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Abstract: ZnO and hybrid of ZnO/Ag structures in the nanometer size were electroless deposited on
the Mg-Ca0.3 alloy surface, achieved from aqueous solutions (10−3 M at 21 ◦C) of ZnO (suspension),
Zn(NO3)2 and AgNO3. The surface characterization of the deposits was carried out by Scanning
Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS), X-Ray Photoelectron Spectroscopy
(XPS), Fourier transform infrared (FTIR), UV-Visible and Raman spectroscopy. The nanoparticles
(NPs) area size distribution analysis revealed that the average of ZnO-NPs was ~85 nm. Likewise, the
Ag-NPs of electroless deposits had an average area size of ~100 nm and nucleated in the vicinity of
ZnO-NPs as Ag+ ions have been attracted by the negatively charged O2− atoms of the Zn-O dipole.
The ZnO-NPs had the wurtzite structure, as indicated by Raman spectroscopy analysis and XRD
complementary analysis. The UV-Visible spectroscopy analysis gave a peak at ~320 nm associated
with the decrease in the imaginary part (k) of the refractive index of Ag-NPs. On the Mg-Ca0.3 surface,
MgO, Mg(OH)2 and MgCO3 are present due to the Mg-matrix. XRD spectra of Ag-NPs indicated
the presence of planes arranged with the FCC hexagonal structure. The reported hybrid ZnO/Ag
electroless deposits of NPs are of interest for temporary implant devices, providing antibacterial
properties to Mg-Ca0.3 surface, a widely used biodegradable material.

Keywords: Mg-Ca alloy; electroless deposits; ZnO; Ag; nanoparticles; XPS; SEM-EDS; UV-Vis; Raman

1. Introduction

Magnesium and its alloys have attracted research interest as biodegradable and bio-
compatible materials when used as temporary implants in physiological media, presenting
an alternative over the non-resorbable biomaterials [1–10]. During the biodegradation
process, magnesium Mg2+ ions are released, which are non-toxic, and used for the syn-
thesis of proteins, activating a variety of enzymes and regulating the central nervous
and neuromuscular systems; these ions also help regulate blood glucose, blood pressure,
and play an important role in the prevention and treatment of diabetes and cardiovascu-
lar diseases [11–18]. Because of these many advantages, Mg and its alloys are potential
materials for the design of new temporary orthopedic devices, providing mechanical prop-
erties similar to those of the human bone, maintaining mechanical integrity on a scale of
12–18 weeks, while the bone tissue heals [5,19–21]. However, to help fight against bacterial
infection during and after surgery requires an additional modification of the material
surface to achieve antibacterial activity [19,22–28]. According to a prior report, the hybrid
structures are based on the combination of deposited semiconductor oxides (micro- or
nanostructured) and noble metal nanoparticles (NPs) on the implantable metallic surfaces
is a current and pressing research topic in this area to improve antibacterial properties to
these alloys [12,13,24,28–34].

In this aspect, ZnO, a wide-bandgap semiconductor oxide and its nanoparticles (NPs),
known for their mechanical resistance [33], have been considered one of the novel antibac-
terial biologically active materials through several possible mechanisms. On the one hand,
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the release of Zn2+ ions in physiological media results in the activation of antibacterial
mechanisms against different bacteria species [34]. The antibacterial activity of ZnO-NPs
has been suggested to be based on their ability to induce excessive generation (stress) of
Reactive Oxygen Species (ROS), such as superoxide anion (O2−), hydroxyl radicals (OH−)
and the production of hydrogen peroxide (H2O2). This oxidative stress results in the for-
mation of electron losses that cause cell death in different bacteria [29]. One study reports
that the possible antibacterial mechanism of ZnO-NPs against the bacteria Escherichia coli
is due to the NPs coming into direct contact with the phospholipid bilayer of the bacteria
membrane, destroying its integrity and causing cell death [32].

Several studies report the antibacterial efficiency of Ag-NPs against different bacteria
(Straphylococcus Epidermis, Straphylococcus Aureus, Pseudomonas Aeruginosa, Escherichia Coli,
Klepsiella Pneumonia, Citrobacter Koseri and Salmonella Typhii), although the mechanism
of action is not yet fully understood [27,29,30,35]. However, it has been shown that Ag-
NPs, by binding to and infiltrating the cell wall, may cause physical changes and damage
to the cell wall, leading to leakage of cell content and subsequent destruction of the
bacteria [36,37]. Some reported results have demonstrated that the antibacterial activity
of Ag-NPs against Escherichia coli has been associated with the perforation of its cell wall,
where an accumulation of Ag+ occurs, resulting in cell death [29].

In this work, we report the deposition of ZnO and Ag because semiconductor oxides,
such as ZnO, may provide a large surface area that serves as better structural support for
the deposits of noble metals such as Ag-NPs. In this regard, the Ag-NPs deposit on the
ZnO surface may considerably increase the antibacterial activity against Gram-positive
and Gram-negative strains [12,13,38–40]. For example, one study reported that composite
coatings of Zn and Ag particles (Zn/Ag), electrodeposited on AISI 1019 steel, may improve
the antibacterial properties of the steel surface [41]. A separate study found that an
Ag-ZnO nanostructured coating on Mg-2Ca-0.5Mn-6Zn was prepared through physical
vapor deposition (PVD), and it was found that the corrosion resistance and antibacterial
activity of the coated surface were improved in Simulated Body Fluid (SBF) physiological
media, suggesting that this coating is suitable for permanent implant applications [42].
Another report of a composite coating of ZnO deemed nanostructured ZnO/Ca3ZrSi2O9
was fabricated as an over-layer on Mg-Zn-Ca surface via physical vapor deposition (PVD)
coupled with electrophoretic deposition (EPD), and it was considered as another suitable
coating for Mg alloy; in this material intended for a permanent orthopedic implant, the
authors reported improved corrosion resistance in SBF media with better antibacterial
activity [43]. Here, we present the simple electroless deposition of ZnO and ZnO/Ag
coatings on Mg-Ca0.3 alloy, which does not require vapor phase deposition, complex
agents or reductive additives for the preparation of the solutions. We demonstrate that
ZnO/Ag hybrid coating is of interest for temporary implant materials, and because of the
intrinsic provisional applications of the materials, the coating should provide antibacterial
properties but without increasing the corrosion resistance, as in the examples above [41–43].

Mg-Ca alloys have attracted significant attention in material bioengineering in the
design of orthopedic implants and bone tissue because the Ca element has a high nat-
ural abundance in the human body, mainly in bones and teeth [44]. The Ca2+ ion and
its compounds (phosphate type) can be tolerated (low toxicity) by the human body at
relatively high levels of ~4 g/day. The Mg-Ca alloys are also mechanically compatible
with bone, biodegradable and exhibit interesting characteristics as a potential material for
implants, providing cell adhesion (osteoconductivity) and cell growth stimulation on the
implant surface [44,45]. In a previous study, we reported the antibacterial effect of Ag-NPs
electroless deposited on the Mg-Ca0.3 surfaces, with a percentage inhibition of diameter
growth (PIDG) of up to 64% against E. coli and 83% against S. aureus [45].

Among the methods developed for the deposition of the coating on metals surface, the
electroless deposition (ELD) method without external polarization is well-known [46–49].
Electroless deposition is usually limited to a few monolayers without the addition of a
catalyst [50]. The objective of this work is to obtain and provide a multiscale characterization
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of ZnO-NPs and hybrid ZnO/Ag -NPs electroless deposited on the surface of the Mg-Ca0.3
alloy, obtained from aqueous solutions (10−3 M, at 21 ◦C) of ZnO, Zn(NO3)2 and AgNO3.
The characterization of the nanoparticles was carried out by SEM-EDS, XPS, FTIR, UV-
Visible and Raman spectroscopy techniques. The Ag-NPs size and surface distribution
were also determined.

2. Materials and Methods
2.1. Samples and Solution Preparation

The Mg-Ca0.3 alloy (0.3 wt.%) was supplied by Helmholtz-Zentrum Hereon, Institute
for Material and Process Design (Geesthacht, Germany); the alloy was manufactured by
extrusion in the form of 1 cm diameter cylindrical bars. Table 1 presents the nominal
composition (wt.%) according to the manufacturer. The Mg-Ca0.3 samples (0.78 cm2) were
sanded with 600 to 4000 grit SiC paper with ethanol as a lubricant, then sonicated for 5 min
and dried at room temperature.

Table 1. Nominal composition of the extruded Mg-Ca0.3 alloy.

Element Mg Ca Al Zn Fe Cu Ni

Composition (wt.%) Bal. 0.23 0.016 0.006 0.0019 0.0019 0.0014

Electroless deposits of ZnO and ZnO/Ag on Mg-Ca0.3 surface (0.78 cm2) were
achieved by immersion in 10−3 M aqueous suspensions of ZnO and solutions of Zn(NO3)2
(for 5 min) and AgNO3 (for 3 min) at 21 ◦C [51–55]. Consequently, the previously ZnO
coated samples were immersed in 10−3 M AgNO3 solution [56–68] for 3 min (Table 2). The
aqueous solutions were prepared from analytical grade reagents (Sigma-Aldrich, St. Louis,
MO, USA) and deionized ultrapure water (18.2 MΩ cm). The measured pH (pH60, Apera
Instruments, Columbus, OH, USA) and ion content of the solutions (photometry HI83200,
Hanna Instruments, Woonsocket, RI, USA) are presented in Table 2. Note that the ion
concentrations were measured using a standard method and reactants (Hanna Instruments),
and we report their average and standard deviation after three replicates.

Table 2. pH and Zn2+ and Ag+ ion ions concentrations of the aqueous solutions and their pH, used
for electroless deposition.

Solution
(10−3 M)

Concentration
(mg L−1)

Zn2+ Ions
(mg L−1)

Ag+ Ions
(mg L−1) pH

ZnO 83.38 1.05 ± 0.32 — 7.11 ± 0.05
Zn(NO3)2 297.48 66.7 ± 1.21 — 6.45 ± 0.03

AgNO3 169.87 — 108.8 ± 1.72 6.22 ± 0.02

Note: The Zn(NO3)2 aqueous solution contains higher Zn2+ ion concentration.

The coated samples were taken to the oven (Thermolyne 46100 High Temperature
Chamber Furnace, Dubuque, IA, USA) and baked at 200 ◦C for 48 h so that at this tempera-
ture, strapped water would be removed from their structure [55,59–61].

2.2. Electroless Deposits of ZnO-NPs and Hybrid ZnO/Ag-NPs on Mg-Ca0.3 Surface and
Their Characterization

The morphology and composition of the deposits on the Mg-Ca0.3 surfaces were
characterized by: SEM-EDS (SEM-EDS, XL-30 ESEM-JEOL JSM-7600F, JEOL Ltd., Tokyo,
Japan) and XPS (K-Alpha Surface Analyzer, ThermoFisher Scientific, Waltham, MA, USA).
The binding energies of all XPS spectra were corrected so that the C1s peak would be
at 284.8 eV. The ZnO and ZnO/Ag deposits were characterized by the UV-Vis technique
(AVASpec 2048, AVANTES, Eerbeek, The Netherlands), FTIR (Specular Apertured Grazing
Angle, SAGA; Nicolet nexus 670, ThermoFisher Scientific, Waltham, MA, USA), XRD
(Siemens D-5000 diffractometer, Grazing Beam 1 Th, 34 kV 25 mA, Munich, Germany) and
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Raman spectroscopy (Ar-ion laser of 488 nm, 50× of 1800 grooves/mm, spectral resolution
of 1 cm−1; confocal Raman alpha300 WITec GmbH, Ulm, Germany).

3. Results and Discussion
3.1. Surface Characterization of Mg-Ca0.3
3.1.1. SEM-EDS Analysis

Figure 1 presents the SEM image (2000×) of the freshly polished reference surface
of Mg-Ca0.3. The EDS analysis of the zones (labeled as 1 and 2, Figure 1b) revealed the
highest value for the element Mg (the metallic matrix), as well as suggested the presence of
MgO and Mg2Ca particles, widely reported in the metallurgy literature [59–62].
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Zn(NO3)2 (Figure 2d,e).
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The deposits showed the tendency of a cluster formation, more nucleated on the
substrate surface (Figure 2d,e) when achieved from the Zn(NO3)2 solution (Table 2). The
EDS analysis (wt.%) of the zones labeled as 1–8 (Figure 2b,c,e,f) indicated that besides the
main component of Mg (the matrix of the alloy), Zn and O are present, and C at relatively
lower content.

3.1.2. XPS Analysis

In order to correlate the EDS elemental quantification analysis (Figure 2) with the
composition of electroless deposits formed on the Mg-Ca0.3 surface, XPS analysis was
carried out; Figure 3 presents the high-resolution spectra of Mg, Zn, O and C elements.
The O1s spectrum shows a maximum peak at ≈531.9 eV associated with the presence
of hydroxide [66–70], as also two deconvoluted peaks at ≈531.2 eV ascribed to metal
oxide [71–77] and at ≈532.3 eV belonged to inorganic carbonate [66,67,73,78–80]. The
high-resolution spectrum of Mg2p presented a maximum peak at ≈50.2 eV associated with
the presence of MgO [67,69,71,72,81]; likewise, two deconvoluted peaks were detected
at ≈49.8 eV ascribed to Mg(OH)2 [66–69], and at ≈51.2 eV suggesting the presence of
MgCO3 [66,67,73]. The high-resolution spectrum of C1s presented a maximum peak
at ≈287.9 eV associated with the presence of carbon in MgCO3 [66,67,73]. Because of
the spin-orbit splitting, the Zn2p spectrum has two peaks: at ≈1045.7 eV, characteristic
of ZnO [66,67,73–75,78–81], and at ≈1022.5 eV associated with the presence of ZnCO3.
According to a previous study, MgO has shown a high potential for CO2 adsorption due
to its high porosity and the tunable nature of the pores [82]. The formation of ZnCO3 is
associated with the CO2 adsorption on polar surfaces of ZnO, where CO2 dissociates at
oxygen vacancy [83]. It may be noted that the deposits obtained from Zn(NO3)2 solution
exhibited ≈3 times higher intensity of the Zn2p spectrum peaks (Figure 3b) than those of
the deposits achieved from the ZnO solution (Figure 3a). These facts correlate with the EDS
analysis (Figure 2).
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3.1.3. EDS Mapping of the Elements

Figure 4 presents the EDS maps (200×) of Mg, Zn, O and C elements (wt.%) and their
distribution as a part of the ZnO electroless deposits on Mg-Ca0.3 (Figure 4a,b). As it was
suggested by the XPS analysis (Figure 3), the Mg, O, C and Zn belong to the MgO, Mg(OH)2,
MgCO3, ZnCO3 and ZnO compounds. The deposits obtained from Zn(NO3)2 aqueous
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solution (Table 2) presented ≈2 times higher concentration of Zn (Figure 4b) compared to
the content of Zn of the deposit from ZnO solution (Figure 4a).
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3.1.4. ZnO Nanoparticle Size Distribution

Figure 5 displays the particle size distribution of ZnO (this analysis was carried
out with the ImageJ software of the National Institutes of Health, Bethesda, Maryland,
USA). Note that the average size of an individual particle is ≈90 ± 3 nm (Figure 5a) and
≈79± 3 nm (Figure 5b). Furthermore, the frequency of these ZnO nanoparticles is≈2 times
higher for the ZnO deposits (Figure 5b) obtained from the Zn(NO3)2 solution (Table 2)
and apparently more dispersed on the surfaces (Figure 2). Figure 5a′,b′ present the SEM
images (100,000×) of isolated particles on the Mg-Ca0.3 surface for both deposits, which
size agrees with the particle distribution analysis (88.3, 92.5 and 81.6 nm).
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3.1.5. FTIR Analysis

Figure 6 shows the FTIR spectra (Specular Apertured Grazing Angle) of the ZnO
electroless deposits on the Mg-Ca0.3 surfaces. The peak at ≈650 cm−1 is characteristic
of the Mg-O vibration [84,85], while the narrow peaks at ≈3680 cm−1 and ≈1510 cm−1

were attributed to the vibration of the structural hydroxyl group in Mg(OH)2 [85,86], both
compounds as corrosion products formed in aqueous solutions (Figure 6b,c). Additionally,
very faint bands between ≈960 and 1140 cm−1 are assigned to a very small amount of
poorly crystalline ZnCO3 (smithsonite) [87,88]. The peak observed at ≈1430 cm−1 was
associated with MgCO3 [87,89] and those at ≈860 cm−1 and ≈600 cm−1 as characteristic of
the Zn-O bond [90–95].
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3.1.6. UV-Vis Spectroscopy Analysis

This analysis was carried out to characterize the electroless ZnO deposits on Mg-
Ca0.3 surface. The UV-Vis spectra (Figure 7) confirmed the presence of the characteristic
absorption peak at ≈380 nm, which is consistent with the intrinsic band-gap of ZnO due to
the electronic transition from the valence band to the conduction band (O2p to Zn3d) [96,97].
Such peak was reported for ZnO obtained by the sol-gel method [98] and from colloidal
solutions [99,100], as well as by spontaneous hydrolysis [101] and alkaline hydrolysis [102].
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Figure 7. UV-Vis spectra of Mg-Ca0.3 surface and electroless ZnO deposits, obtained from aqueous
suspension solutions (10−3 M, at 21 ◦C) and solutions of ZnO and Zn(NO3)2.

3.1.7. Raman Spectroscopy Analysis

Raman spectroscopy study was carried out on the ZnO deposits (Figure 8) as a sensitive
diagnostic tool for the nanocrystal structure and morphology. It is known that ZnO is a
semiconductor (a direct wide band gap of 3.37 eV and a large excitation binding energy
of 60 meV), and the ZnO surface can be described as a dipole oriented (+ −), negatively
charged by the O2− and positively charged by the Zn2+ ions, tetrahedrally coordinated and
resulting in spontaneous polarization. The hexagonal ZnO wurtzite structure belongs to
the C4

6v group. According to this group theory, A1 + 2E2 + E1 are Raman-active modes,
corresponding to optical phonons of Low and High frequency.
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The Raman-scattering spectra of ZnO electroless deposits (Figure 8) revealed that the
main phonon modes are as follows: E2(Low) at ≈88.97 cm−1, E2(High) at ≈392.80 cm−1

and A1(TO) at ≈346.20 cm−1, previously reported for hexagonal wurtzite [103–107]. The
higher intensity of E2(Low) mode indicates that the vibrations of the heavy Zn sublattice
are dominating in this structure, while the E2 of High frequency, attributed to the oxygen
atoms, is at a significantly lower intensity. These facts may suggest that the ZnO structure
of the deposits on the Mg-Ca0.3 presents defects because of the oxygen vacancies [108–110].
The shifts in the reported signals (Figure 8) have been influenced by the specifics of the
Mg-Ca0.3 surface as substrate, as well as by ions impurities in the ZnO nanostructures,
being a part of the used electrolytes for the electroless deposition [105,106,108].

3.1.8. X-ray Diffraction Patterns

In order to characterize the ZnO-NPs, a complementary analysis by XRD was carried
out. The X-ray diffraction spectra of ZnO nanoparticles electroless deposited on Mg-Ca0.3
surface are presented in Appendix A to this manuscript (Figure A1). The peaks of X-ray
diffraction are observed at 2θ values of 31.84◦, 34.5◦, 36.38◦, 47.64◦, 56.70◦ and 68.10◦, which
can be indexed for diffractions from the (100), (002), (101), (110), (103) and (112) planes,
consistent with the hexagonal crystal structure of ZnO (wurtzite, JCPDS No. 361451).

3.2. Characterization of the Hybrid ZnO/Ag Electroless Deposits on Mg-Ca0.3
3.2.1. SEM-EDS Analysis

Figure 9 presents the SEM images (200× and 5000×) of the hybrid ZnO/Ag electroless
deposits on the Mg-Ca0.3 surface. The EDS analysis suggested that more Ag was electroless
nucleated on the ZnO/Mg-Ca0.3 substrate (Figure 9a–c), which surface was less covered
by clusters of ZnO electroless, previously collected from the ZnO solution (Table 2).
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Figure 9. SEM images (200× and 5000×) and EDS analysis of electroless ZnO/Ag hybrid de-
posits achieved on ZnO/Mg-Ca0.3 surfaces obtained from aqueous solutions (10−3 M, at 21 ◦C):
(a–c) ZnO/AgNO3 and (d–f) Zn(NO3)2 /AgNO3.

3.2.2. XPS Analysis

The surface analysis was performed to correlate with the EDS analyzes by zones
(Figure 9c,f). The high-resolution XPS spectra were for ZnO/Ag hybrid electroless deposits
on the Mg-Ca0.3 surface (Figure 10). In a similar way to ZnO nano-coating (Figure 3),
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the high-resolution binding energy spectra identified the presence of Mg(OH)2 (at
≈49.98 eV) [65–68], MgO (at ≈50.54 eV) [66,68,71,72,81], MgCO3 (at ≈51.32 eV) [66,67,73],
ZnO (at ≈1045.30 eV) [66,67,73–75,78–80] and ZnCO3 (at ≈1022.40 eV) [78–80].
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Furthermore, the spectrum of Ag displayed two characteristic peaks at ≈367.77 eV
and ≈373.75 eV [66–69,71–77], and based on their intensities, it indicates that the higher
concentration of electroless Ag deposit nucleated on the ZnO/Mg-Ca0.3 substrate. We
propose that ZnO particles deposit first from the aqueous suspension of ZnO (Table 2).
The deposition from ZnO suspension resulted in less coverage of the Mg-Ca0.3 substrate
surface. This fact correlates well with the SEM-EDS analysis (Figure 9c).

3.2.3. EDS Mapping of the Elements

Similarly, the analysis of the EDS maps (200×) of the ZnO/Ag electroless deposits on
the Mg-Ca0.3 surface (Figures 11 and 12) indicates that ≈2 times higher concentration of
Ag was nucleated on the ZnO/Mg-Ca0.3 surface (Figure 11), which was less covered by
clusters of electroless ZnO, previously obtained from ZnO solution without Ag (Table 1).
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3.2.4. Ag Nano-Particle Size Distribution

The size distribution of Ag-NPs as part of ZnO/Ag hybrid deposits (Figure 13) indi-
cates that Ag-NPs tend to nucleate and grow as islands in the substrate. Being a member
of the wurtzite structural family, the ZnO surface exhibits a normal, non-central dipole
moment in symmetry. These unique characteristics of ZnO, as well as the negative electro-
chemical potential of the Mg-Ca0.3 substrate during the electroless deposition (−1.17 V
vs. SCE), may facilitate the attraction of positively charged Ag+ ions and their deposition
without electricity. The predominant sizes of Ag-NPs are ≈120 ± 3 nm (Figure 13a) and
≈94 ± 3 nm (Figure 13b). On the other hand, there is ≈2 times higher frequency of Ag-NPs
nucleated on the ZnO deposits (Figure 13a) obtained from the ZnO aqueous suspension
free of Ag (Table 2).
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The measured open circuit potential (OCP) during the electroless deposition of ZnO
on Mg-Ca0.3 was ≈−1.63 V (vs. SCE) and ≈−1.17 V (vs. SCE) on ZnO/Mg-Ca0.3 surface
when the Ag-NPs were deposited; this 0.5 V difference is due to the free energy spent in
the deposition of Ag+ ions. We propose that there is a synergistic effect between the highly
negative potential of the alloy (mostly of Mg) and the surface charges of ZnO/Mg-Ca0.3
that facilitate the deposition of Ag+ ions.

3.2.5. UV-Visible Spectroscopy Analysis

Figure 14 shows the UV-Visible absorption spectra of the hybrid ZnO/Ag deposits
on Mg-Ca0.3 alloy. The maximum peak at ≈380 nm is related to the optical behavior of
ZnO-nanoparticles (NPs) [84–86,90], and the valley at ≈320 nm is attributed to the decrease
in the imaginary part (k) of the refractive index of Ag-NPs [91].
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Zn(NO3)2/AgNO3 solutions.

The noise in this area of the spectrum is attributed to the low concentration of Ag-NPs
added to the high optical absorbance associated with ZnO [92].

3.2.6. FTIR Analysis

The FTIR spectra (Specular Apertured Grazing Angle) of the hybrid electroless ZnO/Ag
nano-particles deposits on Mg-Ca0.3 surfaces (Figure 15) revealed the characteristic peaks
for the vibration of the Mg-O bond [82–85], hydroxyl group in Mg(OH)2 [85,86] and car-
bonate group in ZnCO3 [87,88], MgCO3 [87,89] and Zn-O bond [90–95], all similar to those
peaks corresponding to ZnO deposit (Figure 6b,c).

The presence of Ag-NPs in the deposits did not lead to significant changes or additional
peaks in FTIR spectra (Figure 6b,c and Figure 15a,b), suggesting that chemical bonds
between Ag, Mg and ZnO were not formed on most of the surface deposits [92].
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3.2.7. Raman Spectroscopy Analysis

Figure 16 presents the Raman scattering spectra of the hybrid ZnO/Ag deposits. The
peak of Ag detected at 230.94 cm−1 may associate with the Ag-O bond, according to the
literature [111–114].
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When comparing the ZnO/Ag-NPs Raman spectra (Figure 16) with those of ZnO-NPs
electroless deposits (Figure 6), noted that the intensity of the E2(Low) phonon mode of the
Zn2+ ions has increased (Figure 16), consistent with the nucleation (deposition) process the
Ag+ ions interacting with the negatively charged O2− atoms, thus diminishing their polar
moment. On the other hand, the main phonon modes of ZnO are as follows: E2(Low) at
≈100.6 cm−1, E2(High) at ≈397.17 cm−1 and A1(TO) at ≈360.71 cm−1. The shifts towards
higher wave numbers may be attributed to the influence of the changed surface structure
after the deposition of Ag-NPs from the AgNO3 electrolyte.
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3.2.8. X-ray Diffraction Patterns

To collaborate with the Ag-Nps characterization, an XRD analysis was carried out.
The peaks of X-ray diffraction of Ag nanoparticles (Figure A2, Appendix A), electroless
deposited on ZnO/Mg-Ca0.3, are observed at 2θ values of 38.18◦, 44.25◦, 64.72◦ and 77.46◦,
indexed for diffractions from the (111), (200), (220) and (311) planes, corresponding to the
presence of Ag crystals of FCC cell structure (JCPDS No.04-0783). In our previous work, the
Ag nanoparticles electroless deposited on Mg-Ca0.3 presented similar XRD spectra [45].

4. Conclusions

The hybrid of ZnO/Ag structures in the nanometer size, ca. 200 nm, were electroless
deposited on Mg-Ca0.3 alloy surface, known as biodegradable and biocompatible material
in physiological media. The ZnO NPs were achieved from 10−3 M aqueous solutions of
ZnO (suspension) and Zn(NO3)2 on Mg-Ca0.3 substrate and later baked at 200 ◦C for 48 h.
On the baked ZnO/Mg-Ca0.3 surface, Ag-NPs were electroless deposited from 10−3 M
aqueous solution of AgNO3; the hybrid ZnO/Ag deposits also were baked.

The electroless deposits were characterized by SEM-EDS, FTIR and XRD, as well as by
UV-Visible and Raman spectroscopy, as sensitive diagnostic tools for nanocrystal structure.

The average size of solitary ZnO-NPs was estimated in the order of ≈85 nm, and once
nucleated, the NPs tend to agglomerate; their coverage surface area is ≈2 times higher for
the deposits obtained from Zn(NO3)2 solution.

XRD spectra of Ag-NPs indicated the presence of planes arranged with the FCC
hexagonal structure.

Likewise, the Ag-NPs of electroless deposits, of an estimated size of ≈100 nm, nucle-
ated in the vicinity of ZnO-NPs. The UV-Visible spectroscopy analysis identified the peak
at ≈320 nm associated with the decrease in the imaginary part (k) of the refractive index of
Ag-NPs, all consistent with the expectation that the Ag deposits correspond to metallic Ag
in the nanoscale.

We propose that the Ag+ ions were attracted by the negatively charged O2− atoms of
the Zn-O dipole, presenting the wurtzite structure, as suggested by Raman spectroscopy
analysis. Thus, it may suggest that there is a synergistic effect between the highly negative
potential of the alloy (mostly of Mg) and the surface charges of ZnO/Mg-Ca0.3 that facilitate
the deposition of Ag+ ions.

During the process of electroless deposition of the NPs of ZnO and Ag on the Mg-Ca0.3
surface, MgO, Mg(OH)2 and MgCO3 compounds were formed, according to XPS and FTIR.

Overall, the techniques are consistent with the deposition of a non-uniform layer that
consists of crystalline nanoparticles. The deposition of ZnO is crystalline and of sufficient
coverage so that it shows in the UV VIs. These nanoparticles of ZnO and Ag are in intimate
contact based on the Raman results. The corrosion products on the surface suggest that
the Mg is oxidized during the deposition of the Ag, which is consistent with a galvanic
displacement reaction. The ZnO/Ag nanostructures are expected to provide antibacterial
protection to the temporary structure.

The reported hybrid ZnO/Ag electroless deposits of NPs are of interest for tempo-
rary implant devices, providing antibacterial properties to Mg-Ca0.3 surface, used as
biodegradable material.
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