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Abstract

The ability to selectively attend to speech in the presence of other competing talkers is critical for everyday
communication; yet the neural mechanisms facilitating this process are poorly understood. Here, we use
electroencephalography (EEG) to study how a mixture of two speech streams is represented in the brain as
subjects attend to one stream or the other. To characterize the speech-EEG relationships and how they are
modulated by attention, we estimate the statistical association between each canonical EEG frequency band
(delta, theta, alpha, beta, low-gamma, and high-gamma) and the envelope of each of ten different frequency
bands in the input speech. Consistent with previous literature, we find that low-frequency (delta and theta) bands
show greater speech-EEG coherence when the speech stream is attended compared to when it is ignored. We
also find that the envelope of the low-gamma band shows a similar attention effect, a result not previously
reported with EEG. This is consistent with the prevailing theory that neural dynamics in the gamma range are
important for attention-dependent routing of information in cortical circuits. In addition, we also find that the
greatest attention-dependent increases in speech-EEG coherence are seen in the mid-frequency acoustic bands
(0.5–3 kHz) of input speech and the temporal-parietal EEG sensors. Finally, we find individual differences in the
following: (1) the specific set of speech-EEG associations that are the strongest, (2) the EEG and speech features
that are the most informative about attentional focus, and (3) the overall magnitude of attentional enhancement
of speech-EEG coherence.
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Introduction
Most of us take for granted our ability to understand

speech amid the cacophony we encounter every day
(Cherry, 1953), an ability that is unparalleled by machine

algorithms (Loizou, 2013). However, 3–5% of children and
approximately one in five adults find communicating in
noisy social situations extremely challenging (Chermak
and Musiek, 1997; Lin et al., 2011), including some listen-
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Significance Statement

Difficulty understanding speech amid competing talkers is the most common audiological complaint.

However, the brain mechanisms that support our ability to selectively attend to a target speech source in

a mixture are poorly understood. Here, we use electroencephalography (EEG) to systematically map the

relationships between features of input speech and those of neural responses, when speech is attended

versus ignored. We show that EEG rhythms in different canonical frequency bands, including the gamma

band, preferentially track fluctuations in attended speech over ignored speech. However, the strength and

pattern of attention effects also show individual differences. These results can inform computational models

of selective attention and assistive listening devices such as EEG-guided hearing aids.
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ers who have clinically normal or near-normal thresholds
(Kumar et al., 2007). The brain mechanisms that support
this auditory “selective attention” process are poorly un-
derstood. Identifying correlates of how speech is repre-
sented in the brain during selective attention would give
us insight into the mechanisms of this process, and how
it fails in different clinical populations. Here, we use elec-
troencephalography (EEG) to probe how attended and
ignored speech streams in a sound mixture are repre-
sented in the brain. Specifically, our goal was to charac-
terize which acoustic features of the speech streams are
related to which features of the EEG response, and how
such relationships differ for attended and ignored
streams.

Neurophysiological experiments using EEG and MEG
(magnetoencephalography) show that brain rhythms are
intimately associated with sensory processing (Buzsáki
and Draguhn, 2004). Electrophysiological studies and
computational models suggest that gamma rhythms
(30–90 Hz) support the formation of cell assemblies (Can-
non et al., 2014). Such assemblies likely mediate stimulus
competition and attentional selection of task-relevant rep-
resentations (Börgers et al., 2008). In contrast, delta (1–3
Hz) and theta (3–7 Hz) oscillations may reflect synchro-
nous interactions between assemblies (White et al., 2000).
Strikingly, speech also has spectro-temporal features that
are quasiperiodic over similar time scales. Perceptually,
the energy envelopes of different frequencies spanning
the hearing range carry important information about
speech content (Shannon et al., 1995; Elliott and Theunis-
sen, 2009). Importantly, the time scales of phonemic,
syllabic, and phrase/sentence level rhythmic fluctuations
in speech parallel the EEG gamma, theta, and delta,
frequencies, respectively. This has led researchers to
speculate that the canonical cortical network oscillations
are involved in the processing of speech sounds (Giraud
and Poeppel, 2012; Doelling et al., 2014). For speech in
isolation, brain oscillations phase lock to the speech fluc-
tuations, or more precisely, the fluctuations conveyed at
the output of cochlear processing of speech sounds
(Ghitza et al., 2012; Gross et al., 2013). It has been
suggested that the temporal match between inherent cor-
tical network oscillations and the natural fluctuations in
communication sounds may help the listener parse input
speech (Luo and Poeppel, 2007; Ghitza and Greenberg,
2009; Gross et al., 2013).

Fundamental to our understanding of everyday com-
munication is the question of how the neural computa-
tions generating brain oscillations relate to the perceptual
processes of scene segregation and attentional selection
(Shinn-Cunningham, 2008). EEG/MEG studies show that

when a mixture of speech sources is presented, low-
frequency cortical responses (matching canonical delta
and theta bands) preferentially track the temporal enve-
lopes of attended speech compared to simultaneously
presented ignored speech (Ding and Simon, 2012;
O’Sullivan et al., 2015). Similarly, electrocorticography
(ECoG) studies show that the power of brain oscillations in
the high-gamma (70–150 Hz) band preferentially phase
locks to attended speech more than ignored speech
(Mesgarani and Chang, 2012; Golumbic et al., 2013).
While non-invasive studies have focused on low-
frequency portions of the EEG, invasive studies have
focused on the high-frequency bands. To the best of our
knowledge, no non-invasive studies to date have reported
how the full complement of canonical brain oscillations
track speech sounds in a mixture of competing sources,
when attention is selectively directed to one source
stream.

Here, we systematically study how brain oscillations in
each of the canonical frequency bands are related to
speech fluctuations, comparing when the speech is at-
tended versus when it is ignored. Specifically, we analyze
EEG data recorded during a realistic selective attention
task, and replicate previous findings that low-frequency
EEG bands (in the delta and theta range) show enhanced
synchrony with a speech stream when it is attended
compared to when it is ignored. In addition, we find that
the envelope of the low-gamma EEG band also shows
enhanced synchrony with the target speech. Finally, we
observe individual differences in the strength and pattern
of attention effects. We discuss the implications of our
findings for basic neuroscience, and their potential for
informing brain-computer interface (BCI) applications
such as EEG-guided hearing aids (Fuglsang et al., 2017;
Fiedler et al., 2017; O’Sullivan et al., 2017; Van Eyndhoven
et al., 2017).

Materials and Methods

Participants
Data were collected from twelve human subjects (six

female), aged 23–41 years, recruited from the Boston
University community. All subjects had pure-tone hearing
thresholds better than 20-dB hearing level (HL) in both
ears at standard audiometric frequencies between 250 Hz
and 8 kHz. Subjects provided informed consent in accor-
dance with protocols established at Boston University. Of
the twelve subjects who participated, data from two were
excluded from analysis for reasons described below.

Experimental design
In each listening block, two running speech streams

(narrated whole stories), one spoken by a male and the
other by a female (from one of “The Moth” storytelling
events, New York), were presented simultaneously to the
subject. The stories were each lateralized using interaural
time delays (ITDs). The root-mean-square intensities of
the male and female speech streams were equalized dy-
namically using a sliding window of length 2 s. A total of
four stories were used in the experiment. Each subject
performed four blocks; at the beginning of each block,
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subjects were verbally instructed to attend to one of the
two talkers throughout that block. Subjects were also
asked to stay still with their eyes blinking naturally during
the experiment; however, their eye gaze was not re-
stricted. EEG was measured simultaneously with the be-
havioral task in each block. The individual stories were
�9–12 min long; thus, the blocks were also 9–12 min long
each.

At the end of each block, subjects were given a quiz on
the attended story. If a subject answered at least 90% of
the quiz questions correctly, they passed the quiz. Based
on the responses to the quiz, one subject was excluded
due to their inability to accurately recall details of the
attended story. All of the remaining eleven subjects were
able to recount details of the attended story accurately,
and reported being largely unaware of the details of the
other (ignored) story.

All the subjects were presented with the same set of
speech stories. However, which story was attended in a
given block was varied randomly across listeners, with the
constraint that each listener heard every story once when
it was to be ignored and once when it was to be attended.
This design allowed us to directly compare attended and
ignored conditions for the same acoustic input to the
subject. Furthermore, the two presentations of each
speech story (once when the story was to be attended,
and the other when it was to be ignored) were separated
by at least one block for every subject.

Data acquisition
A personal desktop computer controlled all aspects of

the experiment, including triggering sound delivery and
storing data. Special-purpose sound-control hardware
(System 3 real-time signal processing system, including
digital-to-analog conversion and amplification; Tucker
Davis Technologies) presented audio through insert ear-
phones (ER-1; Etymotic) coupled to foam ear tips. The
earphones were custom shielded using a combination of
metallic tape and metal techflex to attenuate electromag-
netic artifacts. The absence of measurable electromag-
netic artifact was verified by running intense click stimuli
through the transducers with the transducers positioned
in the same location relative to the EEG cap as actual
measurements, but with foam tips left outside the ear. All
audio signals were digitized at a sampling rate of 24.414
kHz. The EEG signals were recorded at a sampling rate of
2.048 kHz using a BioSemi ActiveTwo system. Record-
ings were done with 32 cephalic electrodes, additional
electrodes on the earlobes, and a bipolar pair of elec-
trodes adjacent to the outer left and right canthi to mea-
sure saccadic eye movements.

Data preprocessing
The EEG signals were re-referenced to the average of

all the channels. The signal-space projection method was
used to construct spatial filters to remove eye blink and
saccade artifacts (Uusitalo and Ilmoniemi, 1997). The
broadband EEG was then bandpass filtered between 1
and 120 Hz for further analysis. For computing associa-
tions between speech and EEG, the EEG data were seg-
mented into 5-s-long epochs. Epochs with movement

artifacts were identified as those with a peak-to-peak
swing that exceeded twenty median absolute deviations
compared to the median epoch. All such epochs were
rejected to eliminate movement artifacts. Of the eleven
subjects who successfully passed our behavioral screen-
ing, one subject was excluded because �20% of their
EEG data were contaminated by movement artifacts. The
data from the remaining ten subjects were used in all
further analyses.

Estimating speech-EEG associations

Our goal was to understand the relationships between
features of input speech and EEG responses, and how
these relationships vary depending on whether speech is
attended to or ignored. For the speech features, we con-
sidered envelope fluctuations in ten different frequency
bands. For the EEG features, we considered different EEG
bands corresponding to the canonical cortical rhythms,
and different scalp locations of the 32-channel EEG re-
cording. The rationale for the choice of these speech and
EEG features, along with the procedure for extracting
them are described below.

The auditory periphery can be approximated as a filter
bank that decomposes speech into different frequency
bands; the envelope at the output of each cochlear filter is
conveyed to the brain by auditory-nerve fibers tuned to
the corresponding frequency band (Khanna and Leonard,
1982; Smith et al., 2002). We used a bank of ten gamma-
tone filters that mimic cochlear frequency selectivity
(Slaney, 1993), with center frequencies spanning 100–
8533 Hz. The filters were spaced roughly logarithmically,
such that their center frequencies had best places that are
spaced uniformly along the length of the cochlea accord-
ing to an established place-frequency map (Greenwood,
1990). The amplitude envelope at the output of each filter,
extracted using the Hilbert transform, was treated as a
distinct speech feature. For the speech signals used in our
experiment, the envelopes at the different filters were not
strongly correlated. In analyzing the speech envelopes
extracted from different bands, we found that the variance
explained in the envelope of one band by any other band
was �8% or less (estimated by calculating squared co-
herence between speech envelopes). This suggests that
the speech envelopes in the ten different cochlear bands
provide somewhat complementary speech information.

Previous EEG/MEG studies show that cortical re-
sponses to speech mixtures preferentially track the
spectro-temporal features of the attended speech during
selective listening (Ding and Simon, 2012; O’Sullivan
et al., 2015). Specifically, the low-frequency speech en-
velope elicits phase-locked EEG responses at corre-
sponding frequencies (delta band: 1–3 Hz, and theta
band: 3–7 Hz). Furthermore, ECoG studies show that the
slowly varying envelopes of high-frequency neural re-
sponses (high-gamma band: �70 Hz) also track the at-
tended speech (Mesgarani and Chang, 2012; Golumbic
et al., 2013). Thus, we systematically studied the relation-
ship between speech and the corresponding neural re-
sponses by decomposing the EEG signal from each of the
32 channels into six canonical frequency bands (delta:
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1–3 Hz, theta: 3–7 Hz, alpha: 7–15 Hz, beta: 13–30 Hz,

low-gamma: 30–70 Hz, and high-gamma: 70–120 Hz;

Buzsáki and Draguhn, 2004). In the delta, theta, alpha,

and beta bands, the filtered EEG signal was treated as a

feature. On the other hand, for the higher-frequency

gamma bands, we were motivated by the results from the

ECoG studies to extract and use the amplitude envelopes

in those bands instead (discarding phase information). For

the alpha and beta bands, we considered the amplitude

envelopes of those bands as additional features sepa-

rately from the filtered EEG. This choice was motivated by

the finding that alpha power fluctuates coherently with the

attended stimulus (Wöstmann et al., 2016), and that beta-

band power fluctuates in a task-specific way across many

cognitive and motor tasks (Engel and Fries, 2010). To

extract the envelopes of the alpha, beta, low-gamma, and

high-gamma bands, we used the Hilbert transform. Over-

all, a total of 256 EEG features were considered: the

filtered EEG in the delta, theta, alpha, and beta bands, and

the envelopes of alpha, beta, low-gamma, and high-

gamma bands, across the 32 EEG channels. Throughout

this report, we will use the term EEG bands to denote the

EEG signals or envelope signals in different frequency

bands. Thus, the analyzed EEG bands consist of the

delta, theta, alpha, and beta bands, and the amplitude

envelopes of alpha, beta, low-gamma, and high-gamma

bands.

Spectral coherence (also simply referred to as coher-

ence) was chosen as the measure of statistical depen-

dence between the speech and EEG signals. High

coherence indicates a consistent phase relationship be-

tween signals (Hannan, 1970; Thomson, 1982; Dobie and

Wilson, 1989). Moreover, when artifactual trials are ex-

cluded, spectral coherence is likely to be more sensitive

than the phase-locking value (Lachaux et al., 1999), as

coherence computation assigns greater weights to trials

with larger signal amplitude (Dobie and Wilson, 1994). A

multi-taper approach (with five tapers, resulting in a fre-

quency resolution of 1.2 Hz) was used to estimate the

spectral coherence between each speech and EEG fea-

ture from the 5-s-long epochs segmented from the raw

EEG data (Slepian, 1978; Thomson, 1982). A total of 108

epochs were used in the computation of each coherence

spectrum. The multi-taper estimate minimizes spectral

leakage (i.e., reduces mixing of information between far-

away frequencies) for any given spectral resolution, and is

calculated from the Fourier representations of two signals

X(f) and Y(f) as follows:

CXY(f) �
SXY(f)

�SXX(f)SYY(f)
, (1)

where

SXY(f) �
1

KtapersNepochs
�
k�1

Ktapers � �
n�1

Nepochs

Xkn(f)Ykn
� (f)� , (2)

SXX(f) �
1

KtapersNepochs
�
k�1

Ktapers � �
n�1

Nepochs

Xkn(f)Xkn
� (f)� , (3)

SYY(f) �
1

KtapersNepochs
�
k�1

Ktapers � �
n�1

Nepochs

Ykn(f)Ykn
� (f)� . (4)

For each pair of speech and EEG features, a single
measure of coherence was obtained by averaging the
coherence spectrum obtained via the multi-taper estima-
tion procedure as follows: For the regular coherence in the
delta, theta, alpha, and beta bands, the coherence values
were averaged over the canonical frequency ranges of the
respective bands (i.e., 1–3 Hz for delta, 3–7 Hz for theta,
7–15 Hz for alpha, and 13–30 Hz for beta). For the enve-
lope coherences of the alpha, beta, low-gamma, and
high-gamma bands, the averaging was performed over
envelope frequencies of 1–7 Hz (corresponding to the
frequency range at which previous studies report phase
locking between the speech envelope and the envelope of
the neural response in the gamma band; Gross et al.,
2013). Figure 1 summarizes the steps used to extract
speech and EEG features, and to estimate the coherence
between them.

In this way, we characterized the relationships between
different features of input speech (i.e., the speech enve-
lopes in different cochlear bands) and different features of
the EEG response (each of which corresponds to a spe-
cific EEG band and channel). In particular, we character-
ized these relationships in an attention-specific manner,
i.e., both when the input speech was attended and also
when it was ignored. This allowed us to examine the
effects of attention on the speech-EEG relationships sep-
arately in different EEG bands, different scalp locations,
and different speech bands, and also to characterize
individual differences in the attentional enhancement of
speech-EEG associations. Further methodological details
are presented alongside each result description as
needed.

Visualizing individual subject results as a network
graph

The full set of speech-EEG relationships is a high-
dimensional data set (with EEG bands, scalp channels,
and speech bands constituting the different dimensions)
that can be conceived of as a network. In many domains,
bipartite graphs have been successfully used to represent
and characterize the complex pattern of associations be-
tween two types of variables (“nodes”) in a relational
network [e.g., group-member relationships in a social
network (Wilson, 1982), genotype-phenotype relation-
ships in a biological network (Goh and Choi, 2012), etc.].
To visualize the relationships between all pairs of speech
and EEG features simultaneously in each individual sub-
ject, we constructed bipartite graphs with the ten speech
features forming the nodes in one partition, and the 256
EEG features (32 scalp locations � eight EEG bands)
forming the nodes in the other. An edge (i.e., connection)
between a speech feature and an EEG feature in our
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bipartite graph construction signifies a statistical depen-
dence between them, such as a significant coherence
value. We constructed separate attended and ignored
graphs for each individual subject in our study using the
following procedure. First, the speech-EEG coherences
for each subject were averaged across all speech stories
for the attended and ignored conditions separately. Next,
edges were drawn between those pairs of speech-EEG
features whose coherence values met a particular thresh-
old. The resulting graph representations of speech-EEG
relationships were visualized to qualitatively compare the
two attention conditions and different individuals. To
quantitatively compare attended and ignored graphs, we
computed the average difference in the number of graph
edges between the attended and ignored conditions, for
different coherence thresholds. The results were com-
pared with permutation-based null distributions to obtain
p values, as described in Statistical analysis.

The bipartite graph formulation also has the advantage
that the complex set of dependencies between speech
and EEG, and how those dependencies are modulated by
attention, can be summarized using rigorous metrics de-

veloped in network science. Accordingly, we take advan-

tage of network summary measures that use the entire

network structure to find those speech and EEG features

that best capture attentional focus in an individual-

specific manner. This is done with the view of informing

attention-decoding applications as to which EEG and

stimulus features may provide the best decoding perfor-

mance at the individual level. For this, we first computed

the differential (“attended–ignored”) coherence for each

speech-EEG pair for each individual subject (but averaged

across speech stories). For each individual, the full set of

speech and EEG features and their associated differential

coherences can be represented as a weighted “differen-

tial” speech-EEG bipartite graph, with the differential co-

herence associated with each speech-EEG pair forming

the edge weight for that pair. Note that this weighted

graph representation of the differential coherences con-

trasts with the unweighted graph representations for the

attended and ignored conditions that were described pre-

viously. For the attended and ignored graphs, we had

used a coherence threshold to define an edge. On the
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Figure 1. Illustration of the steps used to extract speech and EEG features and to estimate the association between them. The speech

signal is passed through a gammatone filter bank simulating cochlear processing, and the envelope at the output of each filter (i.e.,

the envelope of each speech band) is extracted as a speech feature. Similarly, different bands of the EEG and different sensor

channels together form the different EEG features. For the lower-frequency bands (delta and theta), the EEG signals are used as is.

For the alpha and beta bands, both the signals in those bands, and their envelopes are extracted as separate features. For the

higher-frequency gamma bands, only the envelopes of the EEG signals in those bands are considered. These EEG features are then

compared with the speech features using spectral coherence.
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other hand, to obtain the differential graphs, we did not

use any thresholding procedure. Instead, the differential

coherence values across all speech-EEG feature pairs

were retained, and used to define graph edge weights.

Finally, to find those speech and EEG features that are the

most informative about an individual’s attentional focus,

we computed the eigenvector-based graph centrality

measure for each speech and EEG feature in every indi-

vidual’s differential graph. For a discussion on the notion

of network centrality, and how it may be computed in

bipartite graphs to identify the most informative nodes in

the network, see Faust (1997).

Statistical analysis
The primary question that this study is concerned with

is whether the neural representation of speech is modu-
lated by attention. For this, the null hypothesis is that
attention does not alter speech-EEG relationships. We
used a non-parametric within-subjects randomization
procedure to perform statistical inference against this null
hypothesis. This procedure was applied to two separate
analyses, as described below.

For the analysis performed to characterize which EEG
bands show attention-dependent changes in coherence
with speech (results in Fig. 3A), the specific null is that the
speech-EEG coherence in each of the EEG bands is the
same on average for the attended and ignored conditions.
Thus, under the null hypothesis, the attended and ignored
conditions are equivalent and the labels “attended” and
“ignored” can be swapped randomly to generate exam-
ples of coherence differences that would be observed
under the null hypothesis. Note that our experimental
design of randomly assigning which of the two stories in
each block is attended provides the necessary exchange-
ability criterion, justifying the permutation procedure
(Nichols and Holmes, 2002). That is, every permutation of
the order in which the stimuli and attention conditions
occurred was equally likely to occur during data acquisi-
tion. Thus, under the null hypothesis, the condition labels
corresponding to the measurements can be randomly
permuted. To generate a single realization from the null
distribution, a random sign was assigned to the coher-
ence difference between the attended and ignored con-
ditions for each subject and speech story, then the results
were averaged across subjects and stories. This proce-
dure was repeated with 500,000 distinct randomizations
to generate the full null distribution for the average coher-
ence difference. A separate null distribution was gener-
ated for each of the eight EEG bands using band-specific
data. For each band, the corresponding null distribution
was used to assign a p value to the observed average
coherence difference obtained with the correct labels.
Finally, to correct for multiple comparisons across the
eight EEG bands, the conservative Bonferroni procedure
was used. In addition to being used to obtain p values, the
null distributions were also used to express each individ-
ual’s coherence-difference values as a z-score, which
provided an easy-to-interpret quantification of effect
sizes. We used a similar permutation procedure to gen-
erate noise floors for computing the z-scores shown in

Figure 3B,C, and in the differential scalp map of Figure 4.
A separate noise floor was generated for each speech
band in Figure 3B, for each pixel (corresponding to a
distinct speech band and EEG band) in Figure 3C, and for
each electrode in Figure 4.

For the analysis on the number of edges in the graph
representation of speech-EEG coherence (Fig. 7), a sim-
ilar permutation procedure was used. Here, the specific
null hypothesis is that the graph has the same number of
edges in the attended and ignored conditions on average.
Thus, for each subject, a random sign was assigned to the
difference in the number of edges between the attended
and ignored conditions, then the result was averaged over
subjects. This randomization procedure was repeated
500,000 times to generate the full null distribution. A
separate null distribution was generated for each of the
coherence thresholds shown in Figure 7. The observed
average differences in the number of edges between the
correctly labeled attended and ignored conditions were
then compared to the corresponding null distributions to
assign p values.

The noise floor parameters used for computing the
z-scores shown in the attended and ignored scalp maps
of Figure 4 were theoretically derived. This was done by
using the mean and variance expressions for multi-taper
coherence estimates provided in Bokil et al. (2007), and
adjusting the variance parameter to account for pooling
across EEG frequencies and speech bands.

Software accessibility
Stimulus presentation was controlled using custom

MATLAB (The MathWorks, Inc.) routines. EEG data pre-
processing was performed using the open-source soft-
ware tools MNE-Python (Gramfort et al., 2013, 2014) and
SNAPsoftware (Bharadwaj, 2018). All further analyses
were performed using custom software in Python (Python
Software Foundation; www.python.org). Network visual-
izations were created using the SAND package (Kolaczyk
and Csárdi, 2014) in R (R Core Team; www.R-project.org).
Copies of all custom code can be obtained from the
authors.

Results
Figure 2 shows magnitude squared coherence spectra

(averaged over subjects and speech stories) for two ex-
ample speech-EEG pairings: the envelope of the 1014-Hz
speech band and the low-frequency EEG in sensor C3
(Fig. 2A), and the envelope of the 3733-Hz speech band
and the envelope of the low-gamma EEG band in sensor
CP1 (Fig. 2B). The coherence in the attended condition is
greater than that in the ignored condition in the 2- to 5-Hz
frequency range (overlapping with the delta and theta
bands) for the example in Figure 2A. The slow envelopes
of the low-gamma band also preferentially track attended
speech in the 2- to 5-Hz frequency range (Fig. 2B).

As described above in Materials and Methods, Estimat-
ing speech-EEG associations, the coherence spectrum
for each pair of speech-EEG features was averaged
across frequencies to obtain a single coherence value for
that feature pair; this was done separately for the at-
tended and ignored conditions. One key question we
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wished to answer was which EEG bands showed the
greatest attention effects. To address this question, we
averaged the differential coherences (attended–ignored)
for each EEG band across all speech bands and across
the 32 EEG channels. The results obtained from this
analysis are shown in Figure 3A. For each EEG band, we
statistically tested whether the coherence increase in the
attended condition was significant using the permutation
procedure described previously. To correct for multiple
comparisons across the eight EEG bands that were con-
sidered, we used a Bonferroni correction with a family-
wise error rate of 0.05. Thus, for each of the eight tests,
only p � 0.05/8 were considered to be statistically signif-
icant. Based on the statistical tests, we find that both
delta and theta bands of the EEG show greater coherence
with a speech stream when that stream is attended com-
pared to when it is ignored (i.e., a positive attended–
ignored difference). This replicates previously reported
results (Ding and Simon, 2012; O’Sullivan et al., 2015).
Aside from the attention-dependent increase in low-
frequency coherence, we also observe that the envelope
of the low-gamma band shows greater coherence to
speech in the attended condition. The preferential syn-
chrony of gamma-band envelopes with attended speech
has previously been reported only in invasive recordings
(Mesgarani and Chang, 2012; Golumbic et al., 2013). For
speech in isolation, some non-invasive studies have
found gamma-band envelopes to be synchronous with
input speech (Gross et al., 2013); however, to the best of
our knowledge an attention-dependent increase of this
coherence has previously not been reported with non-
invasive recordings.

In addition to identifying the EEG bands that showed
the greatest attention effects, we were also interested in
characterizing which speech bands contribute most to
attention-dependent increases in coherence. To address
this question, we averaged the differential coherences for
each speech band across the 32 scalp locations and
across all EEG bands. This yielded a profile of attention-
dependent increases in coherence across the ten different
speech bands. The results are shown in Figure 3B. The
strongest attention effects appear to occur in the 0.5- to
3-kHz range, which contains spectro-temporal speech

features (formants and formant transitions) that convey
many vowel and certain consonant cues (Gold and Mor-
gan, 2002), and is also the range thought to be the most
important for speech intelligibility (Kryter, 1962).

To examine whether the attention effects for different
speech bands varied with the EEG bands that they were
paired with, we visualized the differential coherence for
the full matrix of speech bands versus EEG bands, aver-
aged across EEG channels. The results are shown in
Figure 3C. While the 0.5- to 3-kHz speech frequency
range shows hot spots in the delta, theta, and low-gamma
EEG bands, the lower-frequency speech bands (e.g., 200
Hz) show a hot spot only in the theta range corresponding
to the syllabic rate. This could be because the pitch
conveyed by the resolved harmonics of the syllabic voic-
ing may be an important cue based on which attention is
directed.

We also wished to find the EEG scalp locations that
show the greatest coherence and attention effects. To
address this question, we averaged the coherence values
across the ten speech bands, and the delta, theta, and
low-gamma EEG bands (i.e., the bands showing signifi-
cant attention effects in Fig. 3A). The results are plotted as
a topographic map of coherence values (i.e., one value for
each of the 32 scalp locations) for the attended, ignored,
and differential conditions, respectively, in Figure 4. The
spatial profiles are hard to distinguish between the at-
tended and ignored maps; however, note that the coher-
ences are larger in the attended condition than the
ignored, on an absolute scale. The differential map quan-
tifies these differences across the scalp. Temporal-
parietal regions appear to show the largest coherence
differences between the attended and ignored conditions;
however, this pattern is not symmetric between the hemi-
spheres. This result is consistent with previous studies
that found that areas such as the superior temporal gyrus
and the inferior parietal lobule contribute to attention
effects (Golumbic et al., 2013). In addition to plotting scalp
maps averaged across EEG bands, we also looked at
band-specific scalp maps for the differential condition.
However, the spatial patterns in those maps were not
easily interpretable, and are hence not shown here. Be-
cause we only used 32 channels, a detailed exploration of

Figure 2. Illustration of the effect of attention on the average speech-EEG magnitude squared coherence spectra, for (A) the envelope

of the 1014-Hz speech band, and the low-frequency portions (overlapping with the delta and theta bands) of EEG channel C3, and

for (B) the envelope of the 3733-Hz speech band, and the envelope of the low-gamma band of EEG channel CP1. Note that the y-axis

ranges differ between A and B. The shaded regions indicate values within 1 SEM. The delta-band and theta-band EEG responses (A),

and the low-gamma-band EEG envelope fluctuations (B), selectively track features of the attended speech over the ignored speech.
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which brain sources contribute to the observed differen-

tial coherences cannot be done with our data. This should

be a focus of future studies.

The results shown so far were mainly concerned with

attention-dependent coherences averaged across differ-

ent sets of speech and EEG features (i.e., across speech

bands, and/or EEG bands, and/or scalp locations). In

addition to this, we also constructed speech-EEG bipar-

tite graphs for each individual to examine the full set of

coherence values corresponding to all pairs of speech-

EEG features simultaneously. Figure 5 shows attended

and ignored graphs (averaged over speech stories) for all

individual subjects in our study. In this figure, each square

denotes a speech feature, and each circle denotes an

EEG feature. An edge is shown connecting a pair of

speech-EEG features if the coherence between them

meets a certain threshold. Here, a coherence threshold of

3 SDs from the average coherence (pooled across at-

tended and ignored conditions) is arbitrarily chosen, and

only edges whose coherence meets that threshold are

shown. One pattern that is immediately apparent from

Figure 5 is that there are many more edges in the attended

condition than in the ignored condition for eight of the ten

subjects in this study. This suggests that a larger number

of speech-EEG feature pairs become coherent when the

speech is attended. Also apparent from Figure 5 is the

fact that the graph structure is variable across subjects.

This means that the particular speech-EEG feature pairs

that show the greatest coherence values are not the same

across subjects. As described above in Materials and

Methods, Visualizing individual subject results as a net-

work graph, we used the eigenvector centrality measure

for bipartite graphs to find those EEG and speech features

that are the most informative about an individual’s atten-

Figure 3. Differential effects of attention on speech-EEG coherences in different EEG bands (A), different speech bands (B), and the

full matrix of EEG bands versus speech bands (C). A, Differential (attended–ignored) coherence averaged across speech bands and

EEG channels (shown as a z-score) for each of the EEG bands. Uncorrected p values obtained from the permutation test are displayed

for the different EEG bands. When a Bonferroni-corrected p value threshold of 0.05/8 � 0.006 is applied to each band, we find that

the delta and theta bands show significantly higher coherence with speech when it is attended compared to when it is ignored. In

addition, we also find that the envelope of the low-gamma band shows greater coherence with attended versus ignored speech. B,

Differential coherence averaged across all EEG bands and EEG channels (shown as a z-score) for each input speech band. The

strongest attention effects appear to occur in the 0.5- to 3-kHz range, which contains spectro-temporal speech features (formants

and formant transitions) that convey many vowel and certain consonant cues, and is also the range thought to be the most important

for speech intelligibility. In panel C, the differential coherence averaged across EEG channels is shown as a z-score for each EEG band

and speech band for completeness. While the 0.5- to 3-kHz speech frequency range shows hot spots in the delta, theta, and

low-gamma EEG bands, the lower-frequency speech bands (e.g., 200 Hz) show a hot spot only in the theta range corresponding to

the syllabic rate. This could be because the pitch conveyed by the resolved harmonics of the syllabic voicing may be an important

cue based on which attention is directed. In all three panels, z-scores shown are averaged across speech stories and individual

subjects, with error bars representing the SE.
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tional focus. We find that the most central features differ
between individuals, as shown in Figure 5. This suggests
that for applications such as BCIs that aim to decode
attention from EEG, individual-specific customization of
features might be necessary to obtain optimal decoding
performance.

Figure 6 shows individual differences in the overall
magnitude of attentional enhancement of speech-EEG
coherences, separately for the delta, theta, and low-
gamma EEG bands (i.e., the bands showing significant
attention effects in Fig. 3A). Here, each individual’s “at-
tentional boost” was computed as their percentage
change in squared coherence going from the ignored
condition to the attended, averaged across the 32 EEG
channels, all speech bands, and the different speech
stories. This attentional boost metric represents the per-
centage change in the proportion of EEG signal energy
that is correlated with a speech signal, when the speech is
attended to versus ignored. The distribution of the atten-
tional boost across individuals is skewed above zero in all
three EEG bands, consistent with positive attentional
boost in the neural coding of target speech. Furthermore,
there is considerable variation across subjects almost
uniformly over the range of boosts. Finally, where a par-
ticular individual falls relative to the overall distribution is
somewhat consistent across the three EEG bands (the
rank correlation between the attentional boosts in the
delta and theta bands is 0.78, and between the boosts in
the delta and low-gamma bands is 0.38).

Although Figure 5 is visualized for a particular coher-
ence threshold, the observation that there are many more
edges in the attended condition than in the ignored con-
dition did not depend strongly on the choice of threshold.
To illustrate this, we quantified the percentage of edges
(i.e., coherences that meet a given threshold) for the
attended and ignored conditions, for three different
threshold values. The results are shown in Figure 7. For all

three thresholds shown, the number of edges in the at-
tended condition is significantly greater than the number
of edges in the ignored condition, which confirms the
generality of this result. The p values for this statistical
comparison were obtained using a permutation test as
described in Materials and Methods, Statistical analysis.
While Figure 3 showed that specific speech-EEG associ-
ations are strengthened by attention, the present result
suggests that a greater number of distinct speech-EEG
associations are induced by attention.

Discussion
We systematically studied the attention-dependent re-

lationships between input speech envelopes in different
frequency bands and the neural response in different EEG
channels and frequency bands. Importantly, we investi-
gated selective attention effects in all canonical (Buzsáki
and Draguhn, 2004) EEG frequency bands simultane-
ously. In doing so, we found that low-frequency delta-
band and theta-band EEG showed the strongest attention
effects (i.e., the greatest speech-EEG coherence in-
creases for the attended condition compared to the ig-
nored). This result is consistent with the preferential phase
locking to attended rather than ignored speech in the
delta and theta bands reported in previous EEG/MEG
studies (Ding and Simon, 2012; O’Sullivan et al., 2015).
Using stationary masking noise, Ding and Simon (2013)
found that the delta band was the most robust in carrying
target information at poorer SNRs (–3 dB and lower),
whereas both delta and theta bands were equally robust
in conveying target information at higher SNRs. These
findings are consistent with our present results from using
a speech masker at 0-dB SNR. One possible factor con-
tributing to the strong delta-band and theta-band atten-
tion effects is that the power in the acoustic envelope of
natural speech is maximal below 8 Hz (corresponding to
the prosodic and syllabic rates; Ding et al., 2017). More-

Figure 4. Scalp maps showing the average coherence (shown as a z-score) at each of the different EEG electrodes in the attended,

ignored, and differential conditions. To obtain the scalp maps, the speech-EEG coherence values were averaged across the delta,

theta, and low-gamma EEG bands (i.e., the bands showing significant attention effects in Fig. 3A), and all speech bands, and

expressed as a z-score. The intensity shown at each electrode is the mean of the z-score across speech stories and individual

subjects. Note that the scalp maps are scaled to their respective minimum and maximum z-score values, so as to best show the

spatial patterns. The spatial profiles are hard to distinguish between the attended and ignored maps; however, note that the

coherences are larger in the attended condition than the ignored, on an absolute scale. The differential map shown in the right column

quantifies these differences across the scalp. Temporal-parietal regions appear to show the largest coherence differences between

the attended and ignored conditions; however, this pattern is not symmetric between the hemispheres.
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Figure 5. Graph representation of speech-EEG coherence in the attended and ignored conditions for all individual subjects. Rows

represent different individuals. Squares denote speech features (i.e., the envelopes from the ten speech bands; shown in the order

of increasing center frequency). Each circle denotes an EEG feature (i.e., a particular EEG band from a particular scalp location). An

edge between a speech and EEG feature indicates that the coherence between them meets a threshold of 3 SDs from the mean. Only

EEG features with one or more edges that survive the thresholding procedure are shown. Attended graphs exhibit greater number of

edges compared to ignored graphs for all but two subjects (see bottom two rows). Additionally, the graph structure is variable across

subjects. The top two EEG and speech features that are most informative (as obtained using eigenvector centrality) about an

individual’s attentional focus also vary across subjects (rightmost column).
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over, in the presence of background noise, the SNR in the
envelope domain at the auditory-nerve level is strongest
for slow modulation frequencies (Rallapalli and Heinz,
2016). Thus, the strength of the delta- and theta-band
effects may be a reflection of the neural computations that
take advantage of the high power and SNR in speech at
slow envelope frequencies. Yet another possible factor
could be that attention mechanisms might be geared
toward boosting the representation of those temporal
modulations that are the most important for speech intel-
ligibility; previous studies suggest that modulations below
8 Hz are perhaps the most important (Drullman et al.,
1994; Elliott and Theunissen, 2009).

A novel finding of the present study is that the power
fluctuations (i.e., envelope) of the low-gamma band of the
EEG show significantly higher coherence with the at-
tended speech stream versus the ignored. In contrast to
cortical theta-band activity, activity in the gamma band
has relatively small amplitude (Pritchard, 1992). This may
explain why previous EEG studies have not reported at-
tention effects in the gamma band. Despite the relatively
low amplitude and the conservative statistical threshold-
ing that we adopted (i.e., using Bonferroni corrections
across EEG bands), we found the low-gamma envelope to
fluctuate coherently with the attended speech. This find-
ing supports the view that gamma activity plays an im-

portant role in the underlying physiologic computations
that support selective listening (Tallon-Baudry and Ber-
trand, 1999; Ribary, 2005; Wang, 2010), and demon-
strates that non-invasive EEG can be used to measure
these effects.

While gamma-band responses have been investigated
using EEG/MEG when processing speech streams in iso-
lation, i.e., without competition (Gross et al., 2013), prior
non-invasive studies of selective attention focused on the
low-frequency portions of the brain signal, which overlap
with traditional evoked responses (Luo and Poeppel,
2007; Ding and Simon, 2012; O’Sullivan et al., 2015).
gamma-Band power has previously been shown to fluc-
tuate coherently with the envelope of an attended speech
stream in selective attention tasks, but only from invasive
(ECoG) recordings (Mesgarani and Chang, 2012; Golum-
bic et al., 2013). The current results replicate this finding
using EEG. However, one discrepancy in the gamma-
band findings between the ECoG studies and the present
EEG-based study is that the ECoG studies found the
high-gamma, rather than the low-gamma band to be im-
portant, while we observed no significant effects at high-
gamma. This may be explained by the fact that ECoG
measurements are more spatially specific, reflecting local
neural activity rather than the broadly distributed activity
measured using EEG. For instance, the observed corre-

Figure 6. Individual differences in the overall magnitude of attentional enhancement of speech-EEG coherences in different EEG

bands. Each individual’s attentional boost in coherence is shown (with an individual-specific marker symbol and color) for the delta,

theta, and low-gamma EEG bands (i.e., the bands showing significant attention effects in Fig. 3A). The mean and SE across individuals

are also indicated in black. Note that the y-axis ranges differ between the three panels of the figure. The attentional boost was

computed as the percentage change in squared coherence going from the ignored condition to the attended, averaged across EEG

channels, speech bands, and the different speech stories. The distribution of the attentional boost across individuals is skewed above

zero in all three EEG bands, consistent with positive attentional boost in the neural coding of target speech. Furthermore, there is

considerable variation across subjects almost uniformly over the range of boosts.
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lation of high-gamma in the spatially summed EEG signal
with attended speech could be weak even if high-gamma
activity within different brain areas are each significantly
correlated with the speech, but at different phases. In
general, the SNR of high-gamma signals measured from
ECoG is likely greater than from EEG. The fact that we
observed no significant attention-dependent change in
the coherences between the high-gamma envelopes and
speech signal envelopes is thus most likely due to limita-
tions of scalp recordings.

One other study that examined the effect of attention on
gamma-band EEG responses suggested that the atten-
tional enhancement of gamma rhythms was specific to
multisensory stimuli (audiovisual), and was not seen for
stimuli presented solely to the auditory system (Sen-
kowski et al., 2005); however, this study used simple tonal
stimuli. Computational models (Börgers et al., 2008), in
vitro studies (Llinas et al., 2002), in vivo electrophysiology
(Fries et al., 2001), and modern studies using optogenet-
ics (Cardin et al., 2009) show that gamma-band syn-
chrony over a network of neurons can mediate sensory
binding of different components that make up a percep-
tual object (Tallon-Baudry and Bertrand, 1999), which
facilitates attentional selection and routing. Because the
behavioral task in the current study involves both segre-
gation (the grouping of input speech features into two
separate coherent perceptual streams), and selection (the
preferential, detailed processing of one of the two
streams), the observed gamma-band effects could be

related to either or both of those processes. Further stud-
ies are needed to understand the precise mechanisms
involved in the generation of gamma-band activity, and
how it shapes the network computations associated with
segregation and selection (Shinn-Cunningham, 2008).

Despite the relatively high amplitude of the signals in
the alpha and beta bands (e.g., compared to the gamma
band), these mid-frequency bands did not show any at-
tention effects. This is despite the fact that both the phase
and envelope fluctuations of these bands were consid-
ered. At first glance, this result appears to be at odds with
the findings of Obleser and colleagues (Obleser and
Weisz, 2012; Wöstmann et al., 2016). However, the syn-
chronous alpha variations in those studies were not of the
overall alpha power, but rather the lateralization (i.e., left-
right hemispherical asymmetry) of the alpha. Moreover, in
Wöstmann et al. (2016), both the attended and ignored
sound streams had the same temporal structure. This is in
contrast to the present study, where the natural differ-
ences in the temporal envelope structure of distinct
speech streams forms the basis of the analysis. Here, we
did not examine any hemifield or hemisphere-specific
aspects of attention on the EEG response. Instead, the
goal was to examine the overall band-specific effects of
attention on EEG responses. Analyses that focus on hemi-
spheric lateralization of rhythms during spatial selective
attention may indeed reveal alpha-band effects. Further,
even for speech presented in isolation, cortical process-
ing of linguistic sounds exhibits hemispheric asymmetry

Figure 7. Percentage of edges (i.e., coherences meeting threshold) in attended (ATT) and ignored (IGN) speech-EEG bipartite graphs,

at different coherence thresholds. The across-subject distribution of the percentage of graph edges is shown as a violin plot,

separately for the attended and ignored conditions, and for three different coherence thresholds. In addition, the median (white dot),

50% confidence limits (thick black box), and 95% confidence limits (black whiskers) of each distribution are shown. Across all three

threshold values, the number of edges is significantly larger for the attended condition (based on a permutation test; p values are

shown). While Figure 3 showed that specific speech-EEG associations are strengthened by attention, the present result suggests that

a greater number of distinct speech-EEG associations are induced by attention.
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with a preferential left lateralization (Morillon et al., 2010).
Future work should be undertaken to investigate hemi-
field-specific effects of attention on EEG, and how these
effects interact with asymmetric aspects of cortical pro-
cessing such as the left-lateralization of phonetic and
linguistic processing.

On examining the scalp topography of the speech-EEG
coherence, we found that the largest differences in co-
herence between the attended and ignored conditions
occur in temporal-parietal channels, rather than EEG
channels that are sensitive to early auditory responses.
For example, the N100 EEG response, which is thought to
originate from the primary auditory cortex, projects to Cz
and Fz channels on the scalp. These channels show a
weaker attention effect than the temporal-parietal chan-
nels, suggesting that early sensory responses are less
modulated by attention than are later processing regions.
This is consistent with the observation that attention ef-
fects can be localized to later “components” (200–220
ms) of the EEG response by methods such as spread-
spectrum analysis, which allow for the temporal signature
of the attention effect to be extracted (Power et al., 2012).
These results suggest that higher-order processing areas
selectively process attended speech.

In the present study, we also find individual differences
in the overall magnitude of attentional enhancement of
speech-EEG coherences, although all individuals scored
�90% in the quiz. This finding is consistent with results
from Choi et al. (2014), which used a selective attention
task with complex-tone stimuli to show that there are
large individual differences in the neural attentional boost,
even when performance is at ceiling for all individuals.
This study further found that as the behavioral demands
became more adverse, the neural attentional boost from
the easier condition was predictive of behavioral perfor-
mance in the harder condition. Taken together with our
results, this suggests that EEG measurements from an
easier speech-based selective attention task may be used
to quantify the top-down attentional contribution to indi-
vidual differences in speech intelligibility in adverse listen-
ing conditions.

Finally, we visualized the coherences across all pairs of
speech-EEG features as a bipartite graph, separately for
each individual and for each attention condition. We
found individual differences in the structures of attended
and ignored graphs (i.e., which speech-EEG relationships
were the strongest varied across individuals), and also in
the set of EEG and speech features that are most infor-
mative about attentional focus in the entire network struc-
ture. Such an individual-specific set of just the most
informative features can be used for individualized
attention-decoding applications that require a compact
feature set, such as attention-guided hearing aids (Fiedler
et al., 2017; Fuglsang et al., 2017; O’Sullivan et al., 2017;
Van Eyndhoven et al., 2017) and other BCIs. These fea-
tures are likely to be more optimal for attention decoding
than what may be extracted from more conventional anal-
yses; however, the utility of this approach should be
directly tested in future studies. One explanation for the
individual differences reported here could be anatomic

variations across people, which could lead to EEG mea-
surements being differently sensitive across people to
different sources. Another possibility is that every individ-
ual’s listening strategy might be different. For example,
while some individuals may give more weight to spatial
cues to perform the task, others may rely more on voice-
based cues such as speaker pitch. Finally, there could
also be individual differences in the efficacy of attentional
modulation of different brain sources (Choi et al., 2014).
To elucidate the precise reasons for the individual differ-
ences, future studies might consider using high-density
recordings and source localization techniques.
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