

the data acquisition system), the estimated PSD based on the

Welch method, and the averaged PSD for the base acceleration

history shown in figure 6.

In the analytical solution, the base excitation is assumed

to be ideal Gaussian white noise with a constant PSD, S0.

In order to obtain the constant value of S0, the relatively

flat portion of the Welch estimate is used and an average

value is extracted. For instance, using the Welch estimate

shown in figure 7, we identify S0 = 1.7 mg2 Hz−1 for the

base acceleration history given in figure 6. This estimation is

performed for the time history of base acceleration in each

of the tests and the mean values are obtained. As shown in

figure 8 for 70 different time series for each PSD level (14

Figure 7. PSD of base acceleration shown in figure 6 extracted
directly from the data acquisition system, estimated using the Welch
method, and averaged based on the Welch estimate.

Figure 8. PSD values estimated from the Welch algorithm for all
tests at three base excitation levels (1.7, 3.8, and 7.8 mg2 Hz−1)
along with the average PSD values at each level (a total of 210
different time series).

different resistors and 5 time series at each level), it can be

concluded that the shaker generates excitations with good

consistency in the base acceleration PSD. Therefore, it is

reasonable to use the mean PSD in the analytical solution for

all resistance values, while the individual time histories are

used in the ODE-based and SDE-based numerical solutions

toward predicting the expected value of the electrical power

and mean-square value of the shunted vibration response.

5.4. Expected value of the electrical power output

At each level of base excitation, the experimental mea-

surements are plotted and compared against the analytical

and numerical predictions. An example case is given in

figure 9(a) for the excitation PSD level of 1.7 mg2 Hz−1. Very

good agreement is observed between the experimental results

and model predictions (both analytical and numerical). The

difference between single-mode and multi-mode analytical

solutions is due to the effect of higher vibration modes,
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Figure 9. Comparison of the analytical and numerical simulations of mean power output with the experimental measurements for a set of
resistive loads showing (a) five experimental and numerical data points at each resistor and (b) only average values for clarity (PSD level of
base acceleration: 1.7 mg2 Hz−1). In the legends, the Fourier series-based ODE solution is denoted by FS-ODE while the SDE solution
based on the Euler–Maruyama scheme is denoted by EM-SDE.

considering the lightly damped nature of the second vibration

mode (see figure 4). Both numerical solutions employ only

the first vibration mode to minimize the computational time,

while the analytical solutions can easily include several

vibration modes (10 modes are used in the simulations).

The analytical solutions use the frequency-domain integration

range of (−10 kHz, 10 kHz), i.e., ω̄ = 10 kHz in section 3.

It is also important to note that, in the analytical predictions,

an average value of PSD is used for all resistors. However,

in each of the numerical simulations, the respective time

history of base acceleration is directly employed as the

input. Consequently, at each value of electrical resistance,

the Fourier series-based ODE solution and the SDE solution

based on the Euler–Maruyama method (as well as the

experimental measurements) have five different data points

in figure 9(a). Note that one can easily take the averages of

the experimental and numerical data points of five separate

random data series at each resistor to simplify figures 9(a) and

(b) for clarity.

The analytical predictions, numerical simulations, and

experimental measurements for three levels of base accel-

eration PSD are plotted in figure 10(a) (and the version

based on averaging the numerical and experimental data

points at each resistor is shown in figure 10(b)). The base

excitation levels are represented in terms of their averaged

PSD values following figure 8. Both the analytical and

numerical predictions of the expected power exhibit very good

agreement with the experimental results. The multi-mode

analytical solution more accurately predicts the experimental

results around the optimal resistance region at each PSD level.

It should be noted that the horizontal axis is on a logarithmic

scale and the optimal electrical load in the single-mode and

multi-mode analytical predictions are substantially different

although the amplitude-wise difference is relatively small.

5.5. Mean-square value of the shunted vibration response

The single-mode and multi-mode analytical, numerical, and

experimental results of the tip velocity at excitation level

of 1.7 mg2 Hz−1 are compared in figure 11. As in the

case of power generation, the analytical and numerical

simulations of the tip velocity response match very well

with experimental results. The mean-square of vibration

response is observed to be relatively insensitive to the

higher-mode effects. Comparisons across different excitation

levels are summarized in figure 12, with very good predictions

particularly around the optimal loads of the maximum power

output and minimum vibration response.

The maximum expected power output and the minimum

mean-square tip velocity response versus input PSD are

plotted in figures 13(a) and (b), respectively. We recall that the

analytical solutions for the expected power and mean-square

tip velocity are due to equations (21) and (35), respectively,

where the proportionality of the left hand side (mean power

or mean-square tip velocity) to the input PSD is evident for

the case of white noise excitation, since the S0 term can be

taken outside the integral.

6. Conclusions

Analytical and numerical solutions, and experimental

validations of piezoelectric energy harvesting from broadband

random vibrations are presented based on a distributed-

parameter electroelastic model. The analytical solution

uses the combination of distributed-parameter electroelastic

FRFs with the input power spectral density (PSD) while

the numerical solutions treat the random base excitation

problem in two separate approaches, deterministically and

stochastically. The deterministic approach represents the base

acceleration history in terms of its Fourier series expansion to

use with the first-order electroelastic equations in an ordinary

differential equation (ODE) solver, while the stochastic

approach directly employs an Euler–Maruyama scheme to

solve the resulting first-order stochastic differential equations

(SDEs). The expected (mean) piezoelectric power output and

the mean-square vibration response forms are investigated

for a broad range of resistive loads spanning from the

short-circuit to open-circuit conditions. The shunt damping
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Figure 10. Comparison of the analytical and numerical simulations of mean power output with the experimental measurements for a set of
resistive loads at different PSD levels of base acceleration (1.7, 3.8, and 7.8 mg2 Hz−1) showing (a) five experimental and numerical data
points at each resistor and (b) only average values for clarity. In the legends, the Fourier series-based ODE solution is denoted by FS-ODE
while the SDE solution based on the Euler–Maruyama scheme is denoted by EM-SDE.

Figure 11. Comparison of the analytical and numerical simulations of mean-square shunted tip velocity with the experimental
measurements for a set of resistive loads showing (a) five experimental and numerical data points at each resistor and (b) only average
values for clarity (PSD level of base acceleration:1.7 mg2 Hz−1). In the legends, the Fourier series-based ODE solution is denoted by
FS-ODE while the SDE solution based on the Euler–Maruyama scheme is denoted by EM-SDE.

Figure 12. Comparison of the analytical and numerical simulations of mean-square shunted tip velocity with the experimental
measurements for a set of resistive loads at different PSD levels of base acceleration (1.7, 3.8, and 7.8 mg2 Hz−1) showing (a) five
experimental and numerical data points at each resistor and (b) only average values for clarity. In the legends, the Fourier series-based ODE
solution is denoted by FS-ODE while the SDE solution based on the Euler–Maruyama scheme is denoted by EM-SDE.

effect associated with random piezoelectric power generation

is also reported. The analytical, as well as ODE-based

and SDE-based numerical predictions exhibit very good

agreement with the experimental measurements taken for a

brass-reinforced PZT-5H piezoelectric energy harvester. The

analytical and numerical solutions are further validated for

different PSD levels of random excitation. It is observed

that the expected power and mean-square vibration response
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Figure 13. (a) Maximum expected power output and (b) minimum mean-square shunted tip velocity at different levels of base acceleration
PSD exhibiting linear dependence between the maximum expected power, minimum mean-square tip velocity, and base acceleration PSD.

depend on the input (base acceleration) PSD linearly. Based

on the analytical solution, the effect of higher vibration modes

is also investigated and it is concluded that lightly damped

higher modes can alter the expected power curve (primarily

the optimal load) if the PSD of input vibration covers high

frequencies as in the case of white noise excitation.
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