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Abstract

Background: Brain–computer interfaces (BCIs) have demonstrated the potential to provide paralyzed individuals

with new means of communication, but an electroencephalography (EEG)-based endogenous BCI has never been

successfully used for communication with a patient in a completely locked-in state (CLIS).

Methods: In this study, we investigated the possibility of using an EEG-based endogenous BCI paradigm for online

binary communication by a patient in CLIS. A female patient in CLIS participated in this study. She had not

communicated even with her family for more than one year with complete loss of motor function. Offline and

online experiments were conducted to validate the feasibility of the proposed BCI system. In the offline experiment,

we determined the best combination of mental tasks and the optimal classification strategy leading to the best

performance. In the online experiment, we investigated whether our BCI system could be potentially used for real-

time communication with the patient.

Results: An online classification accuracy of 87.5% was achieved when Riemannian geometry-based classification was

applied to real-time EEG data recorded while the patient was performing one of two mental-imagery tasks for 5 s.

Conclusions: Our results suggest that an EEG-based endogenous BCI has the potential to be used for online

communication with a patient in CLIS.

Keywords: Brain-computer interface (BCI), Completely locked-in state (CLIS), Electroencephalography (EEG), Pattern

classification, Riemannian geometry

Background

Brain–computer interface (BCI) is an emerging technol-

ogy capable of translating human intentions into control

signals, thereby enabling people to communicate with

their external environment without any kinesthetic

movement [1]. BCI technology has primarily targeted

patients with severe or complete motor dysfunction due

to various neurological disorders and cardiovascular dis-

eases. Among these target groups, patients with amyo-

trophic lateral sclerosis (ALS) have the potential to

benefit most from BCI technology because they

generally maintain unimpaired cognition even after

complete loss of voluntary motor function. ALS is char-

acterized by a rapidly progressive degeneration of motor

neurons, leading to muscle weakness, respiratory paraly-

sis, and ultimately death [2]. Therefore, patients in ad-

vanced stage of ALS usually experience a physical

condition, referred to as a locked-in state (LIS) [3], in

which they remain aware of their external environment

but lose control of voluntary muscles except for control

over eye movements [4]. In the final stages of ALS, the

patients even lose the oculomotor function and are iso-

lated from their external environment owing to the lack

of communication means [5]. This stage is referred to as

the completely locked-in state (CLIS).
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Various brain-imaging modalities have been used to

implement BCI systems with the ultimate goal of communi-

cating with patients in LIS. Among these, electroencephalog-

raphy (EEG) has been the most widely used modality

because of its portability, non-invasiveness, high temporal

resolution, and a reasonable cost compared to other

neuroimaging tools, such as near-infrared spectroscopy

(NIRS), functional magnetic-resonance imaging (fMRI), and

magneto-encephalography (MEG) [6]. Over the last couple

of decades, EEG-based BCI systems have been developed

with elaborately designed paradigms [7–12], with greatly

promising practical applications. For example, steady-state

visual evoked potential (SSVEP) [7, 8], event-related potential

(ERP) [9, 10], and motor imagery (MI) [11, 12] are three

major EEG-based BCI paradigms. These can be roughly clas-

sified into exogenous and endogenous BCI paradigms. The

SSVEP and P300 BCIs are representatives of exogenous BCI

paradigms. They use external stimuli such as flickering LEDs

or auditory beeps to evoke discriminative brain patterns. On

the other hand, MI-based systems represent endogenous

BCIs as they do not use any external stimuli. If a user of an

endogenous BCI performs one of the designated mental

tasks, the system will recognize the specific task from

self-regulated EEG patterns. The absence of external stimuli

is especially advantageous for the patients in CLIS because of

their complete lack of motor function. In addition, endogen-

ous BCIs are more straightforward, more convenient, and

may be faster than exogenous BCIs. Over the past decade,

most EEG-based BCI systems were tested with healthy indi-

viduals [13, 14]. Recently, the number of EEG-based BCI

studies in patients with ALS has steadily increased, several of

which have yielded promising results [4, 5, 15–25].

Unfortunately, EEG-based BCI systems for online

communication with patients in CLIS have been

mostly unsuccessful. A recent study demonstrated the

potential of using a vibrotactile stimulation-based ex-

ogenous BCI paradigm for communication with pa-

tients in CLIS [26]. However, no study has yet

reported on the successful online communication with

CLIS patients using EEG-based endogenous BCI sys-

tems, which do not require external stimuli, but in-

stead use neural signals volitionally modulated by BCI

users. To the best of our knowledge, there were only

two EEG-based endogenous BCI studies with CLIS

patients; however, both failed to establish online com-

munication [21, 27].

In this study, we developed an EEG-based online BCI

system for the classification of different mental-imagery

tasks conducted by a patient in CLIS. An endogenous

BCI paradigm based on mental-imagery tasks was de-

signed, and a single patient in CLIS with advanced stage

of ALS participated in this study. Offline and online ex-

periments were conducted to validate whether the pro-

posed BCI could be used for real-time communication

with the patient. The test–retest reliability of our BCI

system was also investigated using training datasets ob-

tained on different days.

Methods

Participant characteristics

A 62-year-old woman with severe ALS was recruited for

this study. In November 2012, she was diagnosed with

clinically probable ALS according to the Airlie House

diagnostic criteria [28]. After diagnosis, her motor weak-

ness rapidly progressed and propagated to all motor sub-

systems, including bulbar and respiratory functions. In

late 2013, mechanical ventilator and transcutaneous

endoscopic gastrostomy were needed. Subsequently, all

voluntary motor functions including ocular movement

and eye blinking were completely lost as of early 2015.

Despite of the complete loss of voluntary movement in-

cluding eye movement, the participant’s event-related

potential (ERP) waveform characteristics suggested that

her hearing and cognitive functions were preserved. The

participant’s CLIS diagnosis was additionally supported

by the discovery of meaningful tearing after listening to

sorrowful news of her family member’s death. Her

ALSFRS-R was zero [29] and no alternative means of

communication with the patient were available at the

time of this study. The patient’s husband provided writ-

ten informed consent prior to all experiments. This

study was reviewed and approved by the Institutional

Review Board Committee of Hanyang University

Hospital (HYUH 2015–11–031-001) and conformed to

the tenets of the Declaration of Helsinki.

Experimental protocols

All experiments were conducted in a hospital setting

where the patient had stayed for 2 years. We visited her

four times on different days (first visit: 28th Jan 2016;

second visit: 4th Feb 2016; third visit: 12th Aug 2016;

and last visit: 9th Dec 2016) and performed four differ-

ent experiments at each visit. All the experiments were

performed between 10 am and 12 pm because the pa-

tient’s husband told us that she had usually been in a

good condition in the morning. During the experiments,

all instructions were directly presented to the participant

using noise-cancelling headphones.

On the first and last visits, we assessed whether the

patient’s alertness was high enough to conduct the

EEG-based BCI experiments. Her auditory and cognitive

functions were evaluated based on auditory ERPs. An

auditory oddball paradigm with a cognitive task was

used for this test (see Fig. 1). At the beginning of a run,

a start message was presented for 5 s, and we instructed

the subject to prepare for a given test during this period.

After the start message, a brief instruction to attend to a

left-high or right-low beep was presented for 4 s. We
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asked the subject to perform trials corresponding to the

instruction. A single trial consisted of three different noise

sounds, a high-frequency (1000Hz) beep, and a low-fre-

quency (100Hz) beep. The inter-stimulus interval (ISI)

ranged from 480 to 600ms, and each stimulus was pre-

sented for 80ms. Note that the high- or low-frequency

beeps were presented through the left and right head-

phone, respectively. There were 20 trials in a run, and the

patient completed a total of 6 runs. After confirming that

the subject’s auditory and cognitive functions were not

completely impaired, offline and online experiments based

on mental-imagery tasks were conducted during the sec-

ond and third visits, respectively.

For the offline experiment based on mental-imagery

tasks, we designed three different mental tasks: left

motor imagery (LMI), mental subtraction (MS), and

tongue motor imagery (TMI). During LMI and TMI, the

patient was asked to perform kinesthetic imaginations of

left-hand and tongue movements, respectively. During

MS, the patient was asked to sequentially subtract a

small number (e.g. 7) from a three-digit number (e.g.

428) as fast as she could (e.g. 428–7 = 421, 421–7 = 414,

414–7 = 407, …). The pairs of numbers used were not

repeated to prevent the patient from becoming accus-

tomed to the problem. We tested both motor and

non-motor imagery tasks because some previous studies

demonstrated that the combination of motor and

non-motor imagery tasks can enhance the overall classi-

fication accuracy of binary classification BCI [30, 31].

Figure 2a provides the schematic diagrams of the offline

experiment. Instructions were presented for 5 s to pro-

vide the participant with a short preparation time before

starting each experiment. At the beginning of each trial,

a variable rest period (3–8 s) was provided, and then the

auditory cue (verbal instructions generated by a com-

puter) for a specific mental task was presented to the

subject for 6 s (the cue was presented in the first 3 s).

After presentation of a pure-tone beep, the patient per-

formed the given mental task for 5 s. A single experi-

mental run was composed of six independent trials;

thus, each mental task was performed twice in a random

order during each run. The patient performed 10 runs in

total, consequently performing each task 20 times.

In the online experiment based on mental-imagery tasks,

the pair of mental tasks that showed the highest classification

performance in the offline analysis, i.e. the combination of

LMI and MS, was selected. Figure 2b and c are schematic di-

agrams of the training and test paradigms of the online ex-

periment, respectively. The subject participated in 10

training runs without any feedback before the main online

test experiment. Each training run was composed of four

random, counter-balanced executions of either LMI or MS.

The participant then completed four online test runs right

after the training runs were complete. Each test run was

composed of 10 trials (5 trials for each task). Real-time audi-

tory feedback was provided immediately after each trial

based on the classification results (please watch the supple-

mentary video at https://youtu.be/zQWtSQOV50Q). The

subject was able to recognize whether the online results were

correct or not through auditory feedback.

Fig. 1 Schematic diagram of the auditory oddball offline paradigm
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EEG data acquisition

EEG data were recorded using a multi-channel EEG ac-

quisition system (ActiveTwo, BioSemi, Amsterdam, The

Netherlands). For the offline and online experiments, 19

EEG electrodes (Oz, O1, O2, Cz, C3, C4, T7, T8, Fz,

FC1, FC2, FC5, FC6, F3, F4, F7, F8, AF3, and AF4) were

used. The use of electrodes in the posterior region was

avoided because the patient was in a supine position on

a bed during experiments. The ground electrode was re-

placed with two electrodes, a common-mode-sense

(CMS) active electrode and a driven-right-leg (DRL) pas-

sive electrode, both of which were located in the central

region (near CP1 and CP2). The offset voltage between

the A/D box and the body was maintained between 25

and 50mV, as recommended by the EEG device manu-

facturer. The EEG data were sampled at 2048 Hz.

Analysis of ERPs by auditory oddball test

Raw EEG data acquired via the auditory oddball para-

digm were pre-processed to remove unwanted artefacts

using MATLAB software (MathWorks, Natick, MA,

USA). A pre-processing algorithm used in a previous

ERP study [32] was adopted. The raw EEG data were

re-referenced with a common average reference (CAR)

that uses the mean of all electrodes as a reference. The

DC-level components in all channels were removed by

subtracting the mean of the time series for each channel,

and the EEG data were band-pass filtered at 1- and

30-Hz cut-offs using a third-order Butterworth

zero-phase filter. The pre-processed EEG data were

epoched from 100ms pre-stimulus to 1000 ms post-

stimulus. The averaged value of the pre-stimulus interval

was subtracted from the selected epochs for baseline

correction. We assessed whether the remaining epochs

contained significant physiological or environmental ar-

tefacts (amplitude exceeding ±75 μV). Because no epoch

satisfied this condition, all epochs were used in subse-

quent analyses.

Mismatch negativity (MMN), the negative peak gener-

ated near 200 ms where a human can hear some specific

sounds [33, 34], was confirmed to determine whether

the patient could hear all instructions presented through

the headphones. In this study, the MMN was defined by

a minimum amplitude between 100 and 300 ms

post-stimulus. There were three different stimuli in our

auditory oddball test: white noises (600 times), high-tone

beeps (120 times), and low-tone beeps (120 times). In

the MMN analysis, the noises and beeps were regarded

as standard and deviant stimuli, respectively. The ratio

of noises to beeps was 2.5:1. Two hundred forty epochs

were randomly selected from 600 noise trials and were

compared with the 240 beep epochs. P300 components

in ERPs were evaluated on the midline electrodes (Fz,

Cz, and CPz) as well as the bilateral temporal lobe elec-

trodes (T7 and T8) to confirm the patient’s cognition. In

the ERP analysis, high and low-tone beeps were used as

target and non-target stimuli, respectively. A statistical

analysis was performed to confirm the significance of

the MMN and P300 components. For MMN, each epoch

from 100ms to 300ms in deviant and standard trials

Fig. 2 a The offline experimental paradigm. b The training paradigm of the online experiment. c The test paradigm of the online experiment.

LMI, TMI, and MS indicate left-hand motor imagery, tongue motor imagery, and mental subtraction, respectively. The offline experiment and the

training paradigm of the online experiment were similar except for the number of tasks. In the test paradigm of the online experiment, auditory

feedback was provided in accordance with the online results of the participant’s EEG data analysis
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was segmented using a moving window of 62.5ms with

50% overlap for each channel. For P300, each epoch from

200ms to 700ms in all target and non-target trials was

segmented using a moving window of 62.5ms with 50%

overlap for each channel. Then, paired t-tests were per-

formed for all pairs of corresponding time segments to

find time intervals with a significant difference (p < 0.05)

between the target and non-target conditions. The

p-values of all pairs were corrected using the Bonferroni

correction method for multiple comparisons.

Event-related (de) synchronization analysis

The event-related desynchronization (ERD) and synchronization

(ERS) patterns were evaluated for each mental task to

validate whether the patient actually conducted the

given mental tasks. The raw EEG data for each men-

tal task were filtered using CAR and band-pass fil-

tered at 4 to 45 Hz. Then, each 6-s epoch from − 1 to

5 s was extracted from the filtered EEG signals and

was down-sampled from 2048 Hz to 512 Hz. The

event-related spectral perturbation (ERSP) was calcu-

lated using the function newtimef in the EEGLAB

toolbox (https://sccn.ucsd.edu/eeglab/index.php). The

function returns estimates of the ERSP across

event-related trials for each channel times in the

series. As already mentioned, the EEG data from − 1

to 0 s was used as the baseline for the ERSP evalu-

ation. The target frequency bands for each mental

task were set differently: alpha (8–13 Hz) and

low-beta (13–20 Hz) for LMI and TMI; theta (4–7

Hz) and alpha (8–13 Hz) for MS. The ERSP patterns

at different target electrodes were also observed for

each mental task: C3 and C4 for LMI and TMI; AF3

and AF4 for MS. Topographical distributions were

drawn using the averaged ERSP values from 0 to 5 s

for each frequency band.

Analysis of EEG data by the BCI paradigm based on

mental-imagery tasks

Raw EEG data obtained during the mental task paradigm

were pre-processed using MATLAB software. The raw

EEG signals were spatially filtered using a CAR to com-

pensate for common noise components. DC compo-

nents were removed by subtracting the mean of the time

series for each channel, and the EEG data were then

band-pass filtered at 4- and 45-Hz cutoffs using a

fifth-order Butterworth zero-phase filter. For the pattern

classification of different mental tasks, each 5-s epoch

(0–5 s after task onset) of all trials for each task was ex-

tracted from the pre-processed EEG signals. Finally, each

epoch was down-sampled from 2048 Hz to 512 Hz.

The performance of two different classification frame-

works were evaluated by offline analysis. The first frame-

work uses spatial covariance matrices as EEG descriptors

and depends on Riemannian geometry (RG) to classify the

matrices for each class. A classification framework by RG

was selected and applied to our EEG dataset because it

showed excellent classification performance compared to

other methods using spatial covariance matrices as the

EEG signature [35–37]. In 2016, Barachant et al. [35] pro-

posed two methods based on RG that directly use the co-

variance matrices for classification and have shown that

their RG-based frameworks could outperform a reference

method. In the next year, they also introduced several new

kernels based on RG for classifying covariance matrices.

An approach using one of their developed kernels signifi-

cantly outperformed a reference method in various BCI

paradigms. The framework first extracts spatial covariance

matrices (SCMs) for each class [35]:

Pi ¼
1

N t−1
XiXi

T

where Pi represents an SCM for the i-th trial of each

class. X and Nt are a short-time segment of EEG signals

and the number of samples in a trial, respectively. Be-

cause SCMs are symmetric positive-definite (SPD)

matrices belonging to the manifold P(n), the distance be-

tween any two SPD matrices P1 and P2 is defined using

Riemannian geometry, as follows:

δR P1;P2ð Þ ¼
X

n

i¼1

log2λi

" #1=2

where λi (i = 1, …, n) are the eigenvalues of P1
−1
P2.

When we have a set of M covariance matrices, the Rie-

mannian mean can be computed as

ϑ P1;…;PMð Þ ¼ arg min
P∈P Cð Þ

X

M

m¼1

δ
2
R P;Pmð Þ

The Riemannian means are then mapped onto the Rie-

mannian tangent space for classification. This mapping

method is called tangent space mapping [35]. Through

this mapping method, the matrices can be vectorized

and handled as Euclidean objects. This mapping method

allows the use of more advanced classifiers within the

Riemannian space and returns a new feature set. The

size (S) of the new feature set is defined as follows:

S ¼ Nelec � Nelec þ 1ð Þ=2

where Nelec represents the number of channels, which

was 19 in this study. As a result, the feature vectors of

training and test sets in our online experiment were

matrices of 190 × 40 (20 trials for each class in a training

session) and 190 × 40 (20 trials for each class in four test

sessions), respectively. A procedure for selection of vari-

ables is then applied in order to decrease the space’s di-

mensionality. A one-way ANOVA is used to select the
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most discriminant variables. Finally, linear discriminant

analysis (LDA) was selected as a classifier and performed

to each pair of class. The leave-one-out cross validation

(LOOCV) method in offline analysis was applied to cal-

culate the classification accuracy owing to the relatively

small number of task trials (20 trials per task). A

MATLAB toolbox, the Covariance Toolbox, was used

(https://github.com/alexandrebarachant/covariancetool-

box) for these analyses.

The second classification framework was a traditional

one using spectral band powers and their inter-hemispheric

asymmetry ratios as EEG features. The frequency bands

were separated into five sub-frequency bands: theta (4–7

Hz), alpha (8–13Hz), low beta (14–20Hz), high beta (21–

30Hz), and gamma (31–45Hz). In order to extract the

power spectral density (PSD) features, each epoch was di-

vided into 1-s segments with 50% overlap, resulting in a

total of nine-time segments. Each segment was then trans-

formed into the frequency domain using a fast Fourier

transform (FFT) with a Hamming window, and the average

spectral power of each electrode at each frequency band

was calculated by averaging the spectral powers of the

nine-time segments. The asymmetry ratios between the

right and left hemispheres were evaluated for each fre-

quency band as (R-L)/(R + L), where R and L represent the

spectral powers averaged over the right and left hemi-

spheric electrodes, respectively. Consequently, 95 spectral

power features (19 electrodes × 5 frequency bands) and 5

asymmetry ratio features (5 frequency bands) were

evaluated for each trial. The LOOCV method was applied

to assess the classification accuracy, considering the

relatively small number of task trials performed. For each

cross-validation, the sequential forward feature selection

(SFFS) method was used to select the best feature subset

for the current training dataset as well as to reduce the di-

mensionality of the feature vectors [38]. The 1-nearest

neighbor error was used as the criterion function for the

SFFS method, and the maximum number of selected fea-

tures was set to 10 to prevent potential over-fitting of the

data. LDA and support vector machine (SVM) classifiers

were used to calculate the classification accuracies [39].

Results

Neurological assessment based on event-related

potentials

After IRB approval, neurological and associated signs

found during the examined period between December

2015 to January 2016 confirmed that our participant had

already progressed to CLIS based on the following evi-

dence: there were no voluntary or involuntary eye move-

ments, including blinking and corneal reflexes, with

verbal commands or external stimuli such as light, tact-

ile, and auditory stimuli. However, the participant’s

pupillary light reflexes and cardiovascular response with

stimulation were intact, and normal EEG alpha rhythms

were observed. From these results, we could conclude

that she was in CLIS at that time. After checking these

neurological signs of CLIS, we evaluated her hearing

functions and cognition using a neurological ERP test.

We first checked for MMN after providing the partici-

pant with a series of frequent (standard) and rare (devi-

ant) auditory stimuli [33]. Figure 3a shows the ERPs

elicited by deviant and standard stimuli at five EEG

channels, where distinct negative activity between 100 to

300 ms was observed in response to a deviant sound

stimulus, with which we confirmed that the participant

had normal hearing function. To ascertain the partici-

pant’s cognitive function, the patient was further

instructed to selectively concentrate on specific beeps

with high- or low-pitch tones. If the patient could not

discriminate the beeps in accordance with our instruc-

tions, no difference would be observed in ERPs elicited

by target and non-target stimuli. Figure 3b depicts the

average ERP waveforms evoked by target and non-target

stimuli, where significant differences were found in the

amplitudes of two ERP waveforms at approximately 600

ms (the grey-coloured time period in Fig. 3b). When a

healthy subject conducted the same auditory oddball

paradigm, a P300 component was clearly observed at ap-

proximately 400 ms (see Fig. 3c). The prolonged latency

and reduced amplitude of P300 might reflect the pa-

tient’s cognitive decline [40], but it seemed obvious that

the patient retained sufficient cognitive function with

which to understand the experimental instructions and

perform basic mental tasks.

ERD/ERS during each mental task

In the offline experiment, the patient was asked to per-

form one of three different mental tasks, namely LMI,

MS, and TMI, the details of which can be found in the

Methods section. We visualized ERS and ERD patterns

during these mental tasks in order to confirm the sub-

ject’s engagement in the experiment. ERS and ERD rep-

resent stimulus/task-induced increase and decrease in

spectral powers, respectively. The first row in Fig. 4

shows the ERSP maps at task-related channels for each

task, and the second row illustrates the topographical

maps of the averaged ERSP for specific frequency bands

for each task. From our results, we could confirm that

the characteristic ERS/ERD patterns were generated

when the CLIS patient performed the given tasks. Dur-

ing the LMI task, we observed slight alpha ERS and

ERD at C4 (contralateral side) and C3 (ipsilateral side),

respectively. On the other hand, strong low-beta ERD

was observed at both C3 and C4 (see Fig. 4a). During

the TMI task, low-beta ERD patterns were commonly

observed at both C3 and C4 (see Fig. 4b). Finally, the

performance of the MS task enhanced the frontal theta
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powers and weakened the frontal alpha powers (see Fig.

4c). Distinct ERD/ERS patterns were observed especially

between MS and motor-imagery tasks (LMI/TMI). These

results are in line with previous studies [41–44], which

show that LMI generates alpha ERD and beta ERD around

the central areas of both hemispheres [41–44]. TMI gen-

erally generates beta ERS above the motor cortex; how-

ever, beta ERD above the left and right central areas is also

often observed in prior studies [41, 45, 46]. Finally, several

previous studies have reported that the mental arithmetic

tasks enhance the frontal midline theta and weaken the

frontal alpha [46–49], which is consistent with our

findings.

Results of the offline experiment

Through an offline experiment (Fig. 5), we determined

the following factors: 1) the best combination of differ-

ent mental tasks for binary communication and 2) the

optimal classification method potentially leading to the

highest performance. Figure 5a shows a manifold plot of

Riemannian distance between LMI and MS, where each

marker in the figure indicates the Riemannian distance

of each trial from the two class-related mean covariance

matrices, and the dashed line indicates the decision

border. Most trials could be classified well even with the

simplest linear classification scheme. Figure 5b shows

the average cross-validated classification accuracies of

Fig. 3 Results of the auditory oddball test. a Neural responses reflecting normal auditory function in the CLIS patient. Red bold and black dotted lines

represent ERPs by deviant (240 trials) and standard (240 trials randomly selected from 600 trials) stimuli, respectively. The shaded area indicates the

significant area as the result of the paired t-test between deviant and standard stimuli (p-value < 0.05). b Neural responses reflecting normal cognitive

processes in the CLIS patient. Blue and red lines indicate ERPs by target (120 trials) and non-target (120 trials) stimuli, respectively. The shaded area

indicates the significant area as the result of the paired t-test between target and non-target stimuli (p-value < 0.05). c An example of ERP waveforms

obtained from a healthy subject after applying the same auditory oddball protocol used for the CLIS patient. The shaded area indicates the significant

area as the result of the paired t-test between target and non-target stimuli (p-value < 0.05). d Neural responses showing abnormal cognitive decline

after the CLIS patient’s physical status worsened. This result was obtained 4months after the online experiment. We were unable to detect any

evidence of consciousness or alertness of the patient
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binary classifications for different combinations of three

mental tasks: MS, LMI, and TMI. Among the three pos-

sible combinations of mental tasks, the highest average

classification accuracy of 89% was achieved when the

LMI and MS pair was used. Figure 5c shows the accur-

acies of classifying LMI and MS evaluated using three

different classification methods: RG, LDA, and SVM. An

average classification accuracy of 95% was achieved

when RG was used for the classification of LMI and MS.

On the other hand, average classification accuracies of

87.5 and 85% were achieved when conventional LDA

and SVM classifiers were used, respectively, which were

much smaller than that of the RG method. To further

investigate whether reasonable classification accuracy

could be achieved even when fewer electrodes were

used, we gradually reduced the number of electrodes

used for RG-based classification and evaluated the

resulting changes in the average classification accuracy.

This information is important because using fewer EEG

electrodes can reduce the time required to set up the

EEG experiments. Figure 5d shows the average classifi-

cation accuracies with respect to the number of elec-

trodes. The classification accuracy increased as more

electrodes were used but a fairly high classification ac-

curacy exceeding 90% could be achieved with only ten

electrodes. We also tested the feasibility of P300-based

BCI using the ERP data recorded in the first experiment,

but the performance of the mental-task-based BCI (ac-

curacy = 90%; time for decision = 5 s) was much better

than that of the P300-based BCI (accuracy = 80%; time

for decision = 24 s).

Online performance of our paradigm

The results of our preliminary offline experiment were

used to implement an online yes/no communication sys-

tem. In the online experiment, we used the RG-based

classification framework because it outperformed the

traditional classification frameworks in the offline ana-

lysis. LMI and MS were selected as optimal tasks for the

online experiments. Figure 6a shows the classification

accuracy of the online experiment, the average accuracy

of which was 87.5%. Although the online classification

accuracy was slightly lower than the offline classification

accuracy, our results are promising considering that no

previous EEG-based BCI systems have achieved such a

high accuracy with a patient in CLIS. The online classifi-

cation accuracies for four consecutive runs were 100, 90,

80, and 80%. This gradual reduction in accuracy might

be explained by the mental fatigue experienced by the

patient, although the patient’s mental fatigue could not

be quantitatively measured. A movie clip showing the

online experiment can be found on YouTubeTM

(https://youtu.be/zQWtSQOV50Q).

Test-retest reliability

We evaluated the test–retest reliability of the proposed

mental-imagery-based BCI paradigm. Figure 6b depicts

the results of test–retest reliability assessments. In the

Fig. 4 Time–frequency maps and topographical distribution for each mental task. a Event-related spectral perturbation (ERSP) maps during left-

hand motor imagery (LMI) (b) ERSP maps during tongue motor imagery (TMI) (c) ERSP maps during mental subtraction (MS). EEG epochs from −

1 to 5 s were used for the time–frequency analysis. Red vertical dotted lines in the time–frequency maps of the first row represent the onset of

each instruction. The values in the topographical distributions are averaged ERSP values from 0 to 5 s for each frequency band. The topographical

maps in the posterior areas were not visualized because no electrode was attached in the parietal and occipital areas. Brown circles in the

topographical maps of the second row indicate the electrodes used in the time–frequency analysis. All the figures were drawn using functions

implemented in the EEGLAB toolbox (https://sccn.ucsd.edu/eeglab/index.php)
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online experiment, training datasets were recorded im-

mediately before online experimental runs (denoted by

Online TR), which resulted in an online classification ac-

curacy of 87.5%, as previously shown in Fig. 6a. During

the online experiments, EEG data were recorded and

used to confirm the test–retest reliability. We trained

the classifier using a training dataset recorded from the

same patient about 6 months before the online experi-

ment (denoted by Offline TR). This classifier, trained

with the old training dataset, was also applied to the

Fig. 6 Results of the online experiment and test–retest reliability of the BCI system. a Results of the online experiment. RG was used as the

classification algorithm. The number of electrodes was 19. The Y axis indicates the averaged online classification accuracies for each online run.

The red horizontal dotted line indicates the level of chance. Note that the chance level is 70% when the number of trials is 20 and the

confidence level is 99% [52] (b) Test–retest reliability of the BCI system. The Y axis indicates average classification accuracies for each

training dataset

Fig. 5 Results of the offline experiment. a Riemannian distance to the Riemannian mean of two class-related mean covariance matrices for LMI

and MS. Each symbol represents a single 5-s trial and the dashed line indicates a decision border. This scatter plot was drawn after leave-one-out

cross validation (LOOCV). b The average (cross-validated) classification accuracies of classifications for different combinations of three mental tasks:

MS, LMI, and TMI. Nineteen electrodes were used for the classification. Each bar shows the average of the classification accuracies by different

classification algorithms: Riemannian geometry (RG), linear discriminant analysis (LDA), and support vector machine (SVM). c The accuracies of

classifying LMI and MS, evaluated using the three different classification methods. Nineteen electrodes were used. d The average offline

classification accuracies with respect to the number of electrodes when RG was used for the classification. The classification accuracies were

evaluated for all possible combinations of electrodes and then averaged
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EEG data recorded during the online experiment. Even

when the classifier was trained with the old training

dataset, the classification accuracy reached 85%, demon-

strating high test–retest reliability of our paradigm. In

addition, a new dataset was constructed by combining

the old training dataset (Offline TR) with a newly ac-

quired training dataset (Online TR). By combining the

two training datasets (denoted by Combined TR), the

classification accuracy was further improved to 90%, as

shown in Fig. 6b. Unfortunately, our patient was unable

to participate in follow-up experiments. When we tested

the patient four months after the online experiment, we

could not find any evidence of consciousness or alert-

ness (see Fig. 3d).

Discussion

Our EEG-based BCI system showed good performance

in terms of accuracy and communication speed. The off-

line and online average classification accuracies were 95

and 87.5%, respectively, and the time for each trial was

just 5 s. Most previous EEG-based endogenous BCI

methods have failed to effectively communicate with pa-

tients in CLIS [21, 27]. A study by De Massari et al. [21]

proposed a Pavlovian semantic conditioning paradigm,

which comprised the presentation of affirmative or nega-

tive statements for conditioned stimuli and electrical

stimulation of skin for unconditioned stimuli, for the

basic communication in CLIS. They reported a few cases

with a classification accuracy of up to 70%, but the per-

formance of their protocol was not consistent over all

experimental runs. More recently, Chaudhary et al. [27]

tested a binary paradigm for CLIS patients. Their para-

digm had known answers and open questions. Their pa-

tients were automatically thought of ‘yes’ or ‘no’ for the

answers to the questions. According to their reports, the

EEG results did not exceed the chance-level threshold

for correct communication. These previous EEG-based

endogenous BCI studies have used paradigms based on

passively generated automatic responses to the given

questions. These passive paradigms have been used be-

cause the researchers assumed their CLIS patients might

not perform active mental tasks due to cognitive decline

or dementia originating from the neurodegenerative dis-

eases. We carefully guess this might be a reason for the

failure of previous EEG-based endogenous BCIs. If the

patients in CLIS can perform active mental tasks such as

LMI or MS, the performance of the EEG-based en-

dogenous BCIs may be much improved because more

robust EEG features can be extracted. Although previous

EEG-based endogenous BCI studies have not yielded

promising results for communication with patients in

CLIS, recent NIRS-based BCI studies showed potential

for use for communication with patients in CLIS [27, 50,

51]. For instance, Naito et al. proposed a NIRS-based

BCI paradigm using mental tasks and tested its perform-

ance in a sample of 17 patients in CLIS [51]. About 40%

of the patients in CLIS included in their study were able

to successfully accomplish the experimental task with re-

liable performance, with an offline classification accuracy

of approximately 80%. More recently, Gallegos-Ayala et

al. proposed a new NIRS-based BCI paradigm that in-

volved asking a patient in CLIS to think of either ‘yes’ or

‘no’ after yes-or-no questions [50], resulting in an aver-

age accuracy of 76.30%. An extended version of this

NIRS study was reported in 2017 [27], in which the

authors tested their NIRS-based BCI paradigm in a lar-

ger sample of patients in CLIS and confirmed that the

patients could achieve an accuracy greater than 70%,

better than that expected serendipitously. Although pre-

vious NIRS studies have shown promising results, the

major disadvantages of these NIRS-based BCI paradigms

are slow communication speeds and low classification

accuracies. These paradigms generally require task

lengths longer than 15 s for classification. In comparison,

our method achieved both good classification accuracy

(87.5%) and communication speed (5 s).

In 2017, a study by Guger et al. [26] demonstrated the

potential of using a vibrotactile stimulation-based ex-

ogenous BCI paradigm for communication with patients

in CLIS. However, the current study still makes an im-

portant contribution in the BCI community in that this

is the first report showing that EEG-based ‘endogenous’

BCI paradigms can be used for online communication of

patients in CLIS. Endogenous BCI is more ideal than ex-

ogenous BCI because it does not require any external

stimuli in visual, auditory, and tactile forms, but only

uses neural signals generated by performing designated

mental-imagery tasks. In fact, the performance metrics

of the present endogenous BCI were even better than

those of the exogenous BCI applied to the patients in

CLIS [26] (classification accuracy: 87.5% vs. 80% (two of

three patients); communication speed: 5 s vs. 38 s). The

only disadvantage of endogenous BCI paradigms might

be the necessity of pre-training sessions to build

classifiers (Note that the previous study [26] adopted an

exogenous BCI paradigm, but it required training ses-

sions); however, this study also showed that there were

no significant differences in the classification accuracies

even when a training dataset that was recorded several

months prior to an online experiment was used for the

online experiment. This suggests that patients in CLIS

might use the proposed EEG-based BCI paradigm with-

out any additional training runs for at least several

months.

In 2012, Barachant et al. introduced a classification

framework based on RG [35] that proved to be superior

to conventional methods in terms of classification accur-

acy [35–37]. However, the performance of RG-based
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classification frameworks has never been evaluated for

patients with ALS. In this study, we confirmed that the

performance of an RG-based framework using covari-

ance matrices as EEG descriptors outperformed LDA

and SVM using spectral band powers as EEG features.

Brain signals may be the only feasible way for patients

in CLIS to communicate with their external environ-

ment. In our study, a combination of LMI and MS

showed the highest average classification accuracy of

89%, whereas the combination of LMI and TMI exhib-

ited the lowest average classification accuracy of 62.5%.

These results are in line with those of previous

EEG-based BCI studies, in that the combination of

motor and non-motor-imagery tasks resulted in better

classification accuracy than the combination of two dif-

ferent motor-imagery tasks [30, 31].

We tested the proposed mental task-based BCI para-

digm with only one patient in CLIS because it was ex-

tremely difficult to recruit patients who had lost all

ability to communicate by conventional methods. Unfor-

tunately, our patient was unable to participate in

follow-up experiments after the only online experiment

because her physical status worsened after recovering

from acute pneumonia. When we revisited her and re-

corded her ERP signals while applying the auditory odd-

ball paradigm, we were unable to find any evidence of

consciousness or alertness (see Fig. 3d). We do not ex-

pect that our proposed BCI paradigm will be successfully

applied to all patients in CLIS because every BCI para-

digm suggested to date has failed in some participants.

Nevertheless, we believe that our study is meaningful be-

cause our results suggest that EEG-based BCI systems

can potentially be used for online binary communication

with at least some patients in CLIS.

Conclusions

In this study, we implemented an EEG-based BCI system

that can be potentially used for online binary communi-

cation with a patient with ALS in CLIS. In the offline ex-

periment, we determined the best combination of

mental tasks and the optimal classification strategy lead-

ing to the best performance. In the online experiment,

we investigated whether our BCI system could be poten-

tially used for real-time communication with the patient.

An online classification accuracy of 87.5% was achieved

when RG-based classification was applied to real-time

EEG data recorded while the patient was performing ei-

ther left-hand motor imagery or mental subtraction task

for 5 s. The offline and online results demonstrate that

EEG-based endogenous BCI might be a feasible method

for communication with patients who cannot communi-

cate through conventional methods that require intact

motor function.
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