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From the physical three-vector Maxwell equations for an electromagnetic (E.M.) Geld in static gravita-

tion, we examine the artifice of replacing the gravitation by an equivalent medium and we find modified

Debye potentials for an E.M. wave in a simple, angularly homogeneous, material medium in a Schwarzs-

child gravitational Geld. The fact that these potentials do not obey the generalized scalar wave equation
implies that gravitation scatters the vector E.M. wave and a scalar wave differently. Also, we obtain and

solve by perturbation the amplitude and eikonal equations for a high-frequency wave in a weak spherical
gravitational Geld. To the order cV/r, the state of transverse polarization does not change along a ray path
whereas the transverse-field amplitudes are modihed by the factor equi

~' which strengthens the Geld near

the mass. The longitudinal-Geld amplitude, on the other hand, is modified by e™.These effects, in

principle, may provide a further test of classical E.M. theory and general relativity.

I. INTRODUCTION AND SUMMARY

'HE bending of light and electromagnetic (E.M.)
waves by a spherical gravitational 6eld has been

known for many years. ' Recently, the delay in traveling

time of radar signals, which appears together with the

bending as a general-relativistic effect along the path of

propagation, has attracted both theoretica12 and ex-

perimentaP interest. The underlying methods of analy-

sis have made use of the photon null geodesics, or an

"equivalent" index of refraction to account for the

geometrical-optics effect due to gravitation.

However, except for some static problems, the

dynamic gravitational inQuence on the amplitude and

polarization of an E.M. wave has not been treated be-

fore, nor have the Debye potentials of such waves been

found. 4 Furthermore, the concept of replacing gravity

by an "equivalent medium" was not clear. ' These

problems are investigated here.

In Sec. II A, from the physical three-vector Maxwell

equations for an E.M. field in static gravitation, we

clarify how and in what sense an equivalent medium

replaces such gravitation. In Sec. II 8 we express an

*This work was supported by the U. S. Air Force Once of
Scientihc Research, Grant No. AFOSR 70-1935.
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E.M. wave in an angularly homogeneous simple ma-

terial medium in an external Schwarzschild gravitational

6eld by its modified D ebye potentials. We find that even

in the vacuum limit these potentials do not satisfy the

generalized scalar wave equation, and thus see that such

a gravitational field scatters a vector E.M. wave and a
scalar wave differently, contrary to previous belief. '

In Sec. III A we simply find the approximate ampli-

tude and familiar eikonal equations for a high-frequency

wave in a weak spherical gravity, and in Sec. III 8 we

solve them by perturbation. To order M/r we find that

along a ray path the state of transverse polarization is

not changed, whereas the transverse-Geld amplitudes

are changed by e '". Thus the transverse fields become

stronger the nearer to the mass 3f they get. On the

other hand, the longitudinal-Geld amplitude, if it exists,

is modish. ed by the factor e ~l'". Although it may not be

within the present capacity of the existing NASA deep-

space network to measure them, these effects in prin-

ciple may provide a further test of the validity of

today's general-relativistic E.M. theory. '

II. PHYSICAL ELECTROMAGNETIC FIELD

A. In Static Gravitation

In a static gravitational field described by a synchro-

nous coordinate frame {xl')=—(f,x',x',xs) with metric

go, =—0 (i=1, 2, 3) and g„„not functions of time, and

with the neglect of the E.M. contribution to gravitation,

the Maxwell equations for physical E.M. fields are'

8
&,X [(v'goo) E]= ——&,

v, B=O,
t9

&,XL(v'goo)H] = (V'goo) J+—D,
8$

Vg D=p.

(Ia)

(lb)

' R, A. Matzner, J. Math. Phys. 9, 163 (1968).
7 For example, see J. L. Synge, General Relativity (Interscience,

New York, 1960), p. 354.
' T. C. Mo, J. Math. Phys. 11, 2589 (1970), Sec. 4A.
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Here all fields and sources are locally physically mea-

surable quantities in the usual sense for observers 6xed
in (xl'} with x'=—const, and V, is the conventional del

operator in the spatial coordinates (x'} with length
interval dg-'= —g;,dx'de~. The constitutive relations be-

tween (D,H) and (E„B)are determined completely by
the local intrinsic physics of the medium as if there werc
no gravitation, except for possible gravitationally in-

duced strains in thc medium.

It must be clear that mo eqNAaleet mt,'Chum can
rigorously replace gravitation to account for its CBect on
the E.M. field. However, for linear media in which the

physlcRl 6clds RI'c rclatcd by

+ —— 1— —1 HXr . (5b)
rOf — . r

Here, for practical purposes we have written (5) in
terms of the conventional Qat 3-spacc V operators using
the above (r,8,p} as usual spherical coordinates. Also,
the local charge-conservation law from (5b) reads

D=e E+e B, H=X.E+K B

we can define new mathematical symbols by

(2)

e—= (v goo)E, b=B d=—D, h=—(&goo)H ~ (3)

Then only for these so-defined fictitious fields (e,b),
(d,h) can we replace gravitation by an "equivalent

mediums using

d=[e/(+goo)j e+e b, h=X e+(+goo)K b (4)

as "constitutive relations" and writing Maxwell's equa-
tioiis iii ciii viliiieai coordinates js } wi tll V g as tile
differential operator and (p, (+goo)J) as the source.
Although their diHerence is very simple, we must not
confuse' these 6ctitious fields (3) and their constitutive
relations (4) with their real physical counterparts.
Except in the few cakulations that field amplitudes do
not occur, such as in the eikonal equation of geometric

optics, 9 wrongly identifying these 6ctitious fields with
the real 6elds leads to incorrect results and misleading
concepts.

Then, with a familiar field decomposition" into electric
and magnetic waves having no radial magnetic and
electric Geld, respectively, after lengthy calculation
from (5) we find

E= — 1— 1—1— ee

B. Debye Potentials in Syherical Gravitation

Generally, we have to put the field equations in scalar
form before solving them. For many K.M. problems in
sourceless regions, the Debye potentials provide such a
powerful means of doing this. "

Now, for an angularly homogeneous simple medium"
with e=o(r, t)8;, , K=Lp(r, t)j '8... n=2=0 in spherical
gravitation (e.g. , a radial distribution of an isotropic
stellar plasma), such potentials can still be found. First,
in the standard Schwarzschild coordinates {f,r, &8} with
metric of ds'= (1—2M/r)dt' —(l 2M/r) 'dr' r'dQ'— —
for external gravitation, (1) become

8 8 )
8t 8t 1

I 1—2' r O O

Of,

p
fQ

p

vyt vX(ru) j, (7b)

where the modified electric and magnetic Dcbye po-
tcntlRls 8 Rnd s sRtlsfy

2M 't'
+ —— 1—— —1 Egr, (5a)

r Or

' V. Fock, The Theory of Space Tinze and Gravztatzon (Pergamon,
New York, 1964), 2nd ed. , p. 221.

"See, e.g., Van De Hulst, light Scattering by Snzal/ Particles
(Wiley, New York, 1957). Also, F. E. Borgnis and C. H. Papas,

in Handbuch der Physzk, edited by S. Flugge (Springer, Berlin,
1958), Vol. 16, p. 285.

"For radial1y strati6ed simple medium in Qat space, see R.
I.atham, Can. J. Phys. 46, 1463 I'1968).

'2 M. Horn and E. Wolf, Princzp/es of Optics (Pergamon, -New
York, 1970},4th ed. , p. 634.
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and U=—unit dyadic and e,=—unit radial vector. The
boundary conditions" at any radial discontinuity of p, e

are just the continuity of w, (I/e)(8/Br)rit, I, and

IJ, (8/Br)rg.
We notice from (8) that even for the vacuum @=1,

e=—1, the modified Debye potentials obey

propagation equation

M 2f&"&

VC Vf+-,'(V'C)f = — VC+C, „f+2C,„f,„(12)

and the well-known' geometrical-optics eikonal equation

1/2

(1—2M/r) 8P

2M8 18
(9)

r ar p ar

2Mt'8C ' ( 2M)
(&C)'—

( =~ 1+
r E8r k r )

(13)

and rot the generalized wave equation 4'l', „=0.Sepa-
rating variables as usual by writing

0 —=e *"'[~(r)/r je(8)C (4),

withC =e+*~4', Oi =Pi (cos8),

whereas'=

—
~l

~

to ~l~

and i=integer, we get the radial equation

To get the gravitational inQuence on the field ampli-

tude, we simply insert into (12) the 3-dimensional phase
information obtained from (13) and integrate along a

ray path. Also, the presence of a simple material medium

with very slowly changing p and e adds only a trivial

factor pe to the right-hand side of (13) and can be

excluded.

d2

z+
dr*'

2M' l(l+1)-
z=o, (10)

where dr*= (1 2M—/r) 'dr —or r"=r+2M 1n(r/2M —1)
+const introduces r=r(r*) as a function of the new

variable r*. Thus, the scattering of a vector E.M. wave

by a Schwarzschild gravitational field' behaves differ-

ently from that of a scalar wave obeying +'l".
,„=0whose

radial part" satisfies (10) with an additional term
—(1—2M/r) 2M/r' in the square bracket.

tVf[
and -«f~C/,

which physically means that L(f))&L(C) and r)&L(C),
where L(f), L(C) are, respectively, the typical distances

over which f, C change significantly. Then for this wave

and to the order M/r, (5) directly gives the amplitude-

"Ref. 8, Sec. 68.
' T. C. Mo and C. H. Papas, Caltech Antenna Lab. report

(unpublished).
"Ref. 6, Sec. II A.
'6 For example, Mo/ro~2. 5&(10 Mo/R@~10, where

Mo, ro, and Ro+ are the mass and radius of the sun, and the
sun-earth distance, respectively. So even near the solar surface
rare, the condition M/r&&1 is still satis6ed. Except near the
gravitational radius of very compact stars, such as a neutron star,
the condition M/r&&1 is always satisfied. Also, for the high-
frequency E.M. propagation in a simple medium under uniform
acceleration or in "uniform" gravity, see T. C. Mo, Radio Sci.
(to be published).

III. HIGH-FREQUENCY PROPAGATION IN
WEAK SPHERICAL GRAVITATION

A. Approximate Equations

Now, consider an E.M. wave in vacuum and of the

form E(x,l)—= f(x)e'~~&*' "'~, where f, C are real func-

tions, traveling in a star's external spherical gravity
where M/r«1. i6 For high-frequency propagation, we

have

B. Amplitude Propagation

The mathematics involved here is simplified if we

introduce the harmonic coordinates" (t, r'= r —M, 8, p)—
in which (12) and (13) become

3E BC
V'C V'f+-,'(V"C)f= —2fi iV'C —f, (12')

r" Br'

(V'C)'= (1+ 4M/r')s)' (13')

We notice that from standard geometrical optics, "(13')
leads to the typical bending-ray paths r'sin8 = —2Mr'/a'

+a'(1+2M/a') and the phase velocity (1+4M/r') '~'

along the ray. This immediately gives the familiar light
deflection' M=4M/a' and the radar traveling-time

delay. ' Here r'=a', 8=-,'~ is the point of closest ap-

proach, where dr'/d8=0. Also, the gravitational red

shift is revealed by writing the proper frequency from

the factor e
—'"'.

Now, the first-order M/r' perturbation solution of
(13') for a s'-propagating unperturbed incident plane

wave is

C =~Ps'+2M in(r'+s')+2Mg(x', y')$. (14)

Imposing the boundary condition that C at s'= —~
represents a s'-propagating incident plane wave, we de-

termine g(x', y') and get

2'
V'C =~ e, 1+ —ep

r'

2M(r'+s')

r'p'

where p and e,. are the polar radius and its direction in

the (x',y') plane. Equation (15) implies bending-ray

paths {8: r' sin(8+2M/b') = —23&'/b'+li') along

"Ref. 9, pp. 193 and 215."M. Klein, Electromagnetic Theory and Geometric OPtics
(Interscience, New York, 1965),pp. 64—74. Also see L. Landau and
E. Lifshitz, Mechanics (Pergamon, New York, 1960), Chap. 1.
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which the held amplitudes are to be found. Here {b'},
being the impact parameters of {P},have the values of

incidence heights p' at s'= —~ as in Fig. 1. Equation

(16) shows that the 6eld lines of V'C, which are identi-

fied as the rays, are conserved in the first-order gravi-

tational bending.

Inserting (15) and (16) into (12') for a particular path

P in the x's' plane, we get the equation of f along P:

M

dr' r'(r" +4Mr' —b")')'

b~a+p

where the path length do'= &mr'(e2r" —b") ')' is used,

and +, —correspond to the two parts of the ray path
after and before the point of closest approach, which

occurs now at r'=a'=b' 2M. To—order M/r' we

can use the unperturbed straight path {Po.p'=b', s'

=&(r"—b )1'2)'} to integrate (17) and get the first-

order gravitational inQuence on amplitude propagation.
We emphasize that the so-obtained results are valid only

for M/r'«1 and only give a qualitative description

when M/r' approaches 1.
(1) Radial propagation, b'=0. Equation (17) directly

gives

f (f (z)eM)r' f (y)rWr' f (z)e M/z')—
where f„ is the amplitude at r'= ~. For the incident

plane wave being considered f„"=—0, and the trans-

verse field f('& increases (decreases) from f„('& at
(f,(O st r' —g') as f (z)ejrlz' (f,(z)e irlz'+ —I ')

when the wave propagates radially toward (away from)
the star.

(2) Qonradial propagation, b'&0. For a chosen P
with given b'=a'+2M, the results are most suitably

expressed in the correspondingly rotated coordinates
{x*,y*=—y', s*}which are obtained by rotating the co-

ordinates {x',y', s'} about the y' axis through an angle
—2M/a' (Fig. 1). In this {x*,y*,s*},with its corre-

sponding P described by x*= 2Mr'/a—'+a'(1+2M/a'),
(17) gives

where

f(~*) g, (~*)&a(r')
g a'

(uz) —f,(wz)r~(r')
)

f(z*&= (2 Ms/8'r') f, ( *&,

(19a)

(19b)

(19c)

M M 2M' 2M' ( a'

+ — + —
ln~ 1+— (20)

8 a" ( r'

and f;(*'&,f (&'& are the 6eld amplitudes at r'=a'. The
square-bracketed quantity in (20) is written only to
show that near r' ri'=(&,"/2M, where P is bent to meet
the s axis and near which the straight-line Po integra-
tion starts breaking down. the first-order effect becomes

FIG. 1.High-frequency amplitude propagation in spherical gravity
(The barred quantities are denoted by an asterisk in Sec. III B.)

as small as the second-order effect and thus both become

negligible beyond r j.
'.

From (19) the f("& is coupled only to f(**&by just the

right amount such that the total field on the x*s*plane

is bent through the angle 58= 2Ms*/a'r' and is always

kept perpendicular to P. Also to order M/r' both
transverse fields, f(()*& in the y* direction and f('*& on the
x*s* plane, are inQuenced equally. Thus the state of
transverse polarization along propagation path is not
affected by spherical gravity.

C. Concluding Remarks

Above we have investigated high-frequency plane-

wave propagation. For a real transmitting antenna

located in a gravi. tational field, we infer that a similar

factor e~l"' of gravitational perturbation modifies its
high-frequency radiation field. Also because such an

amplitude effect is not cumulative over the whole path

p, as bending is, only receivers and transmitters at
different radii can detect it. The maximum of this effect
is bf=+f, (M/a') for a link from r'=a' to r'&ri'.

To measure such a small effect one needs in the first

place highly sensitive receivers and transmitters. Also,
for the round-trip amplitude effect not to cancel under

the active-radar-transponding method, "we could make
the spacecraft near closest approach to a star r'=u'
transpond a signal inversely proportional to its received
value. Then the earth station would receive twice the

gravitational correction hf /f, = 2M/a' to the amplitude
or 8P„/P„=4M/a' to the power. For example, the 210-ft
antenna at Goldstone, Calif. , can intercept P„~10 "P&
from such a transponder with power Pf,, beam width

0.5', at 1 AU from earth and 1 solar radius from
the sun; then ()P,/P„10 ' or 8P„10 "P, is the re-

ceived power correction due to gravitation. It requires
more than six-digits receiving-power precision at —240

db from the transponding power. This order of accuracy
is not within the present capacity of the existing NASA

' V. C. Clarke, Jr., Jet Propulsion I.ab. Report No. 605—504,
1970 (unpublished).
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Deep Space Instrumentation Facility. ~o Nor can the

passive radio-astronomical observations measure to such

accura, cy." But for an E.M. signal originating at
' Deep Space Instrumentation Facility, Jet Propulsion Lab.

System specification, Code No. 23835, Spec. No. D0%-1389-DTL,
Rev. A. , 1970 (unpublished).

"Typical signal-strength measurement is about to two-digit
accuracy [A. T. Moffet (private communication)].

3f/r& 0.1 or nearer to a compact star, such a change of

signal strength should be observable on earth. In

pI'inclplc this cRcct may provide another test of

classical electromagnetic theory and general relativity,

or may be used to single out the particular amplitude

correction caused by gravitation.
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E&eqtm11 Sgftttering frOm a Standing Light WaVe
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The transition probability for electron scattering in the Kapitza-Dirac experiment is calculated using

non«lativistic theory as a function of the time of Right t of the electron through the light beam, and as a

function of the intensity. It is found that for intensities up to approximately 10' %/cm' the probability

equals sinsaof, where ao is proportional to the intensity. At intensities of the order of 10s W/cm', the de-

pendence of the probability on the time is more complicated but it also oscillates between zero and nearly

unity as the time increases. Both 6rst- and second-order Bragg reflections are considered as well as condi-

t1ons off the Blagg max1mum.

I. INTRODUCTION

' 'N 1933 Kapitza and Dirac' predicted that electrons

- ~ of well-defined momentum could be rejected from

a standing light wave provided that X„=Xcos8, where

X„ is the de Broglie wavelength, X is the radiation

wavelength, and 0 is the angle of incidence. They called

this a first-order Bragg condition, the lattice spacing

being —,'X. The probability per electron that reflection

would take place was shown to be proportional to the

square of the light intensity. At the time an experiment

was impractical, given the intensity of available sources,

but recently several attempts have been made to

demonstrate this effect using Q-switched lasers as a light

source. ' Electrons scattered by the light beam have been

obsci vcd but, thc dcpcIldcIlcc of thc pl obabillty of

sca, ttering on the angle of incidence and on the intensity

of the light ha, s not yet been determined experimentally.

The formula for the transition probability given by

Kapitza and Dirac, ' derived using the theory of

stimulated processes, is not valid at intensities used

in current experiments, for it would predict probabilities

in excess of unity. It is therefore essential to reexamine

the theory of this scattering problem. The hrst extensive'

published investigation is that of Fedorov. ' The SchrOd-

' P. L. Kapitza and P. A. M. Dirac, Proc. Cambr. Phil. Soc. 29,
2N (1933).

~ L. S.Bartell, . R. R. Roskos, and H. Bradford Thompson, Phys.
Rev. 165, 1494 (1968); L. S. Bartell, Phys. Letters 27'A, 236
(1968);H.-Chr. Pfeiffer, ibid. 25A, 362 (1968);H. Schwarz, Ann.

Physik 204, 2/6 (1967); V. Takeda and I. Matsui, J. Phys. Soc.
Japan 25, 1202 (1968).

g M. V. Fedorov, Zh. Eksperim. i Teor. Fiz. 52, 1434 (1967)
LSov. Phys. JETP 25, 952 (1967)j.

inger equation, used to describe the electron, is cast
into the form of a Mathieu equation by neglecting

the time dependence of the standing light wave, treated

as a classical field. Solutions are found, however, only

in the case of either very low intensity, or of very high

intensity, and predictions are not made in the intensity

range used in recent experiments. Ezawa and Namai-

zawa4 have also investigated solutions to the Mathieu

equation. Schoenebeck' uses a modified 6rst-order

perturbation method to obtain a solution to the

problem.

In this article a somewhat diferent approach is

taken. The nonrelativistic Green function for an

electron in a standing-rvvave field is calculated using

perturbation theory. By neglecting the rapidly time-

varying part of the electron-6cld interaction, it is

possible to sum the perturbation series completely and

obtain exact scattering matrix elements between states

of definite electron moment. This permits the transition

probability to be evaluated for pra, ctically arbitrary

intensities and interaction times. It is possible in

addition to examine the transition probability for

electron momenta not satisfying the Bragg condition,

and to calculate the probability of higher-order Bragg

rcQections.

II. THEORETICAL BACKGROUND

A. Preliminary Remarks

The procedure adopted in this article is to calculate

the scattering amplitude via the nonrelativistic Green

4H. Ezawa and H. Namaizawa, J, Phys. Soc. Japan 25, 458
(1969).' H. Schoeneheck, Phys. Letters 2'/A. , 286 (1968).


