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Abstract—Driver drowsiness is receiving a lot of deliberation
as it is a major cause of traffic accidents. This paper proposes
a method which utilizes the fuzzy common spatial pattern op-
timized differential phase synchrony representations to inspect
electroencephalogram (EEG) synchronization changes from the
alert state to the drowsy state. EEG-based reaction time predic-
tion and drowsiness detection are formulated as primary and
ancillary problems in the context of multi-task learning. Statis-
tical analysis results suggest that our method can be used to dis-
tinguish between alert and drowsy state of mind. The proposed
Multi-Task DeepNet (MTDNN) performs superior to the baseline
regression schemes, like support vector regression (SVR), least ab-
solute shrinkage and selection operator, ridge regression, K-nearest
neighbors, and adaptive neuro fuzzy inference scheme (ANFIS), in
terms of root mean squared error (RMSE), mean absolute per-
centage error (MAPE), and correlation coefficient (CC) metrics.
In particular, the best performing multi-task network MTDNN5

recorded a 15.49% smaller RMSE, a 27.15% smaller MAPE, and
a 10.13% larger CC value than SVR.

Index Terms—Brain Computer Interface (BCI), Deep Neural
Network (DNN), One Versus Rest (OVR), Reaction Time (RT),
Multi-Task Learning, Root Mean Squared Error (RMSE), Mean
Absolute Percentage Error (MAPE) and Correlation Coefficient
(CC).
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I. INTRODUCTION

D
ROWSINESS (fatigue), also mentioned as sleepiness, sig-

nifies “the tendency to fall asleep”. A major shift leading

to the deployment of drowsiness detection systems in vehicles

is largely attributed to the WHO report in 2013, which stated

that almost almost 6% of world’s road accidents are caused

by drivers in drowsy state [1]. Some recent developments in

drowsiness detection research are discussed below.

Among various physiological signals, EEG is one of the most

reliable indicators because it is in close conjunction with mental

and physical activities [2]. Several methods proposed in lit-

erature for detecting fatigue by EEG can be categorized into

amplitude and phase based approaches. At first, we summarize

the amplitude based approaches. Budi et al. [3] used EEG spec-

tral feature segments to analyze four algorithms for detecting fa-

tigue. They demonstrated that the ratio of the total spectra power

in theta and alpha bands to the power in beta band witnessed

a greater upsurge over time with drowsiness phenomenon. Wei

et al. [4] defined a term, the Level of Session Generalizability

(LSG) through a novel Transfer Learning (TL) based method.

Their method utilizes a subjects pilot data to select ancillary

data from other subjects to enhance the performance of an EEG

based BCI for drowsiness detection. Authors in [5] propose

regression with Random Forest on multiband power features

providing a highly accurate fatigue index using only three elec-

trode positions. [6] contains two novel driving fatigue prediction

metrics. First integrated fatigue metric is based on power spec-

trum density analysis with subject specific channel selection and

second metric is based on sample entropy analysis from ‘O1h’

and ‘O2h’ electrodes. A. Saha et al. [7] used motor planning

phase to detect cognitive failure in driving using type-2 fuzzy

classifiers.

The phase based approaches for detecting drowsiness are dis-

cussed next. Phase based analysis has also been demonstrated

to be the cynosure of functional neural connectivity inference

[8]. Phase Synchronization (PS) or phase based analysis can de-

tect the spatial lateralization of drowsiness phenomenon. This

approach studies the interplay between signal pairs through the

functional relationships of instantaneous phase among the sig-

nals independent of their amplitudes. Thus, the notion of PS [9]
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is fundamental for neuronal information processing within the

brain region as well as communication between different brain

regions. Lachaux et al. [10] proposed Phase Locking Value

(PLV) statistic to quantify the frequency specific synchroniza-

tion between the neural signals. However, since PLV is a tem-

poral measure of synchrony across the trials, it is not suitable

for trial wise analysis. To measure trial wise phase synchrony

information, a new statistical single trial PLV was formulated

[11]. Caramia et al. [12] proposed a modified single trial PLV

but it did not account for lead lag behavior between EEG signals.

Kumar et al. [13] proposed to extract features based on Instan-

taneous Phase Difference (IPD) for trial wise analysis. Further,

[14] explored Mean Phase Coherence (MPC) with large and

local scale synchrony for fatigue detection. In this work, au-

thors adapt the DPS representations for regression which are

an outcome of integration of IPD with fuzzy CSPR-OVR [15]

framework. Authors further validate the proposed DPS features

on the reaction time dataset from an EEG based lane-keeping

task.

Thus, a large amount of literature already deals with signal

processing for BCIs based on EEG classification problems, but

research on EEG regression problems is mostly neglected till

now. Some of the prominent EEG based regression problems

are: estimation of continuous workload levels [16], Reaction

Time (RT) for the EEG-tracked SVIPT [17] and RT prediction

for the EEG based PVT and lane-keeping tasks [18].

After the EEG signal is obtained, the regression process in-

volves several steps: 1) Signal pre-processing to enhance the

Signal to noise ratio (SNR). Filters in frequency realm such as

low-pass filters, band-pass filters, band-stop filters, and spatial

filters such as independent component analysis (ICA), SPoC

[19], CSP and fuzzy CSSP [20] are frequently used here. 2)

Feature representations to shape relevant predictors, e.g., Rie-

mannian Geometry features [18] and EEG power band features

[15]. 3) Regressors to estimate the continuous valued variable,

e.g., Ordinary Linear Regression (OLR) [21], Ridge Regression

[22], LASSO [15], [18], K-nearest neighbors (kNN) [15], fuzzy

neural networks [23], Transfer Learning [4], [24], [25], active

learning [26], domain adaptation [27], multiview learning [28],

multitask learning [29] etc.

In the multitask learning setup, there are multiple tasks, each

of which is a general task such as supervised task, unsupervised

task, semi-supervised task etc. A handful of these tasks, or a

portion of them are related to each other. Cooperative training

among these tasks can lead to a greater performance enhance-

ment compared to training the tasks one at a time [30]. In BCIs,

a task is usually considered a unique recording session, ei-

ther for an individual or multiple subjects [31]. In [32], authors

demonstrated the effectiveness of multitask learning for classifi-

cation of motor imagery trials. The multitask learning approach

proved to be robust against misclassification in different exper-

imental conditions. Furthermore, multitask learning technique

efficiently estimates spatial filters for classification of motor

imagery in subjects with no prior training data.

RT denotes the time period between the onset of the lane de-

viation and the onset of the response and is used as an objective

measure of the drowsiness (DS) level during each lane departure

event [33]. Since EEG drowsiness estimation and EEG reaction

time prediction are two related problems, where approximate

solution to either of them helps to solve the other, Hence, mul-

titask learning can be applied in this scenario.

The primary objectives of this study are:
� To demonstrate the utility of phase based feature represen-

tations for EEG based drowsiness detection.
� To model the drivers’ drowsiness detection as a multi-task

learning problem based on DPS-FCSPR-OVR feature rep-

resentations and train intelligent models for the proposed

tasks.

The major contributions of this work are:
� Novel DPS-FCSPR-OVR representations are proposed to

demonstrate the utility of phase based EEG representations

for EEG based RT prediction.
� A novel MTDNN framework with a supervised pre-

training and fine tuning steps is proposed.
� Extensive experiments (including comparison with ad-

vanced regression models) are carried out to confirm the

effectiveness of the proposed method in EEG based RT

prediction.

The novelty of the proposed method is highlighted as follows:
� The utility of phase based feature representations is very

scarcely studied in literature for EEG based drowsiness

detection problem. For addressing this issue, the DPS-

FCSPR-OVR representations are adopted to train intelli-

gent models.
� In the multitask BCI literature, the concept of task is usu-

ally limited to either a subject, session etc. For the first

time, we extend the notion of BCI task to address two BCI

problems: drowsiness detection and RT prediction.

This paper is organized as follows: Section II presents the

formulation of proposed DPS-FCSPR-OVR representations.

Section III evaluates their performance on the EEG lane keep-

ing task. Section IV leads us to the proposed co-operative DNN

based multitask approach (MTDNN). Section V evaluates the

proposed MTDNN approach with several baseline DeepNets

and other regression schemes. Finally, discussion and conclud-

ing remarks are provided in Section VI and VII respectively.

II. DIFFERENTIAL PHASE SYNCHRONY (DPS)

REPRESENTATIONS

A. Fuzzy CSPR-OVR

Let Xn ∈ R
C×T n ∈ {1, 2, . . . , N} denote the nth EEG trial,

where C denotes number of channels and T denotes number of

time samples per trial. Trial Xn constitutes a band pass filtered

signal whose mean is removed from each of the channels. Using

the concept of fuzzy sets, we define fuzzy classes (assume M
fuzzy classes) to generalize to regression problems. Next, the

interval range [0, 100] is used to generate M + 1 regions and

let us denote the boundary partition points by {ypm
}, m =

{1, . . . , M}. To mention

Pm =
100 · m

M + 1
, m = 1, . . . , M (1)

Each ypm
is the Pm percentile value of the training set of

RTs. Next, we define M fuzzy classes and categorize training RT

values into one of the M fuzzy classes, in a manner analogous to
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Fig. 1. ‘M’ fuzzy classes for training RT values using triangular fuzzy mem-
bership.

M classes in a multiclass classification scenario. For each fuzzy

class, a yn can belong to it at a membership degree ∈ [0, 1].
Further, we compute an average covariance matrix for each

fuzzy class as:

Σ̃m =

∑N
n=1 µm (yn )XnXn

⊺

∑N
n=1 µm (yn )

, m = 1, . . . , M (2)

where µm (yn ) is the membership degree of yn in fuzzy class m.

We now mention the One-Versus-Rest (OVR) CSP to extend

the CSP from binary classification to M classes. For class m,

OVR-CSP finds a matrix W
∗
m ∈ R

C×F , where F is number of

spatial filters to maximize variance of class m against rest.

W
∗
m = arg max

W

Tr
(

W
⊺
Σ̃mW

)

Tr
(

W⊺
∑

j �=m Σ̃jW
) (3)

Σ̃m is the mean covariance matrix of trials in class m. W∗
m is

the concatenation of the F eigenvectors associated with the F

largest eigenvalues of the matrix (
∑

i �=m Σ̃i)
−1

Σ̃m . We con-

catenate the obtained F filters for each of the M classes to ob-

tain W
∗ = [W∗

1
, . . .W∗

M
] ∈ R

C×M F . Then, one can compute

a spatially transformed trial by X
′

n = W
∗⊺

Xn , n = 1, . . . , N.

B. Phase Locking Value

PLV is a statistic used to investigate synchronization of neural

activity from EEG data and expresses a transient measure of

connectivity. Any cognitive task results due to combination of

various functional areas distributed over different regions of

the brain. The task induced coupling between these areas is

interpreted as synchronization of neural activity. PLV and its

variants are common measures of phase synchronization.

Consider two signals x1(t) and x2(t) whose instantaneous

phases are ψ1(t) and ψ2(t). In accordance with [12] the Single

trial PLV (sPLV) for a given trial can be defined as follows:

sPLV =

∣

∣

∣

∣

∣

1

Ns

N s
∑

t=1

e|ψ1 (t)−ψ2 (t)|

∣

∣

∣

∣

∣

(4)

where Ns is the number of samples in the trial. The instantaneous

phase ψ(t) can be obtained using the analytic signal calculated

from Hilbert transform. For any arbitrary signal x(t) the analytic

signal z(t) is given as

z(t) = x(t) + ix̃(t) (5)

x̃(t) =
1

π

∫ ∞

−∞

x(τ)

t − τ
dτ (6)

where x̃(t) is the Hilbert transform of x(t). The instantaneous

phase ψ(t) is then calculated using

ψ(t) = arctan

(

x̃(t)

x(t)

)

(7)

The sPLV holds a value between 0 and 1 with extremas cor-

responding to the cases of signal being unsynchronized and

completely synchronized respectively.

C. Differential-Phase Synchrony Representations

Instantaneous Phase Difference (IPD) sequence ∆ψ(t) be-

tween a pair of distinct signals s1(t) and s2(t) is defined as

∆ψ(t) = |ψ1(t) − ψ2(t)| (8)

Authors in [13] coupled the notion of variance of instanta-

neous phasors with sPLV. Furthermore, they formulated a frame-

work to estimate a linear transform that maximizes the variance

of instantaneous phasors across one class while simultaneously

minimizing it across the other class. The proposed framework

is similar to CSP but, in contrary, it explicitly uses phase in-

formation for binary classification. Thus, drawing an analogy

from the regression CSP algorithm (Fuzzy CSPR-OVR), a novel

framework is formulated to find a linear transform on the IPD

sequence in such a way that it maximizes the variance across

the temporal phase differences of each fuzzy class and simulta-

neously minimizes the variance of phases across the other fuzzy

class. As the IPD sequence is used to measure synchrony be-

tween EEG signals, we refer to the extracted features as DPS

representations.

1) Fuzzy Spatial Filter Optimization: Fuzzy CSPR-OVR

[15] extends multiclass CSP to regression problems using fuzzy

sets. Indeed, as mentioned before, the EEG signals from indi-

vidual channels are prone to have a low SNR, due to spatial

blurring and smearing effects. In order to obtain more discrim-

inative DPS features for EEG classification of fuzzy classes, it

thus seems prudent to compute spatial filters which maximize

the variance of instantaneous phase across a particular fuzzy

class and minimize across rest of them. We therefore propose

an algorithm to optimize the spatial filters in order to maximize

the resulting DPS feature discriminative power. Mathematically,

it can be written as

Wi
∗ = arg max

W

Tr(W⊺
Σ∆ψ i

W)

Tr
(

W⊺
∑

j �=i Σ∆ψ j
W

) (9)

where Σ∆ψ i
and Σ∆ψ j

are the covariance matrices of the IPD

sequence for the fuzzy classes i and j. The column vectors of W

are the spatial synchrony filters. A scheme similar to fuzzy CSP

algorithm is employed for feature extraction from IPD sequence

of an EEG trial in a given frequency range. The obtained features

are coined as ‘DPS’ repersentations.

III. EVALUATION OF DIFFERENTIAL-PHASE SYNCHRONY

REPRESENTATIONS FOR REACTION TIME PREDICTION

The proposed feature representations are evaluated and com-

pared to other phase based baseline methods on an EEG based

reaction time (RT) prediction in a lane-keeping task.
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TABLE I
NUMBER OF TRIALS (NTRIALS) AND MEAN RT IN THE DATASET

A. Lane-Keeping Task

The EEG signals were recorded from 30 active electrode

sites which were placed according to modified international

10–20 electrode montage system.

The Institutional Review Board of the Veterans General Hos-

pital, Taipei, Taiwan, approved the study. A total of 12 university

students (average age 22.4, standard deviation 1.6) from the Na-

tional Chiao Tung University (NCTU) in Taiwan volunteered to

support the data-collection efforts over a five-month period to

study EEG correlates of attention and performance changes un-

der specific conditions of real-world drowsiness [34].

Simulated driving experiments were conducted on a vir-

tual reality (VR)-based dynamic driving simulator. A real car

frame was mounted on a six degree-of-freedom Stewart motion

platform which moved in sync with the driving scene during

“motion” sessions. The motion platform was inactive during

“motionless” sessions. The VR driving scene simulated night-

time cruising (100 km/h) on a straight highway (two lanes in

each direction) without other traffic. The computer program

generated a random perturbation (deviation onset), and the car

started to drift to the left of the right of the cruising lane with

equal probability. Following each deviation, subjects were re-

quired to steer the car back to the cruising lane as quickly as

possible using the steering wheel (response onset), and hold

on the wheel after the car returned to the approximate center

of the cruising lane (response offset). A lane departure trial is

defined as consisting of three events, deviation onset, response

onset, and response offset. The next lane-departure trial ran-

domly occurs about 5 to 10 sec after response offset in the

current trial. The subjects reaction time (RT) to each lane depar-

ture trial is defined as the interval between deviation onset and

response onset. If the subject does not respond promptly within

2.5 (1.5) sec, the vehicle will hit the left (right) roadside without

a crash and continue to move forward against the curb event

the subject completely ceases to respond. No intervention was

made when the subject fell asleep and stopped responding. After

reaching the lapse period, subjects resumed the task voluntarily

and steered the car back to the cruising position at the earliest.

The goal is to predict RT using a 5-s EEG trial immediately

before it.

B. EEG Pre-Processing

� At first, raw EEG data was passed through standard pre-

processing pipeline (PREP) of EEGLAB to increase the

signal to noise ratio, it comprises mainly of three operations

[35] [36].

Fig. 2. Distribution of RT values.

– Removing line noise.

– Determining and removing robust reference signal.

– Interpolating the bad channels.
� Further, the data was downsampled to 250 Hz.
� Then, the data was epoched to 5 sec trials, i.e. if the lane

deviation is starting at time ‘t’ then the EEG data from

[t − 5, t] is used to predict the RT. Each EEG trial is of

size 30 × 1250.
� Outliers in the RT values are removed by ignoring the EEG

trials with RT values greater than sum of mean and three

times the standard deviation.
� Thus, the obtained trials are filtered by a [1, 20] Hz finite

impulse response band-pass filter.
� The obtained data is then fed through the appropriate spa-

tial filters.

C. RT Pre-Processing

The RT values for 12 subjects are pre-processed in a way

similar to that of the paper (cf. section IV D of [15]). The

data collected from subject 12 is erroneous with data recording

anomalies and is removed from further analysis. This is because,

a large number of response times were longer than 5 seconds,

which are highly absurd in practice. The final distribution of

RTs obtained after pre-processing are shown in Fig. 2.

D. Feature Evaluation

8-fold cross-validation is used to compute the regression per-

formance for each possible fusion of feature set and regression

method. Following feature sets are extracted for each EEG trial.

1) Theta and Alpha powerband features are extracted from

the band-pass filtered EEG trials. We computed the av-

erage power spectral density in the Theta band (4–8 Hz)

and Alpha band (8–13 Hz) for each channel using Welchs

method, and converted these 30 × 2 = 60 band powers to

dBs as our features (denoted as ‘FS1’).

2) Differential Phase Synchrony features (DPS) are extracted

from the band-pass filtered EEG trials. We used 3 fuzzy

sets (K = 3) for the RTs, and 21 spatial filters (F = 21)

for each fuzzy class. A vector of size (63 × 1) = 63 con-

stitutes the feature vector (DPS). It is denoted as ‘FS2’.

3) Theta and Alpha powerband features extracted from EEG

trials filtered by fuzzy CSPR-OVR. This procedure was
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TABLE II
REGRESSION PERFORMANCE OF FS1, FS2 AND FS3

almost identical to that of ‘FS1’, except that the band-

pass filtered EEG trials were also spatially filtered by

fuzzy CSPR-OVR before the powerband features were

computed. We used 3 fuzzy sets for the RTs, and 101

spatial filters for each fuzzy class, so that the spatially

filtered EEG trials is of the dimension 30 × 1250, and the

resultant feature ‘FS3’ has 60 × 1 dimensions.

4) Differential Phase Synchrony features (DPS) extracted

from the EEG trials pre-filtered by fuzzy CSPR-OVR. We

used 3 fuzzy sets (K = 3) for the RTs, and 10 spatial filters

(F = 10) for each fuzzy class again for a fair comparison.

A vector of size (63 × 1) = 63 constitutes the feature

vector (DPS-CSPR-OVR). It is denoted as ‘FS4’.

All the feature sets obtained above are passed through LASSO

regressor to obtain final reaction time value.

E. Performance Metrics

RMSE, CC and MAPE are the metrics in use for judging the

regression performance. Assume, there are N training points,

yd i represents the true reaction time value of the ith data point

and yi represents the predicted reaction time value.

F. Regression Results

The average RMSEs, CCs and MAPEs of LASSO using the

four feature sets (explained in Section III-D) are shown in the

Table II. For each subject, 8-fold cross validation has been used

to partition the feature set into training and validation sets. The

performance is averaged across all the 8-folds. Also, the average

performance across all the subjects is reported. Here, in general

‘FS4’ recorded the best performance, and both FS4 and FS2

achieved much smaller RMSEs, MAPEs and much larger CCs

than FS3 and FS1, suggesting that our extension of FS4 from

supervised classification to supervised regression can indeed

improve the regression performance.

In conclusion, FS4 had better regression performance than

FS2, FS3 and FS1.

More detailed performance analysis of results and imple-

mentation details comparing performance of the features in

Section III-D are presented in a supplementary file (DPS-

fuzzyCSPR-OVR.pdf).

IV. MULTI-TASK DEEP NEURAL NETWORKS

Wei et al., [37] treated drowsiness detection as a classifica-

tion problem by formulating set of thresholds on reaction time

1We used 10 spatial filters here so that the filtered signals had almost the
same dimensionality as the original signals, which ensured fair performance
comparison.

Fig. 3. Proposed Multitask-DeepNet (MTDNN) approach.

values. The ancillary task in the proposed multitask method ad-

dresses drowsiness detection as a classification problem. Two

tasks in the name of primary and ancillary are in use for the

experiment. EEG based RT prediction is the primary task and

drowsy state classification problem is considered as an ancillary

problem. As far as the ancillary task is concerned, EEG trials

with RT shorter than 1.5 × (alertRT ) are categorized as ‘Alert’

trials, whereas those with RT longer than 2.5 × (alertRT ) are

taken to be as ‘Lapse’ trials indicating ‘drowsy’ phase. In addi-

tion, those EEG trials with RT shorter than 2.5 × (alertRT ) but

longer than 1.5 × (alertRT ) are categorized as ‘Semi-alert’ tri-

als. The alertRT was individually estimated for each subject as

suggested in [4]. Primary task is accomplished using DeepNet-2

and 3, while the ancillary task is accomplished using DeepNet-1

and 3.

A. Pre-Training

Pre-training is used to avoid the learning algorithm to get

stuck in a local optimum. This is especially true while training

a deep model in the situation of a scarce training data. In the

present work, we propose a supervised pre-training approach.

Fig. 3 shows how the proposed Deep network-based method in

DeepNet-1 and DeepNet-2 incorporates the label information.

The supervised pre-training consists of two steps. Firstly, the

DeepNet-1 was trained to predict the three levels of drowsy

states, namely drowsy, transition and awake. Keeping the hid-

den layers of DeepNet-1 intact (with the pre-trained weights),

an output layer consisting of a single output node is added to

construct DeepNet-2, which is then further pre-trained to pre-

dict the reaction time values. Note that the regression layer of

DeepNet-2 was initialized with random weights because this top

layer is different from DeepNet-1. It is easier for Deep network

to learn the three class problem than an infinite class classi-

fication problem (i.e. regression). Nonetheless, the weights of

DeepNet-2 are tuned-up based on DeepNet-1. It follows the

acumen of a meaningful human learning process: simple to

complex tasks. The understanding of learning simpler tasks be

able to benefit the learning for complex tasks.

B. Multi-Task Objective Function

DeepNet-1 uses the cross entropy loss-function. DeepNet-2

uses the mean-squared error loss-function. In DeepNet-1, soft-

max layer is the output layer, while in DeepNet-2, a sigmoid unit

is present in the output. Further, the output layer of DeepNet-3

Authorized licensed use limited to: University of Technology Sydney. Downloaded on March 20,2020 at 00:39:55 UTC from IEEE Xplore.  Restrictions apply. 
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is a composed of both softmax and sigmoid units, where the

network is jointly trained for classification and regression. Ac-

cordingly, DeepNet-3 uses a combination of two losses:

−λ

M
∑

i=1

N
∑

j=1

(di,j log(pi,j )) + µ
M
∑

i=1

(yd i
− yi)

2 (10)

In (10), λ + µ = 1, M is the number of mini-batch samples, N
is the number of classes, di,j represents the desired probability

and pi,j denotes the predicted probability of the jth sample for

the ith class. We choose λ = µ = 0.5 in our experiments.

V. EXPERIMENTS AND RESULTS

A. Experiments on DPS-FCSPR-OVR Features From

EEG RT Dataset

The experiments are conducted on reaction time dataset for

EEG Lane-keeping task. The dataset preprocessing is provided

in Section III-B. K = 3 and F = 21 are obtained as an optimal

choice for the number of fuzzy classes and the number of filters

per each fuzzy class. DPS-FCSPR-OVR features are extracted

from pre-processed EEG RT dataset. The dimension of the spa-

tial filtered feature vector is 63 × 1. 63 dimensional feature vec-

tor is used to train DeepNet-1 with classification labels obtained

by the procedure mentioned at the start of Section IV. Num-

ber of iterations used in the training of DeepNets-{1, 2, 3} are

{200, 200, 150} respectively. Supervised pre-training steps used

larger number of iterations than the fine-tuning step. Adagrad

optimizer is used with the initial learning rate set to {0.1, 0.5}
for supervised pre-training DeepNet-{1, 2} and joint fine-tuning

DeepNet-3, respectively. We tried to avoid overfitting during

training by employing drop-out (drop-out probability p = 0.5)

and L1 regularization (λ = 0.01). Size of Mini-batch is set to

8. DPS-FCSPR-OVR features (input features) are normalized

to zero mean and unit variance. CC, RMSE and MAPE are the

metrics used for regression performance comparison, while pre-

cision, recall and F1 score are the metrics used for classification

performance analysis.

B. Comparison Among MTDNNs With Different

Configurations

A comparison using RMSE, CC and MAPE is being made

for the multi-task deepnets with different configurations of hid-

den layers and number of nodes in each hidden layer. Table III

contains the mean values of each of the metrics with varying

number of hidden nodes and hidden layers. In figs. 4–6, an effect

of the depth of the neural nets on the performance is studied. Box

plots show the distribution of RMSE, CC and MAPE associated

with 20 different initializations of the weights of Deepnets-1, 2

& 3 (highest and lowest quartiles in box, plus outliers beyond

highest and lowest quantiles). Mean RMSE value decreased or

remained constant with increasing number of hidden layers ex-

cept for a increment on transition from 5 to 6 hidden layers. A

similar trend has been observed for MAPE values except that

there is an increment in the MAPE value on transition from 2 to

3 hidden layers. CC strictly increased with the number of hid-

den layers, but it started to decrease at the transition from 5 to 6

TABLE III
REGRESSION METRICS FOR DIFFERENT ARCHITECTURES OF MTDNN

N l : number of hidden layers; Nn: number of hidden nodes.

Fig. 4. Effect of changing model architecture on RMSE.

Fig. 5. Effect of changing model architecture on CC.

Fig. 6. Effect of changing model architecture on MAPE.

hidden layers. More number of random initialization trials are

needed to make a more accurate inference. In Table III, multi-

task deep neural networks with {Nn = [150 120 80], Nl =
3} and {Nn = [200 150 120 45], Nl = 4} are denoted as

MTDNN4 and MTDNN5 respectively.
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TABLE IV
COMPARISON OF REGRESSION METRIC FOR MTDNNS OVER STANDARD

REGRESSION MODELS

C. Comparison Among MTDNNs and Other Regression

Models

To further establish the powerful representational capability

of the DNN-based multi-task model, a comparison with various

traditional regression models like LASSO Regularized Regres-

sion, Ridge Regression (RR), Support Vector regression (SVR)

[38], ANFIS (Adaptive Neuro Fuzzy Inference)2 and kNN (k-

nearest neighbours) is investigated. LASSO and Ridge regres-

sion models are implemented in Matlab R2016. We utilized

scikit-learn SVR tool [39] and scikit-learn respectively to run

the SVR and kNN simulations. Based on the simulations, we

observe that: a) SVR is poor at dealing with large scale train-

ing datasets due to the computational complexity and memory

storage; b) with a high input feature dimension, the generaliza-

tion ability of SVR is very limited [40]. High computational

resources are associated with solving quadratic programming

problem amid the optimization of the cost function in the train-

ing stage of the SVM. Additionally, a requirement for a large

memory to store the kernel products also limits the pertinence of

using the SVMs on very large data sets. Grid search technique

is employed to determine parameters C and γ, which are set

as 25 and 22 , respectively. ǫ is set to 0.2. For the two regres-

sion methods: LASSO and RR, the adjustable parameter λ was

optimized by an inner 8-fold cross-validation [41] on the train-

ing dataset. We employ k = 5 with inverse distance weighting

for kNN regression. Feature vector of 63 dimensions is used to

train the ANFIS regressor with 5 fuzzy partitions for each di-

mension. Gaussian and linear memberships are chosen for input

and output memberships respectively.

On an average, from Table IV, the proposed MTDNN4 and

MTDNN5 approaches clearly outperformed SVR, LASSO,

RR, kNN and ANFIS schemes in-terms of RMSE, CC and

MAPE. In all these experiments, we used MTDNN5 (from

Table III) as the representative MTDNN model. Each of the

MTDNN is trained for 100 epochs with a learning rate of 0.1

using Adagrad.

The respective percentage performance improvements of

MTDNN over the other regression models are shown in the

Figs. 7–9. For instance, the terms in legend‘MTDNN/SVR’ rep-

resent the improvements with MTDNN over the SVR method.

The notation of other terms in the legend is to be understood in

a similar manner. On an average, MTDNN recorded a 15.49%

2http://yarpiz.com/301/ypfz101-nonlinear-regression-using-anfis

Fig. 7. Percent improvement (decrement) in RMSE with proposed MTDNN
over other methods.

Fig. 8. Percent improvement (increment) in CC with proposed MTDNN over
other methods.

Fig. 9. Percent improvement (decrement) in MAPE with proposed MTDNN
over other methods.

TABLE V
TWO-WAY ANOVA RESULTS MTDNN VERSUS OTHERS

smaller RMSE, a 27.15% smaller MAPE and a 10.13% larger

CC than SVR. On an average, MTDNN had performed with a

21.41% smaller RMSE, a 41.81% smaller MAPE and a 16.11%

larger CC than LASSO. Also, MTDNN had performed with a

23.18% smaller RMSE, a 18.67% smaller MAPE and a 48.17%

larger CC than RR. In a similar manner, on an average, MTDNN
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TABLE VI
NON-PARAMETRIC MULTIPLE COMPARISON TESTS BASED ON PAIRED T-TESTS (MTDNNS VERSUS OTHER REGRESSION MODELS) MTDNN DENOTED BY M

outperformed ANFIS and kNN approaches with a 5.66% and

19.59 % smaller RMSE, 18.98% and 24.16% smaller MAPE,

6.76% and 0.5% larger CC values respectively. Performance

across subjects 6, 7 and 10 needs to be analyzed further while

collecting more EEG sessions from these subjects, so that the

MTDNN can be trained sufficiently for better inference.

Further, Statistical analysis is performed to test several hy-

potheses on MAPE, RMSE and CC’s across the subjects. A

two-way Analysis of Variance (ANOVA) is performed for dif-

ferent types of regression schemes with the objective to fig-

ure out if the RMSE, CC and MAPE variations due to the

changes in regressors are statistically significant, with the sub-

jects treated as a random factor. The results are shown in

Table V, (p − value < 0.05) which indicates that there were

statistically significant differences in RMSEs, CCs and MAPEs

among different regression methods with subjects as a random

factor. In other words, there is a significant main effect of re-

gression method on the performance metrics RMSE, CC, MAPE

(p − value < 0.05, cf. Table V).

Then, post-hoc non-parametric multiple comparison tests

(paired t-tests in this case) are conducted to find out if the

difference between pair of regressors is statistically significant,

with the p − value corrected employing the False Discovery

Rate method [42]. The p-values are shown in Table VI, where in

most of the values are statistically significant. The bolded ones

in Table VI are extremely statistically significant.3

D. Comparison Among DNNs and MTDNNs

In this section, we compare the performance of the Multi-

task DNNs (MTDNN4 and MTDNN5) with vanilla DNNs

(4 hidden layer architecture of MTDNN5 (V DN5) and 3 hid-

den layer architecture of MTDNN4 (V DN4) respectively).

Table VII presents a systematic performance comparison on the

basis of several regression metrics. Each of the MTDNNs and

vanilla DNNs (V DN4 and V DN5) are trained for 100 epochs

with a learning rate of 0.1 using Adagrad. We circumvent over-

fitting during training by using drop-out (drop-out probability

p = 0.5) and L1 regularization (λ = 0.01). Fig. 13 presents the

average generalization ability of the proposed MTDNN ap-

proach for a stable [43] [44] learning rate η. One can infer

that, on an average, the network is not over-fitting. The re-

spective percentage performance improvements of MTDNNs

over the conventional or vanilla DNN regression models are

shown in the figs. 10–12. For example, the terms in legend

3p − value ≤ 0.001.

TABLE VII
REGRESSION METRICS FOR MTDNNS AND CORRESPONDING VDNS WITH

SAME HIDDEN LAYER CONFIGURATION

N l: number of hidden layers, Nn: number of hidden nodes.

Fig. 10. Percent improvement (decrement) in RMSE with proposed MTDNN
over other DNNs.

Fig. 11. Percent improvement (increment) in CC with proposed MTDNN over
other DNNs.

MTDNN5/V DN5 represent the improvements with Multi-

task DNN (MTDNN5) over the vanilla DNN (V DN5) method.

The notation of other terms in the legend is to be understood in a

similar manner. On an average, MTDNN5 recorded a 12.88%

smaller RMSE, a 7.28% larger CC and a 14.83% smaller MAPE

than MTDNN4 . On an average, MTDNN5 had performed

with a 28.53% smaller RMSE, a 35.20% smaller MAPE and
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Fig. 12. Percent improvement (decrement) in MAPE with proposed MTDNN
over other DNNs.

Fig. 13. Average Training and generalization error for proposed MTDNN.

TABLE VIII
TWO-WAY ANOVA RESULTS MTDNN5 VERSUS VDNS

a 30.42% larger CC than V DN 4 . Also, MTDNN5 had per-

formed with a 24.4% smaller RMSE, a 44.70% smaller MAPE

and a 20.51% larger CC than V DN 5 .

Further, Statistical analysis is performed to test several hy-

potheses on MAPE, RMSE and CC’s across the subjects. Firstly,

a two-way Analysis of Variance (ANOVA) is performed for

various MTDNNs and VDN’s with the intent to assess if the

RMSE, CC and MAPE discrepancies due to the changes in the

factor (MTDNN/V DN ) are statistically significant, with the

subjects set as a random factor. The results are shown in Ta-

ble VIII, (p − value < 0.05) which indicates that there were

statistically significant differences in RMSEs, CCs and MAPEs

among MTDNNs and VDNs with subjects regarded as a random

factor. In other words, there is a significant main effect of the

type of DNNs (Vanilla or Multitask) on the performance metrics

RMSE, CC, MAPE (p − value < 0.05, cf. Table VIII).

In addition, post-hoc non-parametric multiple comparison

tests (paired t-tests in this case) are conducted to find out if

the difference between multitask and vanilla modules is sta-

tistically significant, with the p − value corrected employ-

ing the False Discovery Rate method [42]. The p-values are

shown in Table IX, where in the values are statistically sig-

nificant. In all the pairwise comparisons MTDNN5 /V DN4 ,

MTDNN5 /V DN5 etc., the results are statistically signifi-

TABLE IX
NON-PARAMETRIC MULTIPLE COMPARISON TESTS BASED ON PAIRED T-TESTS

(MTDNNS VERSUS OTHER DNNS), MTDNN AND VDN DENOTED BY M
AND V RESP

TABLE X
CLASSIFICATION (AUXILIARY TASK) PERFORMANCE OF PROPOSED METHOD,

AVERAGED OVER ALL SUBJECTS

cant. The bolded ones in Table IX are extremely statistically

significant.4

E. Classification Results for the Ancillary Task for the

Proposed MTDNNs

Table X contains the classification performance of the pro-

posed MTDNNs for the ancillary task (drowsiness classifica-

tion). Since this is an ancillary task, we have not provided a

detailed comparison with baseline methods.

VI. DISCUSSION

In this work, we propose the Differential Phase Synchrony

(DPS) representations for regression. Moreover, we integrate it

with fuzzy-CSPOVR framework (DPS-FCSPR-OVR). We fur-

ther validate the proposed features on the RT dataset from an

EEG based lane-keeping task. 8-fold cross validation is used

for all the experiments. Statistical analysis and regression re-

sults validate the effectiveness of proposed DPS-FCSPR-OVR

representations. An interesting direction of future work is to

integrate DPS features with Regularised Fuzzy-CSP and SF-

BCSP. In future, we seek to integrate IPD sequence with CSP

through JAD (Joint Approximate Diagonalization) framework.

In addition, MTDNN based regressor is proposed to predict

the reaction time with an ancillary DNN trained for drowsiness

prediction dealt as a classification problem. Multitask learning

enforces regularization hence reduces the risk of overfitting,

and hence an improved performance. Furthermore, as both of

tasks are related tasks and complimentary to each other, mul-

titask learning bolster the performance in comparison to either

of the tasks. A computational complexity analysis of proposed

approach is included in a supplementary file for the readers. Due

to the non-availability of a public dataset for regression, In our

research, we majorly focus on our driving data, instead of the

other data.

4p − value ≤ 0.001.
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VII. CONCLUSION

In this paper, by drawing an analogy with the regression CSP

algorithm (Fuzzy-CSPOVR), a novel framework is formulated

to find a linear transform on the IPD sequence in such a way that

it maximizes the variance across the temporal phase differences

of each fuzzy class and simultaneously minimizes the variance

of phases across the other fuzzy class. The IPD sequence is

used to quantify synchrony between EEG signals. We refer to

the extracted features as Differential-phase synchrony (DPS)

representations. Proposed DPS feature framework performed

superior to powerband features in-terms of better RMSE, Cor-

relation Coefficient (CC) and MAPE values when both DPS and

powerband features are passed through LASSO. In addition, a

Multitask DeepNet (MTDNN) approach is proposed, where, a

three step procedure is used to train on both drowsiness classi-

fication and RT prediction tasks. A comparison is made among

different configurations of MTDNNs. Also, MTDNNs are com-

pared with single task DNNs, SVR (Support Vector Regres-

sion), LASSO, RR (Ridge Regression), kNN and ANFIS. The

proposed MTDNN (MTDNN5) exhibited a 15.49% smaller

RMSE, a 27.15% smaller MAPE and a 10.13% larger CC than

SVR. The proposed approach achieved the best performance

especially suggesting its utility in BCI applications of online

adaptation with small training data. Also, the present study is a

first step towards realizing large scale Multi-task learning BCIs.

The two most prominent pre-training approaches for DNN’s are

the RBM [45] and stacked auto-encoder [46] algorithms. But,

both of the above algorithms are unsupervised. Semi-supervised

multi-task approaches can be more advantageous and will be ex-

plored in a future work.
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