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FOREWORD

This work was performed under NASA Goddard Space Flight
Center Grant NGS-5288. The basic purpose of the research
performed was to model subsurface media by employing stochas-
tic techniques. A preliminary investigétion indicated that
modeling subsurface media by discrete particles having random
position and orientation would be a viable procedure. The
method has wide applicability since most subsurface media can
be viewed as an aggregate of dielectric particles. In addi-
tion, several multiple scattering methods exist which enable
one to calcualte the electromagnetic radiation from such a
collection of particles for various parameter regimes.

To demonstrate the usefulness of the method; the electro-
magnetic backscattering from a half space of discrete lossy
dielectric scatterers was analyzed. The method of Foldy was
empleyed to find an equation for the mean field in the scat-
tering region. From this equation, an effective permittivity
was obtained. The effective permittivity was anisotgopic re-
flecting the non-spherical nature of the particles being con-
sidered. Followipg this, the correlation of the scactered
field was found by employing the distorted Born approximation.
This methcd treats the scatterers as particles embedded in the
effective medium. The backscattering coefficients were then
computed.

Specialized results were obtained by letting the arbi-
trary particles tzke the form of discs. Since lossy dielec-
tric discs closely resemble leaves, comparison of the

calculated results was made with data obtained from microwave
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backscattering from deciduous trees. The calculated results
agreed with the experiment data (in level). The most inter-
esting fixture was, that the depolarized component of back-
scatter was accounted for correctly. This was due to the
fact that the anisotropic nature of the scattering medium
was corresztly accounted for.

Finally, we would like to acknowledge the support and
encouragement of Dr. D. LeVine and Mr. R. Meneghini of NASA.
We would also like to thank Mr. Selim Seker of GWU for per-

forming the numerical calculations.
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INTRODUCTION

This paper studies electromagnetic backscattering from
a sparse distribution of discrete lossy dielectric scatterers
occupying a region V. The scatterers are assumed to have
random position and orientation. Scattered fields are calcu-
lated by first finding the mean field and then by using it to
define an equivalent medium within the volume V. The scatter-
ers are then viewed as being embedded in the equivalent medium;
the distorted Born approximation is then used to find the scat-
tered fields. This technique represents an improvement over
the standard Born approximation since it takes into account
the attenuation of the incident and scattered waves in the
equivalent medium.

In the past, electromagnetic scattering from a collection
of discrete scatterers has been modeled by continuous and
discrete random medium techniques. In the continuous case,
the random medium is modeled by assuming that its permittivity
e(x) is a randoﬁ process whose moments are known. The average
backscattering cross section is then calculated from a know-
ledge of the statistics of e(x). Usually it is only the mean
and correlation of the permittivity that are required. The
analysis of this problem can then proceed in a number of ways.
One method involves calculating the mean field [Keller, 1962,
Tatarskii and Gertsenshtein, 1963 and Keller and Karal 1966],
using it to define an equivalent medium and then employing
single scattering in the equivalent medium. In active remote
sensing applications from terrain, the technique has been ap-
plied by a number of authors [Rosenbaun and Bowles, 1974;
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Hevenor, 1976; Fung and Fung, 1977; Fung and Ulaby, 1978;
Fung, 1979; and Zuniga, et al., 1979]. Another technique
used to obtain the scattered fields from a continuous random
medium is the radiative transport approach. Here the trans-
port equations are obtained in terms of the statistics of e(x)
[Tsang and Kong, 1978].

In this paper, we have adopted the alternative approach
~ modeling by discrete random media techniques. Here, the
individual objects - such as leaves - are characterized by
their scattering cross sections or dipole moments. Each object
is then given a random placement and orientation. Techniques
such as Born approximation; single scattering method and trans-
port equations have been used to calculate scattered fields
[Ishimaru, 1978]. 1In the area of active remote sensing from
terrain Du and Peake [1969] have used the Born approximation
to calculate the scattering from a layer of leaves. Lang [1979]
employed the distorted Born approximation to calculate the
backscatter from a half space of spherical scatterers.

In this paper we generalize the previous result of Lang

[1979] to scatterers of arbitrary shape. The technique employed,

as mentioned previously, is to find the mean field using a
technique first developed by Foldy [1945] and later generalized
by Lax [1951, 1952], Twersky [1962, 1978] and Keller [1964].
From this mean wave an equivalent medium is derived which,in
general,is inhomogeneous, spacially dispersive and anisotropic.
The scattered field is then obtained by employing single scat-
tering in the equivalent medium.

The method is then applied to a half space of scatterers
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that are homogeneously distributed and have characteristic
dimensions small compared to a wavelength. 1In this case the
equivalent dielectric tensor is homogenous and nondispersive
but is still anisotropic. Further simplifications are obtained
when the orientation of the scatterers is assumed to be dis-
tributed uniformily in the azimuth direction. In this special
case the medium becomes uniaxial. By using this equivalent
medium, simple expressions are obtained for the horizontal,
vertical and cross polarized backscattering coefficients.
Finally, the method is used to model a leaf canopy when the

leaves are modeled by lossy dielectric discs.
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PROBLEM FORMULATION

Consider the problem of scattering of time harmonic
electromagnetic waves from N discrete scatterers located in

a volume V as is shown in Figure 1. The particles are all

identical and each has volume Vp, relative dielectric constant

€. and free space permeability Hg+ It is assumed that the

<L

background medium is free space having permittivity e, and

0
permeability ¥

0

The position of the ith particle is specified by the
vector Ki extending from an origin 0 to the center of that
particle. The particle's center is located by the center of
the smallest circumscribed sphere in which the particle can
be placed. Although the particles are identical they have a
rotation with respect to a fixed direction. The rotation for
the ith particle is specified by Qi=(ei,®i) where 0; and @i
are polar and azimuth angles respectively with Oiaijw and

0§®i§2n.

The electric field obeys the vector wave equation

VXVXE - kger(§)§ = iwpy J (1)
where a time dependence e-lwt has been assumed. In (1) kO =

m/ESﬁB is the free space wavenumber and J is the current
density of the source. The relative dielectric constant
er(g) can be expressed in terms of individual particles by
employing translations and rotations of the particle located
at the origin. Let us assume that a particle lccated at the

origin is characterized by the function U(x) where

Lk e e e g £




U(x) = P (2)
Using (2) we express sr(g) as

) ’ A e_~1 (3)

il

N
e (x) =1+ 4 i U(x-X;

where
U(x,2) = U(R(S) x) (4)
Here U(x,Q2) is the function U(x) rotated by £ and R(Q) is a
rotation dyadic.
We will find it convenient to express (1) and (3) in a

more abstract notation. We have
N
(L- I V.)'E=g (5)

where

2
oL (6)

o 12 _ _
Vi = kodU(x-X,,0)L , g = iwpyd (7)

Here I is the unit dyadic and g can be viewed as a normaliz~
ed source term. At times it will be convenient to write

E(x) = Ey(x) + E (x) (8)

where go(x) is the solution to (5) when no scatterers are

present, i.e.,

ne

Ey(x) =g (9)

and Es(ﬁ) is the scattered field from the particles.




SINGLE SCATTERER -~ TRANSITION OPERATOR

Before considering the N particle scattering problem, we
will consider scattering from one particle located at the

origin. Putting N=1 in (5) with X,;=0 and 2,=Q, we have

1

= AkZU(x,2) (10)

=
1
n<
)
]
t.Q
i<

where

e=¢g,+e , Lrey = g (11)

/] g

and e  is outgoing as |x|+=. We have used the small e nota-
tion for the field here to vemind us that there is only one
scatterer present.

If we use (1l1) in (10), we obtain

= S = e

From (12) we see that the term on the left, V:e, can be view-
ed as the source of the scattered field. We write

Seq = L'e (13)

where Ieq is an equivalent source term. Since ¥Y=0 when

§¢Vp, the sources, geq’ exist inside the particle boundaries.

It is more natural to think of the equivalent sources as
being caused by the incident field €o° Because Maxwell's
equations are linear, we can write

geq = Z'Eo (14)

where the dyadic operator T is known as the transition opera-
tor in the scattering literature [Lax, 1951]}. Now using (13)

and (14) in (12) and multiplying through by E—l, we have
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Thus the knowledge of T completely charagterizes the scatter-
ing properties of the particle. The operator T is related to
the dyadic scattering amplitude of the particle and for dipole
scatterers T can be determined from the polarizability of the

particle., Thus T is directly connected with quantities of

physical interest.
The transition operator is a linear bounded operator and,
“as a result, can be expressed in integral form:

Gg® = Tvep = fax'txx) . eglx)  (16)

where the limits for the integral extend over all space. One
can show that t is 0 whefi x and x' are outside the particle

[Frisch, 1968], i.e.,

t(x,x') =0, x¢Vp or §’¢Vb (17)

The property follows directly from the fact that the equiva-
lent sources for the scattered field are located within the
particle boundaries,

We will now represent £ in terms of plane waves. The
representation of t can be directly related to the dyadic
scattering amplitude. We proceed by representing 30(3) by
its Fourier transform, putting this in (16) and taking the
Fourier transform of (16). We obtain
0 =f ak'E(e,r) g k" (18)

. e D e -

Eeq
where
1

(27)

ikex-k'ex') (19)

dxdx't(x,x")e

t(k/k') 7 Jaxdx't(x,x

In (18) we have used the notation that i is the Fourier

¢

b

)

G bl P i it o i1




transform of h, More specifically

(k) = ﬁz h(x)e 1% (20)

Inverting (19) the transition kernel t can be expressed in

[f= 28]

terms of its plane wave representation t:

s Jax ak' Bk, ket EERIRT gy,

et

(x,x') =

The dyadic scattering amplitude will unow ¢ defined.
Consider a plane wave incident upon a scatterer located at
the origin. An arbitrary plane wave can be decomposed into

two mutually orthogonal linearly polarized plane waves. The

polarization directions are taken as 0° and 8° where a° and
B° are orthogonal unit vectors with a° and B° being perpen-
J dicular to the direction of propagation. The two incident

waves are

: -koi'ﬁ
go(x,iiq) = g°e ' ae {a, B} (22)

where i is a unit vector in the direction of incidence. It
is more convenient to consider both polarizations simultan-

eously so we introduce the dyadic incident wave [Twersky, 1967]

golxs1) = ep(x,isalay + ey(x,158) 8, (23)
iko.i;'_}i
. =(%%+§£&e (24)
' ikodrx

0

= (I - ii)e (25)

The dyadic scattered field from the particle is given by

( Ii-_;B)_B_O (26)

i) = e
(x,1) = e g (x

g(Xsija)oy + &

where e_(x,1;q) is the scattered field due to polarization gq.
The dyadic scattering amplitude, £, is defined in terms of the

r asymptotic expression for e in the radiation zone. We have



—————

o T——

e (x 1) v £(0,1) T [x |+ (27)
where 0 is a unit vector in the x direction, 0=x/|x|.
The relationship between £ and g can be found by employ-

ing (15) for large |x| (Appendix A). The result is

ficke

£(0,1) = 272 (3~0 0)

L (kgQrkod) * (-1 &) (28)
From this relation, we see

9 £=0, f£i=0 (29)
Thus £ is a four component temsor - all combinations of twc
incident polarizations and two scattered polarizations. We
also note that £ does not completely determine ﬁ but only
partially specifies it. 1In particular, a knowledgr of f for

a free space wave number k, only determines E(k,k') at |k| =

in the

g

|£'I=LO; also only four of the nine components of
polarization directions are determined.
Before concluding this section, transition operators for

particles not located at the origin will be needed. As before,
(1)
eq
be related to the incident field. It follows that

the equivalent sources g for a particle located at Ei can

‘géci;) (x) =178 = fEi‘Erz‘.') ‘gp(x"idx'  (30)

By shifting *he sources and the incident field to the origin
Ei can be related to t. One finds

by (X,x') = £(x-X;,x'-X,) (31)

Note that throughout the discussion the dependence of t on

rotations has been suppressed for convenience of notation.

d
T T : ;2
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COHERENT FIELD

In this section we will develop an approximate equation
for the coherent field by employing the Foldy approximation
[Foldy, 1945]. The equation is in terms of the transition
operator and thus, when the scattering amplitude is known,
the equation is completely specified. After the equation has
been derived it is pointed out that outside V the coherent
fields obeys Maxwells' equations with free space permittivity
and permeability. Inside V, the coherent fields obey Maxwells
equations with free space permeability and a macroscopic per-
mittivity that is inhomogeneous, anisotropic and sp#tially
dispersive.

Before discussing the coherent field, the statistics
that govern the particles position and rotation must be specified. It
will be assumed that the position vectors Ki’ i=l...N and ro-
tation vectors ﬁi’ i=1l..N are random variables that are spe-
cified by a 5N dimensional distribution function. In addi-
tion, it is assumed that interchanging particles leaves the
distribution function unaffected. From this general distri-
bution function we can obtain the probability density func-

tion for the ith particle. It is

p_}sigi(z:_,_ui) = ng(_:_{,_g)_) i=l....N (32)

where w=(6,4). In (32) we have explicitly noted the fact
that the particles are identically distributed by omitting
the index i on the left hand side of (32). We will assume

that the particles location and rotation are independent, thus

p_“_{@(g{_,_@) = pg(x)pﬂ(g) - (33)

10
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with the usual property:

Py (x)dx = 1 P (wVdw =1 (34)
./; X ,/Cn ==

The particle density is defined by
p(X) = N py(x) (35)

so that

/ p(x)dx = N . (36)
v

In addition to the one particle density -~ when treating the
correlation of the field - the two particle density will be
required. We have

(X, % w,w) = pl{ggé(ﬁ,gg,g,gs_) = P_)S@(ﬁ:_@_)ng_z(ﬁ,g) (37)

i’j = l'..lN

In (37) we have assumed that the ith

and jth particles are
independent. The independencec assumption is valid when the
particles are sparsely distributed; the case we intend to
treat.

We will now develop the approximate equation for the
coherent field. We start by noting that the total field E

can be thought of as a sum of the incident field E, plus a

sum of the fields scattered from each particle, Eél). We

have
N L)
E=E, + I Eg (38)
i=1
The total field incident on the ith particle is called the
effective field and is denoted by g(l). Thus gi-g(l) repre-

sents the equivalent sources generated by the incident field

in the ith particle and

11
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Using (39) in (38), we have
N .
E=gy+ I L lggEt (40)
i=1 ~ -
This is the equation that we wished to obtain.
Now we average this equation. The result is
N .
<E> = Ej + I L_l-<I.-E(l)> (41)
-~ i=1 ~ ==

To obtain an approximate equation for the mean we follow

[Foldy, 1945] and assume

B« <p> (42)

This means that the random quantity g(l) is to first order
equal to a deterministic quantity, i.e., to first order it

is a ergodic quantity. Using (42) in (41) and noting that

.<gi-§(l)>=<gi°<§>>=<gi>~<§; we have the approximate equation

for the mean field
L '<gi> <E> (43)

Denoting explicitly the dependence of gi upon éi and Qi’ av-

eraging and then using (33), we have

1> =<2 = f as f e wnew
= fd_S_ Py (s)T(s) (44)
\V/ 2
where
T(s) = f dw pg(g)g'(g_.g:_) (45)
47 =

In (45) the bar over T has been used to indicate an average of

12
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angular varies only. By putting (44) in (43), by noting that
the scattered terms are identical and by introducing p(s) via

(35) , we obtain

<E> = Ej + f ds p(s);__l'_j(s) <E> (46)
A

Multiplying from the left by L &nd using (9), we get
;_E-<g_>= g (47)

where

£=1-f as o(2)Ts) (48)
\Y

This is the equation for the coherent field.

The arguments that have led to the approximate equation
(47) have been largely heuristic. The essential approximation
is contained in (42) where the effective field is assumed
approximately equal to the average field. Although we will
not discuss the conditions under which (42) is wvalid, it will
be shown elsewhere that the approximation is valid when the
fraction of volume occupied by the particles is small com-
pared to the total volume, i.e., er/v<<l. We shall refer to
a distribution of scatterers satisfyinag this condition as a
sparséfaistribution.

Before proceeding we will write the equation for the mean
in more concrete form. Using (30) and (31) in (47) and (48),

we obtain

gz - as fax' p()E(x-s,x'~8) <E(x')> = g (49)
v
where
E(x,x') = f dw po(w)E(x,x"50) . (50)
47 -

g et

. N




Here the kernel ;(ﬁ,i';g) is the same as given in (31), how-
ever we have explicitly shown its dependence on the angular
coordinate w.

We can now use (49) to obtain a macroscopic form of
Maxwell's equations. First averaging the Faradary's law
equation; we have

Vx<E(x)> = ien <H(x)> . (51)

Then by using (51) in (49), we obtain the macroscopic Ampere's

law equation.
Vx<H(x)> = J - iw<D> , <D> = €gE*<E> (52)
when g is a macroscopic permittivity operator which describes

the average behavior of the medium and g;g/(iwuo). It is

E=1+ ii ,{;di fdzi_' p(s)t(x-s,x'=-s) . (53)
0

This expression simplifies to I (free space) when x¢V. To
see this we note that when x¢V, we have g-gﬂvp since seV.

Now using (17) we have géo. When xeV (47) does not simply

in general. It describes an anisotropic, inhomogeneous, spa-
tially dispersion medium.

Let us examine how (53) reduces to some more familiar
expressions in some special situations. We will assume that
V is infinite through the remainder of this section. First
we will consider the case when the density is constant, i.e.,
p(s)=p. In this case the permittivity is translationally in-
variant or homogeneous. To see this we substitute (21) into
(53) and we perform the integrations over s and k'. We ob~

tain

14
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=__1=+ fg fdk ek (x=x") ¥ (x k) (54)

when t(kk=f av P @)E (k,k'sw) . (55)
4w -

Since the integrand is a function of x-x' the permittivity is
translationally invariant however it is still anisotropic and
spatially dispersive.

Another special case of interest is when t is scalar,

llad|

i.e. E(x%,x') = t(x,x")I. This occurs when the scatterers are
spherical. Then the permittivity is isotropic but inhomo-
geneous and spatially dispersive.

The last special case to be treated is when the wave-
length is large compared to the size of a scatterer. Here
the particle can be treated as an electric dipole. Its equi-
valent source distribution is given by

eq = i‘*’“ogeq = lwyg (-iwpd(x)) (56)
where p is the electric dipole moment of the scatterer and §(x) is the
Dirac delta function. The dipole moment is related to the incident field
the polarizability tensor o [Jones, 196?]

P = 8522 (57)
Using (57) in (56) and comparing it with (14), we find
2
I = kyad(x) (58)
or
£(x,x") = k5ad (x) 8 (x") (59)

Now putting (59) in (19), we obtain

Hiete

(k,k") = koa/(2m) > (60)

15
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Thus we see in the dipole limit is indepéndent of k and k'.

iete

Since we have an expression for t in the low frequency
or dipole limit, the special form of g can be easily obtained.
Using (59) in (54), we find

lm
=

+ p(x) (61)

et

Thus in the low frequency case, the permittivity is no longer
spatially dispersive however it is still anisotropic and in-

homogeneous.

16

_at vedodk




L B A v 4 o

CORRELATION

In this section we will calculate the correlation of the
electric field. Rather than following procedures used to find
the coherent wave, the distorted Born approximation will be
employed. This is a single scattering approximation where
the scatterers are assumed to be embedded in the equivalent
medium which has been found in the previous section. The
method is useful when the fractional volume is small (NVP/V<<1)
and the albedo of a single particle is small. The later con-
dition implies that the energy absorbed by a particle must be
much larger than the energy scattered by it.

We start by considering a volume V of equivalent medium
surrounded by free space. There are N particles embedded in
V as shown in Figure 1. The scattered field due to the ith
particle can be calculated by modifing (39). We assume that

the incident field on the particle is the mean field <E> and

that the free space operator L is replaced by the equivalent

medium operator £ as given in (48). We have
N N
g = 3 gt = 3 §'l-gi'<§> . (62)

S i=1 "8 1

i
Before proceeding, we point out that our main interest
in finding the correlation of the field is to use it to cal-
culate the backscattering cross section. Since this cross
section is related to the correlation of the field fluctua-

tions, we now define

Ef = Es - <F—S> ! <E_:f> =0 (63)

Now computing the correlation nf the fluctuating field, we

obtain
17




<§f(§>§§(£)> = <§s(§)§;(£)> - <gs(§)><E;(£)> (64)

where z* is the conjugate of z. Putting (62) in (64) and no-
. \ . ok . e s
ting that a portion of <§s§s> cancels with <§s><§s> if we use

the fact that N>>1. We find

<Eg(HEE(X)> = f‘”r A P <E(NEY(®)>,  (65)

where
<Ef(§)§§<§)>g =_4 ds p(s) _E_(§,§)E_:*(£,§) (661

with
€x,8) = &1 I(s) <> (67)

Here we have separated the average into rotation and coordi-
nate space averages, thus introducing the conditional expecta-
tion, <§f§§>w, with respect to given u.
To writ; (67) more explicitly, we introduce the dyadic
Green's function G(x,x') for the operator gﬂ It satisfies
£G6(x,x') = I8 (x-x") (68)
+ G - outgoing as |x|-«

where § is given in (48). Now (67) becomes

E(x,8) = j:’izs'§<§r§'> . ./;15"2(35’-5:5'-5) <E(x")> (69)

The expression simplifies greatly in the low frequency limit.

Assuming that t is given by (59) and using this in (69) gives

E(x,8) = k,G(x,8) *a°<E(s)> T(70)

18
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BACKSCATTERING COEFFICIENTS FOR A HALF SPACE OF DIPOLES

To illustrate the application of the methods developed
in the previous sections, we will calculate the backscattering
coefficients from a half space of scatterers that are small
compared to wavelength. We will also assume that the density
of scatterers p is constant. The physical configuration is
shown in Figure 2. There, we have shown the direction of the
incident wave and the polarization vectors h°® and v° repre-
senting horizontal and vertical polarizations respectively.

To compute the scattered field using the distorted Born
approximation, we must first calculate the mean field in the
half space containing the particles. In the low fregquency
approximation the mean wave is computed by replacing the par-
ticles with an equivalent medium having relative permittivity
tensor g=I+p g and free space permeability Mg - The usual con-
tinuity conditions associated with macroscopic Maxwell's
equations are assumed to hold at the interface z=0.

_ Before proceeding we would like to emphasize that the
scatterers are sparsely distributed or that the fractional
volume they occupy is small (NVp/V<<l) - a condition necessa-
sary for the validity of the mean equation. This restriction

is reflected in the equivalent permittivity tensor. Small

fractional volume requires that lpEij[<<l where aij are the

components of a. We can exhibit the dependence of this con-

dition on the fractional volume SENV?/V=pr explicitly by in-
- troducing a normalized polarizability tensor a as follows:
a = g/V (71)
2 = a/v,
19
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where we can show that the components of a2 remain bounded as

Vp+0. Now the permittivity can be written as

s
=2

+ 8

Iim
U

(72)

i |

and thus we have a small parameter for ordering purposes.
Although we are able to carry out the calcualtion of the
mean wave for an arbitrary average polarizabhility tensor g,

it is convenient to partially specify the angular probability

density, pQ(Q) in order to make g diagonal. First we choose
a spherical coordinate system of mutually orthogonal unit
vectors r,, 8, and ¢,. The position of these vectors is com-
pletely determined by the spherical angles 8 and ¢ as shown

in Fiqure 3. Now we align the principal axes of the scatter~

er along thesé unit vectors. Then we write

a=a_xr°r° + a

r 9°8° + a,0°9° (73)

6

By using the usual transformation between spherical and car-

tesian coordinates, (73) becomes i

3 3

a= ¥ I a (6,9) x2x2 (74)
T i=1 g=1 *i¥y -]

where x,=x, X,=y and x,=z and x°,y° and z° are cartesian unit

vectors. The relationship between the a, .

1]
Now assuming that the random variables Oi and @i are in-

and aIT,ae,a¢ are given in Appendix B.

dependent, we write
po () = Pg (O py(4) (75)

Averaging (74), we have

a= @ I a X2X9 (76)

where
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Ex X, j dé f a¢ P@(Q)Pq,(‘i))ax <. (8.0 (77)
i7i 0 0 i%4

We will now assume that the particles are distributed

uniformily in the ¢ variable, i.e., p¢(¢)=l/2w. We find

= o = 00 - 0,0 - 00
3 = auX°x° +a, yoy° +a 2%z (78)
where
a_=a. = l[a sin%o + a. cos?g + a,l (79)
XX Yy 2°r 6 ¢
a = a_ cos®s + a sin26 (80)
zZz r 8

Thus all off diagonal terms averaged to zero and two of the
on diagonal terms are equal. Using this in (72), we see that
the equivalent dielectric is uniaxial.

The mean wave in the equivalent m@dium will now be found
for the case of particles uniformly distributed in the azimuth

coordinate ¢. The incident wave is given

_E_O (ﬁlq) = goel.ii'_}f qae {hIV} (81)
where
k=%k, +%k_ z° , (82)
to 20
with
= i o =
Eto kysing x* kzo kycos6, (83)

and the polarization vectors are

he = y° , Y° = -cosf x° + sinf,z° (84)
The average electric field in the equivalent half space satis-
fies
[Fx(VxD) - K& (I+62)1+<E(x)> = 0 ,  2<0 (85)
Let us assume a plane wave solution of the form
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<E(x)> = A el X (86)

where Kk = Kk, + k,2°. 1In order to match fields at the inter-
face, the transverse phase velocity of the incident and trans-
mitted waves must be the same, thus « =k =k, sinf,x°. Putting
(86) in (85), we have

2 2=

KX (kxB) + kgA + Skga‘A = 0 (87)

Representing A in cartesian components (87) can be written as

-

<2-xip 0 kosinege, | [a,]
0 Ki-kgsyy 0 a,| =0 (88
Lkos:i.n(f)OKz 0 -kgszz A,
where .
B =1+ 8a__ , B. = cos?0. + 83 R B = cos?s_ + 67
XX XX vy 0 vy Z2 0 Z2Z

(89)

Since (88) is a homogeneous system, the determinant of coef-
ficients must be zero for a solution to exist. This condition

determines the allowable values of Ky We find

K, = tk, = = ikOVBYY (90)
1/2
BB
K, = iK;V) = iko[ xxzzz ] (91)
sin~6,+R8
- 6 "zz

where the superscripts h and v have been used to designate the
propagation constants associated with horizontal and vertical
polarizations. For an incident wave that is not grazing, i.e.

BO#H/Z, expressions (90) and (91) can be simplified using the

small § parameter. We have
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(h) §a 2

K, = = ko coseo + Toos ; + 6(8%) (92)
(v) 6!5;2+005260(Exx;gz7) 2

kK, = kplcoss, + 3 Sos8, + 0(87) (93)

We cannot calculate these propagation constants to higher ac-
curacies than 0(6) since the original mean eguation has only
been found to this accuracy. We note that since we are con-
sidering lossy particles, the Kéq) are complex and thus the
mean wave will decay away from the interface.

Next we calculate the amplitude covefficients for the

mean wave of both polarizations. We have

ikyz  -ikyz K X
(e 94T e e y® , .z<0
<E(x,h)> = (94)
i O g
a,e Ty ¢ 220
and
ik,z =ik z Ke X
(e “94T e L )e ve , 2< 0
 <E(x,v)> = M (95)
(V)
(a x°+a,z°) e X , 20

where we have introduced a reflected wave in the free space
medium at the specular angle. Now by using the fact that the
tangential <E> and <H> must be continucus at the interface,
the unknown reflection and transmission coefficientsfcan be
calculated. Since the major effect of the equivalent medium
is to produce exponential decay, we next expand the coeffi-
cient for small 6 and we keep only zero order terms. We find

that Fq=0(§) and thus it can be neglected. The transmitted
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mean fields are:

<‘_E_(?_{_,q)> = g°e ' + 0(S8) , z>0 (96)
ge {h,v}

Proceeding with our developemnt, we now relate the transverse

Fourier transform of the correlation to the backscattering

coefficients. This is done within the context of the distor-
ted Born approximation developed in the previous section. We
start by taking the transverse Fourier transform with respect

to x and x of (65), (66) and (70). We have

~ A

<Bg(ky 2 EX(k,2)> = -4: & Py (W) <Eglky ) Ef (ke i2)>,  (97)

<§f(_15t12)§§(_]§t,2)>Q = p .4.65 £k, r2,8) £* (k. r2/8) (98)
where

€(k,,z,8) = k2B(k_,248) "g"<E(s)> (99)

Since we will only reguire G when x and s are in the equivalent

medium and since the reflection at the interface is small we

can replace G by the dyadic Green's function for an infinite

equivalent medium, i.e.,

G(x,s) = g(m) (x-s) + 0(9$) (100) -
We have written the infinite space Green's function in terms
of x-s since it is translationally invariant. We then have

~ ~ ~ik, *s
¢k vzis) = ¢ ik, zms)e T T (101)

Now by putting (96), (923}, (l100)and (10l)in (98), by integra-
ting over Sy and by setting z=2z=0, we have
Eg(kes0VBRik /00> = 8(kerqlw) 8k, ~k,) (102)
where
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é(-}it’qlli).) = (2n)26!..~,gvp_/; ds (g(“‘) (kt;-s) "a°q°) (G (kt:-s)

-ZImKSq)s
*a*.qg° .e “ (10 3)

Here g(ht,qlg) is the transverse dyadic spectral density at
the interface assuming w is fixed. The normalized polariza-
biliéy has been introduced by using (71).
By using the results of Appendix C and by noting that
S(k_-9]w) we obtain the backscattering coefficients
2 2

kocos 60
o T e m———— O . - » [+]
opq 3 R° sl EtO,QIw) P° p,qe {h,v] (104)

To evaluate the integral of g in (103), we will need the

transformed Green's function. To obtain it, we first write
()

the governing equation for G It is
vx(vxp) - k2(z+sa)1 * 6 (x) = 18(%) (105)
Q(m)(§) - outgoing as |x|-+«
Using
g™ (x) = 2 3_[65 glxye’™® (106)
(2m)
in (105), we find
[(kxkxD) + kg (I+6aN-glc) = -I (107)
Then
(=) ) i+ x
G T (Ki,2) =52 JdK, glk)e (108)

o (@)

To simplify the remaining computation for § we note from

(104) and (103) that g(m) will only be required for £t=-5t =
B 0
- s o
kysing x°.
Inverting (107) and performing the integral in (107) by

the method of residues, we obtain
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- () sineoKév’o(z)
G ("—‘-to'z’ = {8,,X°%° + X (x°2°+2°x°)
0
(n? 2 AL PYREE PN PY
(x -kB_.) z z
_ z 5 0" xx z°z° e = + e ) yey (109)
ko Zle 21(2
where
1, 2>0
o(z) = (110)
-1, z<0

and the B's are defined in (89). Approximating the cowffi-

cients to zeroth order in &8, we have the simplified expression

1c{V) | 2] ic (P 2]
~ (=) o o € e
G (-k, ,2) = V°Voisur—— + h°hopri——nr (111)
= to 21kocoseO - - 21kocoseo

If we use this in (103), perform the integratiocn and use
the result in (104), we have our final form for the backscat-

tering coefficients. It is

Gkgv |a |2
5° = R pq - (112)
pq 87 (Imk Pl b i 'd )
z 2
where
. 2 Jf 2
a = dw|p®*a-qgq° . 113
lasg! . dulerara® (113)
and Kés), se th,v} are given in (92) and (93). The dependence
of |apq| on angle of incidence is worked out explicitly in

Appendix B for scatterers that are distributed uniformly in
the ¢ coordinate.

The final result given in (112) can be expressed in terms
of scattering cross sections of individual particles. Using

(28), (60) and (71), we have
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= RO e fem® = 9ol = 1.2
p°'f'g 2w Spq kOVpapq/4ﬁ (114)

Now by recalling that the backscattering cross section from

(b) |2

a particle Obq =4qm|f , (112) becomes

Pq

(b)
pqu

g°® = , p.,qe th,v} (115}
pq ZImK;p)+ZImK§q)

Following Attema and Ulaby [1878] we can give a one dimen-

sional interpretation of (115). If we rewrite (115) as

0 (b) -2ImK£q)Iz| -ZImK;p)|z{
= dz po e “ e (116)
o pq

pq ~
we can view the scattering as being decomposed into scattering
from slabs of width dz. An intensity of exp(mzlmKéq)lzl) is
incident on the slab located at z. The incident intensity is
backscattered with reflectivity factor pcég). The backscat-
tered wave then decays as exp(-ZImK;q)|z|) until it reaches

the interface.
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DISCUSSION AND NUMERICAL EVALUATION

In this section, we will first discuss several general
properties of G;q that are independent of the particular scat-
terer chosen. Following this discussion, we use our method
to model a forest canopy by a collection of lossy dielectric
discs. The theoretical curves computed from this model are
then compared with some experimental data.

Because of the simple dependence of cgq on the medium
properties and incidence angle certain general observations
can be made that are independent of the particular nature of
the scatterer. First, we note that qu as given by (115) is
independent of the density of scatterers p. This follows di-
rectly from (92) and (93) where we see that the ImKés), se th,v}
are directly proportional to p. Thus the linear p dependence

in the numerator of (115) is cancelled out by the denominator.

Second, we note that o? urcoseo. This is the same result as

hh
predicted by the scalar theory. Finally, we note that O;uTOSV
at normal incidence (8°=0). This is an expected result. Since

the scatterers are uniformly distributed in ¢, the two polari-
zations see the same medium at normal incidence.

We now proceed to model a forest canopy by a collection
of leaves. The leaves are in turn assumed to be lossy dielec-
tric discs as mentioned previously. The discs have radius a
and thickness h. Typical dimensions are radii of one to sev-
eral centimeters and thicknesses of tenths of a millimeter.
The electrical properties of discs can be characterized by
their normalized polarizability tensor a when the wavelength

is large compared to the disc. From Jones [1964] and
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Van de Hulst [1957] the polarizability of a disc along its

principal axes is given by

O o
ar=v;=-l—+z-' ae=a¢=A ’ A=¢ -1 (117)

when r,0,¢ are defined in Figure 3.

Because of the large volume of water present in vegeta-
tion, we can usually assume ]er]>>1 in the microwave region.
Using this assumption in (117), we find that |a6|=|a¢|>>|ar|.
This inequality can now be used to simplify the scattering

cross section of (115). We find that Ggq

xlerlzvp/lmer.

Thus it follows that the magnitude of the backscattering cross
sections are directly related to the volume and complex die-
lectric constant of the discs in a simple manner. Therefore,
as leaves grow and as their moisture content changes these
effects should be observable by measuring qu at different
periods of the growing season.

Before computing the backscattering cross sections as a
function of incidence angle, we will require the relative di-
electric constant of the leaves and the angular distribution
of leaves. First the relative dielectric constant is considered
Our calculation follows that of Fung and Ulaby [1978] who in turn have
based his results upon de Loor [1968] and Carlson [1967].

They model the leaves as a mixture of water and solid materi-
als. For illustrative purposes we have chosen 50% water and

50% solid for our calculations. By using (3) and (4) of

Fung and Ulaby [1978] at a frequency of 1.1 GHz we find that €=
30.8+i1l.8. our choice of frequency has been motivated by experimen-

tal results that appear in the literature. We have chosen to
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compare our results with those of Bush, et al [1976] who has

measured og° ,
ol

Because of the dipole approximation made in our model, only

p,ge {h,v} from forests for frequencies 1-18 GHz.

the lowest frequency (l.1GHz) Ulaby measured was used for

comparison purposes.

The angular distribution of leaves will now be considered.

Field measurements of leave orientations have been made by
Smith [1973] and others. It has been found that the leaves
are distributed uniformly in the ¢ coordinate (Figure 2). The
distribution of leaves with respect to 0 is more vegetation
type dependent. Several are given by Smith [1977]. Since
no measurements of this type exist for the Ulaby data, we

have assumed that ¢ is uniformly distributed. For 0 we have

considered the following two density functions:

1
{ x5 v 0<6<48 ,

Pg(6) = g/ o e (118)
' 20T
or
1
{‘éZx‘ef , =08, <O<TH+AB |
pglb) = (119)

0 ' elsewhere

In (118) when A6 is small, the leaves are approximately

V4

parallel to the interface (z=0); when A8, =n/2, they are un-

V4

iformly distributed in ©. In (119) when A8, is small, the

1

leaves are perpendicular to the interface; when A6, is mw/2

1
they are uniformly distributed in ©.
The numerical calcualtions are presented in Figures 4-9.

In these figures the backscattering coefficient is plotted as

a function of the angle of incidence 60. In Figures 4-7 we
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have used the angular distribution given in (118) while in
Figures 7-9 we have used (119). Figure 7 corresponds to a
uniform distribution over all & and thus, for this case,
(118) and (119) give the same results. One should note that
since ]erl>>1, a change in f, Vp or € _ just suifts the level
of the curves but it does not change their shape. Their shape
only depends on pe(@).

The following trends are observed in Figures 4~7: First,
Gﬁh is always greater than O;V. Their difference increases
as AQ& becomes smaller. Second, the cross polarized back-
scatter becomes smaller as AB/ becomes smaller. In Figure
7-9, we observe that: First, OSV becomes greater than Uﬁh as

Ael is decreased; second, the curve for o tends to flatten

[+]
hv

out as Ael is increased; and third, the difference o at

hh™%hy
80=O becomes smaller as Ae_L increases.

A comparison of our theory with the experimental results
of Bush, et.al [1976] is made in Figure 10. There, we have
plotted our Figure 8 along with his data for Kansas deciduous
trees measured in the springtime at a frequency of 1.1 GHz.
Figure 8 was chosen since it most clearly appears to follow
the trends of the data i.e., flat cross polarization and o;v>
Gﬁh'

Although our theory follows the trends of the data, it
is clear from the results that additions to our model should
be made. The fact that 0;v>0gh is most likely due to the
vertically oriented tree branches other than due to the leaves

that tend to be parallel to the interface. 1In addition, an

examination of the numerical results shows that the skin depth
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for the mean wave is large. Thus at a frequency of 1 GHz the

underlying ground should be taken into acccunt.
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APPENDIX A

Relationship Between the Transition Operator and the Scatter-
ing Amplitude

~

To find the relationship between f and t, we start with
(15). Using (23) and (26), we can write (15) in terms of
dyadic incident and scattered wave

_l.

S

o
e
lir3
o

0 (1a)

Next we use (16) in (1lA) along with the free space dyadic

Green's function I for ;_l. We have

o

(x,1) =ﬁa_>g'r<_>5,§'>- dx" t(x',x")-g,(x",1) (2a)

S

I(x,x') = (I+ (3A)

To obtain g_ in the radiation zone, the far field expression

S
for [ will be required. It is [Twersky, 1967]

L(x,x") ~ (I-00)e W] [ x| (4A)

Now putting (4A) and (25) in (23)

ik (i.?su .__'_Q.EEI)

S v (100 - faxaxre et xme

ik0|§|
-(;-gg)?—m—— (5a)
Finally employing (19) in (53), and comparing with (27) we

obtain the required result

£(0,1) = 2r°(1-0 0)-E(k

A e e L L s

i)+ (I-1 i) (6a)
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APPENDIX B - Polarizability Statistics

In this appendix calculate the mean square polarization
statistics used in (112). The calcualtion will be performed
with the assumption that the scatterers are uniformly distri-
buted in ¢.

First we derive the components of the polarizability
tensor in cartesian coordinates in terms of the principal axis
components. The unit vectors r°, 0° and ¢° are related to x°,

y® and z° as follows:

s
!

° = sinfcos¢x® + sinBsingy® + cosbz®
8° = cosbcos¢x® + cosbsingy® -~ sinfz° (1B)
$° = -singx® + cos¢py®

Using this in (73), the cartesian components of (74) are:

_ L2 2 2 .2
Byy = (ar51n B + a,cos B)cos“d + a¢51n )
ayy = (arsin26 + aecosze)sin2¢ +a¢cosz¢
= 2 .2
a,, = a.cos 6 <+ agsin 3]
. (2B)
_ .2 2 .
axy = [(ar51n 6 + a,cos 8) a¢]cos¢51n¢
a,, = (ar-a6)51necosecos¢
| ayz = (ar-ae)51n6c05651n¢
) .
) The other components are gotton from the fact that a is a

symmetric dyadic.

%

Now we will obtain the components of a in the polariza-
e tion directions in terms of the cartesian components. We

have using (84)

S .. .
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a = h°*a-h® = a
ih e B e vy

= o, . 0 = - .
ap, he.a*vy coseoayx + slneoayz

[ 0 (BB)

qgp = ¥°rath? = ay,

=3 O . . 0 = 2 - (] s 2
Ay ve-a‘y cos eoaxx 2cos6051n90axz + sin eOazz

Following this, the mean square polarizabilities can be

found. They are

lapnl? = lagy|”
hh’ Yy
2 2 2 . 2 2
[ahvl = cos“8,la |7 + sin eolayzl
lagnl? = lapgyl”
vh hv
2 4 2 . 4 2 2 .2 2
lavvl = cos eolaxx| + sin GO(a | +cos 0 sin 60(4|axz|
+ 2Reaxxa;z)
where the uniformity in ¢ has lead to
a_.,a* =a_ a* = a a*X = a__a* = 0.
XX X2 Yy ve YX yZ ZZ X2
I 2 2 2 2 2
The quantities |a . |, |ayy| : la,, 1%y Iayz| v lag,l
and a__a*_ can be obtained easily from (2B) by using the

XX 2zz

known statistics of 8 and ¢.
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APPENDIX C - Relationship Between the Backscattering
, Coefficients and the Transverse Spectral Density
R

We start by considering the fluctuating portion of the
scattered field, Eg+ as defined in (63) in the region z>0.
This field can be viewed as arising from sources on the in-
terface. So that far field guantities can be found, we ini-
tially consider that portion of Ef that arises from sources
contained within a finite region A on the interface. The ra-
diated field from the region A will be denoted by QfA(§,q).

The field ng(g,q) can be related to the interface fluc-

tuations by employing a plane wave expansion in the region

z<0. We have

1

-ik Z+i5t(§
(21r)2

Z t_zé)
fdgtf dx{ E-(0,x/,9)e , 2<0
A (1c)

E: (x,q) =
A

————————

A NTRY.
kz—/konlktl ,  Imk,>0

whare gf(o,gt,q) is the fluctuating field on the interface
due to an incident wave of polarization g. The k, integral

in (1C) can be asymptotically evaluated for large |x| [Collin

and Zucker, 1969]. We find

. o
+ik0cose0 +ik0l§|/m l£t0 ¢
. (> v
E. (x,q) I E] - © J 9xl EL(0,x!,q)e (2C)
A = A
where x has been specialized to the backscatter direction %
and k., is given by (83).
0
The backscattering coefficients are now defined. They
are
2.
. 47|x| 1_(p,q) . )
. 02 = lim 1lim eth,v 3C
] Pd  aie I | ro AT (q) g,peth,v} (
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where Ii(q) is the incident intensity per unit area with po-
larization q, Is(p,q) is the average intensity at the obser-
vation point with polarization p due to an incident wave with

polarization 4., In view of (81), Ii(q)=l. We also have

Is(p,q) = <| EfA(ﬁ,q)'g°|2> (4C)

We can complete the development by first representing

the field on the interface by its Fourier transform, Ef(Et'q):

ik, -x,

_E_f(OIi{_th) ,q)e d_}_{_' (SC)

t

Now by using (2C), (4C) and (5C) in (3C), we have
k 0Cos 90 | ~
0° = lim lim fdk d]\" f dx'!dx!"< [p°*E_(k!,q)
Pd a¥e [x|+o 2° EeOXS IR "2 8y

~ ;[k' X -k"'x"+k to (x" x)l

Ex(ky,q)p°| >e ©ETETE -t (6C)

Next we introduce the transverse dyadic spectral density

g(gt,q)which is given by

- [} ~* n = ] LI 78 |}
Note that this definition requires that the process gf(gt,q)
be homogeneous or stationary in Et'

By using (7C) in (6C) and carrying out the integrations,

we obtain

kgcoszeo
cgq = —~Z;§—- Sp(‘Etolq) (8C)
where
sp(Et,q) = p°-S{k,.,q) *p° (9C)
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