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Abstract. Continuity, analyticity, and the singular points of the vector potential A
and the field vectors H, E in a spherical source region v are investigated thoroughly for,
practically, any continuous current density distribution J in v. In other words, this is a
study of the inhomogeneous Helmholtz equation in v. Explicit results for A, H, E are
obtained by direct integration, extending previous results for constant density in v to
continuously varying ones. The importance of imposing the Holder condition on J to
insure existence of E and of certain second derivatives of A is explicitly demonstrated
by a specific continuous J, violating this condition at a point; it is then seen that E and
some second derivatives of A do not exist, tending to infinity, at that point.

1. Introduction. The problems arising when the electromagnetic field vectors A, H,
E are evaluated through volume integrals at points interior to the current density region
are well known and have been investigated for many years [1-8]. Additional references
are given by Collin in [7] and by Van Bladel in his recent comprehensive book [8]; these
references are not specifically cited here, since their approach, the so-called distributional
approach, is not followed in this paper. The aforementioned problems are due to the
singularities of the kernel of the volume integrals for A,H,E and are coped with by
two general approaches, the classical and the distributional. The first deals only with
convergent integrals [1-6]; the second, broadly speaking, employs often the concept of
generalized functions.

On page 17 of his classical treatise [1], Kellogg explicitly states that the integral formu-
las used for the evaluation of potential or field functions at points exterior to the source
distribution can be used even at interior points, provided the integrals, now improper,
converge. He further states that this assertion, made in connection with Newton's or
Coulomb's law, since he deals only with static fields, amounts to a new assumption or
an extension of Newton's or Coulomb's law, i.e., to a further hypothesis, whose validity
rests solely on its results. In connection with Maxwell's equations the same assumption
essentially means that the well-known volume integrals (scalar, vector, or dyadic) for
<f> (the scalar potential), A,H of continuous volume current densities can be used at
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interior points. For second derivatives of cj>, A and for the E field, however, the kernel
contains an R~3 singularity at interior points, the integrals are no longer convergent
and may not be used in the source region. This is tantamount to saying that, for the
E-field integral (and those for second derivatives, in general), interchange of differentia-
tion and integration, or passing the second derivative inside the volume integral, is not
allowed. The second differentiation should follow, not precede, the explicit evaluation
of a convergent volume integral. A related remark is based on the fact that the E field
of a constant current density in an electrically small sphere v remains constant inside
and in the immediate exterior of v, even as u —> 0 [4]. Therefore, the E field cannot be
evaluated directly by a convergent volume integral since the integral over the vanishing v
remains constant; it results instead from the derivatives of another convergent integral,
whose explicit evaluation must precede the differentiations, as done in [4].

The importance of these remarks will be made clear in the following, based on explicit
results for A, H,E arising from, practically, arbitrary continuous current densities J(r)
in a sphere v of finite radius a. Second derivatives and the E field will be evaluated both
by the correct (integration followed by differentiation) and the wrong (differentiation of
the integrand followed by integration) procedures, and the validity of the first will be
established on the basis of the inhomogeneous differential equations (Helmholtz's, etc.)
that should be satisfied by the resulting field expressions. As in [3, 4] the approach is
based on a direct integration of the field equation for A containing Helmholtz's kernel
$(i?) = /R and provides an extension of previous results by the author, for constant
and certain special radial current distributions, to, practically, any continuous J(r) in
spherical regions. Another classical approach by Lee et. al. [5], repeated in [8], is based
on splitting the Helmholtz kernel into its static part $o(R) — l/R and its nonsingular
part <£>(/?) — &o(R)- In the opinion of the present author, working with <J> — <3>q is not
more convenient than with the full kernel this may be better appreciated when explicit
results from the integrals containing $ — <3?o are compared with those obtained herein
directly from the singular integrals containing €>. The latter results, being exact, are not
restricted by the value of the derivative of the "excess" density around its zero value,
which, if large or infinite, in particular, will prolong the numerical evaluation of certain
convergent integrals, like Brnn in [5] (denoted by Cmn in [8]), for instance.

An additional important restriction that should be imposed on continuous J(r) to in-
sure existence of second derivatives of <fr, A is the Holder condition. A specific continuous
J(r), not satisfying this condition at a certain point r, will be pointed out as an example;
it will be shown explicitly that for this particular J(r) the E field as well as some second
derivatives of A do not exist (tend to oo) at r. In this way a more or less complete study
of the inhomogeneous Helmholtz equation is established.

Let us now denote by Ju (u = x,y, z) the Cartesian components of J(r) and consider
them as continuous functions of x, y, z (or the spherical coordinates r, i9, (j>) in a sphere v
of radius a. With assumed time dependence exp{jut) the Cartesian components of the
vector potential at any point r, interior or exterior to f, are given by

Au(v) = Ju (r')6 R dvf, R =|r —r'l (•u = x,y,z). (1)

For constant Ju this integral has been evaluated explicitly in [3, 4], for some special
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radial distributions Ju(r) in [4] and for even more general ones, as pointed out below,
in [6]. In this paper Au(v) and its first and second derivatives and, therefore, the fields
H(r) = x A and E(r) = ~^(V x H —J), will be explicitly evaluated for, practically,
any continuous Ju(r) in v providing the full generalization of the subjects investigated
in [1, 2, 3, 4]. When r is interior to v, the integral in (1) becomes a convergent improper
one. The procedure will provide, also, the analytic field exterior to v due to the sources
in v; the integrals are regular there and derivatives of all orders may be interchanged
with the integral operators. In contrast, for r interior to v, it will be shown explicitly,
and for arbitrary continuous Ju(r) in v, that only first derivatives may be passed inside
the integrals; further differentiation should follow integration. Otherwise, the results so
obtained do not satisfy the inhomogeneous Helmholtz equation

V2A(r) + k2 A(r) = -^J(r) (2)

and are, therefore, erroneous. It will be further shown that second derivatives may be
interchanged with the integrals only at points r where Ju(r) = 0 and as long as Ju(r)
satisfies a Holder condition at r. Finally, a specific case will be pointed out, where second
derivatives of A„(r) do not exist at r (they tend to oo as r —> 0) because Ju(r) does not
satisfy a Holder condition at r, although this is not necessarily true in general.

All these results are in full agreement with Eqs. (20) and (21) in [3], which indicate
the correct way of evaluating the electric field E(r) at points r inside v. In particular,
the more general relation (21) of [3], for any point r in reads as follows:

E(r) = [[[ ju/J.J(r') • G(r'|r) dV' + ff f ju/j,[J(r') - J(r)] • G(r'|r)dV'
%J J *j V — is *J %Jis / o \w1
H—: 

JUJ£
i + iw + jto.) _ 1

KT

In (3) V is the volume of the sources J and contains is, a is the radius of v and r the
distance of point r from the center of u, J = J(r), in the last term, is a constant vector,
not operated upon by V; again R — |r — r'| while

1 / i \ e-jkR i / -jkR\
G<r» " "ST '+ P'7'v'j — " 4^V * V * I1") (4)

is the Green's dyadic with I the identity dyadic. The validity of (3) requires, in general,
the satisfaction of the Holder condition by the "excess" density J(r') — J(r) at r. In what
follows, the last two terms of (3) are explicitly evaluated for, practically, any continuous
J(r) in v.

II. The fields of arbitrary continuous current density in v. As will soon be-
come apparent, it is advantageous to start by considering as source function in v the
"partial density function"

J™n{r,-d,4>) = fun(r)P™(costfu)e-?m0", u = x,y,z (n = 0,1, 2,..., \m\ <n) (5)
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in which /lm(r) are arbitrary continuous functions of r in 0 < r < a (continuity of Ju
at r = 0 requires that fun(0) = 0 for n = 1,2,...) and P™(cos i?u)ejrrv^" is the spherical
harmonic around the polar axis u. With this implied throughout we will, from here on,
delete the subscript u from /, </>. The particular case fn (r) — rp, with integral p > n— 1,
was fully investigated in [6]. The results based on (5) are immediately generalized to any
continuous Ju(r), which may be expressed as a finite linear combination of the above
partial density functions in the form

Ju(r) = J2fn(r) £ P™(cos#ym*. (6)
71=0

Even infinite series expansions (N = oo) can be included as long as the convergence of
the series is uniform in v (for instance if |/n(r)| < n_,i, etc.). In view of the completeness
of the set of spherical harmonics in 0 < $ < 7r, 0 < 0 < 2w and the continuity of
/„(r), these remarks show that the results of this section can be used for a wide class of
practical, continuous, source distributions. Substituting (5) in (1) we get

a fa r r27T , p-ikR
ACn(r,i?,^) = £;jf j^ yo /n(r')P„m(coS1?')ejm0 ——r'2 smd'dr'dV d<j>'. (7)

We next use for ${R) the well-known expansion in terms of spherical Bessel functions
and spherical harmonics [9, pp. 413-414 and 406-408]:

p-jkR "1 (n'-m'V
■i(R) = -jr = -jkY1W + l)i«(kr<)hn,(k-r>) Y. (rf^)T (8)

n'= 0 m' = — n' V /

• P^'(cos^)P^'(cosi9')ejm,^"0')

( o\
with hn = hn throughout and r>/r< the greater/smaller of r,r'. This expansion, for
any given e > 0, is uniformly convergent on the domains [(r', </>')|0 < r' < r — e,
0 < t?' < 7r, 0 < 4>' < 2?r] and [(r', d', <p')\r + e < r' < a, 0 < ■&' < n, 0 < cf>' < 2ir] (as well
as on domains defined as above with r,d,(f> and r', $',</>' interchanged) [1, 2] and when
substituted in (7) allows term-by-term integration as long as the integral is convergent.
For then the contribution from an excluded spherical-shell-volume r — e < r' < r + e
around r tends to 0 with e. On the contrary, if the singularity of e~ikR/R is raised to

by differentiation of the integrand, the integral is no longer convergent and term-
by-term integration yields erroneous results. Since (8) changes in the intervals r' < r
and r' > r the integration over r' must be separated into two intervals, 0 < r' < r and
r < r' < a. Finally, the orthogonality of the spherical harmonics [9, p. 403] leads to

AZ(r^A) = -jnkP?(costfK"* ( hn(kr) J* jn{kr')fn{r')r'2dr'

+jn{kr) hn(kr')fn(r')r'2 dr'j .
(9)
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Unknown to the present author, the same procedure was followed in [6] producing a
result similar to (9) for the specific fn(r) mentioned previously. Calling kr — t, kr' = t',

In(t)= [ fn(t'/k)jn(t')t'2 dt', Ln(t) = [ fn{t'/k)hn(t')t'2 dt', (10)
Jo Jt

we finally obtain

AZ(r,#,<t>) = -J-£P™(cos1)ym*Fn(kr), 0 < r < a, (11)

Fn(t) = Fn(kr) = hn(t)In(t) + jn{t)Ln(t). (12)

We first observe that for n = m = 0 this general result coincides with the result for
Au(r) obtained in [3, 4], for constant fo(r) and, in [4], for varying /o(r), taking into
account that jo(t) = and ho(t) = je~il/t. We further observe that in this special
case (7) is directly integrable and use of expansion (8) can be avoided, as shown in [4].
Explicit evaluation of In{t), Ln(t) is possible for a good number of special functions /„(r),
particularly for n = 0 [4]. The basic properties of the fields A, H,E can be deduced,
however, from the general forms (10) for In(t),Ln(t) without explicit evaluation of the
integrals. This will become clear in a short while.

The result (11) for A^n must satisfy the inhomogeneous Helmholtz equation

V2A™ + k2AZ = costf)e*"* (13)

Direct differentiation of (11) yields

f)Am r) A171 in
= k^n = _JRpm(cos#ym<)>F^t^

OT Ot K
c.)2 A171

= -jnP™(cosdym*FZ(t)
(14)

dr2

where, with the help of the obvious relations

4W = fn{t/k)jn(t)t2, L'n(t) = -fn(t/k)hn(t)t2, hn(t)I'n(t) + jn(t)L'n(t) = 0 (15)

we have

KM = KWnit) + j'n(t)Ln(t), (16)
F^(t) = K{t)In{t)+%{t)Ln{t)-jfn{t/k). (17)

The last term on the right of (17), —jfn(t/h), arises from the Wronskian relation

KWnit) +j'n(t)L'n(t) = fn(t/k)t2[h'n(t)j„(t) - j'n{t)hn(t)] = -jfn(t/k). (18)

Substituting in (13), in which the left-hand side assumes the form

, 2 ,2\ a d2Au 2 dAu 1 d ( . ndAu\ 1 d2Au 2(V + k )AU = —i — 1—-—:—I sin•& ) 4— . 2 Q ^
arz r or r2 sin wot \ av J r2 sin i? o<p~
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and taking into account the partial differential equation satisfied by the spherical har-
monic P™(cosi?)ejm<;i> we end up examining whether the following relation is satisfied:

hnIn + jn.Ln j fn + ^ {hnIn + j-n^n) +
' n(n +1)

f2

Since both hn(t) and jn{t) satisfy the spherical Bessel equation

{hnln 4" jn Ln ) — jfn- (19)

Z"M) + jz'ni1) +
n(n+ 1)~T2 zn(t) = 0 (20)

the total coefficients multiplying In and Ln in (19) are 0 and Eq. (13) is satisfied.
It may be interesting, also, to see what would have happened had the derivatives

dAu/dr and d2Au/dr2 been evaluated by reversing the order of differentiation and inte-
gration in (7). Based again on the orthogonality of the spherical harmonics the correct
result given in (14) would be obtained for dAu/dr (an explicit verification of the fact that
first derivatives can be passed behind the integral sign [1-4]); for d2Au/dr2, however,
this procedure would lead to the erroneous result

r)2 Am-j = (21)

this differs from the result in (14), (17) by the term —jfn(t/k). With (21) Eq. (13) is not
satisfied, a result hardly surprising since it follows from a not permissible operation. It is
included here because of its explicit character and because it further shows that it can still
be correct at points, where fn(r) = 0, and as long as /n(r') (the "excess" density now)
satisfies at such points a Holder condition. So, at points where fn(r) = 0 or J(r) = 0 it
is permissible to pass second derivatives behind the integral, in full agreement with the
second and third terms of (3), in which the third is now 0, while in the second the G
operator appears inside the integral. It is important, also, to appreciate the generality
and simplicity of the results obtained here for spheres v, when compared with the formal
expressions of Eq. (3).

Having obtained the explicit results (11)—(12) and (14) for A™n,dAu/dr, d2Au/dr2 it is
a simple matter to obtain similar expressions for H = ^VxA and E = ^(VxH-J) =
—ju>A — jp-V(V • A) in spherical coordinates around the unit vector u. For instance
(for 0 < r < a):

W - —
r~ k2 P™(cos T?)e^, Ho = cot (cos )ejm0,

r kz r

Hcj> = —<J sini)P™(cost))\Fn(kr) + krF'n(kr)\ + Fn(kr) — [costfPrr"'(cosi9)] j> .

(22)
The expressions for Erare lengthier, but they follow easily by differentiation;
it is easy to verify that the inhomogeneous equations (V x V x — Ar)E = — jujfiJ and
(V x V x -k2)H = V x J are, also, satisfied.

Everywhere, the dependence on the radius a appears only in Fn(kr) through Ln(kr).
We can further deduce from (12), (16), (17) that Fn(t), F^(t), (t) are all continuous in
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0 < t < ka with the possible exception of the point t — 0 (or r = 0), owing to the Hankel
function hn(t). We will investigate this point fully in the next section.

Finally, the field exterior to v, for r > a, obtained again from (7) and (8) with
0 < r' < a < r, has the simple expression

AZ(r,#A) = ~J1£Pn(™sV)ejm't'In(ka)hn(kr), a<r, (23)

In(ka)= r fn(t')jn(t')t'2dt'. (24)
Jo

The function is obviously analytic in r, <f>. One may, also, easily verify the continuity
of A(r, ■&, (f>), H, E$, at r — a and the proper step discontinuity of Er(a, ■&, </>) between
interior (r < a) and exterior (r > a) values. This was shown in detail in [4] for constant

III. The Holder condition. Existence of second derivatives of A. It was
observed that with the adoption of (5) or (6) for Ju all possible nonanalyticities of
A, H, E in 0 < r < a will arise either from those of /n(r), which is continuous, but,
maybe, nondifferentiable, or from the singularity of hn(t) at t — 0. Those due to fn(r)
may lead to infinite values only in the third (and higher) derivatives of Au at all points r
apart from r = 0. This can be seen immediately from (10), (15)—(17), where derivatives
of fn(t/k) will appear for the first time in However, for F%(t) to exist at t = 0 the
Holder condition must, in general, be imposed on fn(t/k). This is shown by considering
a continuous function fn(t/k) violating this condition at r = 0 or t = 0:

fn(t/k) = In (T) 0 <t<ka. (25)

We may call it a "non-Holder" function at t — 0. The particular choice (25) gives
fn(0) = 0, making fn(t/k) equivalent to the "excess" density at t — 0, which is of main
interest here, and keeps fn(t/k) in 0 < fn(t/k) < l/ln(10), well below the infinity of the
function l/ln(l/x) at x = 1. The function has an infinite derivative at t = 0 and rises
faster, near this point, than any Holder function tq (q > 0).

Since we are interested in the behavior of F''(t) near t = 0, we may keep t in 0 < t <
to << 1, where the fixed to is chosen small enough to let jn(t), hn(t) be well approximated
in 0 < t < to by the leading terms of their Maclaurin or Laurent expansions, respectively,

2 nn\tn , /x j(2n)\t-n~1 ,
Jn(t) S* 7 hn(t)^J-±——   (n = 0,1,2,...).J w (2n +1)! w 2nn\ v '

Substituting into the integrals In(t),Ln(t) of (10), together with the expression (25) for
fn{t/k), it is readily found through integration by parts that

-0.1.2,..., (26)

L"(')a2-i!((„"-2)M1"Z/tY n'3A  (27)
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Combining (26) with the leading terms of hn(t),h'n(t),h'^(t) we obtain

MO)Jn(O) = h'n(0)ln(0) = K(0)In(0) = 0 (28)

and, from (17), this part of F%(t) goes to 0 at t = 0. In addition, the fact that t2ho(t)
and t2h\(t) remain finite, even at t — 0, shows from (10) that Lo(0) and Lj(0) remain
finite. Finally, for n = 2

L2(t) = C{2,t0,ka) + 3 j
ft 0

7 i + o<0 dt'
ln(^) (29)

(with C(2, to, ha) = J(Aa f2(t'/k)h2(t')t'2 dt' a constant) and the dominant term is now

(T)-Lz(t) = 3j In In ( —-—- I . (30)

These results for Ln(t) show that jn(t)Ln(t),j'n(t)Ln(t),j'^(t)Ln(t) are all 0 at t = 0 for
n = 3,4,...; the same holds true for j'0(t)Lo{t), j\ {t)L\ (t), j"{t)L\(t) while j0(t)L0(t),
jo(t)L0(t),j[(t)Li(t) remain finite at t = 0. For n — 2: j2(t)L2(t),j'2(t)L2(t) are 0 at
t = 0, but j%{t)L2{t) goes to infinity since the dominant term for it, as well as for F."(t),
is

F%(t) - m)L2(t) - | In In . (31)

This remarkable result shows that for the continuous, but "non-Holder" (at r = 0) current
density

Ju2{r^A) = ^^)P2l{^d)e^ (m= -2,-1,0,1,2) (32)

d'2Au/dr2 and E(r, $,(/>) do not exist, but tend to infinity, at r = 0. It is worth noting
that a) the infinity arises from the term j2{t)L2{t), not from h2(t)l2(t), and only when
n = 2, b) Miiller [2], on pages 118-119, proposes a similar "non-Holder" function for a
static charge density for which the static potential function is not twice differentiable at
r = 0 (see, also, [5]); again, his result is obtained for n = 2, i.e., it is associated with
a spherical harmonic of order 2. The results obtained here provide a generalization in
the electromagnetic case. On the other hand, a "non-Holder" current density does not
necessarily lead to infinite E, as all previous cases with n / 2 indicate, or cases where
the condition is violated at r = b < a rather than at r = 0. Similar infinite results, again
only for n = 2, were obtained using the "non-Holder" functions fn(v) = (ln(-^))~9
(0 < q < 1) and fn(r) - (lnln(^))"1.

For fn(r) = rq (0 < q < 1), a continuous function satisfying the Holder condition at
r = 0, but having no derivative there, it is very easy to establish that Fn(t), F'n{t), F"(t)
exist at t = 0. For — 1 < q < 0 we have a density singular at r = 0 and, obviously, so are
F''(t) and E, although Au and H exist. For n = 0 this case was examined in [4].
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