
Electromagnetic fault injection: towards a fault model on a 32-bit microcontroller

Nicolas Moro∗‡, Amine Dehbaoui†, Karine Heydemann‡, Bruno Robisson∗, Emmanuelle Encrenaz‡

∗Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA)

Gardanne, France

Email: {nicolas.moro, bruno.robisson}@cea.fr
†École Nationale Supérieure des Mines de Saint-Étienne (ENSM.SE)

Gardanne, France

Email: amine.dehbaoui@mines-stetienne.fr
‡Laboratoire d’Informatique de Paris 6 (LIP6)

Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6

Paris, France

Email: {nicolas.moro, karine.heydemann, emmanuelle.encrenaz}@lip6.fr

Abstract—Injection of transient faults as a way to attack
cryptographic implementations has been largely studied in
the last decade. Several attacks that use electromagnetic fault
injection against hardware or software architectures have
already been presented. On microcontrollers, electromagnetic
fault injection has mostly been seen as a way to skip assembly
instructions or subroutine calls. However, to the best of our
knowledge, no precise study about the impact of an electro-
magnetic glitch fault injection on a microcontroller has been
proposed yet. The aim of this paper is twofold: providing a
more in-depth study of the effects of electromagnetic glitch fault
injection on a state-of-the-art microcontroller and building an
associated register-transfer level fault model.

Keywords-microcontroller, timing fault, electromagnetic
glitch, fault attack, fault model

I. INTRODUCTION

Physical attacks aim at breaking cryptosystems by gaining

information from their implementation instead of using the-

oretical weaknesses. Those attack schemes were introduced

in the late 1990s. There are two main subclasses of physical

attacks: passive and active ones. In passive attacks, an

attacker uses the fact that some measurable data may leak

information about manipulated secret data such as cryp-

tographic keys. Physical quantities which can be used for

passive attacks include execution time [1], electromagnetic

radiations [2], power consumption [3] or light emissions [4].

In active attacks, an attacker modifies the circuit’s behaviour

in order to perform its attack scheme. Fault attacks are

a subset of active attacks in which an attacker injects a

transient fault in a circuit’s computation.

Faults attacks were introduced in 1997 by Boneh et al. [5].

They consist in modifying a circuit environment in order to

c© 2013 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistri-
bution to servers or lists, or reuse of any copyrighted component of this
work in other works.

change its behaviour or to induce faults into its computations

[6] [7] [8]. Many means are of common use to inject such

faults, especially laser shots [9] [10] [11], overclocking [12]

[13], chip underpowering [14] [15], temperature increase

[16] or electromagnetic glitches [10] [17].

There are three main subclasses of fault attacks: algo-

rithm modifications, safe error and differential fault analysis.

Algorithm modifications aim at skipping [18] or replacing

[13] some instructions executed by a microcontroller to

circumvent its security features. Safe-error attacks aim at

evaluating whether or not a fault injection has an impact

on the output [19]. Differential fault analysis (DFA) aims

at retrieving the keys used by an encryption algorithm by

comparing correct ciphertext and faulty ciphertexts (i.e. ci-

phertexts obtained from a faulted encryption). This technique

was first introduced for public key encryption algorithms [5],

and quicky extended to secret key algorithms [20].

From that time, many attack schemes have been proposed

to attack various encryption algorithms. They all rely on

an attacker’s fault model which defines the type of faults

the attacker can perform [21]. Thus, they require a high

accuracy in the fault injection process. If the faults are not

induced at the proper time in the algorithm, or affect the

wrong bits, the entire attack process fails. As a consequence,

the ability to precisely control the fault injection process is a

key element in carrying out any fault attack. Common fault

models include instruction skips [18], single bit faults or

single word faults [22].

In this work, we report the use of electromagnetic pulses

to induce faults into the computations of an up-to-date

microcontroller. We also report a study of the local effect

of electromagnetic pulses. Moreover, the underlying effects

behind common fault models are not always clearly under-

stood and may highly depend on the target architecture. As

a consequence, this work finally aims at defining a precise

fault model and providing an understanding of the faults an

electromagnetic glitch can induce on an embedded program.



The rest of this paper is organized as follows. Section II

introduces our fault injection experimental setup and details

the approach we use. Section III describes the influence of

some experimental parameters on injected faults. Section

IV details the effects of the injected faults on the program

flow and data flow. Finally, the resulting register-transfer

level fault model is presented in section V. Section VI gives

details about some related research papers.

II. APPROACH

This section starts by describing our experimental setup

choices in II-A. This experimental setup enables us to

provide the results presented in section III which show the

influence of the different experimental parameters. Then, we

detail the approach we use to precisely characterize the faults

we injected. This characterization method, which matches

experimental results obtained from the microcontroller with

simulation data, is detailed in II-B.

A. Experimental setup

1) Electromagnetic fault injection bench: The electro-

magnetic glitch fault injection platform shown in Fig. 1

is composed of a control computer, the target device, a

motorized stage, a pulse generator, and a magnetic antenna.

The target (described in II-A2) is mounted on the X Y

Z motorized stage. The computer controls both the pulse

generator (through a RS-232 link) and the target board

(through a USB link).

R
 S

-2
3
2
 

D
e
b
u
g
 v

ia
 U

S
B

 

Pulse 

T
ri
g

g
e

r 
s
ig

n
a

l 

Pulse generator 

Motorized 

X Y Z stage 

Control 

computer 

M
o

to
ri
z
e

d
 s

ta
g

e
 c

o
n

tr
o

l 

Figure 1: Electromagnetic fault injection bench

The pulse generator is used to deliver voltage pulses to the

magnetic coil. It has a constant rise and fall transition time

of 2 ns. The amplitude range of the generated pulses extends

from −200 V to 200 V, their width extends from 10 ns to

200 ns. The magnetic antenna we use is composed of a few

turns with a diameter of 1 mm. We use it in order to disturb

a small part of the target device. This spatial accuracy is

possible thanks to a high accuracy X Y Z stage.

2) Target: The chosen target is an up-to-date 32-bit

microcontroller designed in a CMOS 130 nm technology.

It is based on the ARM Cortex-M3 processor [23]. Its

operating frequency is set to 56 MHz. This microcontroller

does not embed any cache memory.

Choice of target: The target we use is a state-of-the-

art microchip, based on a recent technology. ARM Cortex

processors are already very widespread for both mainstream

and secure microcontrollers. Although we did not choose a

smartcard version of the microcontroller, this target embeds

some basic security mechanisms against clock perturbations

and voltage glitches. Moreover, several interrupt vectors

have been defined which can handle some hardware faults

and can be used for a basic fault detection. Hence, we can

consider this target as reasonably secured against some of the

most common low-cost fault injection means. However, this

target does not embed any protective shield against reverse

engineering or electromagnetic injection. Since this research

aims at understanding the effects of fault injection on a

recent microcontroller, we do not work on a highly-secure

version of this microcontroller.

Instruction set: Cortex-M3 processors run the ARM

Thumb2 instruction set [24]. Thumb2 is actually the succes-

sor to both ARM and Thumb instruction sets, and contains

both 16-bit and 32-bit instructions.

Hardware interrupts: Several fault exceptions can

catch illegal memory accesses or illegal program be-

haviour. Those fault exceptions are Hard Fault, Bus

Fault, Usage Fault and Memory Management

Fault. Each of these exceptions can be triggered for several

subtypes of hardware faults. In the following experiments,

every exception handler function executes an infinite loop.

B. Experimental process

Working with a microcontroller in such a black-box ap-

proach requires to develop a specific experimental approach.

This approach aims at enabling us to deduce the effects of

faults by observing some internal data from the microcon-

troller. This observation must be done with a non-invasive

technique. Since a faults may have an impact on the program

flow and since we need to access some accurate data such as

registers or cycle count, the communication cannot be done

with a serial link. We use the JTAG-equivalent non-instrusive

SWD debug link to retrieve data from the microcontroller.

Besides, we also use the hardware exceptions defined in

II-A2 as a way to get some extra data about the injected

faults.



1) Microcontroller’s internal state observation: The ex-

perimental measurement process we use is the following:

• Reset the microcontroller

• Execute the target code

• Send a pulse to the injection antenna

• Interrupt the program execution

• Harvest the microcontroller’s internal data

The following paragraphs detail the important elements

of this experimental process.
Trigger window: In order to have a correct view of

the microcontroller’s internal data, we have created an as-

sembly subroutine containing some test instructions (which

will be detailed in section III). For our experiments, the

microcontroller sets a trigger signal for the electromagnetic

injection. With this technique, we can target the executed

program at the scale of a single instruction. By observing

the microcontroller’s clock during this trigger window, we

can focus the injection on a single clock cycle. Besides, the

pulse injection time is defined by reference to the beginning

of the trigger signal temporal window.
Watchpoint and program end: In this experimental

process, the program normally stops because of a breakpoint

set after the target code. This watchpoint is defined before

popping the stack at the end of the assembly subroutine and

after the trigger window. However, with our experimental

setup and target code, two other scenarios may happen

because of a fault: an unconditional jump and an infinite

loop due to the triggering of an exception. These two

scenarios modify the control flow, and the program may not

reach the defined breakpoint. Moreover, the unconditional

jump scenario makes the setting of breakpoints very hard.

To handle these issues, our control computer stops the

microcontroller after a fixed delay.
Internal data: With the SWD debug link, the internal

data we get from the microcontroller at a watchpoint for

our experiments are: the general-purpose registers (r0 to

r12), the stack pointer (r13), the link register (r14), the

program counter (r15), the program status register (xPSR),

some chosen variables in memory and the number of clock

cycles taken by our experiment. This number of clock cycles

is counted from the beginning of the target subroutine. The

xPSR register gives us information about the processor flags

and the exceptions that may have been triggered. Since we

only inject transient faults and since the watchpoint is set

several clock cycles after our attack, we can reasonably

assume that the debugging module embedded in the chip

is not corrupted when recovering the internal data from the

microcontroller.

However, some internal data such as the instruction regis-

ter cannot be accessed. When working at the scale of a single

instruction, we may need to determine which instruction has

been actually executed by the core. To get a list of suitable

instructions, we need to rely on an exhaustive instruction

simulation.

2) Fault model simulation: We propose to use simulation

to explain the effects of electromagnetic fault injection. Our

approach aims at comparing the experimental faulty outputs

with outputs from a fault model simulation. Thus, we can

validate the interpretation of these effects by comparing the

outputs with the internal data. This scheme is summarized

in Fig. 2.

A B 

B’ 

Instruction 

Experimental fault 
(depends on the  

experimental parameters) 

Initial state Expected state 

Exhaustive instruction simulation 
(finds instructions which could  

enable to reach B’ from A) 

Fault injection 

Figure 2: Our approach to characterize the injected faults

Simulations aim at finding output states which could be

compatible with the output states we observed. In order to

match simulations with measurements, we define a binary

relation between experimental output states and simulated

output states.

Definition. One instruction replacement can explain an

experimental measurement if the output states ([r0-r12],

xPSR) at the defined watchpoint are the same for the

measurement and the simulation

In the rest of this article, two classes of faults can be

distinguished: faults on the data flow and faults on the

program flow [22]. Faults that lead to the replacement of an

instruction by another one are faults on the program flow.

They may result in an algorithm modification, depending on

the context and the replaced instruction. On the contrary,

faults which only modify a piece of data without modifying

an instruction are faults on the data flow.

Nevertheless, this difference might not be clear for many

cases since both fault classes may lead to very similar visible

outputs. Thus, defining whether a resulting faulty output is a

consequence of a fault on the data flow or the control flow

is generally a tough task. Nevertheless, a single assembly

instruction can only output a very limited set of data. As

a consequence, it is possible to tell whether or not a faulty

output is the consequence of a fault on the control flow.

Thus, every faulty output which cannot be explained by an

instruction replacement is considered to come from a fault

on the data flow.

The Thumb2 instruction set is composed of both 16-bit

and 32-bit instructions. 16-bit instructions can be exhaus-

tively tested. 32-bit instruction start with the prefixes 11101

or 1111, which reduces the complexity of an exhaustive

test. Moreover, the 32-bit part of the instruction set is mostly

sparse, we can remove many branches in the search space.

It should be noted that this simulation is performed on the



t = 0.4 ns t = 1 ns t = 2 ns t = 3.6 ns 

t = 16.8 ns t = 18.6 ns t = 19.2 ns t = 20 ns 

Interrupt triggered 

Fault on the output value 

Crash of the microcontroller 

No fault on the output value 

Figure 3: Impact of the probe’s position

same binary as the one that is used for the fault injection

experiments. To perform this simulation, we developed a

specific program, based on the Keil UVSOCK library. Our

simulation program is able to control the Keil µVision

debugger during an execution on the Keil µVision simulator.

It emulates faults on the control flow by replacing on the fly

the target instruction.

Obviously, many instruction replacements may be able to

explain one single measurement. Nevertheless, being able to

simulate instruction replacement will enable us to explain

the effects we observed and then to define a fault model

more clearly. To sum up, an exhaustive simulation over the

instruction set is practical and can be performed in real

conditions. Moreover, it enables to distinguish faults on the

control flow from faults on the data flow.

III. EXPERIMENTAL STUDY OF THE INJECTION

PARAMETERS

In this section, we provide a study of the influence of

several experimental parameters on the final outputs. Since

metastability phenomena appear, we first start by describing

them in the following paragraph.

A. Metastability phenomena

Since electromagnetic glitch fault injection leads to timing

faults [17], we obtained some metastability phenomena. For

this experiment, the pulse’s voltage was set to 190 V, the

clock frequency was set to 56 MHz, the pulse’s injection

time was fixed to an arbitrary value, and the pulse width

was set to 10 ns. The probe position was found by a trial-

and-reset approach. The results for 10000 executions of

our experimental process are presented in Table I, every

observed output value is associated to its occurrence rate.

They show a metastability phenomenon for a single load

instruction from the Flash memory which correct loaded

value is 0x12345678 since several values appear for the

same fixed configuration of the experimental parameters.

Table I: Metastability phenomenon for a single load instruc-

tion

Loaded value Occurrence rate

1234 5678 (no fault) 60.1%

FFF4 5679 27.4%

FFFC 5679 12.3%

FFFC 567b 0.1%

FFFC 7679 0.1%

B. Study of the injection parameters

In the case of an electromagnetic fault injection on a

microcontroller, many experimental parameters can have an

influence on the final outputs. The main parameters we

can control in these experiments and which may have an

influence are detailed in Table II. For all the following ex-

periments except the one that studies the voltage’s influence,

the pulse voltage was set to 190 V. The pulse width was set

to 10 ns, which is shorter than the 17 ns clock period (for a

56 MHz clock frequency). In the following paragraphs, we

detail the separate influence of some of these parameters.

Table II: Experimental parameters

Electromagnetic - x-y-z position of the injection probe
injection parameters - Pulse injection time

- Pulse characteristics (width, voltage)

Microcontroller - Operating frequency
hardware parameters - Power supply

Microcontroller - Type of the executed instructions
software parameters - Program memory (RAM or Flash)



Memory manage fault 

Bus fault 

Usage fault 

 

Result 

0       125     250      375      500     625      750      875    1000   1125   1250    1375    1500   1625   1750    1875    2000    2125    2250   2375   2500   2625   2750   2875   3000    3125   3250   3375    3500    3625    3750    3875   4000           

0xfe                      0xfd                   0xfb                 0xf7                  0xef                  0xdf                 0xbf                    0x7f 

Figure 4: Influence of the pulse’s injection time for an array sum whose expected result is 0xFF

1) Position of the injection probe over the package’s

surface: The X Y Z stage we use for our experiments

enables us to vary the injection probe’s position. Since

varying the Z position of the antenna leads to a similar

class of effects on the microcontroller than varying the

pulse’s voltage [25], we fix a position for Z and only study

the influence of the X Y position. In this experiment, we

change the X Y coordinates and the pulse’s injection time.

This experiment is performed at the scale of a single load

instruction which loads the value 0x12345678 from the

Flash memory into the register R8. This fault injection has

been performed over a 20 ns time interval, by steps of

200 ps. The probe browsed a 3 mm square over the circuit’s

die, by steps of 200 µm. Fig. 3 shows the results for this

experiment.

The experiment shows that there are four kinds of outputs,

depending on the probe position and the injection time : no

fault on the loaded value, a crash of the microcontroller,

the triggering of a Usage Fault exception, and a fault

on the value in R8. Very few faults on the register R0

were also observed. Except from R8 and R0, no other

register was faulted in this experiment. Moreover, those two

registers were never faulted together. Every faulty output

we observed on R8 has a higher Hamming weight than the

0x12345678 expected value. On Fig. 3, yellow areas led

to a small increase in this Hamming weight and red areas

led to a high increase. This experiment highlights the local

effect of electromagnetic fault injection on a microcontroller,

with different effects depending on the probe’s position.

Since very few probe positions can lead to a successful fault

injection, this spatial cartography also helps us to find some

suitable X Y Z configurations for the following experiments.

2) Injection time: This experiment has been performed

on the following test program for a fixed X Y Z position.

This program uses a loop to sum the elements of an array

that contains eight powers of two. array[i] contains 2i.

At the end of the computation, the result stored at the address

pointed by r0 contains 0xFF . This test program requires

about 3.5 µs to complete. We performed this fault injection

over this time interval, by steps of 200 ps.

1 a d d i t i o n l o o p :
2 l d r r4 , [ r2 , r1 , l s l #2 ] ; r4 = array[i]

3 l d r r3 , [ r0 , #0 ] ; r3 = result

4 add r3 , r4 ; r3 = r3 + r4

5 s t r r3 , [ r0 , #0 ] ; result = r3

6 add r1 , r1 , #1 ; r1 = r1 + 1

7 cmp r1 , #8 ; r1 == 8 ?

8 b l t a d d i t i o n l o o p

This test program enables us to perform an electro-

magnetic fault injection on a sample made of different

instructions. The results for this experiment are shown in

Fig. 4. Three kinds of situations have been observed:

• BusFault or UsageFault hardware interrupts

• A fault on the output value

• A normal behaviour with no fault

Every fault we observed on the output value corresponds

to an execution in which only one power of two has not been

added. However, many faults could explain such results. That

is why the precise effect of electromagnetic fault injection

at the scale of a single instruction is studied precisely in

section IV.

3) Pulse characteristics: In the following paragraphs, we

study the separate influence of the pulse parameters. For

these paragraphs, a fixed position was set for the injection

probe. This position had been found thanks to the spatial

cartography presented in III-B1.

Pulse width: The pulse width does have an influence

on the outputs. According to Faraday’s law of induction, the

electromotive force induced in a loop (e.g. inside the power

grid) corresponds to the time-derivative of the magnetic flux

transmitted by the injection antenna. This magnetic flux is

proportional to the current sent into the injection solenoid.

Thus, the electromagnetic glitch that is transmitted to the

circuit depends on the current’s variations. We also observed

that sending longer pulses reduces the stress applied to the

circuit.

Pulse voltage: To evaluate the influence of the pulse

voltage, the test program has been set to a single LDR as-

sembly instruction. LDR R_o,[R_i,#offset] loads the

value pointed by R_i with offset #offset into the register

R_o. For the test instruction, the register R_i pointed to a

Flash memory address. To perform an analysis of the impact

of the pulse’s voltage, we needed to fix a suitable configura-

tion for the other parameters. Those other parameters were

set to some fixed values: we chose a configuration in which

a fault occurs on the loaded value. For this experiment,

the tested instruction was LDR R4,[PC,#44]. The inital

value of R4 was 0x0 and PC+44 was a Flash memory

address which contained 0x12345678. Since metastability



170 175 180 185 190

0

5

10

15

20

Pulse amplitude (V)

H
am

m
in

g
d

is
ta

n
ce

w
it

h
0
x
1
2
3
4
5
6
7
8

LDR R4 , 0x12345678

Figure 5: Hamming distance with 0x12345678 versus

pulse’s voltage

phenomena appear, for this experiment we take into account

the faulty output with the highest occurrence rate. Table III

shows the value in R4 for different values of the pulse

voltage. According to those results, increasing the pulse

voltage increases the Hamming weight of the loaded value.

This pattern is highlighted by Fig. 5, which shows the

Hamming distance with the 0x12345678 expected value

versus the pulse’s voltage. The same kind of trend has been

obtained for different values for the probe position and

the injection time. However, it seems that only instructions

which loads a value from the Flash memory can lead to this

kind of set at 1 fault. Indeed, we did not manage to inject

similar faults in case of a data transfer from the SRAM

memory.

Table III: Influence of the pulse’s voltage

Pulse voltage Loaded value Occurrence rate

170 V 1234 5678 (no fault) 100%

172 V 1234 5678 (no fault) 100%

174 V 9234 5678 73%

176 V FE34 5678 30%

178 V FFF4 5678 53%

180 V FFFD 5678 50%

182 V FFFF 7F78 46%

184 V FFFF FFFB 40%

186 V FFFF FFFF 100%

188 V FFFF FFFF 100%

190 V FFFF FFFF 100%

4) Type of the executed instructions: Our experiments

highlighted a significant trend: we managed to inject faults

on different types of instructions such as branch instruc-

tions, ALU instructions or load-store instructions. However,

load instructions from the Flash memory were significantly

easier to fault. The microcontroller we use has a Harvard

architecture. Every instruction fetch uses the instruction

bus. Moreover, load instructions also use the data bus in

the decode pipeline phase. As a consequence, section IV

provides a more detailed study of the consequences of this

fault injection in two cases: one case to highlight a fault on

the instruction bus, another one to highlight a fault on the

data bus. On the one hand, we study the effects on a generic

single instruction. On the other hand, we study the specific

case of a load instruction from the Flash memory.

IV. EXPERIMENTS ON THE DATA AND INSTRUCTION BUS

The two following subsections detail the results we ob-

tained when trying to inject faults into the control flow or

the data flow of the target program. In order to minimize the

side effects which may happen when studying a big number

of assembly instructions, the following results have been

obtained for two classes of test applications. To highlight

faults on the control flow, we use a sequence of NOP

instructions [26]. Since NOP instructions have no effect, a

faulty output will be easier to notice and to explain. To

highlight faults on the data flow, the test application we use

is a single LDR instruction which loads data from memory

into a register. The initial values at the beginning of our

target function are detailed in Table IV. Those beginning

values are the same for the two following experiments. The

comparison between the initial values, the output ones and

the expected ones helps us to have a better understanding of

possible instruction replacements effects.

Table IV: Initial values at the beginning of the execution

Piece of data Value

r0 A memory address in RAM

r1 to r4 0x1 to 0x4

r5 and r6 Not relevant

r7 0x100

r8 to r12 0x00

Address pointed by r0 0x00

A. Faults on the program flow

Faults on the program flow can be observed through

instruction replacement faults thanks to the simulation. How-

ever, studying instruction replacement with two possible

instruction sizes is a very tough task. Since every fetch from

the code memory is 32-bit wide, we need to consider several

instruction replacement scenarios. With this approach, we

can simulate the replacement of a 16-bit or 32-bit instruction

by another 16-bit or 32-bit instruction. However, two 16-

bit instructions might be replaced by two different 16-bit

instructions. Similarly, a 32-bit instruction might be replaced

by two 16-bit instructions. Those two cases would imply

performing an almost-exhaustive search over 32 bits, which

is not practical in our case. Though, we could partially

bypass this problem by recording the number of clock

cycles in our experiments. However, guessing the number of



executed instructions from the clock cycle count is not an

easy task because of the complex instruction set. Observing

this clock cycle count could theoretically enable us to

exclude some replacement scenarios in further experiments.

To highlight the possibility to inject faults on the program

flow, the following experiment targeted a NOP sled. Since

different position probes and different injection times lead

to different results, the following results have been found for

different experimental configurations of these parameters.

1) Hardware exceptions: Our fault injection some-

times led to an exception triggering. However, only

Usage Fault exceptions were observed. More precisely,

the No coprocessor exception and the Undefined

instruction exception where the only subclasses of

Usage Fault which could be observed. Both of these

exceptions happen in the case of an invalid opcode. A

possible explanation would be that a fault has been injected

during the fetch or decode pipeline phases.

2) Memory address: In the initial state before the target

instruction, r0 points to a memory address in SRAM. The

value of r0 has been observed at this address instead of the

expected value. For this particular case, instruction replace-

ment simulation showed that the only possible instruction

replacement is STR r0,[r0,#0], which stores the value

of r0 at the address pointed by r0 without any offset.

Moreover, the value 0x100 has also been observed for

another configuration. It turns out that 0x100 is also the

value in r7.

3) Other faults: We also obtained faults on the general-

purpose register r7 and the program counter r15. These

faults can also be explained by at least one assembly

instruction replacement.

4) Summary: Obviously, the previous paragraphs do not

aim at providing a complete list of the possible faults.

Because of the huge number of possible configurations

for the injection parameters, computing fault occurrence

percentages would not be relevant. Nevertheless, these para-

graphs highlight the fact that very few fault patterns were

observed. We never got any fault on r1-r6 and r8-r14.

In an informal way, faults on r7 and r15 (pc) appeared

much more often than faults on the memory address pointed

by r0. Most of the 16-bit instructions can only manipulate

the registers r0 to r7. For example, a MOVS r7, #FF

operation is assembled into a 16-bit instruction, while a

MOVS r8, #FF is assembled into a 32-bit instruction. In a

16-bit instruction, r7 is encoded by a 111 binary sequence.

The fact that registers r0-r6 are encoded with a smaller

number of 1 in their encoding slot might explain this higher

fault occurrence rate on the r7 register. Similarly, branch

instructions have many 1 in their slot. As a conclusion for

this set of experiments, every faulty result we observed has

at least one instruction replacement which can explain it.

The first intuition of a set at 1 fault model we saw for data

fetches leads us to a more detailed analysis of the pipeline

stages in section V.

B. Faults on the data flow

For this experiment, we targeted a single LDR

r4,[PC,#44] instruction. The inital value of R4 was 0x0

and PC+44 was a Flash memory address which contained

0x12345678 (this experiment used the same configuration

as the one we had defined in III-B3). We obtained several

faulty outputs such as 0xFE345678 or 0xFFF45678. We

consider that every fault which cannot be explained by an

instruction replacement is a fault on the data flow. In this

experiment, the target LDR r4,[PC,#44] is a 16-bit in-

struction, followed by a 16-bit NOP instruction. The Thumb2

instruction set can only output a limited set of constants

in a single data-processing instruction [24]. Thus, some of

the faulty output values we observe, such as 0xFFF45678,

could theoretically only be loaded with a single load from

indirect register. Since the whole memory does not contain

any FFF4 pattern, a single load instruction could not explain

this result. We performed an exhaustive search over the

16-bit and 32-bit instructions. No single instruction can

lead to a result of 0xFFF45678. However, fault injection

might have had an impact on two 16-bit instructions. To

handle this issue, we performed another experiment, in

which the target instruction was a LDR r8,[PC,#44],

with 0x12345678 stored at the address PC+44. Using r8

instead of r4 makes this instruction be assembled as a 32-bit

instruction. Except the stack manipulation instructions, no

16-bit instruction can write a value into registers between

r8 and r12. For this new configuration, we were able

to obtain several faulty values, such as 0xFFF45679 or

0xFFFC5679. With an exhaustive simulation, we can now

guarantee that no single instruction can lead to such a result.

Since a part of the faulty value is similar to the expected

one, we can assume this fault injection had an impact on

the data flow.

C. Analysis at a lower abstraction level

Underpowering a circuit or overclocking it leads to the

same kind of timing violation faults [15], but knowing which

among the clock tree or the power grid has been faulted is

a tough task. To the best of our knowledge, recent research

papers such as [27] claimed that the coupling between the

injection probe and the circuit lies mainly in the power

distribution network. According to the experiments from

the previous section, electromagnetic glitch fault injection

seems to enable us to perform attacks whose effect is

equivalent to voltage or clock glitches, with a local effect

that enables us to target either the instruction bus or the data

bus. The following section deeply studies the bus transfers

and provides an explanation for the faults we observed at a

register-transfer level.



Clock

Electromagnetic Glitch

HADDRI 0x06 0x0A 0x0E 0x12

HRDATAI 2 nop 2 nop

0x00 NOP - BF00 EXECUTE

0x02 NOP - BF00 DECODE EXECUTE

0x04 NOP - BF00 DECODE EXECUTE

0x06 NOP - BF00 FETCH DECODE EXECUTE

0x08 NOP - BF00 FETCH DECODE

0x0A NOP - BF00 FETCH

0x0C NOP - BF00 FETCH

0x0E NOP - BF00 FETCH

0x10 NOP - BF00 FETCH

Figure 6: Bus transfers on the AHB bus for instruction memory

V. REGISTER-TRANSFER LEVEL FAULT MODEL

The results presented in section IV lead us to the basics

of a definition of a fault model at the assembly level. By

using this fault injection technique, an attacker can inject

faults in two ways: modify the instruction to be executed or

modify a data value in the case of a load instruction.

Our experiments also highlight another trend: we only

managed to inject faults on data and instruction transfers

from the Flash memory. The Flash memory has a slower

reponse time than the SRAM memory. The fetch pipeline

phase always requires a transfer from the instruction mem-

ory [23]. The operand fetch operation is performed during

the decode phase. For load instructions, the decode phase

requires a transfer from the data memory.

The microcontroller we use is based on a modified Har-

vard architecture, with separate buses for instruction and

data. The buses are 32-bit wide and use the AMBA AHB-

Lite structure [28]. Since electromagnetic glitch injection

creates timing faults [17], we propose an explanation of

the experimental faults we obtained based on a bus transfer

analysis.

A. Instruction fetches

Fetching a piece of data or an instruction from the

memory (either SRAM or Flash) requires at least two

clock cycles. Fig 6 shows a chronogram of the AHB bus

tranfers when executing the target program. In this case,

the target program is a NOP sled. Since instruction fetches

are 32-bit wide, two 16-bit NOP instructions are fetched

at each execution of the fetch pipeline stage. In the case

of instruction which do not require an operand fetch, the

decode and execute pipeline stages require at most half a

clock cycle. The fetch stage requires one clock cycle during

which the instruction address is written on the HADDRI bus.

It also requires an extra clock cycle in which 32 bits from

the instruction memory are written on the HRDATAI bus

[28]. In the event of a transfer from the SRAM memory, the

values are written on the HRDATAI bus at the beginning of

this extra clock cycle. Since the Flash memory has a longer

response time, this value is written on the bus at the end of

this clock cycle for a Flash transfer. In this situation, since

electromagnetic fault injection leads to timing faults [17],

the critical path appears to be this HRDATAI bus transfer.

Table V: Binary encoding of NOP and STR r0,[r0,#0]

Mnemonic Inst. Binary instruction Hamming w.

NOP BF00 10111111 00000000 7

STR r0,[r0,#0] 6000 01100000 00000000 2

We now consider the result presented in IV-A, in which

a NOP is replaced by a STR r0,[r0,#0]. The binary

encodings for the NOP and STR r0,[r0,#0] instructions

are presented in Table V. As seen for an attack which

targets the value loaded by a load instruction, it seems

that the higher the stress we apply, the higher the fetched

word’s Hamming weight is. However, the situation seems

different for instruction fetches. The fault models seems

more complex than the set at 1 model we had seen for data

fetches.

The bus precharge values are not specified in the AHB bus

intellectual property. They are chosen by the circuit’s manu-

facturer. For the microcontroller we use, the HRDATAI bus

does not seem to be precharged at 1, since a NOP instruction

with a Hamming weight of 7 has been replaced by another

instruction whose Hamming weight is 2. Moreover, since

there must be some skew on this bus, some metastability

phenomena (as presented in III-A) also appear. Considering

this single example, a possible precharge value would be 0,

or the microcontroller might use a more complex precharge

strategy. For the moment, we are not able to infer more

details about a possible HRDATAI bus precharge.



Clock

HADDR PC+44

HRDATA Data

0x00 NOP - BF00 EXECUTE

0x02 LDR R4, [PC #44] - 4C04 DECODE EXECUTE

0x04 NOP - BF00 DECODE

0x06 NOP - BF00 FETCH

0x08 NOP - BF00 FETCH

0x0A NOP - BF00 FETCH

0x0C NOP - BF00 FETCH

0x0E NOP - BF00 FETCH

0x10 NOP - BF00 FETCH

(a) Without electromagnetic perturbation

Clock

Electromagnetic Glitch

HADDR PC+44

HRDATA

0x00 NOP - BF00 EXECUTE

0x02 LDR R4, [PC #44] - 4C04 DECODE EXECUTE

0x04 NOP - BF00 DECODE

0x06 NOP - BF00 FETCH

0x08 NOP - BF00 FETCH

0x0A NOP - BF00 FETCH

0x0C NOP - BF00 FETCH

0x0E NOP - BF00 FETCH

0x10 NOP - BF00 FETCH

(b) With an electromagnetic glitch fault injection

Figure 7: Bus transfers on the AHB bus for data memory

To sum up, in the case of a bus transfer from the Flash

memory, the critical path that is faulted by an electromag-

netic fault injection seems to be the HRDATAI bus transfer.

Thus, this fault injection can target any instruction fetch

from the Flash memory, which potentially makes this attack

scenario very harmful.

B. Data fetches

The situation for data fetches is very similar to the one we

describe for instruction fetches. Since electromagnetic fault

injection has a local effect, it is possible to find a probe

position where we only inject faults on the data bus and

do not reach the instruction bus. For this attack scenario,

the critical path seems to be the HRDATA bus transfer. Fig.

7a shows data bus transfers in the case of a single LDR

instruction (similar to the previous experiments) without

fault injection. Fig. 7b shows the same bus transfers in the

case of a fault injection.

Metastability phenomena also appear for this fault injec-

tion, but the global trend corresponds to a set at 1 fault

model. This value depends on the microcontroller’s bus

precharge strategy, which is specific to each implementation.

This trend enables us to define a more precise fault model

for data fetches, in which the attacker can bring the loaded

value closer to the value of the bus precharge.

VI. RELATED WORKS

This section outlines some research papers that are related

to the study we presented in this paper. These papers

are grouped into three subcategories: electromagnetic fault

injection techniques, fault models on microcontrollers and

proposed contermeasures against a given fault model.

1) Electromagnetic fault injection: In [17], Dehbaoui

et al. do a practical fault injection on a software imple-

mentation of the AES algorithm by using electromagnetic

glitches. In [25], Carlier performs a study of the effects of

electromagnetic fault injection on two microcontrollers at



an electric level. His work mostly explains the influence of

several parameters related to the coil. He also studies the

influence of the injection time. However, his study does not

focus on the faults that were produced.

2) Fault models on microcontrollers: In [29], Barenghi

et al. study the effects on low-voltage fault attacks on

an ARM9 microprocessor. They describe several effects

on loads from memory or on instruction replacement. In

[13], Balasch et al. present a black-box approach which

is quite similar to the one proposed in this paper. They

use clock glitches as a fault injection mean and perform

their experiment on a 8-bit microcontroller. We also use

the same kind of in-depth analysis. However, their study

is performed on a very different architecture with a dif-

ferent bus precharge configuration. We also automated the

instruction replacement search by performing an exhaustive

instruction replacement simulation over the instruction set.

In [26], Spruyt proposes an approach whose aim is to

define a generic method on how to build a fault model for

microcontrollers. His situation is also quite similar to the

one presented in this paper. Since having access to some

internal data on a real microcontroller may be hard, he

proposes a way to obtain information about the induced

faults by analyzing the faulty outputs of different groups of

instructions. Several articles have been published in which

the authors assume an attacker can skip or replace an

instruction by another one [18] [30]. For example, in [31],

Berzati et al. suppose an attacker can replace an addition

instruction by an exclusive or instruction.

3) Countermeasures: Several countermeasures schemes

have been defined to protect embedded processor architec-

tures against specific fault models. All those countermeasure

schemes might be reinforced by studies similar to the one

presented in this paper, which could provide a more precise

knowledge about the fault model. At a hardware level, [32]

proposes to use integrity checks to ensure that no instruc-

tion replacement took place. Nevertheless, many counter-

measures to protect assembly code without modifying the

microcontroller’s architecture have been defined. In [21],

Barenghi et al. propose three countermeasure schemes based

on instruction duplication, instruction triplication and parity

checking. Their countermeasures enable different levels of

fault detection and correction against instruction skips or

some instruction modifications. In [33], Medwed et al.

propose a generic approach based on the use of specific

algebraic structures named AN+B codes. Their approach

enables to protect both the control and data flow. An

application to an AES implementation has also been detailed

in [34].

VII. CONCLUSION

We have presented a detailed study about the effects of an

electromagnetic glitch fault injection on a state-of-the-art mi-

crocontroller. However, working with a real microcontroller

in a black-box approach creates several constraints when

trying to build a practical experimental process. Because

of the lack of details about the microcontroller’s design

and architecture, we have proposed this top-down approach

which aims at building a suitable lower-level explanation for

the faults we observed at an assembly level. Moreover, we

also lack information about the bus precharge strategy on

the microcontroller we use. Future experiments will try to

use more advanced debug techniques in order to get more

accurate information about the executed instructions.

Finally, we do not claim this register-transfer level hy-

pothesis is the only reason why faults appear at an assembly

level. This paper aims at providing a first understanding of

the faults an electromagnetic glitch fault injection can induce

on an embedded program. And the lower-level model we

propose could explain all the previous experimental results

we obtained. Furthermore, this fault model looks very simi-

lar to the ones which can be found in previous works about

clock or voltage glitches. Hence, electromagnetic glitches

seem to induce timing constraints violations on the bus

transfers from the Flash memory. Thus, on a standard circuit,

electromagnetic fault injection could enable an attacker to

bypass some countermeasures against traditional timing fault

injection means such as clock or voltage glitches.

These experiments confirm the fact that an attacker could

change an instruction into another one and change the value

of a piece of data loaded from the Flash memory. But they

also provide a more accurate fault model, in which some

instructions or registers seem to be more vulnerable than

others. On this architecture, faults on the data flow lead

to an increased Hamming weight on the loaded piece of

data. This behaviour highly depends on the microcontroller’s

bus precharge strategy. These observations can lead to the

definition of an assembly-level fault model, and enable to

build more specific and accurate countermeasures. These

ideas will be studied more precisely in future works.

REFERENCES

[1] P. Kocher, “Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems,” Advances in Cryp-
tology - CRYPTO’96, pp. 104–113, 1996. [Online]. Available:
http://www.springerlink.com/index/4el17cvre3gxt4gd.pdf

[2] D. Agrawal, B. Archambeault, J. R. Rao, P. Rohatgi, and
Y. Heights, “The EM Side-Channel(s),” in Cryptographic
Hardware and Embedded Systems - CHES 2002, ser. Lecture
Notes in Computer Science, B. S. Kaliski, c. K. Koç,
and C. Paar, Eds., vol. 2523. Berlin, Heidelberg: Springer
Berlin Heidelberg, Feb. 2003, pp. 29–45. [Online]. Available:
http://www.springerlink.com/index/10.1007/3-540-36400-5

[3] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,”
in Proceedings of the 19th Annual International Cryptology
Conference, Santa Barbara, California, USA, 1999, pp. 1–
10. [Online]. Available: http://www.springerlink.com/index/
kx35ub53vtrkh2nx.pdf

http://www.springerlink.com/index/4el17cvre3gxt4gd.pdf
http://www.springerlink.com/index/10.1007/3-540-36400-5
http://www.springerlink.com/index/kx35ub53vtrkh2nx.pdf
http://www.springerlink.com/index/kx35ub53vtrkh2nx.pdf


[4] A. Schlösser, D. Nedospasov, J. Krämer, S. Orlic, and J.-P.
Seifert, “Simple Photonic Emission Analysis of AES Photonic
Side Channel Analysis for the Rest of Us,” Cryptographic
Hardware and Embedded Systems - CHES 2012, pp. 41–57,
2012.

[5] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the
Importance of Checking Cryptographic Protocols for Faults,”
Proceedings of the 16th annual international conference
on Theory and application of cryptographic techniques,
vol. 1233, pp. 37–51, 1997. [Online]. Available: http:
//citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.9764

[6] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and
C. Whelan, “The Sorcerer’s Apprentice Guide to Fault
Attacks,” Proceedings of the IEEE, vol. 94, no. 2, pp.
370–382, Feb. 2006. [Online]. Available: http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1580506

[7] D. Karaklajić, J.-M. Schmidt, and I. Verbauwhede, “Hardware
Designer’s Guide to Fault Attacks,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 258754,
pp. 1–1, 2013. [Online]. Available: http://ieeexplore.ieee.org/
xpls/abs all.jsp?arnumber=6425517http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=6425517

[8] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache, “Fault
Injection Attacks on Cryptographic Devices: Theory, Practice,
and Countermeasures,” Proceedings of the IEEE, vol. 100,
no. 11, pp. 3056–3076, Nov. 2012. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=6178001

[9] S. P. Skorobogatov and R. J. Anderson, “Optical Fault
Induction Attacks,” Cryptographic Hardware and Embedded
Systems - CHES 2002, vol. 2523, no. August, pp. 2–
12, 2003. [Online]. Available: http://www.springerlink.com/
index/dmjmf1pt7lr1c962.pdf

[10] J.-M. Schmidt and M. Hutter, “Optical and EM
Fault-Attacks on CRT-based RSA: Concrete Results,”
in Proceedings of the 15th Austrian Workhop on
Microelectronics - Austrochip 2007, Graz, Austria, 2007.
[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.121.5741&rep=rep1&type=pdf

[11] G. Canivet, P. Maistri, R. Leveugle, J. Clédière, F. Valette,
and M. Renaudin, “Glitch and Laser Fault Attacks onto
a Secure AES Implementation on a SRAM-Based FPGA,”
Journal of Cryptology, vol. 24, no. 2, pp. 247–268,
Oct. 2010. [Online]. Available: http://www.springerlink.com/
index/10.1007/s00145-010-9083-9

[12] M. Agoyan, J.-m. Dutertre, A.-p. Mirbaha, D. Naccache, A.-l.
Ribotta, and A. Tria, “How to Flip a Bit?” in On-Line Testing
Symposium (IOLTS), 2010 IEEE 16th International. IEEE,
2010, pp. 235–239.

[13] J. Balasch, B. Gierlichs, and I. Verbauwhede, “An In-
depth and Black-box Characterization of the Effects of
Clock Glitches on 8-bit MCUs,” in 2011 Workshop
on Fault Diagnosis and Tolerance in Cryptography.
IEEE, Sep. 2011, pp. 105–114. [Online]. Available: http:
//www.cosic.esat.kuleuven.be/publications/article-2059.pdf

[14] J. J. A. Fournier, S. Moore, H. Li, R. Mullins, and G. Taylor,
“Security Evaluation of Asynchronous Circuits,” in Crypto-
graphic Hardware and Embedded Systems - CHES 2003,
2003, pp. 137–151.

[15] L. Zussa, J.-m. Dutertre, J. Clédière, B. Robisson, and
A. Tria, “Investigation of timing constraints violation as
a fault injection means,” in 27th Conference on Design
of Circuits and Integrated Systems (DCIS), Avignon,
France, 2012. [Online]. Available: http://hal-emse.ccsd.cnrs.
fr/emse-00742652/

[16] S. Skorobogatov, “Local Heating Attacks on Flash Memory
Devices,” in IEEE International Workshop on Hardware-
Oriented Security and Trust, 2009 - HOST’09. IEEE,
2009, pp. 1—-6. [Online]. Available: http://www.cl.cam.ac.
uk/∼sps32/host2009-flash heat.pdf

[17] A. Dehbaoui, J.-M. Dutertre, B. Robisson, and A. Tria,
“Electromagnetic Transient Faults Injection on a Hardware
and a Software Implementations of AES,” 2012 Workshop
on Fault Diagnosis and Tolerance in Cryptography, pp.
7–15, Sep. 2012. [Online]. Available: http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=6305224

[18] J.-M. Schmidt and C. Herbst, “A Practical Fault Attack
on Square and Multiply,” in 2008 5th Workshop
on Fault Diagnosis and Tolerance in Cryptography,
L. Breveglieri, S. Gueron, I. Koren, D. Naccache,
and J. P. Seifert, Eds. IEEE, Aug. 2008, pp. 53–58.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=4599557

[19] S. Yen and M. Joye, “Checking before output may not be
enough against fault-based cryptanalysis,” Computers, IEEE
Transactions on, vol. 49, no. September 1996, pp. 967–970,
2000. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs
all.jsp?arnumber=869328

[20] E. Biham and A. Shamir, “Differential Fault Analysis
of Secret Key Cryptosystems,” in Proceedings of
the 17th Annual International Cryptology Conference,
no. September 1996, Santa Barbara, California, USA,
1997. [Online]. Available: http://info.psu.edu.sa/psu/cis/
abuelyaman/Research/DFA-Secret-Key.pdf

[21] A. Barenghi, L. Breveglieri, I. Koren, G. Pelosi, and
F. Regazzoni, “Countermeasures against fault attacks on
software implemented AES,” in Proceedings of the 5th
Workshop on Embedded Systems Security - WESS ’10. New
York, New York, USA: ACM Press, 2010, pp. 1–10. [Online].
Available: http://dl.acm.org/citation.cfm?id=1873555

[22] I. Verbauwhede, D. Karaklajic, and J.-M. Schmidt,
“The Fault Attack Jungle - A Classification Model to
Guide You,” in 2011 Workshop on Fault Diagnosis and
Tolerance in Cryptography. IEEE, Sep. 2011, pp. 3–8.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=6076462

[23] J. Yiu, The Definitive Guide To The ARM Cortex-M3. Else-
vier Science, 2009.

[24] ARM, “ARM Architecture Reference Manual - Thumb-2
Supplement,” 2005.

http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.9764
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.9764
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1580506
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1580506
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6425517 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6425517
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6425517 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6425517
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6425517 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6425517
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6178001
http://www.springerlink.com/index/dmjmf1pt7lr1c962.pdf
http://www.springerlink.com/index/dmjmf1pt7lr1c962.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.121.5741&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.121.5741&rep=rep1&type=pdf
http://www.springerlink.com/index/10.1007/s00145-010-9083-9
http://www.springerlink.com/index/10.1007/s00145-010-9083-9
http://www.cosic.esat.kuleuven.be/publications/article-2059.pdf
http://www.cosic.esat.kuleuven.be/publications/article-2059.pdf
http://hal-emse.ccsd.cnrs.fr/emse-00742652/
http://hal-emse.ccsd.cnrs.fr/emse-00742652/
http://www.cl.cam.ac.uk/~sps32/host2009-flash_heat.pdf
http://www.cl.cam.ac.uk/~sps32/host2009-flash_heat.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6305224
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6305224
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4599557
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4599557
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=869328
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=869328
http://info.psu.edu.sa/psu/cis/abuelyaman/Research/DFA-Secret-Key.pdf
http://info.psu.edu.sa/psu/cis/abuelyaman/Research/DFA-Secret-Key.pdf
http://dl.acm.org/citation.cfm?id=1873555
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6076462
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6076462


[25] S. Carlier, “Electro Magnetic Fault Injection,” University
of Amsterdam, Amsterdam, Tech. Rep., 2012. [Online].
Available: http://staff.science.uva.nl/∼delaat/rp/2011-2012/
p19/report.pdf

[26] A. Spruyt, “Building fault models for microcontrollers,”
University of Amsterdam, Amsterdam, Tech. Rep.,
2012. [Online]. Available: http://staff.science.uva.nl/∼delaat/
rp/2011-2012/p61/report.pdf

[27] F. Poucheret, L. Chusseau, B. Robisson, and P. Maurine, “Lo-
cal electromagnetic coupling with CMOS integrated circuits,”
in 2011 8th Workshop on Electromagnetic Compatibility of
Integrated Circuits. IEEE, 2011, pp. 137–141.

[28] ARM, “AMBA 3 AHB-Lite Protocol,” 2006.

[29] A. Barenghi, G. Bertoni, E. Parrinello, and G. Pelosi,
“Low Voltage Fault Attacks on the RSA Cryptosystem,”
in 2009 Workshop on Fault Diagnosis and Tolerance
in Cryptography (FDTC). IEEE, Sep. 2009, pp. 23–31.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=5412860

[30] J.-M. Schmidt and M. Medwed, “A Fault Attack on
ECDSA,” in 2009 Workshop on Fault Diagnosis and
Tolerance in Cryptography (FDTC). IEEE, Sep. 2009, pp.
93–99. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=5412852

[31] A. Berzati, C. Canovas-Dumas, and L. Goubin, “Fault
analysis of Rabbit: toward a secret key leakage,” Progress
in Cryptology - INDOCRYPT 2009, pp. 72–87, 2009.
[Online]. Available: http://link.springer.com/chapter/10.1007/
978-3-642-10628-6 5

[32] M. H. Nguyen, B. Robisson, M. Agoyan, and N. Drach,
“Low-cost recovery for the code integrity protection in
secure embedded processors,” in 2011 IEEE International
Symposium on Hardware-Oriented Security and Trust. IEEE,
Jun. 2011, pp. 99–104. [Online]. Available: http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5955004

[33] M. Medwed and J.-M. Schmidt, “A Generic Fault
Countermeasure Providing Data and Program Flow
Integrity,” in 2008 5th Workshop on Fault Diagnosis
and Tolerance in Cryptography. IEEE, Aug. 2008, pp.
68–73. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=4599559

[34] M. Medwed, “A Continuous Fault Countermeasure for
AES Providing a Constant Error Detection Rate,” in
2010 Workshop on Fault Diagnosis and Tolerance
in Cryptography. IEEE, Aug. 2010, pp. 66–71.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=5577364

http://staff.science.uva.nl/~delaat/rp/2011-2012/p19/report.pdf
http://staff.science.uva.nl/~delaat/rp/2011-2012/p19/report.pdf
http://staff.science.uva.nl/~delaat/rp/2011-2012/p61/report.pdf
http://staff.science.uva.nl/~delaat/rp/2011-2012/p61/report.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5412860
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5412860
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5412852
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5412852
http://link.springer.com/chapter/10.1007/978-3-642-10628-6_5
http://link.springer.com/chapter/10.1007/978-3-642-10628-6_5
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5955004
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5955004
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4599559
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4599559
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5577364
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5577364

	Introduction
	Approach
	Experimental setup
	Electromagnetic fault injection bench
	Target

	Experimental process
	Microcontroller's internal state observation
	Fault model simulation


	Experimental study of the injection parameters
	Metastability phenomena
	Study of the injection parameters
	Position of the injection probe over the package's surface
	Injection time
	Pulse characteristics
	Type of the executed instructions


	Experiments on the data and instruction bus
	Faults on the program flow
	Hardware exceptions
	Memory address
	Other faults
	Summary

	Faults on the data flow
	Analysis at a lower abstraction level

	Register-transfer level fault model
	Instruction fetches
	Data fetches

	Related works
	Electromagnetic fault injection
	Fault models on microcontrollers
	Countermeasures


	Conclusion
	References

