Electromagnetic Band Gap Structures in Antenna Engineering

This comprehensive, applications-oriented survey of the state of the art in Electromagnetic Band Gap (EBG) engineering explains the theory, analysis, and design of EBG structures. It helps you to understand EBG applications in antenna engineering through an abundance of novel antenna concepts, a wealth of practical examples, and complete design details. You discover a customized finite difference time domain (FDTD) method of EBG analysis, for which accurate and efficient electromagnetic software is supplied (www.cambridge.org/yang) to provide a powerful computational engine for your EBG desgins. The first book covering EBG structures and their antenna applications, this provides a dynamic resource for engineers, and researchers and graduate students working in antennas, electromagnetics and microwaves.

Fan Yang is Assistant Professor of the Electrical Engineering Department at the University of Mississippi. Dr. Yang received Young Scientist Awards in the 2005 General Assembly of International Union of Radio Science (URSI) and in the 2007 International Symposium on Electromagnetic Theory.

Yahya Rahmat-Samii is a Distinguished Professor, holder of the Northrop-Grumman Chair in Electromagnetics, and past Chairman of the Electrical Engineering Department at the University of California, Los Angeles (UCLA). He has received numerous recognitions and awards including IEEE Fellow in 1985, IEEE Third Millennium Medal, the 2005 URSI Booker Gold Medal, the 2007 Chen-To Tai Distinguished Educator Award of the IEEE Antennas and Propagation Society, and membership of the US National Academy of Engineering.

The Cambridge RF and Microwave Engineering Series

Series Editor, Steve C. Cripps, Hywave Associates

Peter Aaen, Jaime A. Plá, and John Wood, *Modeling and Characterization of RF and Microwave Power FETs*

Enrico Rubiola, Phase Noise and Frequency Stability in Oscillators

Dominique Schreurs, Máirtín O'Droma, Anthony A. Goacher, and Michael Gadringer, *RF Amplifier Behavioral Modeling*

Fan Yang and Yahya Rahmat-Samii, *Electromagnetic Band Gap Structures in Antenna* Engineering

Forthcoming

Sorin Voinigescu and Timothy Dickson, High-Frequency Integrated Circuits
Debabani Choudhury, Millimeter Waves for Commercial Applications
J. Stephenson Kenney, RF Power Amplifier Design and Linearization
David B. Leeson, Microwave Systems and Engineering
Stepan Lucyszyn, Advanced RF MEMS
Earl McCune, Practical Digital Wireless Communications Signals
Allen Podell and Sudipto Chakraborty, Practical Radio Design Techniques
Patrick Roblin, Nonlinear RF Circuits and the Large-Signal Network Analyzer
Dominique Schreurs, Microwave Techniques for Microelectronics
John L. B. Walker, Handbook of RF and Microwave Solid-State Power Amplifiers

Electromagnetic Band Gap Structures in Antenna Engineering

FAN YANG University of Mississippi

YAHYA RAHMAT-SAMII University of California at Los Angeles

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521889919

© Cambridge University Press 2009

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2009

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication data
Yang, Fan, 1975–
Electromagnetic band gap structures in antenna engineering / Fan Yang, Yahya Rahmat-Samii.
p. cm.
Includes index.
ISBN 978-0-521-88991-9 (hbk. : alk. paper) 1. Antennas (Electronics) – Design and construction.
2. Wide gap semiconductors. I. Rahmat-Samii, Yahya. II. Title.
TK7871.6.Y35 2008
621.382'4-dc22 2008031949

ISBN 978-0-521-88991-9 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

1

2

Contents

Pref			page ix
	-	gements	xi
Abb	reviatio	ns	xii
Intro	oductior	1	1
1.1	Backg	round	1
1.2	Electr	omagnetic band gap (EBG) structures	2
	1.2.1	EBG definition	2
	1.2.2	EBG and metamaterials	4
1.3	Analy	sis methods for EBG structures	6
1.4	EBG a	applications in antenna engineering	8
	1.4.1	Antenna substrates for surface wave suppressions	8
	1.4.2	Antenna substrates for efficient low profile wire antenna designs	9
	1.4.3	Reflection/transmission surfaces for high gain antennas	10
FDT	D metho	od for periodic structure analysis	14
2.1	FDTD) fundamentals	14
	2.1.1	Introduction	14
	2.1.2	Yee's cell and updating scheme	15
	2.1.3	Absorbing boundary conditions: PML	18
	2.1.4	FDTD excitation	22
	2.1.5	Extraction of characteristic parameters	23
2.2	Periodic boundary conditions		24
	2.2.1	Fundamental challenges in PBC	24
	2.2.2	Overview of various PBCs	25
	2.2.3	Constant k_x method for scattering analysis	26
2.3	Guide	Guided wave analysis	
	2.3.1	Problem statement	30
	2.3.2	Brillouin zone for periodic waveguides	31
	2.3.3	Examples	33
2.4	Plane wave scattering analysis		37
	2.4.1	Problem statement	38
	2.4.2	Plane wave excitation	39
	2.4.3	Examples	41

vi	Cont	tents	
	2.5		4.5
	2.5	A unified approach: hybrid FDTD/ARMA method	45
		2.5.1 A unified approach for guided wave and scattering analysis	45
		2.5.2 ARMA estimator	49
	2.6	2.5.3 Examples Projects	51 54
3	EBG	characterizations and classifications	59
	3.1	Resonant circuit models for EBG structures	59
	5.1	3.1.1 Effective medium model with lumped LC elements	59
		3.1.2 Transmission line model for surface waves	61
		3.1.3 Transmission line model for plane waves	62
	3.2	Graphic representation of frequency band gap	63
	5.2	3.2.1 FDTD model	63
		3.2.2 Near field distributions inside and outside the frequency band	
		gap	65
	3.3	Frequency band gap for surface wave propagation	67
		3.3.1 Dispersion diagram	67
		3.3.2 Surface wave band gap	68
	3.4	In-phase reflection for plane wave incidence	69
		3.4.1 Reflection phase	69
		3.4.2 EBG reflection phase: normal incidence	70
		3.4.3 EBG reflection phase: oblique incidence	71
	3.5	Soft and hard surfaces	74
		3.5.1 Impedance and reflection coefficient of a periodic ground plane	75
		3.5.2 Soft and hard operations	77
		3.5.3 Examples	80
	3.6	Classifications of various EBG structures	84
	3.7	Project	85
4	Desi	igns and optimizations of EBG structures	87
	4.1	Parametric study of a mushroom-like EBG structure	87
		4.1.1 Patch width effect	87
		4.1.2 Gap width effect	89
		4.1.3 Substrate thickness effect	89
		4.1.4 Substrate permittivity effect	90
	4.2	Comparison of mushroom and uni-planar EBG designs	91
	4.3		95
		4.3.1 Rectangular patch EBG surface	95
		4.3.2 Slot loaded EBG surface	97
		4.3.3 EBG surface with offset vias	97
		4.3.4 An example application: PDEBG reflector	99
	4.4		103
		4.4.1 Single spiral design	103

Cambridge University Press
978-0-521-88991-9 - Electromagnetic Band Gap Structures in Antenna Engineering
Fan Yang and Yahya Rahmat-Samii
Frontmatter
More information

		Contents	vii
		4.4.2 Double spiral design	105
		4.4.3 Four-arm spiral design	105
	4.5	Dual layer EBG designs	107
	4.6	Particle swarm optimization (PSO) of EBG structures	112
		4.6.1 Particle swarm optimization: a framework	112
		4.6.2 Optimization for a desired frequency with a $+90^{\circ}$ reflection	
		phase	113
		4.6.3 Optimization for a miniaturized EBG structure	117
		4.6.4 General steps of EBG optimization problems using PSO	118
	4.7	Advanced EBG surface designs	120
		4.7.1 Space filling curve EBG designs	120
		4.7.2 Multi-band EBG surface designs	120
		4.7.3 Tunable EBG surface designs	120
	4.8	Projects	124
5	Patch antennas with EBG structures		127
		Patch antennas on high permittivity substrate	127
	5.2	Gain enhancement of a single patch antenna	130
		5.2.1 Patch antenna surrounded by EBG structures	130
		5.2.2 Circularly polarized patch antenna design	132
		5.2.3 Various EBG patch antenna designs	136
	5.3	Mutual coupling reduction of a patch array	138
		5.3.1 Mutual coupling between patch antennas on high dielectric	
		constant substrate	139
		5.3.2 Mutual coupling reduction by the EBG structure	142
		5.3.3 More design examples	147
	5.4	EBG patch antenna applications	
		5.4.1 EBG patch antenna for high precision GPS applications	149
		5.4.2 EBG patch antenna for wearable electronics	149
		5.4.3 EBG patch antennas in phased arrays for scan blindness	
		elimination	151
	5.5	Projects	153
6	Low	profile wire antennas on EBG ground plane	156
	6.1	Dipole antenna on EBG ground plane	156
		6.1.1 Comparison of PEC, PMC, and EBG ground planes	156
		6.1.2 Operational bandwidth selection	158
		6.1.3 Parametric studies	161
	6.2	Low profile antennas: wire-EBG antenna vs. patch antenna	164
		6.2.1 Two types of low profile antennas	164
		6.2.2 Performance comparison between wire-EBG and patch	
		antennas	166

viii	Con	Contents		
	6.3	Circularly polarized curl antenna on EBG ground plane	171	
		6.3.1 Performance of curl antennas over PEC and EBG ground planes	172	
		6.3.2 Parametric studies of curl antennas over the EBG surface	175	
		6.3.3 Experimental demonstration	178	
	6.4	Dipole antenna on a PDEBG ground plane for circular polarization	180	
		6.4.1 Radiation mechanism of CP dipole antenna	181	
		6.4.2 Experimental results	182	
	6.5	Reconfigurable bent monopole with radiation pattern diversity	185	
		6.5.1 Bent monopole antenna on EBG ground plane	186	
		6.5.2 Reconfigurable design for one-dimensional beam switch	188	
		6.5.3 Reconfigurable design for two-dimensional beam switch	191	
	6.6	Printed dipole antenna with a semi-EBG ground plane	191	
		6.6.1 Dipole antenna near the edge of a PEC ground plane	193	
		6.6.2 Enhanced performance of dipole antenna near the edge of an		
		EBG ground plane	194	
		6.6.3 Printed dipole antenna with a semi-EBG ground plane	195	
	6.7	Summary	200	
	6.8	Projects	200	
7	Sur	urface wave antennas		
	7.1	A grounded slab loaded with periodic patches	203	
		7.1.1 Comparison of two artificial ground planes	203	
		7.1.2 Surface waves in the grounded slab with periodic patch loading	206	
	7.2	Dipole-fed surface wave antennas	209	
		7.2.1 Performance of a low profile dipole on a patch-loaded grounded		
		slab	209	
		7.2.2 Radiation mechanism: the surface wave antenna	212	
		7.2.3 Effect of the finite artificial ground plane	215	
		7.2.4 Comparison between the surface wave antenna and vertical		
		monopole antenna	217	
	7.3	Patch-fed surface wave antennas	217	
		7.3.1 Comparison between a circular microstrip antenna and a		
		patch-fed SWA	218	
		7.3.2 Experimental demonstration	223	
	7.4	Dual band surface wave antenna	223	
		7.4.1 Crosspatch-fed surface wave antenna	226	
		7.4.2 Modified crosspatch-fed surface wave antenna for dual band		
		operation	228	
	7.5	Projects	236	
	App	endix: EBG literature review	238	
	Inde	2X	261	

Preface

In recent years, electromagnetic band gap (EBG) structures have attracted increasing interests because of their desirable electromagnetic properties that cannot be observed in natural materials. In this respect, EBG structures are a subset of metamaterials. Diverse research activities on EBG structures are on the rise in the electromagnetics and antenna community, and a wide range of applications have been reported, such as low profile antennas, active phased arrays, TEM waveguides, and microwave filters. We believe that the time is right for a focused book reviewing the state of the art on electromagnetic band gap (EBG) structures and their important applications in antenna engineering.

The goal of this book is to provide scientists and engineers with an up-to-date knowledge on the theories, analyses, and applications of EBG structures. Specifically, this book will cover the following topics:

- a detailed overview of the EBG research history and important results;
- an advanced presentation on the unique features of EBG structures;
- an accurate and efficient numerical algorithm for EBG analysis and an evolutionary optimization technique for EBG design;
- a wealth of examples illustrating potential applications of EBG structures in antenna engineering.

The book is organized into seven chapters and one appendix. Chapter 1 introduces the background and basic properties of EBG structures. The EBG analysis methods and antenna applications are also summarized.

In Chapter 2, the finite difference time domain (FDTD) method is presented with a focus on periodic boundary conditions (PBC), which is used as an efficient computation engine for the analysis of periodic structures. The fundamentals of the FDTD method are reviewed and a constant k_x (spectral) method is discussed to model the PBC. A hybrid FDTD/ARMA scheme is introduced to unify the guided wave and plane wave analysis and improve the simulation efficiency.

Chapter 3 illustrates some interesting properties of EBG structures. The band gap features are clearly visualized from the near field distributions. The dispersion diagram and reflection phase for both normal and oblique incidences are presented. The soft and hard properties of the EBG ground plane are also discussed. A classification of various EBG structures is provided at the end of the chapter.

Chapter 4 presents how to achieve the desired characteristics by properly designing the EBG structures. A parametric study on the mushroom-like EBG structure is performed

x Preface

first, followed by a comparison between two popularly used planar EBG structures, mushroom-like EBG surface and uni-planar EBG surface. Novel EBG designs such as polarization-dependent EBG (PDEBG), compact spiral EBG, and stacked EBG structures are also studied. Furthermore, utilizations of the particle swarm optimization (PSO) technique are demonstrated in EBG synthesis.

The applications of EBG structures in antenna engineering are presented in Chapters 5, 6 and 7. In Chapter 5, the EBG structures are integrated into microstrip patch antenna designs. The surface wave band gap property of EBG helps to increase the antenna gain, minimize the back lobe, and reduce mutual coupling. Some applications of EBG patch antenna designs in high precision GPS receivers, wearable electronics, and phased array systems are highlighted at the end of the chapter.

Chapter 6 introduces a novel type of antennas: low profile wire antennas on an EBG ground plane. Using the in-phase reflection feature of the EBG structure, the radiation efficiency of wire antennas near a ground plane can be greatly improved. A series of design examples are illustrated, including dipole, monopole, and curl. Various functionalities have been realized, such as dual band operation, circular polarization, and pattern diversity.

Chapter 7 presents a grounded slab loaded with periodic patches that can enhance the surface waves along a thin ground plane. Using this property, a low profile surface wave antenna (SWA) is designed, which achieves a monopole-like radiation pattern with a null in the broadside direction. Different feed techniques are explored and a dual band SWA is developed.

In the Appendix, a comprehensive literature review is presented based on nearly 300 references. This is to help both the seasoned and new comers in this research arena to establish a clear picture of the EBG developments and identify published work related to their own research interests. We regret if we have missed some of the publications as it has been very hard to identify all the research and development works that have been conducted in various international organizations.

We hope that the readers find this book useful and we welcome all their constructive suggestions.

F. Yang and Y. Rahmat-Samii

Acknowledgements

One of the authors (Rahmat-Samii) would like to express his sincere gratitude to his former students at the UCLA Antenna Research and Analysis Laboratory whose research contributions under his supervision were the basis of this book. In particular, special appreciation is extended to Michael Jensen, Joseph Colburn, Alon Barlevy, Zhan Li, Fan Yang, Hossein Mosallaei, Amir Aminian, and Nanbo Jin. Nanbo Jin is particularly thanked for his authoring Section 4.6, "Particle swarm optimization (PSO) of EBG structures" of this book.

The other author (Yang) also thanks his colleagues for the helpful discussions and productive collaborations in this research, including Ji Chen, from the University of Houston, Atef Elsherbeni, Ahmed Kishk, Veysel Demir, Yanghyo Kim, and Asem Al-Zoubi from the University of Mississippi. In particular, Yanghyo Kim's contribution on the graphic user interface (GUI) and manual of the periodic FDTD software is greatly appreciated.

We also thank the Cambridge University Press staff, Julie Lancashire, and Sabine Koch, for their continuous support during the compilation of this book.

Abbreviations

ABC	Absorbing Boundary Condition
ANN	Artificial Neural Network
AMC	Artificial Magnetic Conductor
AR	Axial Ratio
ARMA	Auto-Regressive Moving Average
СР	Circular Polarization
DNG	Double NeGative
DBSWA	Dual Band Surface Wave Antenna
EBG	Electromagnetic Band Gap
EMI	ElectroMagnetic Interference
FDTD	Finite Difference Time Domain
FEM	Finite Element Method
FSS	Frequency Selective Surface
GA	Genetic Algorithm
GPS	Global Positioning System
GUI	Graphic User Interface
HIS	High Impedance Surface
LH	Left Handed
LHCP	Left Hand Circular Polarization
LTCC	Low Temperature Co-fired Ceramic
MEMS	Micro-Electro-Mechanical System
MMIC	Monolithic Microwave Integrated Circuit
MoM	Method of Moment
NRI	Negative Refractive Index
PBC	Periodic Boundary Condition
PBG	Photonic Band Gap
PCB	Printed Circuit Board
PDEBG	Polarization-Dependent Electromagnetic Band Gap
PEC	Perfect Electric Conductor
PMC	Perfect Magnetic Conductor
PFSWA	Patch-Fed Surface Wave Antenna
PML	Perfectly Matched Layers
PSO	Particle Swarm Optimization
RCS	Radar Cross Section

Abbreviations xiii

RHCP	Right Hand Circular Polarization
RFID	Radio Frequency IDentification
SFDTD	Spectral Finite Difference Time Domain
SWA	Surface Wave Antenna
TE	Transverse Electric
TEM	Transverse ElectroMagnetic
ТМ	Transverse Magnetic
WLAN	Wireless Local Area Network