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We derive the electromagnetic energy density in a chiral metamaterial consisting of uncoupled single-resonance
helical resonators. Both the lossless and absorptive cases are studied, and the energy density is shown to be posi-
tively definite. The key relation making the derivation successful is the proportionality between the magnetization
and the rate of change of the electric polarization of the medium. The same time-domain formulation of energy
density also applies to the bianisotropic medium proposed by Zhang et al. [Phys. Rev. Lett. 102, 023901 (2009)].
This work may provide insights for studying time-dependent phenomena in metamaterials. © 2011 Optical
Society of America
OCIS codes: 160.3918, 260.2030, 260.2065.

“Metamaterial” usually refers to an artificial structure
consisting of periodically arranged resonators that has
unusual electromagnetic properties such as a negative
index of refraction or strong anisotropy [1]. Fascinating
phenomena associated with these unusual properties
have been demonstrated, for example, superlensing and
cloaking. To realize negative refraction, usually one unit
cell of the periodic structure should contain both electric
and magnetic resonators, giving rise to negative permit-
tivity and negative permeability through electric and
magnetic resonances, respectively. Recently, chiral me-
tamaterials have attracted much interest. They consist
of only one type of helical resonators and exhibit new
properties going beyond conventional negative index
metamaterials, such as negative reflection [2].
The resonance characteristics of metamaterials imply

that they are inherently dispersive and absorptive. A fun-
damental problem of dispersive media is how to calculate
the electromagnetic energy density, in particular for
those with magnetic responses. For the lossless case
without involving chirality, the answer is known [3].
However, when absorption is involved, such a problem
is nontrivial [4,5], and quite some controversies exist
in the literature [6,7]. For the wire-split ring resonator
(wire-SRR) metamaterials, the frequency domain (time-
averaged) formula [6] derived using the equivalent circuit
approach and the time-domain formula [7] obtained using
the electrodynamics (ED) approach did not agree. Re-
cently, this apparent contradiction has been resolved
[8]. According to [8], ED derivation is based on Maxwell’s
equations and the equations of motion for electric polar-
ization P and magnetization M. Besides, to find a unique
expression of energy density, the correct form of power
loss must be employed.
In this Letter, we derive the electromagnetic energy

density in a single-resonance chiral metamaterial consist-
ing of uncoupled helical resonators, following a similar
procedure as that used in [8]. For our chosen model

∂P=∂t is proportional to M, and this is the key relation
making the derivation possible. This feature makes the
present derivation more subtle than the wire-SRR case,
but the key steps are very close.

The constitutive relations for harmonic EM waves in
an isotropic chiral medium are

Dω ¼ ϵ0ϵðωÞEω þ i
κðωÞ
c

Hω; ð1Þ

Bω ¼ −i
κðωÞ
c

Eω þ μ0μðωÞHω: ð2Þ
Here c ¼ 1=

ffiffiffiffiffiffiffiffiffiϵ0μ0
p

is the speed of light in vacuum; ϵ, μ,
and κ are the permittivity, permeability, and chirality
parameters, respectively; and the complex representa-
tion (phasor) of the vector quantities are used. The suffix
ω indicates that these relations are for harmonic fields.
Our derivations are based on the following constitutive
parameters of a single-resonance chiral metamaterial
[9–12]:

ϵðωÞ ¼ 1 −
ω2
p

ω2 − ω2
0 þ iΓω ; ð3Þ

μðωÞ ¼ 1 −
Fω2

ω2 − ω2
0 þ iΓω ; ð4Þ

κðωÞ ¼ Aω
ω2 − ω2

0 þ iΓω ; ð5Þ
where A ¼ � ffiffiffiffi

F
p

ωp, ωp is a characteristic frequency of
the medium, and F is the filling factor of the resonators
in one unit cell satisfying 0 < F < 1. The parameter ω0 is
the resonance frequency of the resonators, and Γ is the
dissipation coefficient related to the power loss. Note
that the chiral metamaterials defined above belong to
a special kind of chiral media, thus the results derived
in this Letter are not directly applicable if the constitutive
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parameters are of different form. The D, B, E, and H
fields are defined by spatially averaging the correspond-
ing “microscopic local fields” in one unit cell under the
assumption that the relevant wavelength is much longer
than the lattice constant.
For a lossless chiral medium, i.e., Γ ¼ 0, the time-

averaged energy density can be derived using the method
formulated in [3] (Chap. 9, pp. 274–276), as

hWi ¼ 1
4
V†M0V; ð6Þ

M0 ¼
�

∂ðωϵÞ
∂ω i ∂ðωκÞ

∂ω
−i ∂ðωκÞ

∂ω
∂ðωμÞ
∂ω

�
; V ¼

� ffiffiffiffiffiϵ0p
Eωffiffiffiffiffiμ0p
Hω

�
; ð7Þ

where V† is the Hermitian conjugate of V . The same ex-
pression can also be found in [13]. For a physically mean-
ingful medium, the energy density must be positively
definite, which implies both the trace and determinant
of M0 are positive:

∂ðωϵÞ
∂ω þ ∂ðωμÞ

∂ω > 0;
∂ðωϵÞ
∂ω

∂ðωμÞ
∂ω >

�
∂ðωκÞ
∂ω

�
2
: ð8Þ

The two inequalities can be confirmed by substituting
Eq. (3)–(5) into Eq. (8) and setting Γ ¼ 0. Similar inequal-
ities for the absorptive case will be proved later.
We now turn to the time-domain description and

discuss the absorptive case. The fundamental constitute
relations

D ¼ ϵ0Eþ P; B ¼ μ0ðHþMÞ; ð9Þ
and Eqs. (3)–(5) lead to the following equations:

∂2P
∂t2

þ Γ ∂P
∂t

þ ω2
0P ¼ ϵ0ω2

pEþ A
c
∂H
∂t

; ð10Þ

∂M
∂t

þ ΓMþ ω2
0

Z
Mdt ¼ −F

∂H
∂t

−
AE
μ0c

: ð11Þ

Both equations are derived from the same circuit
equation

L
dI
dt

þ RI þ q
C
¼ Ve −

dΦ
dt

ð12Þ
associated with the helical RLC circuit in a unit cell [12].
Here L, R, and C represent the inductance, resistance,
and capacitance of the circuit, respectively [9,10,12]. The
term Ve − dΦ=dt represents the total voltage difference
across the helical circuit contributed from the electric
field and the time-varying magnetic flux. The fact that
both Eqs. (10) and (11) are derived from Eq. (12) implies

A ¼ �
ffiffiffiffi
F

p
ωp;

∂P
∂t

¼ −
ω2
p

Ac
M: ð13Þ

Note that the proportionality between ∂P=∂t and M does
not necessarily imply that P andM are parallel. An exam-
ple for clarifying this point will be discussed later.
Now we derive the energy density formula using the

time-domain (ED) approach [8]. Using Maxwell’s equa-
tions and Eq. (9), we can derive

− ∇ · S ¼ ∂W0

∂t
þ E ·

∂P
∂t

− μ0M ·
∂H
∂t

; ð14Þ
where

W0 ¼
ϵ0
2
E2 þ μ0

2
H2 þ μ0H ·M ð15Þ

is a temporary quantity having the dimension of energy
density. We will show that E · ∂P=∂t − μ0M · ∂H=∂t can
be written as ∂U=∂tþ Ploss, and thus the right-hand side
of Eq. (14) can be identified as ∂W=∂tþ Ploss, whereW ¼
W0 þ U is the energy density and Ploss is the power loss.
Just like in the wire-SRR case [8], the power loss
corresponds to the joule heat I2R. In the present chiral
structure, the current flowing in the helical circuit corre-
sponds to both ∂P=∂t andM, thus the power loss should be
expressed as Ploss ¼ αð∂P=∂tÞ2 ¼ βM2. Here α and β are
two appropriate constants to be identified.

Using Eq. (10) and (13), we find

E ·
∂P
∂t

¼ 1

ϵ0ω2
p

�
∂ _P
∂t

þ Γ _Pþ ω2
0P −

A
c
_H
�
· _P

¼ ∂

∂t

� _P2

2ϵ0ω2
p
þ ω2

0P

2ϵ0ω2
p

�
þ Γ _P2

ϵ0ω2
p
þ μ0M ·

∂H
∂t

; ð16Þ

thus the energy density is given by

W ¼ ϵ0E2

2
þ μ0H2

2
þ μ0H ·Mþ

_P2 þ ω2
0P

2

2ϵ0ω2
p

; ð17Þ

¼ ϵ0E2

2
þ ω2

0P
2

2ϵ0ω2
p
þ μ0ð1 − FÞH2

2
þ μ0ðMþ FHÞ2

2F
: ð18Þ

Note that the power loss

Ploss ¼
Γ

ϵ0ω2
p

�
∂P
∂t

�
2
¼ μ0Γ

F
M2 ð19Þ

is indeed the expected form. According to Eq. (18), the
energy density of electromagnetic field in a chiral med-
ium is always positive. Equations (17)–(19) are the main
results of this Letter.

We next calculate the time-averaged energy density
hWi for a harmonic wave. Applying the formula haðtÞbðtÞi
¼ ð1=2ÞReðaωb�ωÞ to Eq. (18) and (19), we have

hWi ¼ 1
4
V†MV; hPlossi ¼

1
2
V†PV; ð20Þ

where

M ¼

0
B@ 1þ ω2

pðω2
0þω2Þ

ðω2
0−ω2Þ2þΓ2ω2 −

AωðΓωþ2iω2
0Þ

ðω2
0−ω2Þ2þΓ2ω2

−
AωðΓω−2iω2

0Þ
ðω2

0−ω2Þ2þΓ2ω2 1þ Fω2ð3ω2
0−ω2Þ

ðω2
0−ω2Þ2þΓ2ω2

1
CA; ð21Þ

P ¼ Γω2

ðω2
0 − ω2Þ2 þ Γ2ω2

�
ω2
p −iAω

iAω Fω2

�
: ð22Þ

In the Γ → 0 limit, the matrix M becomes M0, and
Eq. (7) is recovered. To prove the positiveness of hWi in
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the absorptive case, we need to check the conditions
trM > 0 and detM > 0. The trM > 0 condition is ob-
vious. The inequality M22 − ð1 − FÞ > 0 is also easy to
check. Thus we have detM ¼ M11M22 − jM12j2 >
ðM11 − 1ÞðM22 − 1þ FÞ − jM12j2 ¼ Fω2

0ω2
p=½ðω2

0 þ
ω2Þ2 þ Γ2ω2� > 0 (Condition 0 < F < 1 is used.)
We now prove that Eq. (18) also applies to the biani-

sotropic metamaterial proposed in [14]. Unlike the
previous case defined by Eq. (3)–(5), P and M are no
longer parallel to each other. According to the constitu-
tive relations in [14], P and M fields satisfy

∂2P
∂t2

þ Γ ∂P
∂t

þ ω2
0P ¼ ϵ0ω2

pEþ AR
c

∂H
∂t

; ð23Þ

∂M
∂t

þ ΓMþ ω2
0

Z
Mdt ¼ −F

∂H
∂t

−
AR−1E
μ0c

: ð24Þ

Here R ¼ RðαÞ is a rotation matrix belonging to orthogo-
nal group, and α is a parameter characterizing the angle
between −∂P=∂t and M. The inverse of R is R−1 ¼
Rð−αÞ ¼ Rt, the transpose of R. The proportionality
between Eq. (23) and (24) yields

∂P
∂t

¼ −
ω2
p

Ac
RðαÞM: ð25Þ

The term −ðA=ϵ0ω2
pcÞ _H · _P in Eq. (16) is now replaced

by

−
AðR _HÞ · _P
ϵ0ω2

pc
¼ μ0ðR _HÞ · ðRMÞ ¼ μ0 _H · ðRtRÞM

¼ μ0
∂H
∂t

·M: ð26Þ

The energy density and power loss in the bianisotropic
medium [14] are thus still given by Eqs. (17)–(19).
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