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Electroencephalographic Order Pattern Analysis for the
Separation of Consciousness and Unconsciousness

An Analysis of Approximate Entropy, Permutation Entropy, Recurrence Rate,

and Phase Coupling of Order Recurrence Plots

Denis Jordan, M.Sc.,* Gudrun Stockmanns, Ph.D.,† Eberhard F. Kochs, M.D.,‡ Stefanie Pilge, M.D.,§
Gerhard Schneider, M.D.�

Background: Nonlinear electroencephalographic parame-

ters, e.g., approximate entropy, have been suggested as mea-

sures of the hypnotic component of anesthesia. Compared with

linear methods, they may detect additional information and

quantify the irregularity of a dynamical system. High dimen-

sionality of a signal and disturbances may affect these parame-

ters and change their ability to distinguish consciousness from

unconsciousness. Methods of order pattern analysis, in this

investigation represented by permutation entropy, recurrence

rate, and phase coupling of order recurrence plots, are suitable

for any type of time series, whether deterministic or noisy.

They may provide a better estimation of the hypnotic compo-

nent of anesthesia than other nonlinear parameters.

Methods: The current analysis is based on electroencephalo-

graphic data from two similar clinical studies in adult patients

undergoing general anesthesia with sevoflurane or propofol.

The study period was from induction until patients followed

command after surgery, including a reduction of the hypnotic

agent after tracheal intubation until patients followed com-

mand. Prediction probability was calculated to assess the pa-

rameter’s ability to separate consciousness from unconscious-

ness at the transition between both states.

Results: Parameters of order pattern analysis provide a pre-

diction probability of maximal 0.85 (training study) and 0.78

(evaluation study) with frequencies from 0 to 30 Hz, and max-

imal 0.87 (training study) and 0.83 (evaluation study) including

frequencies up to 70 Hz, both higher than 0.77 (approximate

entropy).

Conclusions: Parameters of the nonlinear method order pat-

tern analysis separate consciousness from unconsciousness

and are grossly independent of high-frequency components of

the electroencephalogram.

ELECTROENCEPHALOGRAM-BASED monitors have ob-

tained increasing interest as a supplement to standard

anesthesia monitoring with the aim of reducing the risk

of awareness. The electroencephalogram is based on the

electrical activity of the brain, which is picked up by

scalp electrodes. Electroencephalographic signals can be

understood as a superposition of postsynaptic potentials

mainly generated in layer V of the cerebral cortex, an

ultrahigh-dimensional dynamical system.1 The main ob-

jective of electroencephalogram-based parameters is a

reduction of the complex electroencephalographic pat-

tern to a single value that is associated with the anes-

thetic drug effect and clinical patient status, e.g., con-

sciousness and unconsciousness.2

Different methods have been applied to electroen-

cephalographic signal analysis.1,3 Parameters based on

the frequency spectrum reflect only linear signal prop-

erties, where median frequency3 and spectral edge

frequency3 are well-known examples and have been

recently improved by the introduction of weighted

spectral median frequency.4 It has been shown that a

restriction of the classic electroencephalographic fre-

quency band (0–30 Hz) using a high-pass filter at 8 Hz

and an attenuation of high spectral amplitudes results in

a parameter that separates consciousness from uncon-

sciousness.4 This approach reflects only linear proper-

ties of the electroencephalogram and omits frequencies

below 8 Hz, which may limit parameter performance

over the entire range of anesthesia.

Nonlinear electroencephalographic parameters, e.g.,

correlation dimension5,6 and Lempel Ziv complexity,7

as well as entropies8 such as approximate entropy

(ApEn),9,10 may emphasize some additional characteris-

tics of the electroencephalogram that are related to non-

linear systems or may be used to model the electrical

activity of the brain.1,8,11 A main problem of most com-

plexity measures such as correlation dimension in anal-

ysis of the electroencephalogram is that some require-

ments for the signal quality are not met, so reliable

estimates may not be obtained.1,12 For example, most

such parameters require a sufficient number of data

points for calculation, which are not available because

the electroencephalogram may not be stationary for time

periods longer than a few seconds. ApEn was designed

to overcome these restrictions to some extent,10 and

therefore it is included in the current analysis. It has

been shown that ApEn can be used to indicate deepen-

ing of anesthesia until electroencephalographic burst

suppression.10,13,14 Permutation entropy (PeEn)15 is a

recently introduced method for analyzing time series in

general, i.e., without constraints to their generation pro-

cess. Therefore, PeEn should be adequate to analyze

* Research Fellow, ‡ Professor, Director Chair, § Resident, � Associate Profes-
sor, Department of Anesthesiology, Klinikum rechts der Isar, Technische Univer-
sität München. † Assistant Professor, Department of Computer Science and
Applied Science, University Duisburg-Essen, Campus Duisburg, Germany.

Received from the Department of Anesthesiology, Klinikum rechts der Isar,
Technische Universität München, Munich, Germany. Submitted for publication
January 25, 2008. Accepted for publication August 14, 2008. Supported by
departmental sources and a research grant (KKF 8768163) from the Technische
Universität München, Munich, Germany.

Address correspondence to Dr. Schneider: Department of Anesthesiology,
Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22,
81675 Munich, Germany. G.Schneider@LRZ.tum.de. Information on purchasing
reprints may be found at www.anesthesiology.org or on the masthead page at the
beginning of this issue. ANESTHESIOLOGY’s articles are made freely accessible to all
readers, for personal use only, 6 months from the cover date of the issue.

Anesthesiology, V 109, No 6, Dec 2008 1014

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://p

u
b
s
.a

s
a
h
q
.o

rg
/a

n
e
s
th

e
s
io

lo
g
y
/a

rtic
le

-p
d
f/1

0
9
/6

/1
0
1
4
/2

4
6
2
1
2
/0

0
0
0
5
4
2
-2

0
0
8
1
2
0
0
0
-0

0
0
1
5
.p

d
f b

y
 g

u
e
s
t o

n
 1

0
 A

u
g

u
s
t 2

0
2
2



electroencephalographic signals that are high dimen-
sional and superposed with artifacts, even if the signal
length is limited.16,17 Both recurrence rate and phase
coupling of order recurrence plots (ORR and OPC)18 can
be considered as similar to PeEn. The parameters ApEn,
PeEn, ORR, and OPC are assessed using electroencepha-
lographic data at the transition from consciousness to
unconsciousness (or vice versa). For parameter calcula-
tion, different high cutoff frequencies were considered.
This indicates how much a parameter may depend on
the presence of high-frequency components (� 30 Hz)
to distinguish consciousness from unconsciousness. In-
clusion of high frequencies bears the risk that such
components do not only reflect the electrical cortical
activity, but are influenced or generated by the electro-
myogram, affecting the detection of potential awareness.

A central question is whether the application of non-
linear methods to the analysis of electroencephalo-
graphic signals yields information that cannot be ob-
tained by conventional measures. A comparison of both
approaches seems to be adequate, but only if the in-
volved electroencephalographic parameters have been
carefully adapted to the signal properties.

The aim of this study was to determine which charac-
teristics of selected nonlinear parameters show greatest
association with consciousness versus unconsciousness.
Responsiveness to command was used as a conservative
measure of consciousness identifying patients who may
soon become capable of formulating recall.2 Data imme-
diately before and after loss and return of consciousness
from two previously studied cohorts were used for pa-
rameter calculation, one for parameter development and
the other for parameter evaluation.

Materials and Methods

Protocol Design and Data Collection

Data from two clinical studies with similar clinical
design were used for the current analysis and were
denoted as study A and study B. Both studies were
approved by the ethics committee of the Technische
Universität München, Faculty of Medicine, Munich, Ger-
many. In each of the studies, 40 consenting adult pa-
tients undergoing general anesthesia were enrolled,2,19

and the study period was from induction of anesthesia
until patients followed command after surgery and in-
cluded a reduction of the hypnotic agent after tracheal
intubation until patients followed command. Patients
with contraindications to the study drugs, with a history
of psychiatric or neurologic disease, drug abuse, or med-
ication known to affect the central nervous system, preg-
nancy, or indication for rapid-sequence induction were
excluded from the study. In study A, patients were ran-
domly assigned to an anesthetic regimen with remifentanil
(minimum infusion rate 0.2 �g · kg�1 � min�1) and sevoflu-
rane (20 patients) or remifentanil and propofol (20 pa-

tients).2,19 In study B, the sevoflurane and propofol
groups were divided into two subgroups with either
“low” infusion rate of remifentanil (0.1 �g · kg�1 ·
min�1) or “high” infusion rate (0.2 �g · kg�1 ·
min�1).2,19 Without premedication, remifentanil infu-
sion was started via a cannula in the cubital vein. In 30-s
intervals, patients were asked to squeeze the investiga-
tor’s hand. A response was verified by an immediate
repetition of the command that also required a response.
This prevents a misinterpretation of involuntary move-
ment as a response. Anesthesia was slowly induced with
sevoflurane inhalation or propofol injection (0.7 mg/kg,
followed by 20 mg every 30 s). The first time when the
patient did not squeeze the investigator’s hand to com-
mand was labeled as loss of consciousness 1. Additional
propofol or sevoflurane was given to increase depth of
anesthesia, a tourniquet was used to occlude the circu-
lation of the right forearm for 5 min to maintain the
ability to move the hand to command, and then succi-
nylcholine (1.0 mg/kg) was given (Tunstall isolated fore-
arm technique).20 After intubation, sevoflurane or
propofol was stopped until patients followed command
(return of consciousness 1). Thereafter, sevoflurane (5
vol%) or propofol (20-mg boluses) was readministered
to induce anesthesia again. The time when patients
stopped responding to command again was defined as
loss of consciousness 2, and requests to squeeze the
hand were stopped. Anesthetic drugs were administered
according to clinical practice, and surgery was per-
formed. At the end of surgery, requests to squeeze the
hand were recommenced, and sevoflurane, propofol,
and remifentanil were discontinued. Return of con-
sciousness 2 was observed at the first verified response
to command. Recovered from anesthesia, patients were
asked for signs of recall in the recovery room. This
interview21 was repeated within 48 h in the ward.
Standard monitoring parameters were measured with

a Datex AS/3 (Datex-Ohmeda Division Instrumentation
Corp., Helsinki, Finland) compact anesthesia monitor.
For data transfer and storage, a personal computer with
NeuMonD (Department of Anesthesiology, Klinikum re-
chts der Isar, Technische Universität München, Munich,
Germany) was used. NeuMonD is a software program
developed by members of the research group allowing
the recording of monitoring data and the electronic
storage of events and comments during the study.22 In
addition to standard monitoring, the electroencephalo-
gram and auditory evoked potentials were measured
(study A). Two-channel electroencephalographic signals
at electrode positions AT1, M2, Fpz (reference), and F7
(ground) were recorded on a second personal computer
with synchronized system time. This auditory evoked
potential/electroencephalographic device has been de-
signed specifically for intraoperative use and has been
described previously.23 Electroencephalogram and con-
comitant trigger information of auditory evoked poten-
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tials were stored with a sampling rate of fs � 1,000 Hz

and 12-bit amplitude resolution. In study B, the electro-

encephalogram was recorded using the Aspect A-1000

electroencephalographic monitor (BIS® version 3.3; As-

pect Medical Systems Inc., Newton, MA). A two-channel

referential electroencephalogram was obtained from

ZipPrep Ag/AgCl electrodes in positions AT1, AT2, Fz

(reference), and Fp1 (ground, electrode positions ac-

cording to the international 10-20 system). The high pass

was set at 0.25 Hz, and the notch filter (50 Hz) was

enabled. The electroencephalogram was continuously

digitized at 256 Hz per channel and simultaneously re-

corded with standard monitoring parameters. For data

analysis in both studies, a time window duration of T �

10 s was used.

Signal processing and statistical analysis were per-

formed using LabVIEW 6.0 (National Instruments, Aus-

tin, TX), MATLAB 6.0 release 12 (The MathWorks,

Inc., Natick, MA), and R 2.4.0 (R Foundation for Sta-

tistical Computing, Vienna, Austria) on personal com-

puters with Windows XP (Microsoft Corporation, Red-

mond, WA).

Approximate Entropy

In 1991, Pincus et al. proposed ApEn, which is related

to Kolmogorov Sinai entropy and quantifies the irregu-

larity in a signal.9,10 Although “long” signals containing

as many data points as possible are beneficial to analyze

high-dimensional dynamical systems, this requirement

cannot be fulfilled in the case of the electroencephalo-

gram, e.g., because of nonstationarity. ApEn should over-

come this problem and allows a computation on the

basis of signals with moderate length.10,24 It gives a

predictability of current amplitude values based on the

knowledge of n previous signal amplitudes, i.e., n is the

length of compared runs of data (embedding dimen-

sion). The calculation of ApEn is based on a distance

function applied to pairs of subvectors of length n,

where a noise filter defines the tolerance r that will

discern “close” and “not close” subvectors of length n. It

has been shown that n and r are in a way dependent on

the available signal length N, where N � 10n is recom-

mended.9,10 In the current investigation, ApEn is com-

puted using n between 2 and 15 (n of 2 and 3 is

recommended),10 providing subvectors with a time span

between 10 and 75 ms. A tolerance of r � 0.2 � SD of

the analyzed electroencephalographic signal is chosen

for parameter calculation. A time span of 10 s and fs �

200 Hz implies a signal length of N � 2,000. Further-

more, parameter calculation is performed using the com-

plete electroencephalographic frequency band from 0.5

Hz, with different high cutoff frequencies fhigh from 30

to 70 Hz, i.e., with or without the gamma band of the

electroencephalogram. To avoid influences of the elec-

tromyogram (muscle activity), a high cutoff frequency of

30 Hz is of particular interest in the analysis (classic

electroencephalographic frequency band).

In nonlinear signal analysis methods, as represented by

ApEn, PeEn, OPC, and ORR, the embedding dimension n

is basically intended as one component to determine

low-dimensional dynamics of the generating system. It

may lead to information about the time evolution of the

system state, especially whether a dynamical system

shows determinism or is random. Unfortunately, a reli-

able estimation of n is limited in the case of the electro-

encephalogram, because the signal is suspected to be

ultrahigh-dimensional and may show characteristics sim-

ilar to noise.25,26 Even if the methods provide favorable

results at specific values of the embedding dimension,

conclusions regarding determinism and dimensionality

of the electroencephalogram must be drawn with cau-

tion. Nevertheless, in the current analysis, varying the

embedding dimension n should indicate how much a

parameter is sensitive to a specific value of n. Robustness

may be advantageous because of the mostly unknown

generating dynamics of the brain and because of a shift

in predominant frequencies of the electroencephalo-

gram with changing levels of anesthesia.

Permutation Entropy

Permutation entropy was introduced by Bandt et al.15

in 2002. Similarly to ApEn, PeEn is a measure of the

irregularity of signals, and it is based on a comparison of

the neighboring order of signal values. It has been

shown that PeEn is mainly unaffected by signal distur-

bances, and it can be used to analyze time series gener-

ated by high-dimensional systems with low stationarity.

Similar to ApEn, PeEn analyzes consecutive subvectors

of constant length n (embedding dimension) in the an-

alyzed signal interval. The order of samples in every

subvector according to their amplitudes is computed

and defines permutations of order n. The parameter

value is given by the entropy of the distribution of the

obtained permutations and quantifies the monotone be-

havior of adjacent signal amplitudes. Therefore, PeEn

remains independent of absolute amplitude values. A

calculation example of PeEn is shown in figure 1. In the

current analysis, the dimension n varies between 2 and

15 (n between 3 and 7 is recommended),15 with a

sampling rate corresponding to the frequency fs of 200

Hz, so that analyzed subvectors include a time span

between 10 and 75 ms. If n! is high compared with the

number of available samples in the signal, there is a

bias in the calculation of PeEn, because the n! possible

permutations appear with unequal probabilities.15 Dif-

ferent settings of the high cutoff frequency fhigh (as for

ApEn) and the embedding dimension n may change

the capability of PeEn to separate consciousness from

unconsciousness.
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Order Recurrence Rate and Order Phase Coupling

Recurrence plots detect dependencies in a dynamical
system, i.e., coupling properties at different time points of
a time series or in multivariate data.27 Related to the idea
of PeEn, recurrence plots can be adapted in the language of
order pattern analysis that may improve the robustness
against amplitude distortions, as proposed by Groth.18 Two
measures in the context of order recurrence plots are
applied in this investigation.

First, the ORR18 is a measure of statistical similarities in
time series, where the similarity is defined by compar-

ing the order of amplitudes in two shifted subvectors
of length n (dimension) with respect to a fixed time
lag of �. For these purposes, ORR computes the number
of similar pairs of subvectors in the signal. Similarity is
defined as 1 when the order of both subvectors is equal;
otherwise it is 0. Figure 2 shows the calculation scheme
of ORR based on an exemplary time series. In the cur-
rent analysis, ORR is analyzed on the basis of a frequency
range and embedding dimension n as described for the
parameter ApEn. For � � 4, the ability to separate con-
sciousness from unconsciousness decreases. In the anal-

Fig. 1. Exemplary time series with a calculation scheme for the parameter permutation entropy (PeEn) on the basis of an embedding
dimension n � 3. In a first step, consecutive subvectors of the length n containing amplitude values are extracted from the time series
(signal). Second, a ranking of the amplitudes for every obtained subvector is defined. They are called permutations �k (of order n),
because the rankings always consist of the numbers 0 (lowest amplitude value), 1, and 2 (highest amplitude value). Equal amplitude
values within a subvector can be changed by the addition of a small random perturbation. This is justified because the amplitude
distribution of the electroencephalogram is basically continuous, such that equalities are assumed to be rare. In a third step,
the probability P(�k) for the occurrence of every obtained permutation �k is calculated, defining a probability distribution of the
permutations. In a last step, PeEn is obtained as the Shannon entropy of the resulting probability distribution of �k. It quantifies
the amount of different amplitude rankings �k of length n, where a minimum value of 0 is obtained if only one ranking type occurs,
and a maximum is obtained if all rankings are of equal probability.

Fig. 2. Exemplary time series with a cal-
culation scheme for the parameter order
recurrence rate (ORR) on the basis of an
embedding dimension n � 3 and a time
lag � � 2. As for calculation of permuta-
tion entropy, in the first three steps am-
plitude values for every subvector of
length n are ranked, resulting in permu-
tations �k(i) at every sample i. In a next
step, permutations �k(i) are shifted over
a time span of � samples preceding the
current sample i (e.g., filled areas). Both
current permutations and shifted permu-
tations at samples i are compared, lead-
ing to Ri. The comparisons result in 1 if
both permutations are equal, and other-
wise result in 0. ORR is the sum of the Ri

over the signal length and indicates de-
pendencies of signal order with time
lag �. A normalization with respect to the
signal length (N samples) leads to compa-
rable parameter values for variable N.
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ysis, � between 1 and 10, i.e., a time lag of 5–50 ms
between each pair of subvectors, is considered (see
Results). The time lag � may indicate time related cou-
pling effects in a signal generated by a (low-dimensional)
dynamical system.25,26

Second, the OPC18 quantifies the degree of coupling
over the time lag �. It is defined as the Shannon entropy
of a normalized ORR over �, where the time lag � varies
from 1 to a fixed upper bound. Therefore, OPC is related
to the calculation of ORR as shown in figure 2. In the
current analysis, the frequency range and n are applied
as described for the parameter ApEn, and for the upper
bound of �, values from 3 to 10 are used, which allows
calculation in an acceptable time frame.

Notice that the above is only a rough description of
the mathematically sophisticated parameters ORR and
OPC: PeEn, ORR, and OPC reflect similar properties
when applied to electroencephalographic signals.
Therefore, the main focus is on PeEn, a very under-
standable and expedient method for electroencepha-
lographic analysis.

Parameter Assessment and Statistical Analysis

Parameter settings for the high cutoff frequency fhigh

and embedding dimension n for the parameters ApEn,
PeEn, ORR, and OPC are varied to identify settings that
indicate changes from consciousness to unconscious-
ness (or vice versa). This approach will indicate whether
the parameters are dependent on signal information
with frequencies above the classic electroencephalo-
graphic frequency band (fhigh � 30 Hz) and may there-
fore include electromyographic information to detect
consciousness.

Parameter calculation is based on a set of electroen-
cephalographic signals (samples) of T � 10 s duration
directly before or after the transition between conscious-
ness and unconsciousness. Study A and study B each
involved 40 patients.2,4,19 Two signals were analyzed at
each of the following clinical events: loss of conscious-
ness 1 and 2 and return of consciousness 1 and 2.
Therefore, a maximum of 320 signals was available from
each study, A and B (see Protocol Design and Data
Collection). The signals are entirely derived from ei-
ther a phase of consciousness or a phase of uncon-
sciousness. Automatic artifact detection was used to
exclude signals of constant amplitude (“flat” line) or
values exceeding the measuring range of 250 �V. For
study A (development study), 279 signals (133 as-
signed to consciousness and 146 assigned to uncon-
sciousness) were used for analysis, and for study B
(evaluation study), 278 signals (125 assigned to conscious-
ness and 153 assigned to unconsciousness) were used for
analysis.

Results from prediction probability (PK)28 were used
to identify suitable settings for the parameters ApEn,
PeEn, ORR, and OPC. Data from study A were used to

optimize parameter settings for the upper frequency
limit. PK was calculated for a frequency range of up to
(1) 30 Hz, (2) 49 Hz, and (3) 70 Hz. For verification,
identified settings were applied to data from study B to
calculate PK for the separation of consciousness from
unconsciousness for ApEn, PeEn, ORR, and OPC.

Bootstrap confidence intervals29 (1,000 resamples, sig-
nificance level of 95%, Bonferroni correction for the
comparison of four PK test statistics)30 were used to
identify significant differences of PK values of selected
parameters taken from study B.

Results

Results of Study A (Development Study)

Figure 3 shows PK values for the electroencephalo-
graphic parameters ApEn, PeEn, ORR, and OPC on the
basis of electroencephalographic data from study A,
where a PK value results for every mapped embedding
dimension (n � 2, 3, . . ., 15) and high cutoff frequency
(fhigh � 30, 31, . . ., 70 Hz).

PK of ApEn (fig. 3A) depends on the choice of the high
cutoff frequency fhigh, e.g., PK values vary between 0.60
and 0.76 using the recommended10 embedding dimen-
sion of n � 2. A maximum PK value of 0.77 is obtained
for the settings fhigh � 70 Hz and n � 7.10

Order pattern analysis reaches a maximum PK of 0.87
with settings as shown in table 1. Three groups of high
cutoff frequencies are considered: (1) fhigh � 30 Hz, (2)
fhigh � 49 Hz, and (3) fhigh � 70 Hz. In contrast to ApEn
with a maximum PK for fhigh � 70 Hz, PeEn, ORR, and
OPC (figs. 3B–D) achieve maximal PK values within
group 2 with fhigh � 49 Hz. Furthermore, PeEn and ORR
are grossly independent of the choice of the high
cutoff frequency fhigh, e.g., PK of PeEn remains “stable”
between 0.84 and 0.87 for the recommended embed-
ding dimension of n � 5.15 Therefore, order pattern
analysis may neither be sensitive nor depend on the
presence of high-frequency components in the elec-
troencephalographic signal. Furthermore, PK of PeEn
seems to remain stable if the embedding dimension n

is shifted over a wide range between 3 and 12 (PK

between 0.81 and 0.87). The time lags � � 2 for the
parameter ORR and � � 3 for OPC provide highest PK

for both parameters.

Exemplary Time Series

Figure 4 A shows exemplar time series of the param-
eters ApEn (n � 2)10 and PeEn (n � 5)15 based on the
full “classic” electroencephalographic frequency range
from 0.5 to 30 Hz. In figure 4B, the plots of ApEn (fhigh �

70 Hz, n � 7) and PeEn (fhigh � 42 Hz, n � 9) using the
settings with highest PK are shown, i.e., including the
electroencephalographic gamma band, which may con-
tain electromyographic activity.
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Although PK values of PeEn are mainly independent of
fhigh, the analysis of time series shows that the parameter
values are more stable during wakefulness if high fre-
quencies (above the classic electroencephalographic
band) are included in the analysis. After loss of con-
sciousness 1, PeEn and ApEn follow the hypnotic com-
ponent of anesthesia. Before loss of consciousness 1,
ApEn may be sensitive to signal disturbances, e.g., gen-
erated by muscle artifacts.

Results of Study B (Validation Study)

Parameters with maximal PK values based on data from
study A were validated using electroencephalographic
data from study B. The resulting PK values are shown in
table 1.

Order pattern measures PeEn and ORR lead to signifi-
cantly higher PK than ApEn for every group of high
cutoff frequencies fhigh, i.e., (1) fhigh � 30 Hz, (2) fhigh �

49 Hz, and (3) fhigh � 70 Hz. PK values of parameters
based on a high cutoff frequency of fhigh � 30 Hz are not
significantly different from the PK of parameters includ-
ing frequencies above 30 Hz.

Discussion

Electroencephalogram-based monitoring of the hyp-
notic component of anesthesia should reliably indicate
the level of consciousness and may reduce the risk of
awareness in a patient population at high risk.31 Analysis
of the electroencephalogram requires mathematical
techniques that reflect information of cortical activity of
the brain, which can be seen as an ultrahigh-dimensional
nonlinear dynamical system.1 Such techniques should be
as independent as possible from additional sources that
may be superposed on the electroencephalogram, such
as muscle activity.

Fig. 3. Prediction probability (PK) of approximate entropy (ApEn; A), permutation entropy (PeEn; B), order recurrence rate (ORR;
C), and order phase coupling (OPC; D) based on data from study A (development study). PK indicates the ability to separate
consciousness and unconsciousness at the transition between both states. Parameter calculations include the entire frequency band
above 0.5 Hz. For the high cutoff frequency fhigh, settings between 30 and 70 Hz (x-axis) are considered, and for the embedding
dimension n, settings between 2 and 15 (y-axis) are considered. ORR is computed using a time lag � � 2 leading to highest PK, and
OPC is computed at � � 3. The resulting PK values of parameters with corresponding settings of fhigh and n are plotted as colors,
where the scaling of the PK values is indicated by gradient bars. The PK values are interpolated (bilinear interpolation), giving a
continuous approximation of the discrete settings to obtain a better presentation. PeEn, ORR, and OPC achieve a maximum PK > 0.86
with a high cutoff frequency below 50 Hz (dark red area), in contrast to ApEn, which is dependent on frequencies above 60 Hz to
detect consciousness from unconsciousness with a PK > 0.72. PeEn and ORR are grossly independent of fhigh, i.e., the color remains
“stable” along the x-axis. In addition, PK of PeEn remains unaffected by varying the settings of n between 3 and 12, which is
expressed by a constant color scheme in direction of the y-axis. In contrast, PK of ApEn seems to be sensitive to the settings of fhigh

and n.

1019ORDER PATTERN ELECTROENCEPHALOGRAPHIC ANALYSIS

Anesthesiology, V 109, No 6, Dec 2008

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://p

u
b
s
.a

s
a
h
q
.o

rg
/a

n
e
s
th

e
s
io

lo
g
y
/a

rtic
le

-p
d
f/1

0
9
/6

/1
0
1
4
/2

4
6
2
1
2
/0

0
0
0
5
4
2
-2

0
0
8
1
2
0
0
0
-0

0
0
1
5
.p

d
f b

y
 g

u
e
s
t o

n
 1

0
 A

u
g

u
s
t 2

0
2
2



In a traditional approach, harmonic analysis of the
electroencephalogram is used. This may lead to accept-
able results for the separation of consciousness from
unconsciousness. A recently developed electroencepha-
lographic parameter that follows these criteria is the
weighted spectral median frequency.3,4,32 Nevertheless,
nonlinear measures may provide additional information
about the signal.7,8,10,15,33 The electroencephalographic
parameters ApEn, PeEn, ORR, and OPC are such nonlin-
ear methods. Each of these parameters has different
requirements for the analyzed signal. ApEn analyzes dif-
ferences of amplitudes, whereas PeEn, ORR, and OPC

are based on the analysis of order patterns and analyze
order of amplitudes—entirely independent of signal val-
ues. This can be advantageous if signals are highly non-
stationary and superposed with noise,15 as is the case
with the intraoperatively recorded electroencephalo-
gram. For example, fluctuations in electrode impedance
may not essentially affect parameters of order pattern
analysis. Previous studies have shown that PeEn, ORR,
and OPC are robust against signal artifacts,15,18 making
the parameters suitable for electroencephalographic
monitoring of anesthesia. In the current analysis, param-
eters were calculated from the electroencephalogram

Table 1. Prediction Probability Values for Different Settings of the Electroencephalographic Parameters

fhigh Parameter PK Study A PK Study B

30 Hz (group 1) ApEn (n � 8) 0.66 (0.58–0.74)* 0.61 (0.52–0.69)†

PeEn (n � 7) 0.85 (0.79–0.91) 0.78 (0.72–0.85)

ORR (n � 2, � � 2) 0.85 (0.79–0.90) 0.78 (0.72–0.85)

OPC (n � 2, � � 3) 0.85 (0.78–0.90) 0.77 (0.69–0.84)

� 49 Hz (group 2) ApEn (fhigh � 44 Hz, n � 8) 0.74 (0.65–0.81)† 0.61 (0.50–0.70)*

PeEn (fhigh � 42 Hz, n � 9) 0.87 (0.82–0.92) 0.82 (0.75–0.89)

ORR (fhigh � 39 Hz, n � 2, � � 2) 0.87 (0.82–0.92) 0.83 (0.76–0.89)

OPC (fhigh � 47 Hz, n � 2, � � 3) 0.87 (0.81–0.92) 0.81 (0.73–0.87)

� 70 Hz (group 3) ApEn (fhigh � 70 Hz, n � 7) 0.77 (0.68–0.84) 0.64 (0.55–0.73)†

PeEn (fhigh � 42 Hz, n � 9) 0.87 (0.82–0.92) 0.82 (0.75–0.89)

ORR (fhigh � 39, n � 2, � � 2) 0.87 (0.82–0.92) 0.83 (0.76–0.89)

OPC (fhigh � 47, n � 2, � � 3) 0.87 (0.81–0.92) 0.81 (0.73–0.87)

Prediction probability (PK) values of approximate entropy (ApEn), permutation entropy (PeEn), recurrence rate of order patterns (ORR), and phase coupling of

order patterns (OPC) computed from data from study A (maximal PK values with respect to the specified high cutoff frequencies fhigh of groups 1, 2, and 3) and

study B (PK values at specified settings) including 95% bootstrap confidence intervals with Bonferroni correction for each group of high cutoff frequency. Disjoint

bootstrap confidence intervals indicate significant differences of PK in groups 1, 2, and 3.

* ApEn significantly different from PeEn, ORR, and OPC. † ApEn significantly different from PeEn and ORR.

n � embedding dimension; � � time lag.

Fig. 4. Parameter time series during induction of anesthesia in a randomly selected patient (propofol) from study A. Parameters
approximate entropy (with n � 2; dotted line) and permutation entropy (with n � 5; solid line) including a frequency range from
0.5 Hz to 30 Hz (A), and approximate entropy (with fhigh � 70 Hz, n � 7; dotted line) and permutation entropy (with fhigh � 42 Hz,
n � 9; solid line) including the electroencephalographic gamma band (B). Parameter values are normalized to the interval (0,1). The
dashed lines indicate changes of the level of consciousness: loss of consciousness at induction (LOC1: 215 s) and return of
consciousness after intubation (ROC1: 785 s), followed by second loss of consciousness (LOC2: 845 s). Permutation entropy indicates
the state of consciousness better than approximate entropy. The inclusion of high-frequency components may lead to more
stability during wakefulness. Parameter calculation was performed in time steps of 5 s using a signal 10 s in duration
(overlapping factor 2).
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immediately before and after loss and return of con-
sciousness, to assess their performance at a critical
point, the transition between consciousness and uncon-
sciousness. For the current analysis, consciousness was
defined as responsiveness to command. This approach
identifies intact short-term (working) memory, a mem-
ory of small capacity that holds a small amount of infor-
mation in an active, available state for approximately
20 s and must not be confused with long-term memory
(recall). Patients with intact short-term memory will not
necessary remember that they were conscious. Never-
theless, intact short-term memory provides the basis for
conscious perception and subsequent recall, i.e., avoid-
ance of intact short-term memory will prevent memory
and recall.

For both study A and study B, patients were randomly
assigned to receive either total intravenous anesthesia or
a combination of opioid and volatile anesthetic. This was
performed to include both anesthetic regimens equally
into the data set for parameter development (study A)
and validation (study B) and to avoid overfitting of a
parameter to a specific anesthetic regimen.

The application of different settings for parameter con-
figuration shows that order pattern analysis—as repre-
sented by the electroencephalographic parameters
PeEn, ORR, and OPC—separates consciousness from un-
consciousness better than ApEn. On the basis of data
from study B (evaluation study), prediction probability
analysis of PeEn, ORR, and OPC results in PK � 0.78 if a
high cutoff frequency fhigh of 30 Hz is applied, and PK �

0.83 with a maximal high cutoff frequency fhigh of 70 Hz.
These results are similar to the PK values of the spectral

parameter weighted spectral median frequency, using
the same studies as for the current analysis (PK � 0.82
using data from study A, PK � 0.79 using data from study
B with fhigh of 30 Hz and PK � 0.82 with fhigh of 49 Hz).4

Therefore, one may speculate that nonlinear measures
do not identify additional crucial information leading
to significantly better separation of consciousness and
unconsciousness. This may be in part due to signal
distortions in the measurement chain of the electroen-
cephalogram. On the other hand, anesthesia-induced
unconsciousness may not only be due to cortical effects
of anesthesia, but also reflect subcortical mechanisms—
which may or may not be detected by changes of corti-
cal electrical activity. In contrast to the presented non-
linear parameters, weighted spectral median frequency
considers signal frequencies above 8 Hz only,4 and this
may cause a drawback of the parameter performance
during deeper levels of anesthesia. With increasing levels
of anesthesia, the electroencephalogram does not only
show more regularity, but frequencies are also de-
creased. Therefore, the inclusion of frequencies in the
delta and theta bands, i.e., below 8 Hz, may be essential.

On the basis of a similar data set from study A, a
multiparametric indicator of consciousness from the

electroencephalographic parameters weighted spectral

median frequency and ApEn and on two wavelet coeffi-

cients of auditory evoked potentials was developed pre-

viously.2 This indicator reached a PK of 0.87, which is

similar to PK � 0.85 (fhigh � 30 Hz) and PK � 0.87 (fhigh �

49 Hz) as obtained for PeEn, ORR, and OPC. Whereas PK

values are similar, the basis of these values is different.

The multiparametric indicator includes information from

the auditory evoked potential, which reflects not only a

cortical but also a subcortical neuronal pathway. There-

fore, it may reflect not only cortical but also subcortical

effects of anesthetics. Although this approach may be

helpful, because it includes monitoring of important

effect sites of anesthesia, it adds requirements and may

complicate consciousness monitoring. First, the auditory

pathway of patients must be grossly intact, i.e., deafness

or severe hardness of hearing may limit the value of

anesthesia monitoring. Second, additional equipment

is required to produce repeated auditory stimuli. This

may increase cost and limit acceptance by the clinical

user. This potential drawback may be overcome by the

use of nonevoked, spontaneous electrical activity of the

brain, the electroencephalogram. With the tested meth-

ods of signal analysis, comparable PK values were ob-

tained. This underlines the potential of the new order

pattern analysis in a practical application for electroen-

cephalogram-based monitoring.

Furthermore, parameters of order pattern analysis are

largely independent of the upper frequency limit fhigh,

i.e., the classic electroencephalographic frequency band

up to 30 Hz contains sufficient information to separate

consciousness from unconsciousness. This may be an

advantage because inclusion of frequencies above 30 Hz,

i.e., analysis of the gamma band, bears the risk that the

resulting index does not primarily reflect activity of the

main target organ of anesthesia, the brain. In particular,

if electrodes are positioned on the forehead, gamma

activity is overlapped by electromyogram of the frontal

muscle. Therefore, such a parameter may also be a sur-

rogate measure (muscle activity) of the hypnotic com-

ponent of anesthesia. As a consequence, a patient who is

fully awake during neuromuscular block may not be

detected as “awake” if no electromyogram is detected.34

In addition, PK of PeEn is independent not only of fhigh

but also of its embedding dimension (fig. 3B). This may

indicate that the parameter is robust against more or less

unknown underlying characteristics of electroencepha-

lographic signals, and therefore PeEn represents a “state-

of-the-art” electroencephalographic parameter to distin-

guish consciousness from unconsciousness during

general anesthesia. Nevertheless, it is unknown to which

degree the electroencephalogram contains low-dimen-

sional dynamics,25,26 and therefore a conclusion about

determinism and dimensionality of the electroencepha-

logram should not be drawn, even if an “optimal” em-
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bedding dimension for a specific nonlinear parameter
was found.

The current investigation shows that nonlinear mea-
sures of the regularity of an electroencephalographic
signal are not equally useful for the separation of con-
sciousness from unconsciousness. It is important to
which degree such a parameter is influenced by different
sources of interference, high dimensionality, and nonsta-
tionarity of the signal. Order pattern analysis seems to be
a beneficial approach. It leads to parameters that are
largely independent of settings (e.g., high cutoff fre-
quency and embedding dimension) and perform equally
well on both training and evaluation data sets for sepa-
ration of consciousness from unconsciousness.

Although ApEn is less adequate to separate conscious-
ness from unconsciousness, it shows a monotone rela-
tion between parameter values and anesthetic concen-
tration in phases of increasing anesthetic concentrations
until electroencephalographic burst suppression.10,13,14

The challenging selection of data immediately before
and after loss and return of consciousness leads to anal-
ysis periods that are very close both in time and in drug
concentration but are characterized by a different clini-
cal patient status. Consideration of four transitions be-
tween consciousness and unconsciousness per patient
includes evaluation of intraindividual parameter stability
in PK statistics and completes interindividual assessment.
In principle, the analysis of repeated measurements from
a single patient may induce nonindependent data. In the
current analysis, no statistical compensation for possibly
dependent data was performed, because measurements
from identical clinical states were from distinct time
points. In addition, this approach keeps statistical results
comparable with those of previous investigations.2,4 The
results support the applicability of order pattern analysis
in electroencephalographic monitoring in anesthesia. In
the next step, analysis of order patterns must be per-

formed not only for the two states, consciousness and
unconsciousness, but for the entire range from light
sedation to general anesthesia. It remains to be exam-
ined whether ApEn and order pattern analysis, in partic-
ular PeEn, can be combined into an indicator of depth of
anesthesia.
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Universität München, Germany, and the research group knowledge-based signal
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