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Abstract
We consider the evolution of electromagnetic fields in curved spacetimes and
calculate the exact wave equations for the associated electric and magnetic
components. Our analysis is fully covariant, applies to a general spacetime
and isolates all the sources that affect the propagation of these waves. Among
others, we explicitly show how the different components of the gravitational
field act as driving sources of electromagnetic disturbances. When applied to
perturbed Friedmann–Robertson–Walker cosmologies, our results argue for a
superadiabatic-type amplification of large-scale cosmological magnetic fields
in Friedmann models with open spatial curvature.

PACS numbers: 04.20.−q, 98.80.−k, 41.20.Jb

1. Introduction

Electromagnetic studies in curved spaces have long established the direct coupling between
the Maxwell and the Einstein fields. The interaction emerges from the vector nature of the
electromagnetic field and from the geometrical approach to gravity introduced by general
relativity and it is interpreted as a sort of scattering of the electromagnetic waves by the
spacetime curvature.

In the present paper we study electromagnetic fields in general curved spacetimes by using
the covariant approach to general relativity. Our analysis is non-perturbative, in the sense that
it does not perturb away from a given metric but provides the full nonlinear equations before
linearizing them about a chosen background. In addition, we study the physically measurable
electric and magnetic components of the Maxwell field, rather than the Faraday tensor or
the electromagnetic 4-potential. This on one hand complements earlier work on the subject,
while on the other it allows for a more compact mathematical presentation and for a more
transparent physical interpretation of the results. The evolution of the Maxwell field is studied
in a general spacetime without imposing any a priori symmetries on the latter. The only
restriction is on the matter component which is of the perfect fluid form. We derive, from
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first principles, the electric and magnetic wave equations and identify all the kinematical,
dynamical and geometrical sources that drive the propagation of these waves. We demonstrate
the effects of the observers’ motion and show how the different parts of the gravitational field,
namely the Ricci and Weyl fields, affect propagating electromagnetic disturbances. Moreover,
the non-perturbative nature of our formalism means that the nonlinear equations apply to a
variety of situations of either astrophysical or cosmological interest.

With the full equations at hand, we proceed to consider the evolution of electromagnetic
fields in spatially curved Friedmann–Robertson–Walker (FRW) models. Noting that the
symmetries of the FRW spacetime are generally incompatible with the generic anisotropy
of the electromagnetic field, we consider the evolution of the latter in perturbed Friedmann
universes. In particular, we look at the spacetime curvature effects on the linear evolution
of the magnetic component of the Maxwell field. Our results show that, when the model is
spatially closed, the magnetic field has an oscillatory behaviour with a decreasing amplitude
according to the familiar a−2-law (where a is the FRW scale factor). The same is also true
for spatially open models with the exception of large-scale magnetic fields. There, we find
that the field decays as a−1 and therefore that ‘magnetic flux’ conservation no longer holds
at long wavelengths. This result can be seen as an effective superadiabatic-type amplification
of large-scale magnetic fields in spatially open FRW universes due to curvature effects alone.
Crucially, the amplification is achieved without introducing any new physics and without
breaking away from the standard properties of Maxwell’s theory.

We start with an outline of the covariant formalism in section 2 and provide a covariant
treatment of the electromagnetic and gravitational fields in sections 3 and 4, respectively. The
nonlinear electromagnetic wave equations are derived in section 5, and in section 6 they are
linearized and solved around curved FRW models. We discuss our results in section 7.

2. The covariant description

The covariant approach to general relativity uses the kinematic quantities of the fluid, its energy
density and pressure and the gravito-electromagnetic tensors instead of the metric which in
itself does not provide a covariant description. The key equations are the Ricci and Bianchi
identities, applied to the fluid 4-velocity vector, while Einstein’s equations are incorporated via
algebraic relations between the Ricci and the energy–momentum tensors. Here, we will only
give a brief description of the approach and direct the reader to a number of review articles
for further details and references [1–4].

2.1. The 1 + 3 spacetime splitting

Consider a general spacetime with a Lorentzian metric gab of signature (−, +, +, +). Then,
allow for a family of fundamental observers living along a timelike congruence of worldlines
tangent to the 4-velocity vector

ua = dxa

dτ
, (1)

where τ is the associated proper time and uau
a = −1 [4]. This fundamental velocity field

introduces a local, 1 + 3 ‘threading’ of the spacetime into time and space. The vector ua

determines the time direction and the tensor hab = gab + uaub projects orthogonal to ua into
what is known as the observers’ instantaneous rest space. Note that, in the absence of rotation,
hab also acts as the metric of the spatial sections.
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Employing ua and hab one defines the covariant time derivative and the orthogonally
projected gradient of any given tensor field Tab···cd··· according to

Ṫ ab···cd··· = ue∇eTab···cd··· and DeTab···cd··· = he
sha

f hb
phq

chr
d · · · ∇sTfp···qr···, (2)

respectively. The former indicates differentiation along the timelike direction and the latter
operates on the observers’ rest space.

2.2. The matter field

Relative to the aforementioned fundamental observers, the energy–momentum tensor of a
general imperfect fluid decomposes into its irreducible parts as [4]1

Tab = µuaub + phab + 2q(aub) + πab. (3)

Here, µ = Tabu
aub and p = Tabh

ab/3 are respectively the energy density and the isotropic
pressure of the medium, qa = −ha

bTbcu
c is the energy-flux vector relative to ua and

πab = h〈achb〉dTcd is the symmetric and trace-free tensor that describes the anisotropic pressure
of the fluid2. It follows that qau

a = 0 = πabu
a . When the fluid is perfect, both qa and πab

are identically zero and the remaining degrees of freedom are determined by the equation of
state. For a barotropic medium the latter reduces to p = p(µ), with c2

s = dp/dµ representing
the associated adiabatic sound speed.

When dealing with a multi-component medium, one needs to account for the velocity ‘tilt’
between the various matter components and the fundamental observers [5]. Here, however,
we will consider a single-component fluid and we will assume that the fundamental observers
are moving along with it.

2.3. The covariant kinematics

The observers’ motion is characterized by the irreducible kinematical quantities of the
ua-congruence, which emerge from the following covariant decomposition of the 4-velocity
gradient,

∇bua = σab + ωab + 1
3�hab − u̇aub, (4)

where σab = D〈bua〉, ωab = D[bua],� = ∇aua = Daua and u̇a = ub∇bua are respectively
the shear and the vorticity tensors, the expansion (or contraction) scalar and the 4-acceleration
vector [4]. Then, σabu

a = 0 = ωabu
a = u̇au

a by definition. Also, on using the orthogonally
projected alternating tensor εabc (with ε̇abc = 3u[aεbc]d u̇

d ), one defines the vorticity vector
ωa = εabcω

bc/2.
The nonlinear covariant kinematics are determined by a set of three propagation equations

complemented by an equal number of constraints [4]. The former contains Raychaudhuri’s
formula

�̇ = − 1
3�2 − 1

2 (µ + 3p) − 2(σ 2 − ω2) + Dau̇a + u̇au̇
a, (5)

for the time evolution of �, the shear propagation equation

σ̇〈ab〉 = − 2
3�σab − σc〈aσ c

b〉 − ω〈aωb〉 + D〈au̇b〉 + u̇〈au̇b〉 − Eab + 1
2πab, (6)

which describes kinematical anisotropies, and the evolution equation of the vorticity

ω̇〈a〉 = − 2
3�ωa − 1

2 curl u̇a + σabω
b. (7)

1 Throughout this paper we use geometrized units with c = 1 = 8πG. Consequently, all geometrical variables have
physical dimensions that are integer powers of length.
2 Angle brackets denote the symmetric and trace-free part of projected second-rank tensors and the orthogonally
projected component of vectors.
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Note that σ 2 = σabσ
ab/2 and ω2 = ωabω

ab/2 = ωaω
a are respectively the magnitudes

of the shear and the vorticity, while Eab is the electric component of the Weyl tensor (see
section 3.2). Also, curl va = εabcDbvc for any orthogonally projected vector va by definition.

Equations (5)–(7) are complemented by a set of three nonlinear constraints. These are
the shear

Dbσab = 2
3 Da� + curl ωa + 2εabcu̇

bωc − qa, (8)

the vorticity

Daωa = u̇aω
a, (9)

and the magnetic Weyl constraint

Hab = curl σab + D〈aωb〉 + 2u̇〈aωb〉, (10)

where curl Tab = εcd〈aDcTb〉d for any orthogonally projected tensor Tab.

3. The electromagnetic field

Covariant studies of electromagnetic fields date back to the work of Ehlers [1] and Ellis [3].
In addition to its inherent mathematical compactness and clarity, the covariant formalism
facilitates a physically intuitive fluid description of the Maxwell field. In particular, the latter
is represented as an imperfect fluid with properties specified by its electric and magnetic
components.

3.1. The electric and magnetic components

The Maxwell field is covariantly characterized by the antisymmetric electromagnetic (Faraday)
tensor Fab, which relative to a fundamental observer decomposes into an electric and a magnetic
component as [3, 6]

Fab = 2u[aEb] + εabcH
c. (11)

In the above Ea = Fabu
b and Ha = εabcF

bc/2 are respectively the electric and magnetic fields
experienced by the observer. Note that Eau

a = 0 = Hau
a , ensuring that both Ea and Ha are

spacelike vectors living in the observer’s three-dimensional rest space. Also, the expression
Ha = εabcF

bc/2 guarantees that Ha is the dual of the antisymmetric (pseudo) tensor Fab.
The Faraday tensor also determines the energy–momentum tensor of the Maxwell field.

In particular, we have

T
(em)
ab = −FacF

c
b − 1

4FcdF
cdgab, (12)

which, on using (11), provides an irreducible decomposition for T
(em)
ab . More precisely, relative

to a fundamental observer, the latter splits into [3, 6]

T
(em)
ab = 1

2 (E2 + H 2)uaub + 1
6 (E2 + H 2)hab + 2Q(aub) + Pab. (13)

Here E2 = EaE
a and H 2 = HaH

a are the magnitudes of the two fields, Qa = εabcE
bHc is

the electromagnetic Poynting vector and Pab is a symmetric, trace-free tensor given by

Pab = P〈ab〉 = 1
3 (E2 + H 2)hab − EaEb − HaHb. (14)

Expression (13) provides a fluid description of the Maxwell field and manifests its generically
anisotropic nature. In particular, the electromagnetic field corresponds to an imperfect fluid
with energy density (E2 +H 2)/2, isotropic pressure (E2 +H 2)/6, anisotropic stresses given by
Pab and an energy-flux vector represented by Qa . Equation (13) also ensures that T (em) a

a = 0,
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in agreement with the trace-free nature of the radiation stress–energy tensor. Finally, we
note that by putting the isotropic and anisotropic pressure together, one arrives at the familiar
Maxwell tensor, which assumes the covariant form

Mab = 1
2 (E2 + H 2)hab − EaEb − HaHb. (15)

3.2. Maxwell’s equations

We follow the evolution of the electromagnetic field by means of Maxwell’s equations. In
their standard tensor form the latter read

∇[cFab] = 0, (16a)

and

∇bFab = Ja, (16b)

where (16a) manifests the existence of a 4-potential and Ja is the 4-current that sources
the electromagnetic field. With respect to the ua-congruence, the 4-current splits into its
irreducible parts according to

Ja = ρeua + Ja, (17)

with ρe = −Jau
a representing the charge density and Ja = ha

bJb the orthogonally projected
current (i.e. Jau

a = 0).
Relative to a fundamental observer, each of Maxwell’s equations decomposes into a

timelike and a spacelike component. Thus, by projecting (16a) and (16b) along and orthogonal
to the 4-velocity vector ua , we obtain a set of two propagation equations [3, 6]

Ė〈a〉 = (
σab + εabcω

c − 2
3�hab

)
Eb + εabcu̇

bH c + curl Ha − Ja, (18)

Ḣ 〈a〉 = (
σab + εabcω

c − 2
3�hab

)
Hb − εabcu̇

bEc − curl Ea, (19)

and the following pair of constraints

DaEa + 2ωaHa = ρe, (20)

DaHa − 2ωaEa = 0. (21)

Note that in addition to the usual ‘curl’ and ‘divergence’ terms, there are terms due to the
observer’s motion. According to equation (20), in the absence of an electric field the observed
charge density is ρe = 2ωaHa . This means non-zero charge density unless ωaHa = 0 (see [7]
for a discussion on the charge asymmetry of the universe). Also, following (21), the magnetic
vector is not solenoidal unless ωaEa = 0.

3.3. The conservation laws

The antisymmetry of the Faraday tensor (see equation (11)) and the second of Maxwell’s
formulae (see equation (16b)) imply the conservation law

∇aJa = 0, (22)

for the 4-current density. Then, on using decomposition (17), expression (22) provides the
covariant form of the charge density conservation law [3, 8]

ρ̇e = −�ρe − DaJa − u̇aJa. (23)

Thus, in the absence of spatial currents, the charge density evolution depends entirely on the
average volume expansion (or contraction) of the fluid element.
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3.4. Ohm’s law

The electrical conductivity of the medium determines the relation between the 4-current and
the associated electric field via Ohm’s law. In covariant form the latter reads

Ja − ρeua = σEa, (24)

where σ is the scalar conductivity of the medium [9]. Projecting the above into the observer’s
rest space one arrives at

J = σEa. (25)

Thus, non-zero spatial currents are compatible with a vanishing electric field as long as the
conductivity of the medium is infinite (i.e. for σ → ∞). Alternatively, one can say that at the
infinite conductivity limit, which defines the well-known MHD approximation, the electric
field vanishes in the frame of the fluid. On the other hand, zero electrical conductivity implies
that the spatial currents vanish even when the electric field is non-zero.

4. The gravitational field

Covariantly, the local gravitational field is monitored by a set of algebraic relations between the
Ricci curvature tensor and the energy–momentum tensor of the matter. The free gravitational
field, on the other hand, is described by the electric and magnetic components of the conformal
curvature (Weyl) tensor.

4.1. The local Ricci curvature

In the general relativistic geometrical interpretation of gravity, matter determines the spacetime
curvature which in turn dictates the motion of the matter. This interaction is manifested in the
Einstein field equations, which in the absence of a cosmological constant take the form

Rab = Tab − 1
2T gab, (26)

where Rab = Racb
c is the spacetime Ricci tensor and Tab is the energy–momentum tensor of

the matter fields, with T = Ta
a being the trace. For our purposes the total energy–momentum

tensor has the form Tab = T
(f )

ab + T
(em)
ab , where T

(f )

ab is given by equation (3) and T
(em)
ab by

equation (13). Thus,

Tab = [
µ + 1

2 (H 2 + E2)
]
uaub +

[
p + 1

6 (H 2 + E2)
]
hab + 2(q(a + Q(a)ub) + πab + Pab, (27)

ensuring that µ + (H 2 + E2)/2 is the total energy density of the system, p + (H 2 + E2)/6
is the total isotropic pressure, qa + Qa is the total heat flux vector and πab + Pab is the total
anisotropic pressure. The inclusion of electromagnetic terms in the energy–momentum tensor
of the matter guarantees that the contribution of the Maxwell field to the spacetime geometry
is fully incorporated.

Starting from the Einstein field equations and assuming that Tab is given by equation (27),
we arrive at the following algebraic relations [8]:

Rabu
aub = 1

2 (µ + 3p + E2 + H 2), (28)

ha
bRbcu

c = −(qa + Qa), (29)

ha
chb

dRcd = [
1
2

(
µ − p + 1

3E2 + 1
3H 2

)]
hab + πab + Pab. (30)

In addition, the trace of (26) gives R = −T , with R = Ra
a and T = Ta

a = 3p −µ, where the
latter result is guaranteed by the trace-free nature of T

(em)
ab . Note that the above expressions
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are valid irrespective of the strength of the electromagnetic components. When the Maxwell
field is weak relative to the matter, namely for E2,H 2 � µ, one might treat the electromagnetic
contribution to the spacetime curvature as a first-order perturbation. Finally, recall that
qa = 0 = πab when dealing with a perfect fluid.

4.2. The long-range Weyl curvature

The Ricci tensor describes the local gravitational field of the nearby matter. The long-range
gravitational field, namely gravitational waves and tidal forces, propagates through the Weyl
conformal curvature tensor. The splitting of the gravitational field into its local and non-local
components is demonstrated in the following decomposition of the Riemann tensor,

Rabcd = Cabcd + 1
2 (gacRbd + gbdRac − gbcRad − gadRbc) − 1

6R (gacgbd − gadgbc) , (31)

where Cabcd is the Weyl tensor. The latter shares all the symmetries of the Riemann tensor
and is also trace-free (i.e. Cc

acb = 0). Relative to the fundamental observers, the Weyl tensor
decomposes further into its irreducible parts according to

Cabcd = (gabqpgcdsr − ηabqpηcdsr )u
qusEpr − (ηabqpgcdsr + gabqpηcdsr )u

qusHpr, (32)

where gabcd = gacgbd − gadgbc (e.g. see [10, 11]). The symmetric and trace-free tensors Eab

and Hab are known as the electric and magnetic Weyl components and they are given by

Eab = Cacbdu
cud and Hab = 1

2εa
cdCcdbeu

e, (33)

with Eabu
b = 0 = Habu

b. Given that Eab has a Newtonian counterpart, the electric part of the
Weyl tensor is associated with the tidal field. The magnetic component, on the other hand, has
no Newtonian analogue and therefore is primarily associated with gravitational waves [2]. Of
course, both tensors are required if gravitational waves are to exist. For a comparison with the
non-covariant metric-based treatments of gravitational waves, we note that in perturbed FRW
models the harmonically decomposed, pure-tensor metric perturbation is HT = 2E + σ ′/n

[16]. Here, E and σ represent the harmonic parts of the transverse traceless electric Weyl
and shear tensors, respectively. Also, n is the associated wavenumber and a prime denotes
derivatives with respect to conformal time.

The Weyl tensor represents the part of the curvature that is not determined locally by
matter. However, the dynamics of the Weyl field is not entirely arbitrary because the Riemann
tensor satisfies the Bianchi identities. When contracted the latter take the form [10]

∇dCabcd = ∇[bRa]c + 1
6gc[b∇a]R, (34)

by means of decomposition (31). In a sense the contracted Bianchi identities act as the
field equations for the Weyl tensor, determining the part of the spacetime curvature that
depends on the matter distribution at other points [10]. The form of the contracted Bianchi
identities guarantees that once the electromagnetic contribution to the Ricci curvature has been
incorporated, through the Einstein field equations, the effect of the Maxwell field on the Weyl
curvature has also been fully accounted for.

Expression (34) splits into a set of two propagation and two constraint equations, which
monitor the evolution of the electric and magnetic Weyl components [2–4]. These formulae
are not used to derive the electromagnetic wave equations of section 5.3 and are therefore
not essential for our purposes. Here we simply note that the aforementioned set of equations
is remarkably similar to Maxwell’s formulae, which in turn explains the names of Eab and
Hab. This Maxwell-like form of the free gravitational field underlines the rich correspondence
between electromagnetism and general relativity, which has been the subject of theoretical
debate for many decades (see [12–15] for a representative list).
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5. The electromagnetic wave equations

Studies of electromagnetic waves in curved spacetimes have long established that, while
propagating similar to any other travelling wave, electromagnetic disturbances also interact
with the spacetime curvature. As a result, electromagnetic signals propagate inside as well
as on the future light cone of an event, indicating the failure of Huygens’ principle in curved
spaces [17–19].

5.1. The wave equation for the electromagnetic field tensor

Maxwell’s equations immediately provide a wave equation for the electromagnetic field tensor.
In particular, taking the covariant derivative of (16a) and using (16b) we arrive at

∇2Fab = −2RacbdF
cd + Ra

cFcb + Fa
cRcb + ∇bJa − ∇aJb, (35)

where ∇2 = ∇a∇a is the generalized covariant Laplacian operator (e.g. see [20, 21]). The
above, which holds in a general spacetime, reveals the role of the curvature as a driving source
of electromagnetic disturbances. Note that the Riemann and Ricci curvature terms on the
left-hand side of equation (35) emerge after using the Ricci identity

2∇[a∇b]Fcd = RabceF
e
d + RabdeFc

e, (36)

which here monitors the commutation between the covariant derivatives of Fab. Expression
(35) can also provide the individual wave equations for the electric and magnetic components
of Fab. For example, contracting equation (35) along ua eventually leads to the wave equation
of Ea , while its dual provides the magnetic wave equation. Here, we will follow an alternative
route and obtain these expressions directly from the decomposed Maxwell formulae (18)
and (19).

5.2. The electro/magneto-curvature coupling

In addition to the Einstein field equations, vector sources, like the electromagnetic field, obey
an extra set of equations, known as the Ricci identities, which manifest the direct interaction
between electromagnetism and spacetime geometry. This coupling emerges naturally from
the vector nature of the Maxwell field and from the geometrical approach to gravity of general
relativity. When applied to the magnetic field vector the Ricci identity reads

2∇[c∇b]Ha = RdabcH
d; (37)

with an exactly analogous expression for the electric component. Clearly, on using
decomposition (31), the Ricci identity couples the electromagnetic field explicitly with both the
local and the long-range gravitational field. Also, by projecting the above into the observer’s
rest space one arrives at what is known as the 3-Ricci identity

2D[cDb]Ha = −2εcbdω
dḢ 〈a〉 + RdabcH

d, (38)

describing the interaction between the magnetic field and the local spatial geometry [22, 23].
Clearly an exactly analogous relation holds for Ea as well. Note that Rabcd is the orthogonally
projected part of Rabcd , namely the Riemann tensor of the observer’s local 3-space. Finally,
we should emphasize that the validity of both (37) and (38) extends to any arbitrary spacetime
(e.g. see [2, 10]).
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5.3. The wave equations for the electric and magnetic fields

Equations (18) and (19) monitor the propagation of electromagnetic fields in a general
spacetime either in vacuum (i.e. for source-free fields with ρe = 0 = Ja) or in the presence
of matter. Starting from these formulae, one can work out the wave equations for propagating
electromagnetic radiation in a general spacetime. In particular, taking the time derivative of
equation (18), one obtains the wave-like evolution equation of the electric field. Similarly, the
time derivative of equation (19) leads to the corresponding wave equation of the magnetic field.
In the Minkowski space of special relativity these calculations are relatively straightforward
since the geometry of the space is trivial. In the context of general relativity, however, this is
no longer true and one has to account for the coupling between the electromagnetic fields and
the spacetime geometry discussed earlier. Technically speaking, this requires using the Ricci
identities and leads to spatial curvature terms every time the projected derivatives of Ea or
Ha commute. In addition, the Ricci identities guarantee a Weyl field contribution whenever a
time derivative and a projected gradient of either the electric or the magnetic field commute.

Assuming that the matter component has a perfect fluid form with a barotropic equation of
state, we take the time derivative of equation (18) and project it orthogonal to ua . Then, using
the kinematical propagation and constraint equations of section 2.3, expression (14), relations
(19)–(32) and the commutation laws (37), (38) we arrive at the following wave equation for
the electric field vector:

Ë〈a〉 − D2Ea = 1
3µ(1 + 3w)Ea +

(
σab − εabcω

c − 5
3�hab

)
Ėb

+ 1
3�

(
σab + εabcω

c − 4
3�hab

)
Eb − σ〈acσb〉cEb + εabcE

bσ cdωd

+ 4
3

(
σ 2 − 2

3ω2
)
Ea + 1

3ω〈aωb〉Eb + u̇bu̇bEa − 5
2εabcu̇

b curl Ec + D〈aEb〉u̇b

+ 2
3εabcH

bDc� + εabcHdDbσ cd + D〈aωb〉Hb + 3
2εabcH

b curl ωc + 2D〈aHb〉ωb

− 2εabcσ
b
dD〈cHd〉 + εabcü

bH c + 7
3 u̇bωbHa + 4

3Hbωbu̇a − 3u̇bHbωa

+ 3εabcu̇
bσ cdHd + 1

3ρeu̇a − Daρe − �Ja − J̇a − RabE
b − EabE

b + HabH
b.

(39)

Similarly, one may start from equation (19) and proceed in an analogous way to obtain the
wave equation of the magnetic field vector

Ḧ 〈a〉 − D2Ha = 1
3µ(1 + 3w)Ha +

(
σab − εabcω

c − 5
3�hab

)
Ḣ b

+ 1
3�

(
σab + εabcω

c − 4
3�hab

)
Hb − σ〈acσb〉cHb + εabcH

bσ cdωd

+ 4
3

(
σ 2 − 2

3ω2
)
Ha + 1

3ω〈aωb〉Hb + u̇bu̇bHa − 5
2εabcu̇

b curl Hc + D〈aHb〉u̇b

− 2
3εabcE

bDc� − εabcEdDbσ cd − D〈aωb〉Eb − 3
2εabcE

b curl ωc − 2D〈aEb〉ωb

+ 2εabcσ
b
dD〈cEd〉 − εabcü

bEc − 7
3 u̇bωbEa − 4

3Ebωbu̇a + 3u̇bEbωa

− 3εabcu̇
bσ cdEd − 2

3ρeωa + 2εabcu̇
bJ c + curlJa − RabH

b −EabH
b −HabE

b.

(40)

As expected, when there are no charges and currents, one recovers equation (40) from (39)
by simply replacing Ea with Ha and Ha with −Ea . Similarly, we obtain (39) from (40) after
replacing Ha with Ea and Ea with −Ha . In the presence of charges and currents, however,
this symmetry no longer holds and the apparent breakdown reflects the absence of magnetic
monopoles.

The above expressions provide a covariant description of propagating electromagnetic
waves in a general spacetime and incorporate the electromagnetic input to the curvature of



402 C G Tsagas

the latter3. So far the only restrictions are those imposed on the fluid, which has a barotropic
equation of state. That aside, equations (39) and (40) are fully nonlinear in perturbative
terms. Once the background is specified, these equations can describe the evolution of the
electromagnetic field at any perturbative level. In general, of course, one needs to couple these
formulae with the appropriate propagation equations of the various kinematical, dynamical
and geometrical variables that appear on the right-hand sides of (39) and (40). Clearly, the
more complicated the background the more equations are necessary for the system to close.

Among others, the above given wave equations show how the kinematical quantities,
namely the expansion, the shear, the vorticity and the acceleration, drive the propagation of
electromagnetic waves. Here, the barotropic nature of the matter component means that the
4-acceleration takes the form

µ(1 + w)u̇a = −Dap + ρeEa + εabcJ bHc, (41)

with contributions from gradients in the fluid pressure and from the electromagnetic Lorentz
force only. The input from the spacetime geometry to equations (39) and (40) is through the
spatial and the Weyl curvature components. The former is represented byRab, the orthogonally
projected 3-Ricci tensor, defined by

Rab = Rc
acb = ha

chb
dRcd + Racbdu

cud + vacv
c
b − �vab, (42)

where vab = Dbua is the second fundamental form describing the extrinsic curvature of the
space (e.g. see [10, 23]). Note that the tidal part of the Weyl field contributes to the evolution
of either Ea or Ha via its direct coupling with the aforementioned fields. The effect of the
magnetic Weyl tensor, on the other hand, is indirect and requires the presence of both the
electromagnetic field components.

The non-perturbative nature of our analysis, namely the fact that we have not yet specified
our background spacetime, means that equations (39) and (40) apply to a range of physical
situations (e.g. see [24–26]). For example, in the absence of matter sources one can always
set the observer’s acceleration to zero (see equation (41)). If, in addition, the spacetime is
stationary and non-rotating (i.e. set � = 0 = ωa), expression (39) and reduces to

Ëa − D2Ea = σabĖ
b − σ〈acσb〉cEb + 4

3σ 2Ea + εabcHdDbσ cd − 2εabcσ
b
dD〈cHd〉

−RabE
b − EabE

b + HabH
b, (43)

with an exactly analogous wave equation for Ha . When the shear and the Weyl components are
divergence-free (i.e. for Dbσab = 0 = DbEab = DbHab), the above describes the propagation
of electromagnetic radiation in the presence of gravitational waves alone. Thus, using
equation (43) one can revisit the age old problem of the interaction between electromagnetic
and gravitational waves in isolated astrophysical environments away from the gravitational
field of massive compact stars (e.g. see [27–30] and references therein). In what follows,
however, we will consider a cosmological application of (39) and (40).

6. Electromagnetic fields in curved FRW models

The generic anisotropy of the electromagnetic energy–momentum tensor makes the Maxwell
field incompatible with the high symmetry of the FRW spacetime. The implication is that the
simplest models where one can study cosmological electromagnetic fields are the perturbed
Friedmann universes.
3 By including the Maxwell field in the Einstein field equations (see equations (26)–(30)), the electromagnetic
contribution to the spacetime geometry has been fully accounted for. In practice this means ensuring that µ has been
replaced with µ + (E2 + H 2)/2, p with p + (E2 + H 2)/6, qa with Qa and πab with Pab in every formula used to
derive equations (39) and (40). For example, by implementing the aforementioned substitution into the kinematical
expressions of section 2.3, we incorporate fully the electromagnetic impact on the model’s kinematics.



Electromagnetic fields in curved spacetimes 403

6.1. The linear wave equations

Consider a FRW background cosmology with curved spatial sections. In covariant terms, the
isotropy of the FRW model translates into ωa = 0 = σab = u̇a and Eab = 0 = Hab, while
their spatial homogeneity ensures that all orthogonally projected gradients vanish identically
(i.e. Daµ = 0 = Dap = Da�). This means that µ,p,�,Rab = Rhab/3 and their time
derivatives are the only non-vanishing background quantities.

When studying cosmological electromagnetic fields there is a widespread perception that,
given the conformal invariance of the Maxwell field and the conformal flatness of the FRW
spacetimes, flat spaces provide an adequate background (e.g. see [31, 32]). This is only
approximately true however, since the FRW symmetries are generally incompatible with the
presence of electric or magnetic fields. As is clearly stated in [33], adopting the conformal
triviality of Maxwell’s equations on FRW backgrounds means ignoring the electromagnetic
impact on the FRW symmetries. This is a good approximation when dealing with weak
electromagnetic fields but only on small scales in models with nontrivial spatial geometry.
In the latter case, the approximation becomes progressively less accurate as one moves on
to larger scales and the 3-curvature effects start kicking in. Putting it another way, with
the possible exception of incoherent radiation, one must study cosmological electromagnetic
fields in perturbed Friedmann universes. The latter, however, are no longer conformally flat.

On these grounds, we consider a perturbed Friedmann universe with non-Euclidean spatial
sections and allow for the presence of a weak electromagnetic field. The latter vanishes in the
background, thus guaranteeing that both the electric and the magnetic field vectors are first-
order, gauge-invariant perturbations [34]. Then, the source-free components of the nonlinear
wave equations (39) and (40) linearize to

Ëa − D2Ea = − 5
3�Ėa − 4

9�2Ea + 1
3µ(1 + 3w)Ea − RabE

b, (44)

and

Ḧ a − D2Ha = − 5
3�Ḣa − 4

9�2Ha + 1
3µ(1 + 3w)Ha − RabH

b, (45)

respectively. During linearization quantities with non-zero background value have zero
perturbative order, while those that vanish in the background are first-order perturbations
and higher-order terms are neglected. For example, the Weyl-free nature of the FRW metric
guarantees that the Weyl effects are nonlinear. The 3-Ricci curvature, on the other hand,
contributes to both (44) and (45). Recall thatRab = (2k/a2)hab to zero order, where k = 0,±1
is the curvature index and a represents the scale factor of the unperturbed model. In other
words, the symmetries of the FRW metrics ensure that, to linear order, the electromagnetic field
interacts only with the 3-Ricci part of the spacetime curvature. The curvature terms in (44) and
(45) reflect the earlier mentioned coupling between electromagnetism and spacetime geometry.
Unless the background model is spatially flat, these are clearly first-order perturbative terms
and should be taken into account in any complete linear study of cosmological electromagnetic
fields. These linear curvature terms clearly show why large-scale electromagnetic fields are
not adequately treated on flat FRW backgrounds.

Given that the source-free Ea and Ha fields satisfy identical linear wave equations, we will
only consider the magnetic component and proceed by introducing the following harmonic
decomposition for Ha ,

Ha =
∑

n

H(n)Q
(n)
a , (46)

where n is the comoving eigenvalue of the nth harmonic component and Q(n)
a are the associated

vector harmonics. As usual DaH
(n) = 0 = Q̇(n)

a and Q(n)
a are eigenfunctions of the
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Laplace–Beltrami operator so that D2Q(n)
a = −(n2/a2)Q(n)

a . Employing decomposition (46)
and introducing the conformal time variable η (with η̇ = 1/a) we recast equation (45) as

H ′′
(n) + n2H(n) = −4

(
a′

a

)
H ′

(n) − 2

(
a′

a

)2

H(n) − 2

(
a′′

a

)
H(n) − 2kH(n), (47)

where a prime indicates differentiation with respect to η. Then, on introducing the ‘magnetic
flux’ variable H(n) = a2H(n), the above reduces to

H′′
(n) + n2H(n) = −2kH(n). (48)

This is a wave equation for H(n) with a driving term on the right-hand side which depends on
the background spatial curvature and vanishes only when the background is spatially flat. Note
that in a model with closed spatial sections the Laplacian eigenvalue is given by n2 = ν(ν +1),
where ν takes the discrete values ν = 1, 2, 3, . . . . Alternatively, n2 = ν2 + 1 when k = −1
and n2 = ν2 for k = 0 (with ν2 � 0 in both cases).

6.2. The linear solutions

The driving term on the right-hand side of equation (48) is clearly sensitive to the sign of the
background spatial curvature. Let us consider first a FRW model with closed spatial sections.
When k = +1, equation (48) takes the form

H′′
(ν) + [2 + ν(ν + 1)]H(ν) = 0, (49)

with ν = 1, 2, 3, . . . . The above leads to the following oscillatory solution for the νth magnetic
mode,

H(ν) = 1

a2
{C1 cos[

√
2 + ν(ν + 1)η] + C2 sin[

√
2 + ν(ν + 1)η]}, (50)

where C1 and C2 are constants. In other words, for k = +1, the magneto-curvature term on
the right-hand side of (48) does not have any significant effect on the evolution of the field,
which oscillates in time with an amplitude that decays according to the a−2-law. The only
difference relative to the k = 0 case is a change in the oscillation frequency near the long
wavelength limit. Note that the oscillatory behaviour of the field is ensured on all scales by
the compactness of the closed space.

When dealing with the hyperbolic geometry of the spatially open FRW model, however,
the oscillatory behaviour of H(n) is not always guaranteed. Indeed, for k = −1 equation (48)
takes the form

H′′
(ν) + (ν2 − 1)H(ν) = 0, (51)

with ν2 � 0. Clearly, when ν2 > 1 the harmonic mode H(ν) oscillates just like in a
perturbed closed FRW model. On these scales, the background geometry makes no real
difference to the evolution of the field. This agrees with our perception that curvature effects
become progressively less important as we move towards smaller scales. At sufficiently long
wavelengths (i.e. for ν2 < 1), the geometrical effects take over and equation (51) no longer
accepts an oscillatory solution. In particular, as ν2 → 0 we have

H(ν) = C1 cosh η + C2 sinh η = C3e
η + C4 e−η, (52)

where C1 and C2 are constants and C3,4 = (C1 ± C2)/2. Note that, since n2 = ν2 + 1 > 1
always, these long wavelength solutions still correspond to subcurvature modes [35]. To have
a closer look at the effect of geometry on the linear evolution of the field, we note that the
evolution of a spatially open FRW model is monitored by

a� = 3 coth(βη), (53)
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with β = (1 + 3w)/2 by definition and βη > 0 (e.g. see [36]). The above holds throughout
the various periods in the lifetime of an open FRW universe, provided the barotropic index
w remains constant during each epoch. Then, the relation between the scale factor and the
conformal time variable is

a = a0

(
1 − e−2βη

1 − e−2βη0

)1/β

eη−η0 , (54)

where η0, a0 depend on the initial conditions. Throughout the dust era w = 0 and β = 1/2,
while w = 1/3 and β = 1 when radiation dominates. Finally, during a period of inflationary
expansion with p = −ρ we have β = −1. Note that in the latter case the conformal time
variable takes negative values. According to expression (54), there are extensive periods in
the lifetime of the universe (i.e. as long as η � 0 or η � 0) when the relation between the
cosmological scale factor and the conformal time variable is (see also [37])

a ∝ eη. (55)

Substituting this result into the right-hand side of equation (52), and taking into account that
H(ν) = a2H(ν) by definition, we arrive at

H(ν) = C3a
−1 + C4a

−3. (56)

Therefore, large-scale magnetic fields in perturbed spatially open FRW models decay as a−1,
a rate considerably slower than the standard ‘adiabatic’ a−2-law. The immediate consequence
is that, at the long wavelength limit, the cosmological magnetic flux is no longer conserved.
Instead, the product a2H(ν) increases with time. This opens the possibility of an effective
superadiabatic amplification of the field on large scales similar to that found in [38]. Even if
the universe is only marginally open today, this effect could have important implications for
the present strength of primordial large-scale magnetic fields, particularly for those fields that
survived an epoch of inflation, since they would be much stronger than previously anticipated.
Note that during inflation the conductivity of the cosmic medium is effectively zero, which
in turn ensures the absence of spatial currents (see section 3.4). In this paper, we have
focused primarily on the mathematics of the magneto-geometrical interaction and provided
a qualitative measure of its implications for large-scale magnetic fields. A discussion of the
physics, together with a detailed quantitative study of the amplification effect, will be given in
a subsequent paper.

So far, similar modifications in the evolution of cosmological magnetic fields have
been obtained at the expense of standard electromagnetic properties, and in particular of
the conformal invariance of Maxwell’s equations (e.g. see [38–42] for a representative, though
incomplete, list). Moreover, in some cases this effect is achieved by introducing ad hoc new
physics. Our analysis shows that one can still arrive at the same result by taking into account
the natural, general relativistic coupling between the electromagnetic field and the spacetime
curvature. In other words, contrary to the widespread perception, superadiabatic magnetic
amplification is possible within conventional electromagnetic theory. Here, this has been
done through the field’s coupling to the intrinsic curvature of spatially open FRW models.
Interestingly, however, analogous effects can also occur in perturbed flat FRW cosmologies
by coupling the magnetic field to the Weyl curvature of the model, namely to the gravitational
waves [44]. All these cast new light on the role and the potential implications of spacetime
geometry for the evolution of large-scale cosmic magnetic fields.

7. Discussion

The general relativistic coupling between the electromagnetic and the gravitational fields has
long been known in the literature. So far, this interaction has been primarily studied in terms



406 C G Tsagas

of the Faraday tensor and of the electromagnetic 4-potential [17, 21]. Here, we have taken
an alternative approach by looking at the evolution of the individual electromagnetic field
components in a general curved spacetime. Assuming that the matter field is of the perfect
fluid form, we have derived from first principles the nonlinear wave equations of the electric
and the magnetic parts of the Maxwell field. This complements earlier studies which have
provided a differential/integral formulation of Maxwell’s formulae in terms of the physically
measurable components of the electromagnetic field (e.g. see [45–47]). Our approach identifies
and isolates all the sources that drive the propagation of electromagnetic fields by keeping the
separate aspects of the problem quite distinct. Also, by being manifestly covariant at every
step, our calculation avoids undue complexity without introducing any specific coordinate
frame. We show explicitly how the electric and magnetic fields are affected by the various
kinematical and dynamical quantities and particularly by the different parts of the gravitational
field.

Given that large-scale electromagnetic fields are generally incompatible with the FRW
symmetries, we consider perturbed models and concentrate on the evolution of large-scale
magnetic fields. In particular, we linearize our equations about spatially curved FRW
spacetimes and investigate the implications of the background curvature for the evolution
of cosmological electromagnetic fields. The gauge invariance of our linear equations ensures
that our results are free from any gauge-related problems and ambiguities. We show that
when the zero-order spacetime has open spatial sections, the magnetic flux is not always
conserved. More specifically, magnetic fields coherent on the largest subcurvature scales are
found to decay as a−1, instead of following the familiar a−2-law, where a is the cosmological
scale factor. The reason for this deviation is the general relativistic coupling between the
magnetic field and the intrinsic curvature of a perturbed spatially open FRW universe. This
magneto-geometrical interaction can change the evolution of the field on large scales, where
curvature effects become important. The result is a natural superadiabatic-type amplification
of cosmological magnetic fields, without the need for new physics and without breaking away
from standard electromagnetism.
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