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Abstract
Results from the electromagnetic modeling of the threshold conditions of hybrid plasmon modes of a laser based on a silver nano-

tube with an active core and covered with an active shell are presented. We study the modes of such a nanolaser that have their

emission wavelengths in the visible-light range. Our analysis uses the mathematically grounded approach called the lasing eigen-

value problem (LEP) for the set of the Maxwell equations and the boundary and radiation conditions. As we study the modes

exactly at the threshold, there is no need to invoke nonlinear and quantum models of lasing. Instead, we consider a laser as an open

plasmonic resonator equipped with an active region. This allows us to assume that at threshold the natural-mode frequency is real-

valued, according to the situation where the losses, in the metal and for the radiation, are exactly balanced with the gain in the

active region. Then the emission wavelength and the associated threshold gain can be viewed as parts of two-component eigen-

values, each corresponding to a certain mode. In the configuration considered, potentially there are three types of modes that can

lase: the hybrid localized surface plasmon (HLSP) modes of the metal tube, the core modes, and the shell modes. The latter two

types can be kept off the visible range in thin enough configurations. Keeping this in mind, we focus on the HLSP modes and study

how their threshold gain values change with variations in the geometrical parameters of the nanotube, the core, and the shell. It is

found that essentially a single-mode laser can be designed on the difference-type HLSP mode of the azimuth order m = 1, shining in

the orange or red spectral region. Furthermore, the threshold values of gain for similar HLSP modes of order m = 2 and 3 can be

several times lower, with emission in the violet or blue parts of the spectrum.
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Introduction
The promise of greatly enhanced light–matter interaction in

nanostructured metal configurations, combined with controlled

precision of their fabrication, has already turned plasmonics

into a very dynamic research area within contemporary optics

and photonics. The physical basis of this enhanced interaction is

provided by the existence of the very slow (in the phase-

velocity sense) surface-plasmon waves guided by metal–dielec-

tric interfaces or thin metal layers, and their standing-wave

counterparts, localized surface plasmon (LSP) modes on metal

particles and wires of deeply sub-wavelength (sub-λ) size. This

phenomenon occurs due to the specific properties of the com-

plex dielectric functions of metals in the optical range, namely

their negative real-part values, Re εmet(λ) < 0 [1,2]. The reso-

nances on the LSP modes are already used in the design of

nanoantennas and nanosensors in which small changes in the

refractive index of the host medium allow for a direct measure-

ment of low concentrations of various substances. More

recently, a new theme of research effort has appeared around

the LSP modes: the analysis and design of plasmonic nanolasers

(also called spasers) where a nanoscale metal particle, wire,

strip or shell serves as a miniature open resonator, and the pres-

ence of the active region can be provided in a variety of ways.

After initial theorizing in the mid-2000s, this has led to the ex-

perimental demonstration of the smallest plasmonic laser in a

random solution of colloidal gold nanospheres enveloped with

dye-doped silica shells [3]. Today, plasmonic nanolasers attract

great attention in research. A number of publications have dealt

with the modeling of nanolasers based on metal nanoparticles

and nanowires equipped with active cores or shells [4-9]. Note

that in [4], the authors studied the effect of a metal tube on the

lowest-order modes of the active core while the presence of the

plasmon modes of the tube itself was neglected. More recently,

the attention of researchers became focused on lasing in peri-

odic arrays of metal nanoparticles supported by or immersed

into an active layer [10-13] or with other active region configu-

rations [14].

In this paper, we explore the modes of a silver nanotube as a

promising nanocavity, which is able to support transverse HLSP

modes at wavelengths strongly dependent on the tube thickness.

This is in sharp contrast to the LSP modes of a solid circular

metal wire that are all close, in wavelength, to the roots of the

textbook equation Re εmet(λ) = −εhost where εhost > 0 is the rela-

tive dielectric permittivity of the host medium – see [1,2] for

details. If the host medium is air, then the corresponding wave-

length is found in the ultraviolet range for silver and in the

green range for gold where the bulk losses in metals are consid-

erable. This means that, to achieve lasing, any natural mode of a

plasmonic laser has to overcome the losses in the metal ele-

ment (plus much smaller radiation losses) that places the

threshold values of material gain at the same level as Im εmet.

As explained in [15,16], by manipulating the nanotube thick-

ness, one can shift some of the low-order hybrid modes to the

orange and even the red parts of the visible spectrum. Here, the

bulk losses in metals are much smaller than in the ultraviolet

part; this should result in lower thresholds for these modes. But

it appears that these thresholds have not been accurately quanti-

fied so far.

Our instrument for the analysis of the threshold conditions is the

LEP formalism, which is described in detail in [17] for arbi-

trary laser models. This is the eigenvalue (source-free) electro-

magnetic field boundary problem specifically tailored to

provide both the modal wavelengths and the associated values

of threshold material gain in the active region. This is because,

in contrast to the conventional eigenvalue problem aimed at the

complex modal frequencies (and associated Q-factors) for a

passive optical cavity, LEP fully takes into account the size,

shape and location of the active region. As shown in [17], every

LEP eigenvalue automatically satisfies the “gain = loss” condi-

tion. Therefore the LEP formalism is, in fact, the full-wave clas-

sical (i.e., purely electromagnetic) laser threshold theory equally

valid for any two-dimensional (2D) and three-dimensional (3D)

configuration. Here it should be noted that the so-called “semi-

classical theory,” developed at the onset of laser studies when

early laser resonators were measured in thousands of λ, coin-

cides with the LEP for the simplified one-dimensional laser

models, which involve only flat-layered infinite-width micro-

cavities [18].

To date, the LEP approach has been successfully applied to a

variety of 2D microlasers, which appear as reasonable approxi-

mations of 3D configurations shaped as thin flat “disks” or

“patches”: single fully active microcavities in the form of a

circle [19], kite [20], and square [21], active cyclic photonic

molecules [22,23], active circular disks with passive annular

Bragg reflectors [24], and partially active circular and elliptic

cavities [25,26]. More recently the LEP was applied to the

modes of a single plasmonic nanowire [5] and a single plas-

monic nanostrip [8] placed into an active circular shell. Alterna-

tively, such configurations can be seen as a quantum wire

loaded with a plasmonic open resonator. An infinite array of

circular quantum nanowires was considered with LEP in [27]

where it was shown that such a periodic open active resonator

can support so-called lattice modes with ultra-low thresholds

and wavelengths located near to the Rayleigh anomalies. A sim-

ilar LEP-based study of the lasing modes of an infinite binary

grating of circular silver and quantum nanowires was published

in [14] where the thresholds of the LSP modes were found to be

higher than those of the lattice modes.
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Figure 1: Cross section of a nanolaser built on a silver nanotube with

an active core and an active shell.

Note also that there exist other LEP-like formulations aimed at

the extraction of mode threshold [28-32]; some of them differ

from LEP only by the choice of the material-gain parameter,

which can be the imaginary part of the dielectric permittivity

(because Im εa = 2αγ, where α is assumed known) or the prod-

uct of the wavenumber and the imaginary part of the refractive

index (g = kγ, k = 2π/λ) – this choice is typical for semi-clas-

sical laser theory. In any case the principal step is assuming the

threshold value of gain to be unknown and finding it as an

eigenvalue. This is fully adequate to the fundamental observa-

tion, known from the onset of laser research, that the thresholds

of lasing are specific to each mode and hence are closely tied to

the mode field pattern and its overlap with the active region.

Thus, the goal of this work is to analyze the threshold condi-

tions of the HLSP modes of a silver nanotube laser with double

active region. To the best of our knowledge, although these

modes have been known in the passive applications such as

refractive-index sensors, they have not been studied yet from

the viewpoint of lasing.

Results and Discussion
Lasing eigenvalue problem
Figure 1 presents a cross-sectional view of the nanoscale laser

based on a silver nanotube. It is assumed that the tube is infi-

nite along the z-axis, and that the electromagnetic field does not

depend on z; hence the problem under consideration is a 2D

problem. To make a resonator able to emit electromagnetic

waves non-attenuating in time, one must equip it with an active

zone filled with a material possessing optical gain. Such materi-

al can be a semiconductor, a dye-doped polymer, or a material

doped with ions of erbium or some other rare-earth elements.

All of them are able, under pumping, to demonstrate the inverse

population of electronic levels and the stimulated emission of

light. In the model of a nanolaser considered here, it is assumed

that the active zone has the form of concentric circular shell of

thickness d and that the same active material also fills the inner

core of the tube that has the radius a.

This configuration of the active region is selected as the most

favorable for achieving lower thresholds of the LSP modes.

Such anticipation is based on the finding of [17] (see Equation

36 there): low threshold needs good overlap of the active region

with the electric field of mode, and on the known property of

LSP modes to “stick” to the metal–dielectric boundary. Indeed,

as the hybrid LSP modes of a nanothin tube have their maxima

at both boundaries, the gain in only one region (core or shell)

will entail roughly twice higher thresholds than the gain in both

regions (see also Equation 14 of the present paper and its

derivation).

Denote by U the component of the magnetic field Hz. Assuming

that the field is time-harmonic and depends on time as e−iωt, the

LEP implies that the function U must satisfy the 2D Helmholtz

equation with the corresponding refractive indices in each of the

regions, i.e., complex ν = α − iγ in the core and the shell active

regions, where α is the known refractive index and γ is the

unknown material gain, the known complex νmet(λ) of the tube

metal, and 1 in the outer air region. On the boundaries of the

partial regions, the conditions of continuity of two tangential

field components, Hz and Eφ have to be satisfied. In addition,

the Sommerfeld radiation condition at infinity and the condi-

tion of local power finiteness are imposed. We assume that the

material gain is uniformly distributed within the active regions

and is independent of the wavelength. For a mode on the

threshold of lasing, the wavelength is assumed to be real-

valued. The task is to find two numbers, the mode wavelength

and the associated value of material gain, which are the compo-

nents of the LEP eigenpairs (λN, γN), where N is a generic mode

number.

For generality, consider a general configuration, which has S

concentric circular boundaries and, respectively, S + 1 regions,

where s = 1 corresponds to the central region, and s = S + 1 to

the outer region. Introducing the polar coordinates (r, φ) and

denoting the radius of the s-th boundary and the refractive index

in the s-th region as as and νs, respectively, we can write the

field in each of the regions as a Fourier series in terms of the

azimuth functions,

(1)
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where Jm and Hm are the Bessel and the first-kind Hankel func-

tions, respectively, and  and  are unknown coefficients.

From the condition of local power finiteness and the radiation

condition at infinity, it follows that the field in the central

region must contain only the Bessel functions, and in the outer

space only the Hankel functions, that is  = 0 and  = 0. In

view of the orthogonality of the azimuth functions with differ-

ent indices m in Equation 1, the corresponding mode families

can be analyzed separately. Note that all modes with m > 0 are

twice degenerate.

To find the coefficients  and , we use the boundary

conditions, which generate a pair of equations at each boundary,

r = as, where s = 1,2,…S, of the following form:

(2)

(3)

Collecting all such equations together, and denoting x2s−1 = 

and x2s =  for s = 1,2,…S, we obtain, for each fixed m, a

matrix equation of the order 2S,

(4)

where Fpq(m; λ, γ) is the matrix operator built from Equation 2

and Equation 3 written for all S boundaries and 

The elements Fpq can be easily computed with accuracy to

machine precision. The LEP eigenvalues sought are the roots of

the corresponding determinant equations,

(5)

The configuration depicted in Figure 1 has S = 3 boundaries,

and the corresponding geometrical and material parameters are

a1 = a, a2 = a + d, a3 = a + d + h, ν1 = ν3 = α – iγ, and ν2 = νmet.

To solve the transcendental Equation 5 numerically, we use an

iterative Newton-type algorithm that needs some initial guess

values of the unknown wavelength λ and threshold gain γ.
Because of the strong dispersion of the dielectric permittivity of

silver, it is convenient to take these initial values after plotting

the color map (relief) of the function Dm = |det[Fsp(m; λ, γ)]|.

An example of such a map for the function D2(λ, γ) is presented

in Figure 2. As one can see, there are two clearly visible

“holes,” where this function is close to zero. One of them

occurs at a wavelength near to 350 nm and the other at a wave-

length around 385 nm. They indicate two possible LEP eigen-

values corresponding to the quadrupole-type HLSP modes ,

as shall be discussed further.

Figure 2: Relief of the function D2(λ, γ) for a nanotube with

a = h = 30 nm, d = 10 nm, α = 1.5.

In the computations, an important consideration is the data for

the complex dielectric permittivity of silver. Note that, accord-

ing to [5], a simple Drude formula does not accurately approxi-

mate the experimental data of [33], especially in the violet part

of visible spectrum, where at least some of the HLSP modes of

the silver tube have their emission wavelengths. The modifica-

tions of the Drude formula presented in [34] are more accurate,

but yield a non-physical negative Im εmet in silver at longer

wavelengths. Therefore we use the measured values of dielec-

tric function of silver from [33] and interpolate them with the

aid of Akima splines, to determine the complex permittivity at

any wavelength between the measured values.

Note also that, according to the research reported, e.g., in [35],

non-local effects in metallic particles have to be taken into

account only if their dimensions become smaller than 3–5 nm.

Otherwise one can characterize the complex dielectric permit-

tivity using its bulk value.

Complex Poynting theorem for the modes of

a nanolaser
The complex Poynting theorem is the direct consequence of the

Green’s formula applied to the functions, which solve the

Maxwell equations. In plane-wave scattering, the optical
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theorem is obtained as the real part of the complex Poynting

theorem when it is applied to the total field, i.e., to the sum of

the incident and scattered field, and its complex conjugate [1].

In the LEP, there is no incident field however the same com-

plex Poynting theorem can be used as well. As shown in [17], if

applied to a lasing mode field U and its complex conjugate

counterpart U*, its real part, i.e., the optical theorem, leads to

the well-known “gain = loss” condition, widely used in the

so-called “semi-classical laser theory”. Thus, this condition is a

direct consequence of the fact that U is a solution of the LEP

and so it is valid for an arbitrary laser configuration, i.e., has

universal validity, not restricted to “semi-classical theory”. If,

as in the case of a plasmonic laser considered here, a lossy

region Vabs is present in addition to the active region Vgain, then

the Optical Theorem takes the following most general form:

(6)

where  and  are the powers generated in,

absorbed in and radiated away from the laser cavity. In line

with the classical electromagnetics of time-harmonic fields

(depending on time as e−iωt), these quantities are

(7)

(8)

(9)

where Z0 is the free-space impedance, ε = ν2, S is a closed sur-

face, which contains all resonator elements, and  is the

mode complex Poynting vector.

If the active region does not fill the whole open resonator (this

is the case for the configuration shown in Figure 1), then it is

convenient to introduce the quality factors linked to the absorp-

tion in metal and the radiation into the host medium, respective-

ly,

(10)

where the power stored in the open resonator is expressed as

(11)

and Vmin is the volume of open resonator, that is the inner

domain of the minimum circle containing all of the resonator el-

ements [17]. If the mode electric field is normalized by its

maximum magnitude value, then WN coincides with the effec-

tive mode volume – this quantity is an important “effective”

footprint of both the cavity geometry and composition and the

given lasing mode field pattern.

In our case, Vmin = Vgain + Vabs and  howev-

er, the active region consists of two separate domains (the core

and the shell) and hence Vgain = Vcore + Vshell. Therefore each of

the quantities  and  is also a sum of two partial

values, so it is convenient to introduce the overlap coefficients

between each part of the active region and the mode electric

field,

(12)

Then the “gain = loss” Equation 6 takes the following form:

(13)

Equation 13 is, of course, simply a re-written optical theorem

and hence it is valid for any mode of any laser containing both

lossy elements and active regions. Furthermore the quantities

 and QN (and their components) appearing on the right-

hand side of this equation also depend indirectly on γN; this

hinders its understanding. However, Equation 13 takes an

extremely “transparent” and handy form if the mode threshold

gain is assumed small, γN << 1. Then, after taking into account

that both  and QN are quadratic with respect to the field

amplitude, we can replace them, with an error of the order of

 by the same values calculated in the absence of gain

(γN = 0),  and QN(0). Thus,

(14)

Note that if γN << 1, then Equation 13 can also be cast to the

form given in Equation 15; this is equivalent to Equation 14 but

presented in terms of the dielectric permittivity of the gain ma-

terial in the active region,
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(15)

Thus the lowest-threshold mode is not the one with the highest

quality factor, QN(0), of the pump-off cavity, but the mode with

the largest product of  and QN(0).

The expression obtained, in either form, communicates the

fundamental engineering rule for the design of low-threshold

laser: take the highest-Q mode of the cavity and equip it with

the active region matching its E-field pattern as closely as

possible, to provide  ≈ 1. In the case of the nanotube

plasmonic laser studied here, the HLSP modes have the

maximum E-field values on two boundaries of the tube, the

inner and the outer. This explains our choice of a two-part

active region, the core and the shell, because if we leave only

one of them, the overlap coefficient will be at best close to 1/2.

It should be noted that in the presence of a lossy metal,

 Then, even if a good overlap

is achieved, so that  ≈ 1, the threshold gain of any plas-

monic mode is of the same order as Im εmet(λ). Still it depends

on the type of the mode and the tube thickness. More accurate

estimation is obtained from Equation 6 using the quasi-static

expressions for the HLSP mode fields of the metal nanotube,

derived in [36]. The cumbersome algebraic expressions can be

simplified if h/a << 1 that yields the following lower-bound

formula for the most important “difference” modes, :

(16)

From Equation 16, one can conclude that taking extremely thin-

wall metal tubes is a way to a significant lowering of the

threshold. However, this is not true as, if h ≤ 5 nm, then the

permittivity must be corrected for non-local effects, which leads

to considerably larger values of Im εmet [35].

Numerical analysis of hybrid plasmon mode

thresholds
In this section we present the study of the emission wave-

lengths and the threshold values of gain, together with the fields

of the lasing modes of a nanolaser based on a silver nanotube

with a thin active shell and an active core. All computations

have been performed using Equation 5 as explained in sub-

section lasing eigenvalue problem. We assume that the gain ma-

terial is nonmagnetic and has a refractive index α = 1.5 (hence

the relative dielectric permittivity is ε = 2.25) that does not

depend on the wavelength.

It is a well-established fact that on thin metal nanotubes, the

thickness of which is comparable to the skin-depth thickness in

the optical range (about 10 to 20 nm), the modes of the outer

and inner boundaries hybridize [15]. This means that they form

pairs, , in which the H-field of one mode is the sum and the

other is the difference of the fields of the two modes of each

boundary in the absence of the other. Thus, every HLSP mode

can be viewed as a supermode, with H-field maxima at both

boundaries and either zero or non-zero values of the field in

the middle of thin-wall silver tube (i.e., between r = a and

r = a + h). Their emission wavelengths are found from a quasi-

static equation [16]. For instance, if the outer medium is

uniform and its material is the same as that of the core, then

such equation for every azimuth order m = 1,2,… is

(17)

Note that if the tube wall becomes thicker, h >> a, then two

HLSP sister-mode wavelengths come together to the same

quasi-static value known for both the solid metal wire and the

void in the metal medium, Re εmet( ) = −εhost. Note that the

configuration of Figure 1 has a finite-thickness shell covering

the metal tube from the outside, and therefore corrections to

Equation 17 of the order of O[dm/(a + h + d)m] can be anticipat-

ed.

However, as it was shown in [5], if the shell thickness, d,

becomes close to the half-wavelength in the shell material, then

the active shell can support its own lasing modes in the optical

wavelength range (shell modes). The same is true for the modes

of the void, i.e., of the active core, studied in [4] (HLSP modes

were not studied in [4]). Therefore, to exclude the appearance of

shell and core modes in this range, in the computations we will

consider only nanotube lasers with sufficiently thin outer active

shells of the thickness d from 10 nm to 30 nm, and the inner

active cores of the radius a from 10 nm to 50 nm. Note that the

threshold values of gain, γ, of the shell modes are typically

higher than those of the LSP modes, apparently because of

more significant radiation losses [5].

In addition to the shell and core modes, the existence of the

other “secondary” plasmon modes of the real-material (i.e., not

Drude) silver wire with an active shell was shown in [5]. They

have emission wavelengths in the deep ultraviolet; they are not

studied here as they have very large emission thresholds, well

above γ = 1.

Figure 3 presents the |Hz| near-field portraits of several HLSP

lasing modes, , with azimuthal indices m = 1, 3 and 10, of a
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Figure 3: Near H-fields of the eigenmodes of thin-wall nanotube,

a = 30 nm and h = d = 10 nm: (a)  λ = 565.031 nm, γ = 0.122,

(b)  λ = 414.238 nm, γ = 0.035, (c)  λ = 335.46 nm, γ = 0.269,

(d)  λ = 363.737 nm, γ = 0.073, (e)  λ = 354.361 nm, γ = 0.105.

thin-wall (h = 10 nm) silver nanotube laser; these modes are

also marked on the trajectories to be presented in Figures 5 to 7.

The features of the mode fields that explain our notations are

clearly visible in these portraits: this is the presence of either

zero fields (dark rings) or non-zero fields (2m bright spots) in

the middle of the nanotube wall (see also [36]). The field

maxima stick to both the outer and the inner boundary of the

nanotube.

If the wall becomes thicker (i.e., h becomes larger), then 

modes lose their hybrid features and transform to the LSP

modes (of the same m) of the solid circular metal wire of radius

r = a + h and of the void of radius r = a in the metal host medi-

um, respectively. This is visible in the near-field portraits of the

modes  with azimuthal indices m = 1 and 2, of a thicker-

wall nanotube laser, with h = 30 nm, shown in Figure 4.

Figure 4: Near H-fields of the eigenmodes of thick-tube nanolaser,

a = 30 nm, d = 10 nm, and h = 30 nm: (a)  λ = 419.485 nm,

γ = 0.137, (b)  λ = 386.768 nm, γ = 0.1, (c)  λ = 349.074 nm,

γ = 0.283.

Note that for both values of the tube wall thickness (10 nm in

Figure 2 and 30 nm in Figure 4) the gain threshold value of the

mode  is lower than that of its sister mode  apparently

because of the better overlap of its E-field with the active

regions.

To obtain a fuller vision of the dynamics of LEP eigenvalues on

the plane (λ, γ) for the plasmonic silver nanotube laser, we have

computed their trajectories for a device with an active core

radius a = 30 nm and an active shell thickness d = 10 nm as the

tube wall thickness h is varied from 10 nm to 50 nm (Figure 5).

We have studied only the modes that have their emission wave-

lengths in the visible range from 330 to 570 nm. Note that the

trajectories have been calculated with small steps in the tube

thickness to ensure their smoothness and the color markers are

shown just for better understanding. The shape of the marker

corresponds to the value of m and its color to the value of the

varying tube thickness. For the  modes, the dots are half-

filled, and for the  modes they are fully filled.

As can be seen from Figure 5, the “difference” mode  is the

one with the highest red-shift, followed by the higher-order

modes of the same type,  and  etc. If the tube gets

thicker, each of the emission wavelengths of these modes

moves closer to the value of 359 nm (from the red side) that is
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Figure 5: The trajectories of the eigenvalues of lasing modes on the plane (λ, γ) for plasmonic silver nanotube laser with an active core radius

a = 30 nm and an active shell thickness d = 10 nm. The tube thickness varies from 10 to 50 nm as marked on the trajectories. The blue dashed line

indicates the wavelength at which Re εmet(λ) = −α2 + γ2 (if γ = 0 then this is 359 nm [33]). The red dashed line indicates the lower-bound estimate

(Equation 16) for the  modes of silver tube with h = a/3.

the accumulation point for the modes of the solid circular silver

nanowire placed in the medium with α = 1.5. Note that, as

already mentioned, if the tube thickness exceeds some 30 nm,

then the nanotube modes lose their hybrid character and transfer

to the modes of one of two boundaries: if h/a → ∞ then

 Indeed, the wavelengths of emission

of the “sum” modes,  also come closer to 359 nm, albeit

from the ultraviolet side.

The behavior of the thresholds as h is varied is more compli-

cated. What is clearly visible from Figure 5 is that as far as

h << a, the threshold of any hybrid mode  of the “difference”

type is considerably lower than the corresponding threshold

value for its sister mode of the “sum” type,  This is appar-

ently explained by the better overlap of the mode E-field with

the active region that becomes obvious for very thick tubes: the

void modes fields are fully in the active core while the wire

mode fields partially stretch out of the active shell.

Further, if the tube is thinner than the skin-depth (h < 20 nm),

then for any fixed tube thickness the “difference” HLSP modes

demonstrate lower threshold gains for the larger azimuth indices

m. This is because their fields are more strongly confined near

the outer surface of the silver tube. The thresholds of the “sum”

modes,  behave similarly. However, if the tube becomes

thicker than the skin-depth, this rule no longer holds.

Note also that, under the variation of tube thickness h, the

thresholds of the  modes display a broad maximum, the posi-

tion of which depends on m. This can be explained by the

combined action of two competing mechanisms: in very thin

tubes, the increase in thickness leads to the growth of ohmic

losses in the silver as the E-fields of the  modes are non-zero

functions of r inside the tube wall. However, gradually this

growth of threshold is overcome by the better and better overlap

of the almost purely void-mode E-field with the active core.

Figure 6 shows the trajectories of the eigenvalues of the HLSP

modes  of the nanotube laser for m = 1, 2, 3, and 10 with the

active-core radius a varying from 10 nm to 50 nm (with 10 nm

step) and fixed h = d = 10 nm.

It is clearly seen that for the small-core nanolasers, the sister

modes of the same azimuth index m,  and  are close to

each other, being shifted to the opposite sides of the curve

εmet(λ) = −α2 + γ2. If the nanolaser core increases, their trajecto-

ries move in opposite directions, and for the  modes, the ra-

diation wavelengths of which are in the region of higher losses

in silver, the threshold significantly increases, reaching 0.8–0.9

at a = 50 nm. The threshold values of the  modes demon-

strate better stability, and have much lower values than those of

the  sister modes. The minimum value of γ is demonstrated

by the hexapole “difference” mode  for the nanotube

laser with a = 30 nm (blue triangle in Figure 6): γ = 0.025 at

λ = 439.89 nm.

Finally, Figure 7 shows the trajectories of the eigenvalues of

HLSP modes  of the nanotube laser for m = 1, 2 and 3, with
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Figure 6: The trajectories of the eigenvalues of lasing modes on the plane (λ, γ) for a plasmon nanolaser with a silver tube thickness h = 10 nm and

an active shell thickness d = 10 nm. The active core radius varies from 10 to 50 nm as marked on the trajectories. The dashed curves are the same

as in Figure 5.

Figure 7: The trajectories of the eigenvalues of lasing modes on the plane (λ, γ) for a plasmonic silver nanotube laser with active core radius

a = 30 nm and tube thickness h = 10 nm. The active shell thickness varies from 0 to 30 nm as marked on the trajectories. The dashed curves are the

same as in Figure 5 and Figure 6.

fixed active core radius a = 30 nm and tube thickness h = 10 nm

but with the active-shell thickness d varying from 0 to 30 nm.

Note that there is no “sum” dipole mode  in the range of

wavelengths studied, as it is shifted to the far ultraviolet and has

very high threshold gain.

As can be seen in Figure 7, an increase of the shell thickness

leads to red-shifts of all mode wavelengths because the active

material is optically denser than free space. Furthermore, all

modes demonstrate a decrement of their thresholds that is more

pronounced for the “sum” modes  and  and the higher-
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order “difference” mode  This is obviously explained by the

better overlap of the mode E-fields with the thicker active shell.

A further increase of the shell thickness does not lead to a sig-

nificant change in the thresholds, but brings the shell modes

into the visible range of wavelengths when d approaches λ/(2α)

– that is around 100 nm in the case studied here.

Conclusion
We have presented the results of the classical electromagnetics

analysis of the LEP eigenvalues, i.e., the emission wavelengths

and the threshold gains, of the hybrid plasmon modes of a silver

nanotube laser. To the best of our knowledge, such analysis has

not been done before.

Summarizing, we can say that the optimal nanotube laser con-

figuration looks like a 30 nm to 50 nm active core of a 10 nm

thick silver tube, covered with a 10 nm active shell. This is

because making the core larger than 50 nm in radius shifts the

emission of the working mode to the infrared and making it

larger than 100 nm in radius brings the first core mode to the

visible range. Making the nanotube wall thicker than 20 nm

spoils the hybridization of the LSP modes and pushes all of

them together, at blue and violet wavelengths, while selecting it

much thinner than 10 nm may lead to the increment of losses

due to non-local effects. Using the active shell thicker than

10 nm has little effect on the thresholds of the working modes,

while making it close to 100 nm brings the unwanted first shell

mode to the visible part of the spectrum.

The presented studies reveal that the dipole difference-type

HLSP mode  is the most attractive for being selected as the

working mode. This is because it has a relatively low threshold

gain (around γ = 0.1 if h = 10 nm) and emits light in the yellow

or green parts of the visible spectrum. It is well separated from

the higher-order modes of the same type,  and  which

are significantly shifted to the blue range. This seems to be

more important than the fact that the latter two modes have

2–3 times lower values of threshold gain index than  All

modes of the sum type,  emit light in the ultra-violet part of

the spectrum and have roughly 10 times higher thresholds than

their difference-type sisters. Therefore they are apparently not

interesting for applications.

We believe that the new results presented will help in the design

of nanotube lasers, which are essentially single-mode sources.
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