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A calculation is presented that quantitatively accounts for the terminal velocity of a cylindrical
magnet falling through a long copper or aluminum pipe. The experiment and the theory are a
dramatic illustration of Faraday’s and Lenz’s laws. © 2006 American Association of Physics Teachers.
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I. INTRODUCTION

Take a long metal pipe made of a nonferromagnetic mate-
rial, such as copper or aluminum, hold it vertically with re-
spect to the ground, and place a small magnet at its top
opening. When the magnet is released, will it fall faster,
slower, or at the same rate as a nonmagnetic object of the
same mass and shape? The answer is a dramatic demonstra-
tion of Lenz’s law, which amazes students and professors
alike. The magnet takes much more time to reach the ground
than a nonmagnetic object. For a copper pipe of length L
=1.7 m, the magnet takes more than 20 s to fall through the
pipe, while a nonmagnetic object covers the same distance in
less than a second! When various magnets are stuck together
and then dropped through the pipe, the time of passage varies
nonmonotonically with the number of magnets. This behav-
ior is contrary to the prediction of the point dipole approxi-
mation which is commonly used to justify the slow speed of
the falling magnets.1,2 The easy availability of powerful rare-
earth magnets make this demonstration a must in any elec-
tricity and magnetism course.1–4

In this paper, we go beyond a qualitative discussion of the
dynamics of the falling magnet and present a theory that
quantitatively accounts for all the experimental observations.
The theory is accessible to students with only an intermedi-
ate exposure to Maxwell’s equations in their integral form.

II. THEORY

Consider a long vertical copper pipe of internal radius a
and wall thickness w. A cylindrical magnet of cross-sectional
radius r, height d, and mass m is held over its top aperture as
shown in Fig. 1.

It is convenient to imagine that the pipe is uniformly sub-
divided into parallel rings of height �. When the magnet is
released, the magnetic flux in each of the rings begins to
change. In accordance with Faraday’s law, this flux change
induces an electromotive force and an electric current inside
the ring. The magnitude of the current depends on the dis-
tance of each ring from the falling magnet and on the mag-
net’s speed. The law of Biot-Savart states that an electric
current produces a magnetic field, which according to Lenz’s
law, opposes the action that induced it, that is, the motion of
the magnet. Thus, if the magnet is moving away from a
given ring, the induced field will attract it, while if it is
moving toward a ring, the induced field will repel it. The net
force on the magnet can be calculated by summing the mag-
netic interactions with all the rings. The electromagnetic
force is an increasing function of the velocity and will decel-
erate the falling magnet. When the velocity reaches the value

at which the magnetic force completely compensates gravity,
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the acceleration will be zero and the magnet will fall at a
constant terminal speed v. For a sufficiently strong magnet,
the terminal speed is reached very quickly.

It is interesting to consider the motion of the magnet from
the point of view of energy conservation. When an object
falls freely in a gravitational field, its potential energy is
converted into kinetic energy. For a falling magnet inside a
copper pipe, the situation is quite different. Because the mag-
net moves at a constant velocity, its kinetic energy does not
change and the gravitational potential energy must be trans-
formed into something else, that is, the ohmic heating of the
copper pipe. The gravitational energy is, therefore, dissipated
by the eddy currents induced inside the pipe. In the steady
state, the rate at which the magnet loses its gravitational
energy is equal to the rate of the energy dissipation by the
ohmic resistance,

mgv = �
z

I�z�2R , �1�

where v is the speed of the falling magnet, z is the coordinate
along the pipe length, I�z� is the current induced in the ring
located at position z, and R is the resistance of the ring.
Because the time scales associated with the speed of the
falling magnet are much larger than the ones associated with
the decay of eddy currents,1,5 almost all the variation in the
electric current through a given ring results from the chang-
ing flux due to the magnet’s motion. The self-induction ef-
fects can thus be safely ignored.

Our goal is to calculate I�z�, the distribution of currents in
each ring. To do so, we start by considering the rate of
change of the magnetic flux through one ring as the magnet
moves through the pipe. We first consider the functional
form of the magnetic field produced by a stationary magnet.
Because the magnetic permeability of copper and aluminum
is very close to that of a vacuum, the magnetic field inside
the pipe is almost identical to the one produced by the same
magnet in vacuum. Usually, this field is approximated by that
of a point dipole. This approximation is sufficient as long as
we want to study the far field properties of the magnetic
field. For a magnet confined to a pipe whose radius is com-
parable to its size, this approximation is no longer valid.
Because a large portion of the energy dissipation occurs in
the near field, we would have to sum all of the magnetic
moments to correctly account for the field in the magnet’s
vicinity. This sum is impractical, and we shall adopt a differ-
ent approach.

Let us suppose that the magnet has a uniform magnetiza-
tion M=Mẑ. That is, the effective magnetic charge density
�M =−� ·M inside the magnet is zero, and the effective mag-

netic surface charge density �M =n ·M �n is the outward unit
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normal vector� vanishes on the side of the cylinder and is
±M on the top and bottom, respectively. The flux produced
by the magnet is, therefore, equivalent to the field of two
uniformly charged disks, each of radius r, separated by a
distance d. This geometry still does not lead to an easy cal-
culation, because the magnetic field of a charged disk in-
volves integration over Bessel functions. We shall, therefore,
make a further approximation and replace the charged disks
by point monopoles of the same net charge qm=�r2�M. The
flux through a ring produced by the two monopoles is given
by

��z� =
�0qm

2 � z + d
��z + d�2 + a2

−
z

�z2 + a2� , �2�

where �0 is the permeability of vacuum and z is the distance
from the nearest monopole, which we take to be the posi-
tively charged one, to the center of the ring. As the magnet
falls, the flux through the ring changes, which results in an
electromotive force given by Faraday’s law,

E�z� = −
d��z�

dt
, �3�

and an electric current

I�z� =
�0qma2v

2R
� 1

�z2 + a2�3/2 −
1

��z + d�2 + a2�3/2� . �4�

The rate of energy dissipation can be calculated by evaluat-
ing the sum on the right-hand side of Eq. �1�. By taking the
continuum limit, we find the power dissipated to be

P =
�0

2qm
2 a4v2

4R
	

−�

� dz

�
� 1

�z2 + a2�3/2 −
1

��z + d�2 + a2�3/2�2

.

�5�

Because most of the energy dissipation takes place near the
magnet, we have explicitly extended the limits of integration
to infinity. The resistance of each ring is R=2�a� / �w��,
where � is the electrical resistivity. Equation �5� can now be

Fig. 1. The magnet and pipe used in the experiment.
rewritten as
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P =
�0

2qm
2 v2w

8��a2 f
d

a
� , �6�

where f�x� is a scaling function defined as

f�x� = 	
−�

�

dy� 1

�y2 + 1�3/2 −
1

��y + x�2 + 1�3/2�2

. �7�

We substitute Eq. �6� into Eq. �1� and find that the terminal
velocity of a falling magnet is

v =
8�mg�a2

�0
2qm

2 wf
d

a
� . �8�

The scaling function f�x� is plotted in Fig. 2. For small x,

f�x� �
45�

128
x2, �9�

and the terminal velocity reduces to that of a point dipole1,2

of moment p=qmd,

v =
1024

45

mg�a4

�0
2p2w

. �10�

From Fig. 2, we see that as soon as the length of the magnet
becomes comparable to the radius of the pipe; the point di-
pole approximation fails. For the cylindrical magnets used in
most demonstrations, the point dipole approximation limit is
not applicable, and the full expression for f�x� must be used
in Eq. �8�.

III. DEMONSTRATION AND DISCUSSION

In our demonstrations, we use a copper pipe �conductivity
�=1.75�10−8 � m� �Ref. 6� of length L=1.7 m, radius a
=7.85 mm, and wall thickness w=1.9 mm; three neodymium
cylindrical magnets of mass 6 g each, radius r=6.35 mm,
and height d=6.35 mm; a stop watch; and a teslameter. We
start by dropping one magnet into the pipe and measure its
time of passage. For one magnet T=22.9 s. For two magnets
stuck together, the time of passage increases to T=26.7 s. If
the point dipole approximation were valid, the time of pas-
sage would increase by a factor of 2, which is clearly not the

Fig. 2. The scaling function f�x� �solid curve� and the limiting form, Eq. �9�
�dotted curve�. Note the strong deviation from the parabola �point dipole
approximation� when x	1.
case. �In the point dipole approximation, the time of passage
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is proportional to p2 and inversely proportional to the mass,
see Eq. �10�; sticking two magnets together increases both
the dipole moment and the mass of the magnet by a factor of
2.� When three magnets are stuck together, the time of pas-
sage drops to T=23.7 s.

Because the terminal velocity is reached very quickly, a
constant speed of fall is justified for the entire length of the
pipe. In Table I, we present the values for the measured
velocity 
exp=L /T. We next compare these measurements
with the predictions of the theory. First, the value of qm for
the magnet must be obtained. To do so, we measure the
magnetic field at the center of one of the flat surfaces of the
magnet using a digital teslameter7 �the probe of the teslame-
ter is brought in direct contact with the surface of the mag-
net�. Within our uniform magnetization approximation this
field is produced by two parallel disks of radius r and effec-
tive magnetic surface charge density ±�M, separated by dis-
tance d. On the axis of symmetry the field is easily calculated
to be

B =
�0�m

2

d
�d2 + r2

. �11�

The effective magnetic charge is therefore

qm =
2�Br2�d2 + r2

� d
. �12�

Table I. Experimental and theoretical �Eq. �13�� values of the terminal ve-
locity.

n magnets B �mT� vexp �10−2 m/s� vtheory �10−2 m/s�

1 393 7.4 7.3
2 501 6.4 5.8
3 516 7.2 6.9
0
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For n magnets stuck together d→h=nd, and it can be
checked using the values of the measured magnetic field pre-
sented in Table I, that qm is independent of n to within ex-
perimental error, justifying our uniform magnetization ap-
proximation. We rewrite Eq. �8� in terms of the measured
magnetic field for a combination of n magnets and obtain

v =
2Mg�a2h2

�B2r4w�h2 + r2�f
h

a
� , �13�

where M =nm. In Table I, we compare the values of the
measured and the calculated terminal velocities.

Considering the complexity of the problem, the simple
theory we have presented accounts reasonably well for the
experimental results. In particular, the theory correctly pre-
dicts that two magnets stuck together fall slower than either
one magnet or three magnets together. Therefore, for each
pipe there is an optimum magnetic size that falls the slowest.
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