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ABSTRACT: Control over the bubble growth rates forming on the
electrodes of water-splitting cells or chemical reactors is critical with
respect to the attainment of higher energy efficiencies within these
devices. This study focuses on the diffusion-driven growth dynamics
of a succession of H2 bubbles generated at a flat silicon electrode
substrate. Controlled nucleation is achieved by means of a single
nucleation site consisting of a hydrophobic micropit etched within a
micrometer-sized pillar. In our experimental configuration of
constant-current electrolysis, we identify gas depletion from (i)
previous bubbles in the succession, (ii) unwanted bubbles forming
on the sidewalls, and (iii) the mere presence of the circular cavity where the electrode is being held. The impact of these effects
on bubble growth is discussed with support from numerical simulations. The time evolution of the dimensionless bubble growth
coefficient, which is a measure of the overall growth rate of a particular bubble, of electrolysis-generated bubbles is compared to
that of CO2 bubbles growing on a similar surface in the presence of a supersaturated solution of carbonated water. For
electrolytic bubbles and under the range of current densities considered here (5−15 A/m2), it is observed that H2 bubble
successions at large gas-evolving substrates first experience a stagnation regime, followed by a fast increase in the growth
coefficient before a steady state is reached. This clearly contradicts the common assumption that constant current densities must
yield time-invariant growth rates. Conversely, for the case of CO2 bubbles, the growth coefficient successively decreases for every
subsequent bubble as a result of the persistent depletion of dissolved CO2.

■ INTRODUCTION

At sufficiently large voltages, gas bubbles are produced on the
electrodes in electrochemical reactors,1−3 in water-splitting cells
during the electrolysis of water for hydrogen production,4 in
the study of nanobubbles,5−7 and during photoelectrolysis by
solar-driven cells,8,9 a topic that recently has gained interest.
The formation of unwanted nucleation sites or large bubble
departure sizes may lead to an excessive coverage of electrodes
by bubbles. This ultimately results in increased electrical
resistance4,10 within the aforementioned devices. Thus, proper
control over the nucleation, growth, and detachment of bubbles
is expected to play a key role in the progress toward higher
energy efficiencies.11 Moreover, such control should allow us to
efficiently harvest the produced gas bubbles12 without further
need of energy input, e.g., in the form of pumping- or vibration-
based mechanical systems.
Control over the bubble growth rates is a critical aspect that

should be achieved after properly understanding the underlying
physical problem. Bubble growth kinetics in electrolytic systems
has been generally described in the form of13−21

= αR bt (1)

where R is the bubble radius and t is the actual residence time
of the bubble, which starts growing at t = 0, on the electrode
before detachment. Here, b is the dimensional growth
coefficient whereas α is the scaling exponent. Throughout the
majority of the bubble lifetime, except for a very fast inertia-
controlled initial growth15 (on the order of 0.1 s in our
experiments), b and α can be approximated as constants. The
scaling exponent α is typically 1/2 or 1/3, depending on the
experimental conditions.
The occurrence of one scaling exponent is determined by a

quantity of immediate interest, Ae/Rd
2, namely, the ratio of the

active surface area, Ae, of the electrode upon which the bubble
grows to the characteristic bubble surface at the moment of
detachment (at a bubble radius of Rd). This coefficient
represents the ratio between the characteristic time of the
diffusive transport of the evolved gas across a region of the size
of the electrode, tt ≈ Ae/D, and that of the diffusive transport of
gas to the bubble, namely, td ≈ Rd

2/D, which in turn limits the

Received: August 22, 2017
Revised: October 6, 2017
Published: October 17, 2017

Article

pubs.acs.org/Langmuir

© 2017 American Chemical Society 12873 DOI: 10.1021/acs.langmuir.7b02978
Langmuir 2017, 33, 12873−12886

Cite This: Langmuir 2017, 33, 12873-12886

pubs.acs.org/Langmuir
http://dx.doi.org/10.1021/acs.langmuir.7b02978
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.langmuir.7b02978
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.langmuir.7b02978
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.langmuir.7b02978


bubble growth rate. Here, D denotes the gas diffusivity in the
liquid. Alternatively, if the exsolution of dissolved gas into the
bubble is considered to be a chemical reaction, then the
quantity Ae/Rd

2 can be interpreted as a Damköhler number
representing the ratio between the diffusive transport time to
the bulk fluid and the diffusive transport time of gas into the
bubble. This ratio is geometrically imposed by the experimental
configuration, and it essentially specifies the growth mechanism
that determines the nature of b and α.21 Two limiting cases14,21

are to be identified:

(i) Surface-reaction-controlled (or production/reaction-
limited) growth for relatively small active electrode
surfaces, Ae/Rd

2 ≪ 1, where R = bt1/3.
(ii) Diffusion-controlled (or diffusion-limited) growth for

relatively large active electrode surfaces: Ae/Rd
2 ≫ 1,

where R = bt1/2.

Bubbles generated at microelectrodes15,17,20 by catalysis and
at laser-irradiated photoelectrodes21,22 or plasmonic nano-
particles23 are common scenarios of case (i). Here, bubble
growth is directly limited by the gas production rate and hence
by the supplied current. Essentially, all of the gas produced at
the electrode surface is directly transferred into the bubble
adhered to it by diffusion and by coalescence with smaller
(nano)bubbles that nucleate at the rim of the micro-
electrode.20,23 Gas diffusion into the bulk electrolyte is
negligible in comparison. The gas evolution efficiency,24

namely, the fraction of gas contained within the departing
bubble(s) with respect to the total amount of gas produced at
the electrode, has been reported to be close to 100%.20 For
these reasons, microelectrodes enable the production of well-
controlled successions of single bubbles that nucleate, grow,
and detach in a highly periodic and repetitive fashion. In the
case of a single microelectrode, multiple bubble interactions or
bubble coalescence events are suppressed. Moreover, the effect
of convection induced by the detachment of previous bubbles
on the growth rate is negligible because viscous dissipation
limits detachment-induced flow to a short time interval of
around 0.1 s.20 The mathematical formulation of the growth
dynamics in case (i) is trivial. Provided that the growing bubble
remains spherical as it grows and that the contact angle is small,
a simple mass balance yields the following experimentally
confirmed relation15,17,20,25

π
= = ∞R bt

R T I

FvP
t

3

4

1/3 u

0

1/3

(2)

where Ru is the universal gas constant, T∞ and P0 are the liquid
pressure and temperature, I is the electric current, F is Faraday’s
constant, and v is the number of electrons transferred in the
electrochemical cell per molecule of evolved gas.
The mechanism behind case (ii), the case of bubbles growing

on electrodes with relatively large surfaces, is substantially
different. The growth is almost entirely driven by the Fickian
diffusion of gas into the bubble from the surrounding
supersaturated electrolyte. Mass is now transferred across the
entire bubble surface. Direct gas diffusion from the substrate to
the bubble is, on the other hand, usually small in comparison.
We then expect very similar behavior to the diffusive, quasi-
static growth of bubbles in uniformly supersaturated
solutions.26,27 Diffusion-limited growth has been found to be
well described by the classical theories proposed by Epstein and
Plesset28 or Scriven.29 These theories, which can be extended to
the growth of surface (nano)bubbles,30 coincide in that

diffusive growth may be described by R = bt1/2. The scaling
R ∝ t1/2 is in full agreement with reported electrolysis
experiments for case (ii).13,16,18,19

The diffusive growth coefficient b is now determined by the
local degree of supersaturation of the nearby liquid, by the gas
solubility, and by the gas diffusivity. The local degree of
supersaturation and, as a consequence, the average bubble
growth rate and gas evolution efficiency are all expected to
increase with the current density.24 Most studies reporting
bubble growth dynamics13,14,16,21 or analyzing mass transfer
from electrodes24,31,32 assume a constant, time-independent
value of the local supersaturation for a given current density.
This therefore would entail a unique growth coefficient b
common to all bubbles, regardless of the time of nucleation
after the onset of electrolysis. However, it follows that the gas
supersaturation near the electrode depends not only on the
current density but also on the elapsed time of electrolysis. This
stands to reason because from simple mathematical consid-
erations18 the imposition of a constant gas flux at the electrode
surface must lead to an accumulation over time of dissolved gas
near the electrode. The concentration of dissolved gas increases
with time until an approximately steady-state profile is reached.
Consequently, b is expected to increase for subsequent bubbles
until a steady-state value is reached, even under the imposition
of a constant current density.
The constant-electrolysis scenario has some similarities to

the diffusion-driven growth of a succession of bubbles from a
nucleation site in a supersaturated liquid. In both scenarios, the
behavior R = bt1/2 holds for each individual bubble, and the
value of the coefficient b is observed to vary discretely from
bubble to bubble in the succession. However, in the latter
scenario the growth coefficient b of subsequent bubbles
continuously gets smaller and smaller, as opposed to becoming
increasingly larger as seen during electrolysis. This effect has
been recently studied for a succession of CO2 bubbles in
carbonated water kept at constant pressure under super-
saturation conditions.33

With all of these ideas in mind, the aim of this work is to
explore in detail the time evolution of the growth coefficient for
a succession of H2 bubbles produced by constant-current
electrolysis. In our configuration, the electrode is much larger
than the bubble, and hence R = bt1/2 is expected. We make use
of flat silicon electrodes with a single microstructure upon
which a succession of single bubbles may form. In this way, the
effect on b of bubble electrode coverage, convection, and
diffusive interactions between multiple bubbles32 is intention-
ally minimized. This is done in view of future applications in
photoelectrolysis, where silicon is becoming an increasingly
popular material for photoelectrodes,34,35 considering that it
may be feasibly etched with micrometer- or nanometer-sized
pillars36 as a means to increase the light-harvesting efficiencies
and gas production rates. Finally, some interesting conclusions
will be drawn by comparing the growth coefficient of
electrolysis bubbles with that of CO2 bubbles in carbonated
water in a pressure-controlled (P-C) setup.

■ EXPERIMENTS

Microstructured Substrates. A single active site for bubble
formation was defined at the center of flat boron-doped silicon
substrates (10 × 10 × 0.525 mm3). This nucleation site, fabricated
through reactive ion etching after photolitography, consists of a
micrometer-sized hydrophobic cylindrical pit37 (about 20 μm deep)
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etched within a cylindrical micrometer-sized pillar.36 Details of the
fabrication process may be found elsewhere.11

Figure 1 shows a scanning electron microscope image of a
micropillar containing the superhydrophobic pit. The pit radius, R0,

was set in the range of 1−10 μm over the various experimental
samples, values that ensure successful bubble nucleation.38 Similarly,
the pillar radius, Rp, was set to 5−15 μm. The pillar heights considered
were Hp = 0, 15, and 30 μm, in view of potentially identifying any
influence that the distance from the electrode to the bubble nucleation
spot may have on bubble growth. The case Hp = 0 μm corresponds to
a micropit in an otherwise flat substrate; i.e., the pillar is absent in this
case.
Experimental Method. The experimental setup, sketched in

Figure 2, comprises a 3D-printed acrylic holder and a mounting plate
designed to hold the silicon substrate (electrode) in place. The
substrate is at the base of a circular cavity (of radius Re = 3.5 mm and
depth Hc = 2 mm) that determines the active electrode surface in
contact with the electrolyte. A rubber ring, placed between the silicon

substrate and the substrate holder, creates a liquid-tight seal. A counter
electrode in the form of a platinum wire is then placed at the corner of
the holder far away from the substrate.

At the beginning of each experiment, the holder is filled with 20 mL
of fresh electrolyte. The resulting electrolyte level depth is H ≈ 12
mm. The electrolyte consists of a solution composed of nondegassed
Milli-Q water with 10 mM Na2SO4 salt and a pH 3 buffer (sodium
acetate anhydrous and acetic acid), giving the bubbles a neutral electric
charge.15 During each experiment, a constant current I in the range of
200−600 μA is supplied. The corresponding current density,
computed as j = I/(πRe

2), falls in the range of 5−15 A/m2. In this
way, a constant molar flux of hydrogen gas, Jw = j/(Fv), is uniformly
released from the substrate by electrolysis. Here, F = 96 485 C/mol is
Faraday’s constant, and v = 2 is the number of electrons taken up per
molecule of evolved H2 gas.

A few seconds after the start of electrolysis, the electrolyte is
sufficiently saturated with hydrogen and a single bubble grows from
the pit on top of the micropillar. Eventually, the bubble reaches a
critical size and detaches. Shortly afterward, a new bubble nucleates
and the process starts over again. Images of the succession of growing
bubbles are acquired from the top by a digital camera mounted with an
axial light source for 1−5 h.

The radius of the gas-evolving substrate is about 10 times larger
than the typical detachment radius of the bubble (Rd < 0.4 mm), which
gives a Damköhler number of De = Re

2/Rd
2 ≳ 80 ≫ 1. As discussed in

the Introduction, it is expected that the bubble dynamics then follows
diffusion-limited growth.

Experimental Observations: Electrolysis-Induced Bubbles.
Figure 3 shows the typical evolution of the bubble radius for a
succession of bubbles captured during the first hour of constant j.
Several effects come into view. First, the bubble growth rates
eventually increase with time. This stands to reason because imposing
a constant flux Jw leads to an accumulation of dissolved H2 gas in the
bubble surroundings. In other words, there is a net increase of the
average H2 concentration in the region where the bubble grows. The
fact that repetitive, steady-state growth is not reached immediately is
very striking and significant. The time required to reach the steady
state in the absence of bubbles (Appendix A) can be very roughly
estimated as tss ≈ H2/DH2

, where DH2
= 4.2 × 10−9 m2/s is the

diffusivity of H2 in the electrolyte.39 To do so, we have assumed a 1D
concentration profile of C(z, t) with a constant flux at z = 0 together
with a zero-concentration boundary condition at the free surface, C(H,
t) = 0. Taking H = 10 mm, this gives approximately 6 h. In our
experiments, it will be seen that the steady state is attained somewhat
faster, within the order of 0.5−3 h.

Second, the radius dynamics are affected by transient effects. This is
especially evident in the very first bubble(s) of Figure 3a−d, whose
growth dynamics displays fast temporal variations. This is attributed to
the unsteadiness and nonuniformity of the evolving concentration
field, which makes it more susceptible to perturbations during the first
minutes after the onset of electrolysis. In time, these transient effects
diminish as the boundary layer of evolved H2 gas grows and the local
concentration field surrounding the pillar becomes more uniform. The
effect of the contact angle dynamics on bubble growth is discarded
because the detachment radius is always found to be below the
maximum theoretical Fritz radius40 calculated using the pit circum-
ference as the reference contact line. This implies that bubbles do not
adhere to the top surface of the pillar. Instead, they are attached to the
inside of the pit and detach through a necking process.33

Third, electrolytically driven bubble evolution is not perfectly
reproducible for a number of reasons that will be discussed later.
Premature detachment of particular bubbles is a commonly observed
phenomenon in our experiments, especially for large current densities
or supersaturations, as seen in Figure 3d for t = 24 and 35 min.

Experimental Observations: Pressure-Controlled Bubbles. It
is of interest to see how the growth dynamics obtained in the
electrolysis experiments compares with those found in pressure-
controlled (P-C) experiments entailing a succession of CO2 bubbles
produced in uniformly supersaturated water. To do so, a silicon chip,

Figure 1. SEM image of a micropillar protruding from the silicon
substrate. In this particular sample, the pillar height is Hp = 30 μm, the
pit (inner) radius is R0 = 5 μm, and the pillar (outer) radius is Rp = 15
μm.

Figure 2. Sketch of the electrolysis setup. The dimensions of the
substrate, cavity, and holder are not drawn to scale to highlight, within
a single schematic, the different dimensions playing a crucial role in
electrolytic bubble growth. Note that the pit and pillar are much
smaller in reality.
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identical to those used in electrolysis experiments, is placed in the
center of a pressurized test chamber (pressure Ps ≈ 9 bar) that is then
filled with carbonated water previously saturated under the same
pressure. A detailed description of the experimental setup and
procedure may be found in the works by Enrıq́uez et al.41 and
Moreno Soto et al.,33 to which the reader is referred. At the beginning
of the experiment, the pressure is lowered to a value P0 ≈ 8 bar, which
yields a supersaturation of ζ = Ps/P0 − 1 ≈ 0.17. Shortly afterward, a
single bubble nucleates and grows on top of the micropillar. As in the
case of the electrolysis experiments, a succession of bubbles then
follows. The time evolution of the bubble radii for a particular
experiment is shown in Figure 4.
Two differences become immediately apparent upon comparison of

Figures 3 and 4. In the first place, the P-C growth rate and detachment
radius are more repeatable and stable than for the electrolysis
experiments. In the second place, in the P-C experiments, the time
taken for each bubble to detach grows with time, and thus the growth
coefficient decreases. This is in contrast to what is observed in
electrolysis, where the continuous dissolution of H2 in the bubble
surroundings enhances the growth rate. In the case of P-C bubble
growth, Moreno Soto et al.33 showed that the slowing down of the
bubble growth is caused by the local depletion of CO2 near the bubble.
Such a depletion phenomenon was attributed to buoyancy-driven
convection and mixing due to bubble detachment.
Numerical Model. As a means to provide further insight into the

growth dynamics of the electrolytic bubbles studied here, a numerical
model for the growth of a spherical bubble attached to a micropillar of
height Hp protruding from a (gas-evolving) substrate has been
developed. It is an extension of the (pillarless) numerical model

described in Peñas-Loṕez et al.42 The governing equations are solved
through a second-order finite-difference discretization in space and an
implicit Euler method in time. The 2D axisymmetric grid is portrayed
in Figure 5. The grid is divided into two regions that use different
coordinate systems: a bulk region for z > Hp and a microlayer region
below. In the bulk region, the advection−diffusion equation coupled
with the streamfunction−vorticity equations42 are solved, imposing a
no-slip boundary condition at z = Hp. In the microlayer region, only
the diffusion equation is solved. The concentration and its gradient are
matched at the coupling plane z = Hp. If required, a constant and
uniform molar flux can be imposed at the substrate wall (z = 0) and
pillar surface. Details about the simulation equations may be found in
the Supporting Information.

The limitations of the simulation regarding the electrolysis
experiments are that it considers neither the real finite size of the
electrode nor the presence of a cavity (Figure 2). Moreover, we
assume a spatially uniform flux along the electrode. Finally, we must
estimate the initial H2 field corresponding to a bubble nucleating at
some time after the start of electrolysis. To do so, we use the 1D
analytical concentration profile in the absence of bubbles provided in
Appendix A. Thus, this idealized initial concentration profile depends
on just two input parameters, namely, the effective current density
(which establishes the flux of dissolved H2 gas that is evolved at the
electrode) and the elapsed time of electrolysis. We must finally remark
that when modeling the growth of electrolytic bubbles a binary system
of H2 gas and air is considered. The electrolyte is not degassed; in fact,
it was kept in a container openly exposed to ambient air. Hence, we
make the approximation that the electrolyte surrounding the
micropillar is perfectly equilibrated with air at the beginning of bubble

Figure 3. Time evolution of the bubble radius for a succession of bubbles captured during the first hour after the start of the electrolysis. Each
individual curve represents a distinct bubble. Four different experiments are shown, in which the supplied current density is set to (a) 5.2, (b) 7.8, (c)
10.4, and (d) 13.0 A/m2. The pit and pillar radii are 5 and 15 μm, respectively, whereas the pillar height is 30 μm. Using Rd ≈ 0.3 mm and Re = 3.5
mm yields a Damköhler number of De = Re

2/Rd
2 ≈ 136. The dotted horizontal line marks the etching defect size below which it was not possible to

optically detect the bubbles.

Figure 4. Pressure-controlled growth for a succession of CO2 bubbles for ζ = 0.17 during the first 100 min after the pressure drop. The dotted
vertical lines indicate bubble detachment and nucleation of the following bubble. The pit and pillar radii are 10 and 15 μm, respectively, whereas the
pillar height is 30 μm.
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growth. The presence of dissolved air explains why the first hydrogen
bubbles nucleate and grow just a few seconds after the start of
electrolysis when the electrolyte close to the electrode is still
undersaturated in H2. Nonetheless, the small molar fractions of air
typically present in the bubbles (<15%) can be neglected for all other
purposes.

■ RESULTS AND DISCUSSION

We begin this section with a theoretical description of the key
quantity used to characterize the bubble growth dynamics,
namely, the diffusive growth coefficient. The experimental
results are then discussed, giving special attention to the effect
that the different sources of depletion have on the measured
growth coefficients. For the electrolysis experiments, the time
evolution of the growth coefficients allows us to distinguish two
sequential stages: an initial stagnation regime, where the bubble
growth rates are nearly constant or slower than that of the very
first bubbles, and a later supersaturation regime, where the bulk
liquid contains enough H2 to sustain large bubble growth rates.
Finally, the growth dynamics of each stage is quantitatively
described.
Significance of the Diffusive Growth Coefficient.

Assuming diffusion-limited growth, the nth bubble in the
succession grows as =R t b t( )n n n n , where bn is its associated

diffusive growth coefficient and tn = t − t0,n is the current time
after nucleation at t = t0,n. In the spirit of the theories for
monocomponent bubble growth by Epstein and Plesset28 or
Scriven,29 it is convenient to recast this law in terms of the
dimensionless growth coefficient b ̃n = bn/√D such that

= ̃R t b Dt( )n n n n (3)

where D denotes the gas diffusivity. Indeed, if the bubble grows
to a radius Rn much larger than the size of the nucleation site
(the pit on the pillar in our case), then its growth will be given
by the Epstein−Plesset equation28 that determines the quasi-
static diffusive growth of an isolated spherical bubble:

π
= ̅ − +∞

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

R

t

DR T

P
C k P

R Dt

d

d
( )

1 1n

n
n

n n

u

0
H 0

(4)

In this expression, Ru and kH are the universal gas constant and
Henry’s constant, respectively. Moreover, T∞ and P0 are the
liquid temperature and pressure during growth, and C̅n is the
gas concentration far away from the bubble. Finally, note that
surface tension has been neglected, as even the largest capillary
(or Laplace) pressure 2γlg/R ≈ 0.05 bar is negligible in
comparison to the pressure involved in bubble growth, P0 ≥ 1
bar. Here, we have considered surface tension γlg = 0.07 N/m
and the smallest trackable bubble size, R = 30 μm.
In the case of electrolysis within our air-equilibrated

electrolyte, the Epstein−Plesset equation will be valid for
sufficiently large concentrations of H2 such that the flux of
other species (N2, O2) into the growing bubble is small in
comparison. In such cases, the ratio of H2-to-air fluxes can be
shown to be roughly equivalent to DH2

kH,H2
ζ/(DairkH,air) ≈ 2ζ,

where ζ is the supersaturation of H2, to be defined in eqs 7a
and 7b.
At times tn ≫ R0

2/D, this corresponds to roughly tn ≳ 1 s in
our experiments. Equation 4 allows for the following solution
(neglecting surface tension):

π π≈ + +R t Ja Ja Ja Dt( ) / [ (2 ) ]n n n n n n
1/2

(5)

This solution is essentially that provided by Epstein and
Plesset28 formulated for the nth bubble in the succession and,
correspondingly, using the mass-transfer Jakob number14,39

related to the nth bubble,

ζ= ̅ − = Λ∞Ja
R T

P
C k P( )n n n

u

0
H 0

(6)

The Jakob number is a measure of the driving force for bubble
growth induced by a solubility parameter Λ, commonly known
as the Ostwald coefficient, and the degree of supersaturation ζn.
These are defined as follows:

Λ = ∞k R TH u (7a)

ζ =
̅

−
C

k P
1n

n

H 0 (7b)

We expect the Jakob number to be smaller than unity in our
experiments. Indeed, for the P-C experiments, multiplying the
supersaturation of CO2 (ζn ≈ 0.17) by the corresponding
solubility tabulated in Table 1 results in Jan ≈ 0.14. For the H2

electrolysis experiments, ζn < 12 according to simulations;
therefore, Jan < 0.23. Equation 5 then simplifies to

=R t Ja Dt( ) 2n n n n (8)

because Jan ≪ 2π always holds. Within this diffusive regime, the
Jakob number can be readily shown to be equivalent to the
Pećlet number, Pen = RnṘn/D, which expresses the relative
significance of advective over diffusive mass transport. The
quantity Ṙn = dRn/dtn can be computed by differentiating eq 8

Figure 5. Schematic of the simulation grid for a pillar with dimensions
Hp/R0 = 4 and Rp/R0 = 2. The simulation points fall on the
intersection of the contour lines. The simulation is axisymmetric
around the z axis. The bulk region in tangent-sphere coordinates (η, ξ)
applies to z > Hp. The microlayer region in pseudocylindrical
coordinates (ρ, ζ) applies to 0 < z < Hp. A matching condition is
imposed at z = Hp. Coordinates η, ξ, and ρ evolve with the bubble so
that ξ = 1 (in blue) always maps the bubble surface, regardless of the
actual bubble size. Here, the bubble size has been arbitrarily set to R/
R0 = 3. The separation of the contours is uniform. Here, Δη = Δξ =
Δρ = 0.1 and ζ = 0.5. Coordinate η = 0 lies on the z axis, η → ∞, at
the contact point.
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with respect to time. One then gets that Pen ≡ Jan, which is
consistent with the fact that the Pećlet number must also be
smaller than unity. Finally, the direct comparison of eq 8 with
eq 3 gives that the square of the dimensionless growth
coefficient scales as the Jakob number:

ζ̃ = = Λb Ja2 2n n n

2
(9)

It should be pointed out that, strictly speaking, eq 9 is valid
only for a spherical bubble far from any boundary. Nonetheless,
taking into account the presence of the substrate will not
modify any of the scalings but will change only the numerical
coefficient relating b ̃n

2 and Jan, as shown by Enrıq́uez et al.27 for
P-C growth. In P-C growth, this coefficient is expected to be
lowered by the presence of the inert substrate, which has a
hindering effect on bubble growth.27,42 This is perceived upon
inspection of the CO2 concentration field displayed in Figure
6d obtained from simulation. The concentration isocontours
are farther apart closer to the substrate compared to those near
the apex.
The opposite occurs for the first bubbles in the case of

electrolysis-driven growth, where H2 transfer rates (concen-
tration gradients) are highest in the portion of the bubble
interface located closest to the electrode, as can be inferred
from the accumulation of isoconcentration lines in the region
closer to the substrate (Figure 6a,b). Here, the bubbles are set
to nucleate shortly after the onset of electrolysis; consequently,
the H2 supersaturation in the bulk electrolyte is still low. One
may note that as the degree of supersaturation in the bulk liquid

increases with time (Figure 6a to 6b to 6c), the boundary layer
evolves to the form attained in the P-C case (Figure 6d). Most
of the H2 flux occurs at the apex of the bubble, as observed for
P-C growth.
Finally, we must remark that the pillar height Hp is much

smaller than the radius of the growing bubble except for the
initial seconds of bubble growth. Therefore, the effect of the
pillar height on the aforementioned coefficient is expected to be
small.

Growth Dynamics. The experimental diffusive growth
coefficient for each electrolytic bubble in the succession was
obtained by fitting the experimental data to eq 3, namely,

= ̃R t b Dt( )n n n n . More specifically,

β ̃ =
→

D

R

t

1 d

d
R R

H

2

H

2

2

2 d (10)

Here, β̃H2
is the asymptotic growth coefficient13 at which the

bubble reaches its detachment size. Even so, β̃H2
should be

regarded, by all accounts, as the experimentally obtained b ̃ for
the electrolytic bubbles.
The theoretical fits are plotted in Figure 7 for three different

time periods after the start of electrolysis. Three regimes with
distinct growth dynamics can be identified depending on the
elapsed time of electrolysis. At early times, we devise a
characteristic stagnation regime (Figure 7a), in which the
second and third bubbles usually grow slower than the very
first. Here, the accumulation of H2 gas that one would expect
from the continuous flux at the electrode is in fact exhausted or
overridden by local gas depletion effects induced by the growth
of the first bubbles and other sources that will be later
discussed. The duration of this stagnation regime is shortened
with increasing current density (Figure 9). It stands to reason
that no depletion regime may be observed if the current density
is sufficiently large.
Thus, provided that the current density is large enough, the

flow of H2 into the bubble liquid surroundings eventually
overrides the flow of gas lost through depletion effects. This

Table 1. Gas Properties under Our Experimental Conditions
(T∞ = 20 °C)

CO2 H2 airc

D (m2/s) 1.78 × 10−9a 4.2 × 10−9b 2.0 × 10−9b

kH (mol m−3 Pa−1) 3.36 × 10−4 7.7 × 10−6 8.5 × 10−6

Λ 0.824 0.0188 0.0207
aPressure ≈ 8 bar. bPressure = 1 bar. cAir is considered only in the
simulation.

Figure 6. Simulation snapshots of (a−c) H2 or (d) CO2 concentration isocontours around four distinct growing bubbles. The contour labels display
the local supersaturation value, C/(kHP0) − 1. The simulations are performed for R0 = 7.5 μm, Rp = 15 μm, and Hp = 30 μm. The snapshots
correspond to the early growth stage of the bubbles when R = 2Hp = 60 μm. Panels a−c show H2 bubbles growing in an air-saturated electrolyte
assuming an effective current density of 1.56 A/m2 that provides a similar H2 flux as the highest nominal current density used in our experiments
(Figure 14.) The bubble nucleation time after the start of electrolysis, t0, the corresponding initial degree of H2 supersaturation (in the absence of
bubbles), ζ, and the time after nucleation at which the snapshot is taken, t, are (a) t0 = 30 s, ζ ≈ 0, t ≈ 31 s, (b) t0 = 2 min, ζ ≈ 1, t ≈ 16 s, and (c) t0
= 20 min, ζ ≈ 5.3, t ≈ 3 s. Panel (d) portrays a CO2 bubble growing in an initially uniform supersaturated solution, ζ = 0.17 at P0 = 7.75 bar. The
bubble is t ≈ 5 s old.
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results in a net accumulation of H2 and, consequently, a vertical
H2 concentration boundary layer that develops from the
electrode.
In such a case, a supersaturation regime (Figure 7c) is

eventually attained. The local supersaturation of the surround-
ing electrolyte is now more uniform. The expected diffusive
behavior, Rn

2 ∝ tn, can be corroborated in Figure 7d. If, at later
times, the supersaturation becomes large enough, an advective
growth regime (Figure 7e) is manifested. It is characterized by
discontinuous dR/dt dynamics caused by the appearance of
boundary-induced advection in bubble growth and departure.32

Furthermore, a fast initial growth is observed. It is attributed to
the presence of a thin boundary layer of excess H2 gas near the
gas-evolving electrode that quickly gets adsorbed into the
bubble. As a consequence, the initial growth is observed to be
more pronounced for pillar heights of 0 or 15 μm as opposed to
30 μm.

In slightly supersaturated water−CO2 solutions, bubbles are
known to diffusively grow before density-driven convection sets
in during the final stages of their growth.27 As a consequence,
the diffusive growth coefficient for the CO2 bubbles in the P-C
experiments was similarly computed as

β ̃ =
<

D

R

t

1 d

d
R R

CO

2

CO

2

3 /4
2

2 d (11)

where Rd denotes the bubble radius at detachment. The upper
limit of 3Rd/4 is established in order to restrict the fitting of
β̃CO2

to just the initial diffusive growth regime.

The theoretical fit (extrapolated to span the full bubble
lifetime) is compared to a typical experiment (ζ = 0.17) in
Figure 8. The initial diffusive growth, where R ∝ √t, can be
perfectly distinguished. One may also note a deviation between
the theoretical fits and experiments as the bubble radius reaches
its detachment size. This deviation is expected because it is

Figure 7. Bubble radius dynamics at three different time periods after the onset of electrolysis with 7.8 A/m2. The measured bubble radii (dots) are
plotted in (a, c, and e), whereas the corresponding square of the measured radii are plotted in (b, d, and f). Panels (a and b) correspond to the
stagnation regime, (c and d) correspond to the supersaturation regime, and (e and f) correspond to the advected growth regime. The dashed black
curves are the fits from which the asymptotic growth coefficient β̃H2

is obtained. The pit and pillar radius are 5 and 15 μm, respectively. The plots in

(a−d) belong to the same experiment where Hp = 30 μm. The plots in (e and f) belong to a different experiment where Hp = 15 μm. The dotted
horizontal line marks the size below which it was not possible to optically determine the size of the bubble accurately.

Figure 8. (a) Pressure-controlled bubble radius dynamics and (b) the corresponding squared radius. The dashed curves are the (extrapolated) fits
from which β̃CO2

is computed. The pit and pillar radii are 10 and 15 μm, respectively, whereas the pillar height is 30 μm.
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related to the onset of natural convection at the end of bubble
growth.27,33 The prominent effect of density-induced con-
vection on bubble growth observed here is, on the other hand,
negligible for the case of H2 bubbles.
The computation of β̃H2

and β̃CO2
for each individual bubble

essentially allows for a quantitative measure of the evolution of
the growth rate of the bubble succession as a whole. The fact
that the evolution of β̃H2

in time for a succession of bubbles

under constant-current electrolysis is far from uniform is
immediately corroborated in Figure 9. An illustrative movie of

the electrolysis experiment with j = 10.4 A/m2 can be found in
the Supporting Information. In the video, the time evolution of
the bubble radii and the growth coefficient are also plotted in
real time.
The first few bubbles fall under what we have referred to as

the stagnation regime, in which β̃H2
is observed to decrease or

remain fairly constant. The stagnation regime occurs as a result
of the partial depletion of the evolving boundary layer of
dissolved gas. There are three main sources of depletion that
will soon be described. These are responsible for the ever-
present loss of gas dissolved in the cavity where the electrode is
held (cf. Figure 2). This loss is most noticeable and even
dominant in the early stages of electrolysis. This stands to
reason because, as mentioned before, the local concentration of
dissolved H2 gas near the pillar is relatively small at the
beginning of the electrolysis. Accordingly, gas losses due to
depletion constitute a proportionally large reduction of the
small amount of gas dissolved.
The subsequent bubbles experience a fast increase in β̃H2

.

This is a sign of the net accumulation of dissolved H2 gas in the
cavity. In other words, the flow rate of evolved H2 into the
cavity overrides the smaller flow rate losses due to depletion.
Figure 10 displays the same experimental values of β̃H2

as a

function of the total electric charge that has been in circulation
before a given time, which is a direct measure of the total mass
of H2 supplied. For a given charge Q = jt, during the initial

transient stage of electrolysis, we conclude that β̃H2
is higher for

larger current densities. It is expected that the gas evolution
efficiency increases with current density because the diffusion

length of dissolved H2, which scales as D Q j/H2
, is smaller. In

other words, mass is supplied faster and H2 does not diffuse fast
enough into the bulk electrolyte above the cavity in which the
bubble evolves. Consequently, the gas supersaturation in the
cavity surrounding the electrode is higher.
Naturally, in the P-C experiments, the absence of gas

production must translate into a permanent depletion regime.
Moreno Soto et al.33 recently developed a theoretical depletion
model for this particular scenario. On the basis of this model
(Appendix B), the evolution of the experimental growth
coefficient should approximately satisfy

β β
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The experimental evolution in time of β̃CO2
is plotted in Figure

11(a). In Figure 11(b), these are compared to the best fitting
law 1/β̃CO2

2 (t) = mt + c. According to eq 12, the slope is m =

0.027 s−1. This estimate agrees well with experiments, where m
≈ 0.03 s−1. Similarly, constant c = 2.93 from theory falls close to
the experimental values that lie within 2.6−2.9. The small
differences may be associated with the many simplifications and
approximations that the theoretical model is based upon.
Nonetheless, the good overall agreement between the model
and experiments indeed suggests that in the P-C configuration
there is only depletion from previous bubbles in the succession.

Depletion Sources in the Electrolysis Experiments. In our
electrolysis experiments, however, the electrolyte in the cavity
suffers H2 gas depletion from (i) previous bubbles in the
succession, from (ii) parasitic bubbles (eventually millimeter-
sized) forming all around the circular sidewall of the cavity
(Figure 12), and from (iii) the cavity opening, toward which H2

is transported by diffusion. Regarding the latter, it is worth
noticing that the cavity perimeter is much smaller than the
perimeter of the holder above (cf. Figure 2). In addition, the
volume of electrolyte in the tank above the cavity is almost 3
orders of magnitude larger than the volume of the cavity itself.
The opening of the cavity therefore initially acts as a zero H2

Figure 9. β̃H2
for a succession of electrolytic bubbles exposed to

constant current densities. Each point corresponds to a distinct bubble
in the succession. Time tm is the mean time (after the start of
electrolysis) of the fitting period used to compute β̃H2

. The bubbles

evolved on a pit with a radius of 5 μm, a pillar radius of 15 μm, and a
pillar height of 30 μm.

Figure 10. Diffusive growth coefficient as a function of charge for
different current densities (caption of Figure 9). The efficiency of gas
evolution in the transient regime increases with the current density j.
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concentration boundary condition (a pseudofree surface)
because H2 is essentially diffusing into an infinite reservoir.
The effect of these depletion sources on the bubble growth

dynamics will be discussed next for the electrolysis experiments,
discerning between the stagnation regime and supersaturation
(eventually steady-state) regime that follows.
Stagnation Regime. In the stagnation regime, the bulk

concentration of dissolved H2 gas within the cavity is small. We
can then make the rough approximation that the H2 gas in
these bubbles is entirely supplied by the molar flux Jw that is
evolved within a harvest area πδ2 on the flat electrode. The
characteristic harvest length δ is the effective electrode length
required to sustain a bubble growing at a particular rate in a
degassed liquid and assuming a gas evolution efficiency of unity.

Consequently, δ is always smaller than the electrode radius, δ ≤
Re (or an equivalent length). Indeed, the aforementioned
depletion sources tend to decrease the growth rate and hence
also δ. Thus, δ constitutes an important design parameter in
electrolytic systems and should be investigated in future studies.
In fact, δ/Re can be regarded as a direct measure of the gas
evolution efficiency of the system.
Assuming then that these bubbles are entirely composed of

H2, a simple mass balance scaling yields

π
πδ

Δ
≈

∞

P

R T

R

t
J

4

3

0

u

d
3

w
2
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where Δt denotes the bubble lifetime prior to detachment. As a
first approximation, we expect the harvest length to scale as δ ≈
Rd. If we further assume purely diffusive growth,

β= ̃ ΔR D td H H
2 2

, and note that Jw ∝ j, then eq 13 suggests

that the asymptotic growth rate must scale as β̃H2

2 ≈ jRd. This

relation is compared against experimental values in Figure 13.
The experimental dispersion is expected as a result of the
random variability of the harvest length (primarily due to the
spatial nonuniformity of the H2 flux at the electrode) and the
depletion strength from one experiment to the other.
Within the stagnation regime or transient regime that

follows, the diffusive depletion at the cavity opening has an

Figure 11. (a) Diffusive growth coefficient, β̃CO2
, as a function of time for four different P-C experiments. The time measurement for each bubble n is

associated with its moment of detachment. (b) Plot of 1/β̃CO2

2 as a function time. The straight solid line shows linear eq 12, with a slope of m =

2πDCO2
t/(3Rd

2) = 0.027 s−1.

Figure 12. Photograph showing the parasitic bubbles forming on the
circular corner where the electrode (black surface) meets the sidewall
of the cavity and at the sharp upper edge of the cavity wall (cf. the
large bottommost bubble). These bubbles visibly surround the bubble
that forms on top of the micropillar in the center of the electrode. The
electrode diameter is 7 mm.

Figure 13. Minimum squared value of β̃H2
plotted versus the product

of current density and detachment radius. Each point corresponds to a
single bubble in a unique succession. The linear regression fit is also
plotted.
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important retardation effect on the bubble growth rate as the
bubble grows larger and gets closer to the opening. This
retardation can be noted upon inspection of Figures 3 and 7a.
This claim is supported by numerical simulations as seen in
Figure 14. The simulation curves predict the experimental
behavior once a zero-concentration boundary condition is
imposed at a height somewhat lower, but close to the actual
cavity depth of 2 mm. However, this is expected because a
lower height also accounts for other losses such as parasitic
bubble formation at the cylindrical sidewall of the cavity.
It is imperative to note that the effective current density

(which establishes the molar flux of dissolved H2 at the
electrode) employed in the simulation is in fact taken as a free
parameter. The effective current density and the experimental
time of nucleation of a particular bubble are put into eq 17 in
appendix A to obtain the initial concentration field in which
that particular bubble grows. The effective current density is
thus chosen so that the numerical solution matches the
experimental radii at the initial growth stage of the bubble.
Surprisingly, the effective current densities are 7 to 10 times
smaller than the nominal (experimental) values. Accordingly,
the growth rates obtained by simulations at the nominal current
densities were exceedingly high. A similar discrepancy in
theoretical versus measured H2 diffusive fluxes was observed by
Aoki et al.,43 who argued that most of the gas may not actually
dissolve in hydrated form. They reported that H2 gas
preferentially resides in the form of stable bulk nanobubbles
(R ≈ 400 nm) instead.43,44

Although at the moment we cannot give a precise answer to
this discrepancy, we propose two plausible, not mutually
exclusive, explanations. First, not all of the H2 flux put into
dissolution remains in the electrolyte or eventually goes to the
bubble nucleating at the pit. Indeed, we observe that large
bubbles unavoidably form at the cylindrical cavity sidewall.
Second, the numerical model assumes a spatially uniform
current density along the substrate. In practice, this may not be
so. In fact, the current density can be highly nonhomogeneous
for planar electrodes.6 Moreover, one may note that the actual
boundary condition occurring at the electrode is of constant
potential and not of uniform current density. Thus, close to the
base of the pillar the local current density must be smaller than
the average on the electrode surface.

Supersaturation Regime. In the supersaturation regime, the
gas concentration in the cavity is relatively more uniform at the
beginning of the bubble growth, especially for sufficiently high
supersaturations, C̅n/(kH P0) ≫ 1. By making use of eq 6, C̅n

can be made continuous in time by setting C̅(t) equal to the
wall concentration C(z = 0, t) in the absence of bubbles
assuming a 1D profile. The expression is provided in eq 17 in
Appendix A. In such a case, the growth coefficient exhibits the
following behavior at long times:

β ̃ ≈ ̅∞t
R T

P
C t H J( )

2
( ; , )

H

2 u

0
eff w,eff2 (14)

The local concentration C̅(t) depends on the effective molar
flux Jw,eff, or, equivalently, on the effective current density jeff.
These will be smaller than the nominal values in order to
account for the aforementioned discrepancy between the
experimental and theoretical concentrations. Furthermore,
C̅(t) is also dependent on the effective electrolyte liquid
column height Heff that is expected to be lower than H = 12
mm. Heff accounts for the geometry of the electrolysis holder
and cavity and losses from growing and departing bubbles at
the cavity perimeter. For high current densities, Heff is also
limited by the maximum supersaturation of dissolved H2 that
the electrolyte can withstand at the experimental pressure. The
steady-state growth coefficient can be shown to directly depend
on these two quantities:

β ̃ ≈ ∞R T Fv

D P
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2
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Figure 15 compares this theoretical model for the behavior of
β̃H2

at long times against three experiments with different pillar

heights but performed under the same current density. A
similar steady-state value is attained in all cases after about 150
min. However, it is evident that the transient behavior of β̃H2

is

not repetitive across experiments. The deviations arise
presumably from differences in the flux distribution across
the electrode samples and especially from gas losses from the
random formation and subsequent detachment of large
parasitic bubbles on the cavity sidewall. The bubbles in the
succession must then compete against the parasitic bubbles for

Figure 14. Comparison between simulation (curves) and the experimental growth dynamics of the third bubble for three nominal current densities:
(a) 7.8, (b) 10.4, and (c) 15.6 A/m2. Simulations employ effective current densities of (a) 1.04, (b) 1.30, and (c) 1.56 A/m2. Using eq 17 in
Appendix A, these yield initial supersaturations, ζ, of approximately (a) 1.5, (b) 3.3, and (c) 3.1. The black curves are computed by imposing a zero-
concentration boundary condition at heights of (a) 1.0, (b) 1.3, and (c) 1.3 mm to model the effect of the cavity. The red dashed curves are
computed without imposing the aforementioned boundary condition.
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the available H2 gas. The formation of the parasitic bubbles
ultimately has a hindering effect on the growth rates of the
bubbles growing on the pillar. This effect increases over time as
the solution becomes more supersaturated and the parasitic
bubbles increase in size and hence in proximity with respect to
the micropillar. For instance, the sudden decrease in β̃H2

at

around 110 min in the experiment with Hp = 30 μm in Figure
15 is a consequence of a particular large parasitic bubble that
expanded quite close to the pillar. After its detachment at
approximately 130 min, β̃H2

is observed to recover quickly.

The radius dynamics of two bubbles belonging to this
particular succession are compared with simulations in Figure
16. The agreement is quite good once the (a priori unknown)
initial supersaturation level ζ is adjusted. Note that ζ
corresponds to the mean value of the initial concentration
profile close to the electrode wall. As before, ζ, or rather the
initial concentration profile, is computed from eq 17, and it is a

function of the current density and time of nucleation after the
onset of electrolysis. The value of the effective current density
employed is 1.04 A/m2, the same as the one obtained by fitting
the initial growth rate of the third bubble in the succession (as
done for Figure 14a). Thus, the nucleation time after the onset
of electrolysis is now the sole free parameter. Setting it equal to
the experimental nucleation time clearly overestimates the
growth rates, as seen from the zero-loss prediction curves in
Figure 16. One can then account for depletion losses by
decreasing the time of nucleation used to calculate ζ. After a
suitable reduction in the nucleation time and hence ζ, the
bubble growth behavior is reasonably well reproduced.
One may note that in the supersaturation regime the zero-

concentration boundary condition is not required because the
entire cavity, and possibly a small region above it, will be
homogeneously supersaturated to a good degree. As the bubble
approaches departure, a retardation in its growth is noticeable
nonetheless. This is attributed to H2 deprivation due to the
presence of parasitic bubbles. The deviation for the 48th bubble
is greater than for the 74th bubble. This is consistent with the
fact that the 48th bubble is deprived from the H2 available to a
greater extent by the aforementioned large parasitic bubble.

■ CONCLUSIONS

The growth dynamics of a succession of H2 bubbles driven by
constant-current electrolysis on a large electrode has been
studied. The bubbles form within a hydrophobic pit on top of a
single micropillar etched on a flat silicon electrode. The large
surface area of the electrode ensures that the bubble growth is
diffusion-limited. As such, growth can be suitably described in
terms of an experimentally determined dimensionless growth

coefficient β̃H2
according to β= ̃R t D t( )

H H
2 2

.

The accumulation of dissolved H2 near the gas-evolving
electrode is hindered by several depletion sources. We identify
depletion from (i) previous bubbles in the succession, from (ii)
unwanted parasitic bubbles forming on the cavity sidewall, and
from (iii) the mere presence of the cavity where the electrode is
being held. It follows that the degree of supersaturation near
the electrode (and consequently β̃H2

) is largely unsteady. For

the range of current densities considered in our experiments
(5−15 A/m2), the H2 bubble succession first experiences a
stagnation regime where depletion effects are most noticeable.
Here, β̃H2

remains fairly constant or decreases. A fast growth in

β̃H2
then follows before the steady state is reached. Conversely,

for the case of CO2 bubbles in our P-C experiments, persistent
depletion (exclusively from previous bubbles in the succession)
is observed. The analogous growth coefficient β̃CO2

decreases in

such a way that the quantity 1/β̃CO2

2 (t) increases linearly with

time.
Furthermore, in the electrolysis experiments, the depletion

effect of the cavity opening and of parasitic bubbles forming on
the cavity sidewall accounts for the growth retardation observed
as bubbles approach their departure size. Oppositely, CO2

bubbles experience enhanced growth as they approach
detachment. This is attributed to the onset of density-induced
natural convection.
The comparison of both case scenarios serves to highlight

the important effect of depletion, omnipresent in the growth of
a succession of bubbles. The knowledge obtained can be further
expanded by conducting electrolysis experiments with two main
variations. First, we have nucleated bubbles within a cavity with

Figure 15. Evolution in time of the diffusion growth rate for j = 7.8 A/
m2 for three different experiments. The pit radius is R0 = 5 μm for Hp

= 0 and 30 μm, whereas R0 = 1 μm for Hp = 15 μm. The green curve is
a theoretical approximate solution given in eq 14, with jeff = 1.04 A/m2

(same value as in simulations) and Heff = 8 mm.

Figure 16. Comparison between simulation (curves) and the
experimental growth dynamics for the (a) 48th and (b) 74th bubble
of the succession with Hp = 30 μm (cf. Figure 15). The nominal
current density is j = 7.8 A/m2, whereas simulations employ an
effective current density of 1.04 A/m2. The red dashed curves are
expected growth for a bubble in an infinitely long electrode that
nucleates at the experimental time t in the absence of any previous
bubbles. The initial concentration profile is given by eq 17 evaluated at
time t. The resulting local supersaturations are ζ48 ≈ 9.25 and ζ74 ≈
11.0. For the black curves, the time is adjusted to (a) 0.5t and (b) 0.6t,
resulting in ζ48 ≈ 7.25 and ζ74 ≈ 8.4.
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no flow (stagnant conditions). In real-life scenarios, however, it
may be desirable to have continuous flow. This will change the
force balance keeping the bubbles pinned at the surface and
influence mass transport through advection. Second, closed
systems that could be pressurized (as opposed to open systems,
such as the one presented here) will be very similar to the
actual utilization of microfluidic electrochemical reactors.3 Both
cases are expected to entail distinct bubble growth dynamics
and certainly warrant further study.

■ APPENDIX A

One-Dimensional Concentration Profile from a
Gas-Evolving Surface

The one-dimensional diffusion equation governing the
evolution of the dissolved gas concentration profile
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applies to the liquid region 0 < z < H. A constant molar flux Jw
enters the region at z = 0. At the free surface, C(z = H, t) = 0.
Initially, we assume that C(z, t = 0) = 0. The concentration
profile has the following analytical solution:45
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where the integral of the complementary error function is
defined as
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Equation 17 converges in time to the linear profile of the
steady-state solution, C(z, t → ∞) = Jw(H − z)/D. Profiles
computed from eq 17 are plotted in Figure 17, whereas the
evolution in time of the concentration at the gas-evolving
surface (z = 0) is plotted in Figure 18. Note that for the case of
infinite height, H → ∞, the solution in eq 17 simplifies to
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In this particular case, no steady-state solution exists, and the
concentration at the wall increases unboundedly as

πJ t D2 /( )
w

. Furthermore, if small heights or short times are

considered such that ≪z Dt/ 4 1, then eq 19 can be
approximated as
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■ APPENDIX B

Depletion Model for the Growth Coefficient

Let subscript n refer to the nth bubble. Let tn = t − t0,n, where
t0,n is the nucleation time of such a bubble and t0,n=1 = 0. Let
θn(r, t) = C(r, t) − C̅n, where

δ̅ = = = = = Δ− − − −C C r t C r t t( , 0) ( , )n n n n n n n1 1 1 1 (21)

is the characteristic (homogeneous) concentration field (left
behind by bubble n − 1) in which bubble n immediately grows.
It is essentially the concentration field evaluated at the
characteristic diffusion length δn and time Δtn corresponding
to the previous bubble, where Δtn = td,n − t0,n is the bubble
residence time. Note that we assume a negligible time between
detachment and nucleation of the subsequent bubble: tn−1 =
Δtn−1 is equivalent to tn = 0. Furthermore, the detachment

radius = ̃ ΔR b D tn nd is assumed to be constant for all bubbles.

Following the model proposed by Moreno Soto et al.,33 we
treat each bubble in the succession as a point source of molar
strength

π
̇ = −

Δ∞

n
PR

R T t

4

3
n

n

0 d
3

u (22)

which acts as a boundary condition to the diffusion equation,
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together with a second boundary condition θn(r → ∞, t) = 0
and initial condition θn(r, tn = 0) = 0. Let θn̅ be the
characteristic solution for θn evaluated at r = δn and t = Δtn.
Then,
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Figure 17. Universal plot of the time evolution of the 1D
concentration profiles for different instants in dimensionless time.
The profiles marked in blue correspond to log10(Dt/H

2) = −3, −2, −1,
and 0. The profile in red is the steady-state profile.

Figure 18. Invariant, dimensionless plot of the time evolution of the
concentration at the electrode wall (z = 0).
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Let ΔC̅n = C̅n − kHP0 be the characteristic concentration field
strength relative to the interfacial concentration. One then has
that

∑ θΔ ̅ = ̅ − + ̅
=

C C k Pn

m

n

m1 H 0

2 (25)

Making use of eq 9, we know that Δ C̅n = P0b ̃n
2/(2 Ru T∞).

Substituting this expression along with eq 24 into eq 25 yields
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where b ̃1
2 = 2RuT∞ΔC̅1/P0 is just the known growth rate of the

first bubble (corresponding to the initial, undepleted super-
saturation ΔC̅1). From experimental evidence in Moreno Soto
et al.,33 we can make the approximation that δn ≈ 4Rd.
Moreover, because b ̃m ≈ 0.1 is small, the complementary error
function can be approximated as unity. Equation 26 then
simplifies to

∑π̃ = ̃ − ̃
=

b b b
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n
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2

1

2

2

2

(27)

The above expression can be made continuous in time through

∫π̃ = ̃ − ̃ ′
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where dn/dt = Db̃2(t)/Rd
2 is simply the continuous form of the

bubble nucleation frequency. Differentiating eq 28 in time
yields

π̃
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Upon integration, we obtain

π
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Rodríguez, J.; van der Meer, D.; Lohse, D.; Huskens, J.; Gardeniers,
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