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Prof. Ari T. Friberg for teaching me a lot of scientific practise and, in particular, for
providing valuable insights into optical coherence theory.

I wish to express my gratitude to the Finnish Cultural Foundation, the Jenny and
Antti Wihuri foundation, and the Academy of Finland for funding my doctoral
studies. The Center of Scientific Computing (CSC) is also thanked for providing
the computer resources.

Espoo, May 2007

Jari Lindberg



– viii –

List of Publications
This thesis is a review of the author’s work on near-field optics and electromagnetic
coherence theory. It consists of an overview and the following selection of the
author’s publications in these fields:
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III. T. Setälä, J. Lindberg, K. Blomstedt, J. Tervo, and A. T. Friberg, “Coherent-
mode representation of a statistically homogeneous and isotropic electromag-
netic field in spherical volume”, Phys. Rev. E 71, 036618 (2005).

IV. J. Lindberg, T. Setälä, M. Kaivola, and A. T. Friberg, “Spatial coherence ef-
fects in light scattering from metallic nanocylinders”, J. Opt. Soc. Am. A 23,
1349–1358 (2006).
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1 Introduction
Nanophotonics studies light-matter interactions in nanometer-scale structures be-
low the diffraction limit of light [1–3]. The basic concept of nanophotonics is the
optical near field which is characterized by the strong presence of evanescent (non-
radiative) waves. These waves are significant only within the distance of the wave-
length of light from the surface of a light emitting or scattering object. The evanes-
cent waves play an essential role in the design and characterization of components
for nanotechnology. In particular, breaking the diffraction limit of light requires
the detection of evanescent waves. This is the basic principle in scanning near-field
optical microscopy (SNOM) [4–8] which is an important tool in investigations of
optical near fields and nanoscale structures.

Evanescent waves play an essential role also in studies of surface plasmon po-
laritons [9–13] which are coupled oscillations of electromagnetic field and surface
charges at metal-dielectric interface. These waves decay exponentially away from
the interface and hence are highly localized on the surface. The localization and
other properties of surface plasmon polaritons make them attractive for nano-optical
applications. Indeed, surface plasmon-based photonics, i.e., plasmonics, has cur-
rently become an extremely active area of research. In addition to surface plasmon
polaritons on planar surfaces, there exist also localized surface plasmons on metallic
nanoparticles and nanowires. Surface plasmons can produce highly localized and
strong electromagnetic fields. They can be utilized in guiding electromagnetic en-
ergy at sub-wavelength scale. This can be achieved along metallic nanowires where
light can be transported over distances of a few micrometers [13]. The high ohmic
losses in these structures limit the maximum propagation length. The losses can be
smaller in an array consisting of metallic nanoparticles due to the reduced metallic
volume [13]. Metal nanoparticles exhibit (localized) plasmon resonances at certain
wavelengths, and in a chain of such particles the excitation can couple from one
particle to another leading to energy transfer at sub-wavelength scale.

In addition to plasmon waveguides there exists considerable interest in other
components for controlling surface plasmons – mirrors, switches, modulators, cou-
plers, and resonators. The properties of surface plasmons can be modified by nanos-
tructuring the metal surface. On a periodically structured metal film surface it is
possible even to have a full photonic band gap for surface plasmon modes thus
preventing them from travelling in any in-plane direction [11]. Furthermore, sur-
face plasmons account for the enhanced optical transmission observed in nanohole
arrays on metal films. The transmission properties can also be influenced by cor-
rugating the metal film, and it is possible to have a fairly collimated beam of light
emerging from a sub-wavelength aperture.

Integrating plasmonic components on a single substrate would create an all-
plasmonic chip that in the future could allow merging optics and electronics at
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nanoscale. Light would first be coupled into surface plasmons, which propagate
through the plasmonic chip, and are then converted back to light again [11]. Strong
local field enhancement associated with the plasmon resonance and the sensitiv-
ity of the resonance to the surrounding environment has been utilized in sensor
applications, such as in detecting biomolecules, and in surface-enhanced Raman
spectroscopy (SERS) where single molecule detection has been achieved [14, 15].

The existence of surface plasmon modes on planar metallic surfaces has also
important implications for the radiative properties of molecules near metal sur-
faces [16–18]. The spontaneous emission rate of a molecule is modified near a
planar interface due to the interaction of the emitter with the field which is reflected
back from the interface. The emission from the molecule can either be enhanced
or inhibited depending on whether the reflected field is in phase or out of phase
at the emitter site. Surface plasmons have been utilized to improve light-emission
efficiencies of semiconductor-based light emitting diodes by coating the semicon-
ductor structures with a thin metal film [13]. Furthermore, not only the radiative
decay rate but also the interaction of molecules with each other is strongly affected
in the presence of metal films. It has been demonstrated that in fluorescence reso-
nance energy transfer (FRET), where the excitation of one molecule is transferred
to another molecule non-radiatively, can be mediated by surface plasmons through
metal films. Emission from molecules and their mutual interactions can thus be
affected by tailoring the nanostructures in which the molecules are embedded.

The results mentioned above have mainly been found for optical near fields
which are fully polarized and spatially fully coherent. From the practical point of
view it is, of course, often appropriate to ignore the possibility of partial polariza-
tion and partial coherence, and to consider the near field as a monochromatic, fully
deterministic field. However, the inclusion of partial polarization and partial coher-
ence in the analysis of optical near fields may lead to appearance of new fundamen-
tal physical phenomena as reported in recent papers [19–22]. Firstly, in contrast
to the conventional half-wavelength lower limit of the spatial coherence length, the
coherence length in the near field of a thermal source may be a fraction of light’s
wavelength or it may extend over several tens of wavelengths when surface plasmon
or phonon polaritons are excited [19, 20]. Secondly, the plasmon excitations may
lead to a quasi-monochromatic spectrum for the near field although the source and
far field have wide-band spectra [21]. Thirdly, even if the source is highly unpolar-
ized, the near field can be highly polarized in the presence of surface plasmons [22].
A key issue that so far has hindered the analysis of fluctuating near fields is the lack
of suitable theoretical methods which would hold for general, three-dimensional
electromagnetic fields such as optical near fields. Indeed, the traditional concepts
of optical coherence theory are, as a rule, valid only for scalar fields or planar, two-
dimensional electromagnetic fields [23–27], e.g., optical beams or far fields where
the evanescent waves play no role. The situation has, however, started to change



– 3 –

very recently and some basic concepts such as the degree of polarization, electro-
magnetic degree of coherence and electromagnetic theory of coherent modes have
been extended to full 3D vectorial fields.

In this Thesis, the (partial) polarization and spatial coherence properties of op-
tical near fields are studied. The transmission of partially polarized light through a
near-field probe is analyzed in terms of the 3D degree of polarization. The enhanced
transmission of light through a single sub-wavelength slit is also investigated. The
electromagnetic coherence theory is applied to study plasmon resonances in metal-
lic nanocylinders, and their effect on the degree of polarization and the degree of
coherence, as well as on the electromagnetic energy transfer in the optical near
field is assessed. The fluorescence resonance energy transfer mediated by plasmon
resonant metallic nanoparticles is also addressed.

This compendium to the thesis is organized as follows: In Sec. 2 some basic the-
oretical methods for analyzing electromagnetic fields are presented. These methods
apply to deterministic fields such as those studied in Papers II and V, but they can
also be utilized in connection with random electromagnetic fields as is done in Pa-
pers I and IV. Section 3 introduces the essential basic concepts of optical coherence
theory pertaining to scalar and planar, two-dimensional electromagnetic fields. In
particular, the extension of these topics to full 3D electromagnetic fields are pre-
sented and their physical interpretation is discussed. These concepts are used to
characterize partially polarized and partially coherent electromagnetic near fields in
Papers I and IV. Also, the representation of a partially coherent field as a superpo-
sition of mutually uncorrelated coherent modes, i.e. the coherent-mode represen-
tation, for both scalar and electromagnetic fields is presented. In Paper III, for the
first time, a fully 3D coherent-mode representation is derived for a certain class of
random electromagnetic fields. The coherent-mode representation is also utilized in
the calculations of scattering of a partially polarized, partially coherent field from
metallic nanocylinders in Paper IV. Section 4 discusses the physical properties of
nano-optical systems which are the subjects of Papers I, II, IV, and V. The spatial
coherence properties of optical near fields, which so far have received relatively lit-
tle attention, are discussed in Sec. 5. The essential role of evanescent waves and
surface plasmons in the coherence phenomena of optical near fields is depicted.
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2 Theoretical methods in electromagnetic theory
In this section, a brief overview of the basic concepts of the theoretical methods in
electromagnetic theory is given. The emphasis is on the space-frequency domain
methods, and in particular on the techniques that are employed in Papers I-V.

2.1 Maxwell’s equations
The microscopic Maxwell’s equations determine the electric and magnetic fields
which are generated by a distribution of discrete charges and currents in vacuum.
Macroscopic electrodynamics deals with fields in matter in terms of local spatial
averages of these microscopic fields [28]. In the macroscopic Maxwell’s equations
the charge and current densities are considered as continuous functions and the
equations are written in SI units as [1]

∇ ·D(r, t) = ρ(r, t), (1)
∇ ·B(r, t) = 0, (2)

∇× E(r, t) = −∂B(r, t)

∂t
, (3)

∇×H(r, t) = J(r, t) +
∂D(r, t)

∂t
. (4)

Here E and H are the electric and magnetic fields, respectively, and D is the electric
displacement and B the magnetic induction. The quantities ρ and J represent the
density of charges and currents that are present in the medium. The vectors D and
B take into account the response of the medium to the electromagnetic field. They
are connected to the polarization, P, and magnetization, M, induced in the medium
by an electromagnetic field through the relations,

D(r, t) = ε0E(r, t) + P(r, t), (5)
B(r, t) = µ0 [H(r, t) + M(r, t)] , (6)

where the quantities ε0 and µ0 are the vacuum permittivity and permeability, respec-
tively.

Constitutive relations

The relation between E and D (B and H) can, in general, be rather complicated. In
a linear and isotropic medium the electric displacement D can be written as [1, 28]

D(r, t) =

∫ t

−∞

∫ ∞

−∞
ε(r− r′, t− t′)E(r′, t)dr′dt′, (7)
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where ε(r − r′, t − t′) is a response function which vanishes for t′ > t due to
causality. The electric displacement D(r, t) at point r and time t depends on the
electric field at r but also on the field values at neighboring points r′ at previous
instants of time t′. The relation of D and E is thus non-local and the medium is said
to be spatially dispersive.

By applying Fourier transform to Eq. (7) with respect to r and t, one obtains

D̃(k, ω) = ε(k, ω)Ẽ(k, ω), (8)

where ε(k, ω) is the dielectric function of the medium at angular frequency ω, and
tilde denotes the Fourier transformed field variables. The effects of spatial disper-
sion, i.e., the dependence of the dielectric function on the wavevector k, can be
seen, for example, at interfaces between different media or in metallic objects with
dimensions comparable to the mean-free path of electrons [1, 29]. However, in
many cases of interest in nano-optics the non-local effects are weak and can be ig-
nored [1]. For local (spatially non-dispersive), homogeneous, isotropic, and linear
media, which may be temporally dispersive, i.e., having material parameters that
depend on ω, the constitutive relations assume the form [1]

D̃(r, ω) = ε(ω)Ẽ(r, ω) (9)
B̃(r, ω) = µ(ω)H̃(r, ω), (10)

with ε(ω) = ε0εr(ω) and µ(ω) = µ0µr(ω) denoting the permittivity and permeabil-
ity respectively. Here εr(ω) and µr(ω) are the relative permittivity and permeability
of the medium, respectively. The relative permeability for all media is practically
equal to one at optical frequencies [1].

The total current density J in Eq. (4) can be split into a source current density
Js and an induced conduction current density Jc. The conduction current density is
related to the electric field via conductivity σ(ω) of the medium as [1]

J̃c(r, ω) = σ(ω)Ẽ(r, ω). (11)

Boundary conditions

On the interface of two media, Maxwell’s equations satisfy the following boundary
conditions [31]

n× (E2 − E1) = 0, (12)
n× (H2 −H1) = K, (13)
n · (D2 −D1) = ρs, (14)
n · (B2 −B1) = 0, (15)
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which are usually deduced from the integral form of Maxwell’s equations. The sub-
scripts refer to medium 1 and medium 2, and n denotes the normal vector pointing
from medium 1 into medium 2. Furthermore, K is the surface current density and ρs

denotes the surface charge density. The four boundary conditions are not indepen-
dent, since they are connected via Maxwell’s equations. The boundary conditions
for the normal components are automatically satisfied if the boundary conditions for
the tangential components hold everywhere on the boundary and Maxwell’s equa-
tions are fulfilled in both domains [1]. The surface current K is zero in the case
of any real material, i.e. for materials that are not perfectly conducting, implying
that the tangential component of the magnetic field is continuous across the inter-
face [30]. It is often a useful idealization to treat the material as being perfectly
conducting as this can significantly simplify the calculations.

Time-harmonic fields

A time-harmonic field oscillates at a single constant frequency and is hence called
also monochromatic field. In reality, no wave is strictly monochromatic since real
waves always comprise a band of frequencies. However, time-harmonic fields have
a special significance since a field with an arbitrary time-dependence can be synthe-
sized as a superposition of time-harmonic fields. Furthermore, the temporal disper-
sion in a system can be taken into account by considering the wave propagation for
time-harmonic fields at different frequencies separately. A monochromatic electric
field can be written as

E(r, t) = Re {E(r) exp(−iωt)} . (16)

By assuming the harmonic time dependence for all the fields in Maxwell’s equa-
tions, one finds that the spatial parts of the fields satisfy

∇ ·D(r) = ρ(r), (17)
∇ ·B(r) = 0, (18)
∇× E(r) = iωB(r), (19)
∇×H(r) = J(r)− iωD(r), (20)

where the complex field amplitudes and the material parameters depend on the an-
gular frequency ω although this dependence is often not explicitly depicted [1].
These equations for the spatial parts of the time-harmonic field, e.g. for E(r),
are similar in form to the equations of the spectral components of arbitrary time-
dependent fields Ẽ(r, ω) and they are in fact identical under formal time-independent
operations, although these fields have different units and differ also in their inter-
pretation [30].
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From Maxwell’s curl equations (3) and (4), one can derive the wave equations
for the electric and magnetic field. With the help of the constitutive relations, and
by introducing the complex dielectric constant with the substitution [1]

[εr + iσ/(ωε0)] → εr, (21)

one obtains the wave equation in a linear, homogeneous, and isotropic medium for
the spatial part of the electric and magnetic fields as

∇×∇× E(r)− k2E(r) = iωµ0µrJs(r), (22)
∇×∇×H(r)− k2H(r) = ∇× Js(r), (23)

where k = k0n is the wavenumber. Here k0 = ω/c is the vacuum wavenumber with
c being the speed of light in vacuum, and n =

√
εrµr is the refractive index of the

medium.

2.2 Dyadic Green’s function
To obtain a solution to the wave equation, it is often useful to work with the dyadic
Green’s function or the field propagator

↔
G (r, r′) [31]. As it will be shown, the

dyadic Green’s tensor gives at position r the electric field E which is generated by
a point dipole at r′.

The propagator
↔
G (r, r′) satisfies the wave equation with a delta function as

source term [31]

∇×∇× ↔
G(r, r′)− k2

↔
G(r, r′) = δ(r− r′). (24)

The solution to the wave equation of Eq. (22), when a source distribution J(r) is
located in volume V , can be expressed as

E(r) = E0(r) + iωµ

∫

V

↔
G(r, r′) · J(r′)d3r′, (25)

where E0(r) is the solution of the homogeneous wave equation and r is a point
located outside V . In a typical scattering problem E0(r) is the incident field which
excites polarization currents in the scatterer bounded by volume V .

The free-space propagator can be expressed as [31]

↔
G(r, r′) =

(
↔
U +

1

k2
∇∇

)
G(r, r′), (26)

with
↔
U denoting the unit tensor and G(r, r′) being the scalar Green’s function

G(r, r′) =
exp(ik|r− r′|)

4π|r− r′| , (27)
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which satisfies

(∇2 + k2)G(r, r′) = −δ(r− r′). (28)

Sometimes one is interested in the field inside a source region. This requires the
use of principal volume to exclude the singularity of G(r, r′) at r = r′ [32,33]. The
depolarization of the principal volume results in an additional term in the volume
integral equation which depends on the geometrical shape of the volume. Further-
more, a second correction term arises in numerical schemes due to the finite size of
the principal volume [34].

In nano-optics one is often interested in the electric field which is generated by
an electric point dipole of dipole moment p located at r′ in vacuum, for which the
current density has the form J(r) = −iωpδ(r − r′). The field is given in terms of
the dyadic Green’s function as [1]

E(r) = ω2µ0

↔
G (r, r′) · p. (29)

Sometimes the factor ω2µ0 is included in the definition of the Green’s tensor [35].
As the dyadic Green’s tensor characterizes the electromagnetic response of the sys-
tem, several important quantities such as the local density of states of the electro-
magnetic field, and the environment-induced changes in the radiative properties of
molecules can be directly obtained once the dyadic Green’s function of the system
is known.

2.3 Coupled-dipole method
Equation (25) gives the electric field outside a source distribution. In practice, the
volume integral can be approximated as a sum over finite volume elements ∆V .
In the coupled-dipole method one considers the field that excites a given volume
element ∆V [1]. In particular, for a system which consists of N small individual
scatterers, e.g. of small metal particles as in Paper V, each of these is considered
as a point dipole. Larger particles can be handled by dividing them into smaller
dipolar subvolumes.

Treating each of the N coupled volume elements as a point dipole yields for the
electric field outside the particles [1]

E(r, ω) = E0(r, ω) + ω2µ

N∑
n=1

↔
G (r, rn, ω) · pn. (30)

The dipole moment pn is proportional to the exciting field Eexc(rn, ω) which con-
sists of E0(rn, ω) and the fields scattered by the other particles

pn =
↔
αn (ω) · Eexc(rn, ω). (31)
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Here
↔
αn(ω) is the polarizability tensor of particle n. The exciting field Eexc(rn, ω)

is not in general equal to the field that is actually present at the location of the
particle as it neglects the contribution due to self-interaction [34]. However, the
influence of the particle to the field at its center can be included in the polarizability
tensor. Combining Eqs. (30) and (31) one finds that the unknown dipole moments
are determined by the following system of coupled equations [34]

pk =
↔
αk (ω) · E0(rk, ω) +

N∑
n=1
n6=k

↔
αk (ω)· ↔G0 (rk, rn, ω) · pn, (32)

where k = 1, . . . , N . In practice, this equation is solved numerically, and once the
dipole moments are known, the electric field outside the particles can be calculated
from Eq. (30).

2.4 Boundary-integral method
In the case of scattering problems in systems that are invariant in one direction, say
z, Maxwell’s equations reduce to two independent sets of equations [23,30]. These
sets describe a transverse electric (TE) field, having components (Ez, Hx, Hy), and
a transverse magnetic (TM) field with components (Hz, Ex, Ey). An electromag-
netic field can be decomposed into TE- and TM-components, which can be analyzed
separately since they are not coupled. The TE and TM polarizations can both be de-
scribed in terms of a single scalar variable ψ, which represents the z-component of
the electric field in the case of TE-polarization and the z-component of the mag-
netic field in the case of TM-polarization. The decomposition of the field into its
TM and TE components allows the solution to a scattering problem be expressed as
an integral equation for the scalar field ψ, which is utilized in Papers I, II, and IV.
From the vector wave equations in the absence of the source terms, Eqs. (22) and
(23), we obtain the scalar Helmholtz equation for ψ as

(∇2 + k2)ψ(r) = 0. (33)

The Green’s function for the two-dimensional (2D) scalar Helmholtz equation is
given by [31]

G(r, r′) =
i

4
H

(1)
0 (k|r− r′|), (34)

where H
(1)
0 is the zeroth order Hankel function of the first kind, and r and r′ are

referred to as the field and the source point, respectively. The 2D Green’s function
satisfies the inhomogeneous Helmholtz equation with a δ-function source term in
Eq. (28), where in the 2D case the operator is ∇2 = ∂2/(∂x2) + ∂2/(∂y2).
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The solution to the Helmholtz equation in a (closed) region can be obtained
in terms of an integral over the boundaries of the region. The integral equation is
derived by applying the Green’s theorem [30]

∫

A

(
G∇2ψ − ψ∇2G

)
da =

∮

s

[
G

∂

∂n
ψ − ψ

∂

∂n
G

]
ds, (35)

where ∂/∂n denotes the derivative in the direction of the outward normal vector
to the curve s bounding the closed region A. By excluding the singular point r =
r′ from A with a circle of infinitesimal radius, one obtains the boundary-integral
equation for the scalar field ψ(r) inside the region A as [36]

ψ(r) =

∮

s

[
G(r, r′)

∂

∂n′
ψ(r′)− ψ(r′)

∂

∂n′
G(r, r′)

]
ds′. (36)

The normal derivative of the Green’s function in this equation is explicitly written
as

∂

∂n′
G(r, r′) =

ik

4
H

(1)
1 (k|r− r′|) cos α, (37)

where α is the angle between the normal vector and the vector r− r′.
In a system consisting of multiple sub-domains of a homogeneous and isotropic

material, the field in each sub-domain l can be calculated in terms of the corre-
sponding boundary values according to Eq. (36) as

ψl(r) =

∮

sl

[
Gl(r, r

′)
∂

∂n′
ψl(r

′)− ψl(r
′)

∂

∂n′
Gl(r, r

′)
]

ds′. (38)

The boundary conditions of Eqs. (12)–(15) connect the values of ψ and its normal
derivative between two adjacent regions. In the case of media that are not perfectly
conducting (K = 0) and in the absence of other than polarization induced charges
(ρs = 0), it follows that a TE-polarized field ψ and its normal derivative satisfy at
the boundary of media 1 and 2 the equations

ψ1 = ψ2, (39)
1

µ1

∂ψ1

∂n1

= − 1

µ2

∂ψ2

∂n2

. (40)

For a TM-polarized field one has

ψ1 = ψ2, (41)
1

ε1

∂ψ1

∂n1

= − 1

ε2

∂ψ2

∂n2

. (42)
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Poynting vector and the optical theorem

One is often interested in the direction and magnitude of energy flow in nano-optical
systems. Within this Thesis, this is of particular interest in analyzing the enhanced
optical transmission through sub-wavelength apertures in metal films (see Sec. 4.2)
which is the topic of Paper II. The time-averaged Poynting vector which character-
izes the net power flux density is [1]

〈S(r)〉 =
1

2
Re {E(r)×H∗(r)} , (43)

which in terms of the scalar function ψ for a TE-polarized field can be written as

〈STE(r)〉 =
1

2ω
Re

{
i

µ∗(r, ω)
ψ(r)∇ψ∗(r)

}
, (44)

and as

〈STM(r)〉 =
1

2ω
Re

{
− i

ε(r, ω)
ψ∗(r)∇ψ(r)

}
, (45)

for a TM-polarized field.
In a typical 2D scattering problem a plane-wave is incident on a finite-sized

scatterer which is embedded in a non-absorbing medium. One is often interested
in the power P which is extracted from the incident wave ψinc. The total power
consists of two parts: the absorbed power Pabs and the scattered power Psc. The
power Pabs absorbed by the scatterer is obtained by integrating the Poynting vector
over the boundary s of the scatterer

Pabs = −
∫

s

〈S(r)〉 · n̂ds. (46)

The scattered power Psc is calculated by integrating the time-averaged Poynting
vector of the scattered field ψsc = ψ−ψinc over a cylindrical boundary s′ enclosing
the scatterer

Psc =

∫

s′
〈Ssc(r)〉 · n̂ds′. (47)

The total extracted power normalized by the irradiance I of the incident field defines
the extinction cross-section σext = P/I which has the dimension of length [37]. The
extinction cross-section is equal to the sum of the scattering and absorption cross-
sections σsc = Psc/I and σabs = Pabs/I , respectively. The extinction cross-section
can be obtained from the two-dimensional form of the optical theorem [37–39] as
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follows: The total field in the far zone can be expressed in terms of the incident and
scattered fields as

ψ(r) = ψinc(r) + ψsc(r) ∼ exp(ik · r) + f(θ,k)
exp(ikr)√

r
, (48)

where f(θ,k) is the differential scattering amplitude and r = |r|. The geometry
of the scattering problem consists of a boundary at infinity and the boundary of the
scatterer. The incident field satisfies the integral equation of Eq. (36) which allows
the scattered field to be written as [37, 38]

ψsc(r) =

∫

s

[
G(r, r′)

∂

∂n′
ψsc(r

′)− ψsc(r
′)

∂

∂n′
G(r, r′)

]
ds′, (49)

where there is no contribution from the boundary at infinity since the scattered field
satisfies the radiation condition [37]. By using the asymptotic form of the Hankel
function [40]

H
(1)
0 (z) ∼

√
2

πz
exp[i(z − π/4)], (50)

the scattered field in the far zone can be evaluated, and by comparison to Eq. (48)
the differential scattering amplitude is seen to be [38]

f(θ,k) =
1 + i

4
√

πk

∫

s

exp(−ir′kf · r′)
[

∂

∂n′
ψsc(r

′) + ik · n̂′ψsc(r
′)
]

ds′, (51)

where kf = (k cos θ, k sin θ) and θ is the detection angle. The optical theorem states
that extinction (absorption and scattering) depends only on the scattering amplitude
in the forward direction. By denoting kf = k = (k cos φ, k sin φ) the extinction
cross-section can be written as [38]

σext = 2

√
π

k
Im{(1− i)f(θ = φ,k)}, (52)

which for non-absorbing scatterers is equal to the scattering cross-section σsc =∫ 2π

0
|f(θ,k)|2dθ. The scattering and absorption cross-sections are important pa-

rameters in characterizing the properties of a scatterer. For instance, in the context
of this Thesis, when considering the response of metal nanocylinders to electromag-
netic, these cross-sections are known to exhibit resonances for certain wavelengths
when a plasmon resonance is excited (see Sec. 4.3). In particular, the wavelengths
of these resonances for individual and interacting nanocylinders, a problem studied
in Paper IV, are obtained by analyzing the spectral behavior of the scattering and
absorption cross-sections.
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Numerical implementation

The numerical solution to the boundary-integral equation can be obtained by us-
ing the boundary-element method (BEM) [41–43]. In dealing with surface-integral
equations, BEM is often used synonymously with the ’method of moments’ [44].
BEM has been widely employed in solving electromagnetic problems [45] includ-
ing waveguide discontinuities [46], near-field microscopy [47–49], surface scatter-
ing [50], and cavity resonances [38]. Given the close analogy between the Helmholtz
and Schrödinger equations [50], the surface integral formulation using BEM has
also been applied to solving electronic states in semiconductor heterostructures
[51, 52].

In BEM, the boundaries are discretized into finite elements. The shape of the
element is determined by the node points ri and the shape functions (interpolation
polynomials) N(ξ), e.g., for a linear element with node points at both ends of the
element, we have

r(ξ) = N1(ξ)r1 + N2(ξ)r2, (53)

with N1(ξ) = (1 − ξ)/2, N2(ξ) = (1 + ξ)/2, and ξ running from −1 to +1. The
shape functions for higher-order elements (quadratic, cubic, etc.) can be generated
in a straightforward way [43]. The values of the field ψ and its normal derivative
on the element are determined from the values at the nodes of the element using the
interpolation functions.

In order to be able to calculate the field inside a closed region using the boundary-
integral method, the field ψ and its normal derivative ψ′ must be known at the
boundary. To solve these two boundary unknowns, the scalar function ψ(ri) is
evaluated for each node ri using the boundary integral of Eq. (38). The Green’s
function and its normal derivative have singularities at ri = r′ which requires a
special treatment. The singular point is handled by deforming the boundary around
the singular point with an arc of radius ε and taking the limit as ε → 0. Using the
small-argument expansions for the Hankel function and its derivative [40]

lim
z→0

H
(1)
0 (z) ∼ 2i

π
ln z, (54)

lim
z→0

d

dz
H

(1)
0 (z) ∼ 2i

πz
, (55)

the integral along the arc becomes [43]

1

2π

∫
{−ε ln ε [n̂ · ∇′ψ(r′)] |r′=ri

+ ψi(r
′)|r′=ri

} dθ. (56)

In the limit ε → 0, the first term vanishes and the second term gives a contribution
∆θi/(2π)ψ(ri), where ∆θi is the angle traversed around the singular point ri, which
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for a straight segment evaluates to ψ(ri)/2. The boundary integral of Eq. (36) at
node i can be written in a discretized form as a sum over the elements (subscript α)
and element nodes (subscript j)

(1− Ci)ψi =
∑

α

∑
j

(Gα,jψ
′
α,j +Hα,jψα,j

)
, (57)

with Ci = ∆θi/(2π), and ψα,j and ψ′α,j denoting the field and its normal derivative
at node j. The coefficients Gα,j and Hα,j consist of integrals involving the Green’s
function and its normal derivative and the interpolation functions Nα,j(ξ) over the
element α.

These integrals are evaluated by using Gaussian quadratures. Integration over
the element involving the singular node can be treated in a straightforward way.
The singularity of the Green’s function is of the logarithmic type and can be han-
dled using a suitable quadrature [43]. The accuracy can be further improved with
an appropriate coordinate transformation [53]. The integration of the term involv-
ing the normal derivative of the Green’s function gives zero for a straight segment
because the normal vector is perpendicular to r−r′. For a curved element, this term
is also integrable as the singularity is compensated by the term

cos α ∼ 1

2
κ|r− r′|, (58)

where the curvature κ is finite for a smooth boundary [38].
The treatment of corner points in BEM requires some care as the normal deriva-

tives in two elements terminating at the corner node can be different. There exist
several methods for dealing with this ambiguity [43]. For example, one can pull
back the nodes from the two elements so that they no longer coincide, or one can
round out the corner so that the normal derivative is uniquely defined. A more so-
phisticated solutions involves the use of Hermite interpolation polynomials for both
the field and its normal derivative instead of Lagrange interpolation. The Hermite
interpolation allows imposing derivative continuity at the nodes which can also en-
hance the accuracy of the results [43].

Once the integrations over the elements are performed, the coefficients for each
boundary node can be collected. If the number of boundary nodes is N , one has
4N unknowns, namely the scalar function ψ and its normal derivative in the regions
on both sides of the node. With the help of the boundary conditions, the boundary
values in the region below the node can be expressed in terms of the values for the
region above the node. In a 2D scattering problem, the system of equations can be
written in a matrix form as

Mx = y, (59)
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where M is a 2N ×2N block matrix, x is a vector of size 2N ×1 comprising of the
values of the field and its normal derivative at the nodes, and y is a 2N × 1 vector
which contains the contribution of the incident field. Once the boundary values have
been solved, the field inside the boundary can be calculated from Eq. (36).

BEM resembles closely the finite-element method (FEM) [54] with the impor-
tant difference that only the boundaries of homogeneous regions in the system need
to be discretized. Furthermore, the finite computational domain is not a problem
in BEM, e.g., the radiation condition which is satisfied by the scattered field can
be directly imposed. This is a significant simplification in scattering calculations
as there is no need to eliminate the influence of a finite computational domain us-
ing, for example, a perfectly matched layer as in FEM or in the finite-difference
time-domain (FDTD) method [55].

The TE/TM-decomposition brings about a great computational simplification as
it allows one to work with a single scalar function, but it cannot be used in dealing
with a general three-dimensional (3D) scattering problem. However, the surface
integral formulation of the scattering problem is also attractive for 3D problems,
as the dimensionality of the problem is reduced by one and the radiation condition
is taken into account automatically. There exists a variety of different forms of
surface integral equations for the electric and magnetic fields [56–58]. An imple-
mentation of 3D BEM for an electromagnetic scattering problem utilizing dyadic
Green’s functions [58] and a direct method of integration of the strongly [59, 60]
and weakly singular integrals [53] has been presented in Ref. [61].

2.5 Angular spectrum representation
A useful mathematical technique for studying wave fields in homogeneous media
is the angular spectrum representation which is based on plane-wave expansions of
the wave fields [24,50]. This representation has an intuitive physical interpretation,
although it is restricted to deal with fields in source-free half space or in a domain
which is bounded by two mutually parallel planes [24]. The representation can
be used to deal with both deterministic and random fields, and in Paper IV it is
applied to propagation of the coherent modes of a random field (see Sec. 3.4). In
this section, the angular spectrum representation for a monochromatic scalar field
will be presented.

Consider a monochromatic wavefield

V (r, t) = U(r) exp(−iωt) (60)

inside a slab D which is limited by two planes at z = 0 and z ≤ Z. The slab
consists of homogeneous material with refractive index n(ω) and all the sources of
the field are assumed to be located outside D. The spatial part U(r) satisfies the
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Helmholtz equation (33). Assuming that in any plane with constant z inside the
slab, the field can be expressed as a Fourier integral

U(x, y, z) =

∫∫ ∞

−∞
U(u, v; z) exp[i(ux + vy)]dudv, (61)

it follows by inserting this into the Helmholtz equation (33) that U(u, v; z) satisfies

∂U(u, v; z)

∂z2
+ w2U(u, v; z) = 0, (62)

with

w =

{
+(k2 − u2 − v2)1/2 when u2 + v2 ≤ k2,

+i(u2 + v2 − k2)1/2 when u2 + v2 > k2.
(63)

Using the general solution of the differential equation (62), the field inside the
slab can be expressed as [24]

U(x, y, z) =

∫∫ ∞

−∞
A(u, v) exp[i(ux + vy + wz)]dudv

+

∫∫ ∞

−∞
B(u, v) exp[i(ux + vy − wz)]dudv, (64)

where A(u, v) and B(u, v) are arbitrary functions. The result for a field which prop-
agates into the half-space z ≥ 0 and whose sources are located in z < 0, is obtained
in the limit Z → ∞ in which case B(u, v) in Eq. (64) vanishes [24]. The angular
spectrum representation for such a field consists of two kinds of plane waves [24].
The plane waves with u2 + v2 ≤ k2 describe homogeneous waves which propagate
into the half-space z ≥ 0. The waves with u2 + v2 > k2 are inhomogeneous waves
whose amplitudes decay exponentially with increasing distance z from the plane at
z = 0.

From the angular spectrum representation, it is seen that the spectral amplitudes
A(u, v) of each plane-wave component are given by the Fourier transform of the
field U0(x, y) = U(x, y, 0) at the plane z = 0:

A(u, v) = Ũ0(u, v). (65)

If the field is known at the plane z = 0, it is known throughout the half-space z ≥ 0
in terms of the angular spectrum representation of the field. The angular spectrum
representation for electromagnetic fields can be derived in an analogous manner to
the scalar case [1, 50].
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3 Electromagnetic theory of optical coherence
The methods presented in the previous section deal with deterministic fields. In
reality, there always exist some random fluctuations and the current and charge
densities as well as the electric and magnetic fields are never strictly deterministic.
In order to analyze the fluctuating electromagnetic fields, it is necessary to employ
tools provided by the optical coherence theory [23–27].

In this section, the basic concepts of the second-order electromagnetic coher-
ence theory in the space-frequency domain are introduced. In particular, the em-
phasis is on certain known results applicable to scalar fields and on their recent
extension to arbitrary three-dimensional electromagnetic fields. The electromag-
netic extension is required in order to deal with the coherence properties of, e.g.,
optical near-fields which are the topics of Papers I and IV. Furthermore, in Paper III
the electromagnetic coherent-mode representation is explicitly derived for certain
type of fluctuating fields.

3.1 Cross-spectral density tensors
The second-order coherence properties of a fluctuating electromagnetic field are
characterized by the electric, magnetic, and two mixed-field coherence tensors [24].
For stationary fields the electric space-time coherence matrix is defined by the for-
mula

Ejk(r1, r2, τ) = 〈E∗
j (r1, t)Ek(r2, t + τ)〉, (66)

where (j, k) = (x, y, z) denote the Cartesian components of the electric field. The
asterisk denotes complex conjugation and the angle brackets stand for ensemble
averaging which for ergodic fields is equal to time averaging [24]. According to the
generalized Wiener-Khintchine theorem, the electric cross-spectral density tensor
and the electric coherence tensor are related to each other via [24]

W
(e)
jk (r1, r2, ω) =

1

2π

∫ ∞

−∞
Ejk(r1, r2, τ) exp(iωτ)dτ, (67)

Ejk(r1, r2, τ) =

∫ ∞

0

W
(e)
jk (r1, r2, ω) exp(iωτ)dω, (68)

i.e., they form a Fourier transform pair. The lower limit in the latter integral is zero
because the analytic signal representation of the fields is used [24]. Similar relations
hold also for the three other cross-spectral density tensors.

The four cross-spectral density tensors may also be introduced via the Fourier



– 18 –

transforms of the electric and magnetic fields as [24]

〈Ẽ∗
j(r1, ω)Ẽk(r1, ω

′)〉 = W
(e)
jk (r1, r2, ω)δ(ω − ω′), (69)

〈H̃∗
j(r1, ω)H̃k(r1, ω

′)〉 = W
(h)
jk (r1, r2, ω)δ(ω − ω′), (70)

〈Ẽ∗
j(r1, ω)H̃k(r1, ω

′)〉 = W
(m)
jk (r1, r2, ω)δ(ω − ω′), (71)

〈H̃∗
j(r1, ω)Ẽk(r1, ω

′)〉 = W
(n)
jk (r1, r2, ω)δ(ω − ω′), (72)

where the Dirac delta function is a consequence of stationarity and shows that
the different frequency components of a stationary field are uncorrelated. The
four cross-spectral density tensors are not independent since they are coupled via
Maxwell’s equations.

The electric and magnetic cross-spectral density tensors have the property
[
W

(e,h)
kj (r2, r1, ω)

]∗
= W

(e,h)
jk (r1, r2, ω), (73)

and they satisfy the following non-negative definiteness condition [24]
∫

d3r1

∫
d3r2f

∗
j (r1)fk(r2)W

(e,h)
jk (r1, r2, ω) ≥ 0, (74)

where fj(r) are arbitrary well-behaved functions of position [24].
When points r1 and r2 coincide (r = r1 = r2), the matrix W

(e)
jk (r, r, ω) forms a

3× 3 Hermitian matrix called the spectral coherence matrix

φjk(r, ω) = W
(e)
jk (r, r, ω), (75)

where the diagonal elements of φjk are the spectral densities associated with the
electric field component Ej(r, ω). The sum of the diagonal components, i.e., the
trace (tr) of φjk(r, ω), gives the total spectral density of the electric field. The off-
diagonal components, φjk(r, ω), j 6= k, characterize the correlations between the
orthogonal field components of the electric field at point r.

For the mixed cross-spectral density tensors, the following symmetry relation
holds

[
W

(m)
kj (r2, r1, ω)

]∗
= W

(n)
jk (r1, r2, ω). (76)

The average Poynting vector can be written in terms of the mixed cross-spectral
tensors as [24]

〈Sk(r)〉 =
1

4

∑

lm

εklm[W
(m)
lm (r, r, ω)−W

(n)
lm (r, r, ω)], (77)
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where εklm is the Levi-Civita antisymmetric unit tensor. This form of the average
Poynting vector is used in Paper IV to characterize the flow of energy in nanocylin-
der chains illuminated by a partially coherent field.

It has been shown that the cross-spectral density tensors are correlation tensors
that can be expressed as averages over an ensemble of strictly monochromatic re-
alizations at the same frequency [62, 63]. This property allows, for example, the
electric cross-spectral density tensor to be written as an average over the ensemble
{E(r, ω) exp(iωt)} as

W
(e)
jk (r1, r2, ω) = 〈E∗

j (r1, ω)Ek(r2, ω)〉, (78)

where it should be emphasized that Ei(r, ω) (i = j, k) is not the Fourier transform
of Ei(r, t).

In the following, quantities describing the polarization and coherence of electric
fields are considered. From here onwards the superscript e is left out for brevity,
and W is understood to refer to the electric cross-spectral density tensor unless
otherwise stated.

3.2 Degree of polarization
Planar fields

For a planar electromagnetic field propagating in the z-direction, with the electric
field oscillating in the xy-plane, the polarization statistics is described by the 2× 2
spectral coherence matrix

Φ2(r, ω) =

(
φxx(r, ω) φxy(r, ω)
φyx(r, ω) φyy(r, ω)

)
. (79)

The coherence matrix Φ2(r, ω) can be uniquely expressed as a sum of two matrices,
one of which represents completely unpolarized light and is proportional to the
2 × 2 unit matrix, and another (Φpol

2 ) which represents completely polarized light.
The degree of polarization of the planar field can be defined as a ratio of the spectral
density of the polarized part to that of the total field [24]

P2 ≡ trΦpol
2

trΦ2

=

(
1− 4 det Φ2

tr2Φ2

)1/2

= 2

{
tr [Φ2

2(r, ω)]

tr2 [Φ2(r, ω)]
− 1

2

}1/2

. (80)

The degree of polarization, P2, is bounded to the interval 0 ≤ P2(r, ω) ≤ 1 with
P2 = 1 corresponding to a completely polarized and P2 = 0 to a completely unpo-
larized plane wave.
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Alternatively, the degree of polarization can be described in terms of the four
Stokes parameters [24, 27]

S0(r, ω) = φxx(r, ω) + φyy(r, ω), (81)
S1(r, ω) = φxx(r, ω)− φyy(r, ω), (82)
S2(r, ω) = φxy(r, ω) + φyx(r, ω), (83)
S3(r, ω) = i [φyx(r, ω)− φxy(r, ω)] . (84)

The parameter S0(r, ω), gives the spectral density of the field. The parameter
S1(r, ω) describes the excess in spectral density of the x component over that of
the y component of the field. The parameter S2(r, ω) represents the excess of +45◦

linearly polarized component over−45◦ linearly polarized component, and S3(r, ω)
the excess in the spectral density of the right-hand circularly polarized field compo-
nent over the left-hand circularly polarized one [23, 27].

The Stokes parameters appear as expansion coefficients when the coherence
matrix is expanded in terms of the 2× 2 unit matrix σ0 and the three Pauli matrices
σj (j = 1, 2, 3) as

Φ2(r, ω) =
1

2

3∑
j=0

Sj(r, ω)σj. (85)

Inserting this expansion into Eq. (80) gives the degree of polarization in terms of
the four Stokes parameters as [24, 27]

P2(r, ω) =
[S2

1(r, ω) + S2
2(r, ω) + S2

3(r, ω)]
1/2

S0(r, ω)
. (86)

Non-planar fields

Next the extension of the previous formalism to arbitrary three-dimensional (non-
planar) fields [64, 65] will be considered . For such a field the 3× 3 spectral coher-
ence matrix is

Φ3(r, ω) =




φxx(r, ω) φxy(r, ω) φxz(r, ω)
φyx(r, ω) φyy(r, ω) φyz(r, ω)
φzx(r, ω) φzy(r, ω) φzz(r, ω)


 . (87)

Unlike in the case of planar fields, Φ3 cannot generally be expressed as a sum of a
completely unpolarized (proportional to 3×3 unit matrix) and completely polarized
part. However, the generalization of the degree of polarization to non-planar field
can be obtained by considering the expansion of Φ3 in terms of proper basis matri-
ces. This is the approach taken by Setälä et al. in Refs. [64,65] where the 3× 3 unit
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matrix λ0 and the eight Gell-Mann matrices λj (j = 1, . . . , 8) are used as basis. In
this basis the coherence matrix is written as [27, 64]

Φ3(r, ω) =
1

3

8∑
j=0

Λj(r, ω)λj, (88)

where the nine expansion coefficients Λj are called 3D (spectral) Stokes parameters
[64]. The degree of polarization, P3, of an arbitrary 3D electromagnetic field is
defined by the formula [22, 64] (see also [66, 67])

P 2
3 (r, ω) =

1

3

∑8
j=1 Λ2

j(r, ω)

Λ2
0(r, ω)

=
3

2

{
tr [Φ2

3(r, ω)]

tr2 [Φ3(r, ω)]
− 1

3

}
. (89)

More recently, the same form has also been put forward by Luis, who has formu-
lated the degree of polarization as a distance between the coherence matrix of the
field and the identity matrix representing completely unpolarized 3D light [68]. The
physical meaning of P3 becomes transparent by writing it in a coordinate system
which is oriented in such a way that φxx(r, ω) = φyy(r, ω) = φzz(r, ω). Such an
orientation can always be found [64]. In this specific coordinate system P 2

3 has the
form [64, 65]

P 2
3 (r, ω) =

|µxy(r, ω)|2 + |µxz(r, ω)|2 + |µyz(r, ω)|2
3

, (90)

where the quantities

µjk(r, ω) =
φjk(r, ω)

[φjj(r, ω)φkk(r, ω)]1/2
(91)

are the normalized off-diagonal elements of the coherence matrix. The 3D degree
of polarization is seen to be a measure for the average correlations between the three
orthogonal electric field components.

The value of P3 is bounded to the interval 0 ≤ P3 ≤ 1 like P2 [64]. It is
also invariant under unitary operations, e.g., rotations of coordinates system, since
these do not change the value of trace. However, the 2D and 3D formalisms do
not, in general, give the same value for the degree of polarization of a planar field
[64]. For such a field, the 3D degree of polarization is restricted to the values
0.5 ≤ P3 ≤ 1 with the value P3 = 1/2 corresponding to a plane wave which in
2D sense is completely unpolarized (P2 = 0). The dependence of the value of the
degree of polarization on the dimensionality of the problem has been studied in
connection with intensity correlations of fields obeying Gaussian statistics [69].

There has recently been an extensive discussion in the literature on the extension
of the degree of polarization to non-planar fields, and some other definitions for the
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degree of polarization have also been proposed (for review, see [70]). Besides con-
siderations based on classical coherence theory, the degree of polarization for 3D
quantum light fields based on Stokes parameters, which in quantum optics are repre-
sented by Stokes operators, has also been put forward [71]. In the quantum domain
the polarization is fundamentally a 3D phenomenon as it involves the fluctuations
of all three field components even in the vacuum state [71]. However, the adequacy
of the Stokes parameters that characterize only the second-order correlations of the
field amplitudes, has been questioned for describing quantum fields [72]. For these
fields, higher-order correlations are also important, and the Stokes parameters do
not necessarily distinguish quantum states even though they have significantly dif-
ferent polarization properties. In particular, the degree of polarization (2D) can be
zero for field states that cannot be considered as unpolarized [73]. The 3D degree
of polarization presented in Eq. (89) is adequate for describing classical non-planar
fields such as optical near-fields [22] which are also studied in Papers I and IV, or
tightly focused beams [74, 75].

3.3 Electromagnetic degree of coherence
In scalar theory, the spectral degree of coherence |µ(r1, r2, ω)|, which characterizes
at angular frequency ω the second-order field correlations at points r1 and r2, is
given by [24]

|µ(r1, r2, ω)| = |W (r1, r2, ω)|
[S(r1, ω)S(r2, ω)]1/2

. (92)

Here W (r1, r2, ω) is the cross-spectral density and S(rj, ω) = W (rj, rj, ω) (j =
1, 2) is the spectral density. The values of the spectral degree of coherence are
limited to 0 ≤ |µ(r1, r2, ω)| ≤ 1 with the upper bound corresponding to a spatially
fully coherent field. For such a field the cross-spectral density has a factorized form
in the spatial coordinates r1 and r2 [24]. Furthermore, when r1 and r2 coincide,
spectral degree of coherence has the value |µ(r, r, ω)| = 1. The spectral degree of
coherence in the context of scalar fields, describes under suitable conditions, the
visibility of intensity fringes in the classical Young’s two-pinhole experiment [24].

The generalization of the spectral degree of coherence to electromagnetic fields
has been proposed, akin to the scalar case, by considering the visibility of inter-
ference fringes in Young’s experiment [76, 77]. However, there are some problems
with this definition [78, 80–84] which have lead to an alternative definition of the
spectral degree of coherence for electromagnetic fields [78–80] as

ζ(r1, r2, ω) =
‖ ↔

W (r1, r2, ω)‖F[
tr

↔
W (r1, r1, ω)

]1/2 [
tr

↔
W (r2, r2, ω)

]1/2
. (93)
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In this equation

‖ ↔
W (r1, r2, ω)‖F = tr

[ ↔
W (r1, r2, ω)· ↔

W
†
(r1, r2, ω)

]1/2

=
[∑

i,j

|Wij(r1, r2, ω)|2
]1/2

, (94)

denotes the Frobenius norm and the dagger stands for the Hermitian adjoint. Re-
cently it has been shown that the electromagnetic degree of coherence ζ is a mea-
sure of both the visibility of the intensity fringes (modulation in the Stokes param-
eter S0) and the modulation contrasts of the three polarization Stokes parameters
(S1, S2, S3) in Young’s double-slit interference experiment [85, 86]. The quantity
ζ(r1, r2, ω) is real and limited to the values 0 ≤ ζ(r1, r2, ω) ≤ 1 like its scalar coun-
terpart |µ(r1, r2, ω)|. In fact, for uniformly polarized waves, ζ(r1, r2, ω) reduces to
the spectral degree of coherence |µ(r1, r2, ω)| for scalar waves. Furthermore, like
in the scalar case, the cross-spectral density tensor factors in its two spatial vari-
ables if and only if ζ(r1, r2, ω) = 1. The factorization property can be considered
to be a fundamental property of a completely coherent field [87]. The definition of
Eq. (93) is applicable for scalar fields, electromagnetic beams as well as for arbi-
trary 3D fields which are encountered in near-field optics.

For electromagnetic fields, the quantity ζ(r1, r2, ω), when evaluated for r =
r1 = r2, is related to the degree of polarization, in the case of 2D beams, as

ζ(r, r, ω) = [(P 2
2 (r, ω) + 1)/2]1/2 (95)

and as
ζ(r, r, ω) = [(2P 2

3 (r, ω) + 1)/3]1/2, (96)

in the case of 3D fields. Thus, in the electromagnetic case, the equal-point degree
of correlations equals unity if and only if the field is completely polarized [78, 80].

3.4 Coherent-mode representation
The coherent-mode representation of scalar fields [62] is an important tool that has
been applied to a number of radiation and propagation, and scattering problems.
In this section a brief summary of the basic concepts pertaining to the coherent-
mode representation of fluctuating, statistically stationary scalar fields [24] and the
extension of the representation to full vector fields [63, 88] is presented.

Scalar fields

At any frequency ω, the coherence properties of the field at two points in space, r1

and r2, are described by the cross-spectral density function, defined by the Fourier
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transform
W (r1, r2, ω) =

1

2π

∫ ∞

−∞
Γ(r1, r2, τ) exp(iωτ)dτ, (97)

where
Γ(r1, r2, τ) = 〈U∗(r1, t)U(r2, t + τ)〉 (98)

is the mutual coherence function. The function U(r, t) is the complex analytic
signal associated with the random scalar field and the mutual coherence function
Γ(r1, r2, τ) characterizes the field correlations between the two points at time differ-
ence τ . The scalar cross-spectral density functions are Hermitian and non-negative
definite Hilbert-Schmidt kernels, and therefore they admit the following Mercer se-
ries representation [24]

W (r1, r2, ω) =
∑

n

αn(ω)ψ∗n(r1, ω)ψn(r2, ω). (99)

The quantities αn(ω) and ψn(r, ω) are the eigenvalues and eigenfunctions, respec-
tively, of a homogeneous Fredholm integral equation of the second kind

∫

D

W (r1, r2, ω)ψn(r1, ω)d3r1 = αn(ω)ψn(r2, ω), (100)

where the integration is performed over the domain D. By defining the inner prod-
uct of two functions a(r) and b(r) over D to be

{a(r), b(r)}D ≡
∫

D

a∗(r)b(r)d3r, (101)

the set of eigenfunctions can be chosen to be orthonormal, i.e.,

{ψm(r, ω), ψn(r, ω)}D = δmn, (102)

where δmn is the Kronecker delta. The factors ψn(r, ω) satisfy the Helmholtz equa-
tion, and thus each term in the summation in Eq. (99) likewise obeys a pair of
Helmholtz equations. Since the terms in the summation are of a spatially factored
form, they represent elementary modes which are completely coherent, and there-
fore, Eq. (99) is called the coherent-mode representation of the cross-spectral den-
sity function [24, 62].

Electromagnetic fields

The extension of the coherent-mode decomposition to partially polarized paraxial
[88] and full three-dimensional vector fields [63] has recently been introduced. The
coherent-mode representation of electromagnetic fields is constructed in analog to
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that of scalar fields. The electric cross-spectral density tensor, which satisfies the
specific Hermiticity, non-negative definiteness, and square-integrability conditions,
can be expanded as a Mercer series of the form [63, 88]

↔
W (r1, r2, ω) =

∑
n

λn(ω)ψ∗
n(r1, ω)ψn(r2, ω), r1, r2 ∈ D, (103)

when the inner product for vector-valued complex functions in the volume D is
defined to be

{A(r),B(r)}D ≡
∫

D

A∗(r) ·B(r) d3r. (104)

In Eq. (103) the quantities λn(ω) and ψn(r, ω) are the eigenvalues and vector-
valued eigenfunctions, respectively, of the homogeneous Fredholm integral equa-
tion of the second kind

∫

D

ψn(r1, ω)· ↔
W (r1, r2, ω)d3r1 = λn(ω)ψn(r2, ω). (105)

The eigenvalues are real and non-negative, and the eigenfunctions form an orthonor-
mal set in the sense that

{ψn(r, ω),ψm(r, ω)}D = δnm. (106)

Although the orthogonality does not automatically hold if an eigenvalue is degen-
erate, the corresponding eigenfunctions can always be made orthogonal.

It can be shown that the factors ψn(r, ω) and the tensors

↔
W n (r1, r2, ω) = λn(ω)ψ∗

n(r1, ω)ψn(r2, ω) (107)

satisfy the appropriate Helmholtz equations and Maxwell’s divergence conditions
[78]. In addition, since the tensors

↔
W n (r1, r2, ω) are of a spatially factored form,

they may be understood as elementary cross-spectral density tensors representing
completely coherent (and completely polarized [64]) electric fields in the space–
frequency domain [79], in the sense of the definition of the spectral degree of co-
herence for electromagnetic fields in Eq. (93).

The coherent-mode representation has mainly been applied to two-dimensional
(or beam-like) scalar fields with a few exceptions [89,90] in which the vector nature
of the field is considered. In particular, the coherent-mode representation for elec-
tromagnetic Gaussian Schell-model beams has previously been utilized [78, 91]. In
paper III an explicit three-dimensional coherent-mode representation, the first and
only so far, is derived for both scalar and electromagnetic fields. The representation
in Paper III applies to electromagnetic fields whose electric cross-spectral density
tensor is proportional to the imaginary part of the infinite-space Green tensor. It is



– 26 –

known that fields generated by statistically stationary, homogeneous, and isotropic
source distributions, in an unbounded low-loss medium have this property. The
analysis covers the fundamental case of black-body radiation, but it is also valid
more generally; since a thermal equilibrium condition is not invoked, the electro-
magnetic field may have any spectral distribution. The theory is useful for the anal-
ysis of optical coherence in a wide variety of 3D situations, e.g., in light scattering
from (nano)particles, general electromagnetic near fields, and tightly focused fields.
The coherent-mode representation can significantly simplify the analysis of optical
systems for partially coherent light. Instead of the two-point correlation functions,
only the coherent modes, which depend on a single spatial variable, need to be
studied in propagation through the optical system. Furthermore, the analytical form
of the coherent modes is only rarely known, and hence the exact representation in
Paper III is a valuable addition to the existing literature.
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4 Electromagnetic fields in nanostructures
In this section certain specific physical phenomena of near field optics are consid-
ered: the scanning near-field optical microscopy (SNOM), enhanced optical trans-
mission through a sub-wavelength slit, plasmon resonances in metallic nanoparti-
cles and nanowires, as well as the radiative properties and energy transfer of molec-
ular systems in complex environments. These are the subjects of Papers I, II, IV, and
V where the theoretical methods presented in the previous two sections are applied.

4.1 Scanning near-field optical microscopy
In conventional (far-field) microscopy the best obtainable resolution is on the or-
der of the wavelength of light [23]. The resolution can be slightly enhanced, for
example, by using a solid immersion lens to increase the numerical aperture of the
imaging system [1]. However, these conventional means of imaging are inadequate
to acquire sub-wavelength-scale optical information about nanostructures which is
of interest in nano-optics. From the angular spectrum representation of optical fields
(see Sec. 2.5), it can be seen that the information about the sub-wavelength features
of the sample are contained in the high spatial-frequency components of the field
which decay exponentially away from the sample [92]. The free-space propagation
of the field acts as a low-pass filter and hence these evanescent (non-radiative) com-
ponents are not detected in the far zone [50]. To obtain optical information about
the sub-wavelength features of the sample it is necessary to extract information con-
tained in the evanescent components which are strong only within the distance of
the wavelength of light from the surface of an emitting or scattering object. This is
achieved in scanning near-field optical microscopy (SNOM) [3–6] where the basic
idea is to use a nanoprobe to detect the evanescent field above the sample surface.
The nanoprobe scatters some of the evanescent field components into propagating
waves that can be detected in the far zone by conventional means. By scanning the
nanoprobe over the sample surface, the evanescent field distribution can be mapped
with a resolution limited mainly by the size of the nanoprobe and the scanning
height. In practice, the resolution achieved in a near-field measurement is on the
order of tens of nanometers providing an improvement by an order of magnitude
to the best conventional far-zone measurements. Optical near-field microscopy has
become one of the standard techniques among the scanning-probe microscopies and
is an important tool in nano-optics at present.

There exist several operation modes in SNOM depending on whether the probe
is used as a local illuminator, local collector, or for both purposes. From a theoreti-
cal point of view it is often enough to analyze the probe in only one mode of opera-
tion as the reciprocity theorem of electromagnetism states that a signal remains un-
changed upon exchange of source and detector [1,7]. A wide variety of nanoprobes
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has been utilized in SNOM measurements [1]. The most typical nanoprobe, the
so-called aperture probe, is a metal-coated, tapered optical fiber with a nanoaper-
ture at the apex [8]. The purpose of the metal coating is to confine the field inside
the fiber and thus obtain a very localized field at the probe apex. Due to the finite
skin depth of metals the field penetrates also some distance into the metal cladding
hence increasing the attainable spot size at the aperture. Aluminum is most often
used for coating as it has small skin depth. Also uncoated dielectric probes are
common. Whereas low throughput can be a problem in the aperture probes, the
uncoated dielectric probes show low field confinement [1]. Another important class
of probes is the apertureless probes such as pointed metal tips and small metal par-
ticles where strong local field enhancement can be achieved [1]. Also nanoemitters,
such as single molecules or nanocrystals have been employed in SNOM measure-
ments [1]. The resolution which can be achieved in a SNOM measurement depends
not only on the properties of the nanoprobe, but also on the properties of the sam-
ple. Considerable amount of attention has been paid to investigating the interaction
of the scanning probe and the sample and the image formation in near field op-
tics [7]. It has been shown that the same object can generate completely different
images when the illumination conditions, such as coherence, polarization and angle
of incidence, are changed [93], and that for inhomogeneous dielectric samples, the
near-field signal depends on both the topography and the dielectric contrast of the
sample [94].

Theoretical modeling of SNOM

A careful modelling of the near field and the sample-probe interaction in particu-
lar, requires the full electromagnetic nature of the problem to be considered. Ap-
proximative methods such as Fresnel-Kirchhoff diffraction theory fail to accurately
model SNOM, where one deals with fields in the vicinity of sub-wavelength scale
objects. On the other hand, the electrostatic approximation, which is applicable
at length scales smaller than the wavelength, cannot usually be exploited either,
since in many cases the signal to be measured is in the far zone at a distance of
several wavelengths from the sample. Realistic simulations of the SNOM probe
require that the sample-probe system is treated self-consistently, i.e., the probe and
the sample are considered as a single system consisting of two interacting parts.
Several theoretical methods have been employed to model the electromagnetic field
in SNOM [95, 96]. For example, the traditional Bethe-Bouwkamp model has been
used to describe the transmission of light through the SNOM aperture [97] and the
resolution limit of SNOM has been considered by means of a transfer function [98].
The multiple-multipole method (MMP) [99, 100] and FDTD method [101, 102],
and boundary-integral method [47–49] have been used in analysis of the SNOM
tip. Moreover, the Green’s propagator formalism (volume integral method) has also
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been widely employed in studies of optical near fields [94, 103–105]. In modelling
apertureless probes and determining the optimal tip shape for field enhancement,
antenna theory, developed originally for the radio- and microwave-frequency range,
has been utilized [106].

Polarization properties of SNOM probes

The polarization properties of SNOM probes have been the subject of several re-
cent experimental and theoretical investigations [107–110]. Not only the coupling
to a fiber probe is sensitive to polarization of the electromagnetic field, but also the
resolution obtainable with certain SNOM probes is highly dependent on the polar-
ization characteristics of the optical field [108,110]. Theoretical analyses have been
concentrated on deterministic fields, but a two-dimensional analysis of light trans-
mission through a metal-coated SNOM tip has also been carried out for partially
polarized light [Paper I], in which the dependence of the degree of polarization
on the opening angle and the aperture size of the tip have been analyzed. Even
though the simulation is based on a 2D model of a SNOM aperture probe which
has different modal properties than 3D probes, the results show that the polarization
properties of the transmitted field illuminating the sample can differ significantly
from the incident field which is originally coupled into the fiber. This is due to
the higher transmission of TM-polarized light as compared to that of TE-polarized
light through the tip. For instance, a probe with a small opening angle and a small
aperture acts like a polarizer blocking the TE component and thus resulting in a high
degree of polarization for the transmitted field. This is illustrated in Fig. 1 where the
3D degree of polarization is shown on a semicircle at a distance r = 10 µm from the
output aperture of an aluminium-coated, tapered SNOM probe which is illuminated
by unpolarized light having wavelength λ = 488 nm [Paper I]. The output aperture
has a width of 50 nm and the opening angles of the probe vary from α = 20◦ to
α = 45◦. The characterization of the electric field correlations in the vicinity of
the probe requires the use of 3D formalism for calculating the degree of polariza-
tion (P3). Far from the probe, the transmitted field is transverse and 2D degree of
polarization, P2, can also be used. The degrees of polarization, P2 and P3, were
shown in Paper I to provide similar information about the polarization properties of
the far field although they differ in their numerical values (see Sec. 3.2). However,
the use of P3 allows a direct comparison between the near and far field polarization
characteristics.

4.2 Enhanced optical transmission
After the initial demonstration of enhanced optical transmission through a periodic
array of sub-wavelength holes in a metallic film [111] there has been extensive
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Figure 1: The angular behavior of the 3D degree of polarization, P3, at
the distance r = 10 µm from the output aperture of a SNOM probe. The
incident wave has wavelength λ = 488 nm and is fully unpolarized. The
different curves correspond to varying opening angles of the tip. The
relatively high degree of polarization is attributed to the much higher
transmission of TM-polarized light in comparison to TE-polarized light.
[Paper I]

research on the optical properties of nanostructured metal films. The transmis-
sion through the holes can be much higher than expected from diffraction theory
(Bethe-Bouwkamp model) and even exceed the percentage area occupied by the
holes [111]. The transmission spectrum of a hole array shows a peak whose position
can be changed by altering the periodicity and symmetry of the structure [11]. The
enhanced transmission has been attributed to surface-plasmon polaritons [112–117],
but for slit arrays the waveguide mode resonances also play a role [113, 117–121].
Furthermore, the enhanced transmission has been studied within the framework of
dynamical diffraction theory [122, 123].

Surface plasmon polaritons

Surface plasmon polaritons are electromagnetic surface waves that can propagate
along a metal-dielectric interface [9–12]. They are constituted by a resonant in-
teraction of the electromagnetic field with the collective charge oscillations in the
metal. The electric field of the wave decays exponentially away from the inter-
face and is polarized in the plane spanned by the direction of propagation and the
surface normal. On a planar interface the dispersion relation, i.e., the functional
relationship between the wavenumber ksp of the surface plasmon polariton and its
frequency ω, is obtained from the solution to Maxwell’s equations in each medium
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and the boundary conditions as [11, 12]

ksp =
ω

c

[
ε1(ω)ε2

ε1(ω) + ε2

]1/2

, (108)

where ε1(ω) and ε2 are the (relative) permittivities of the the metal and the dielectric,
respectively. The permittivity of the dielectric material depends usually only weakly
on the frequency and can be assumed to be constant [1]. The momentum of the sur-
face plasmon polariton along the metal-dielectric interface, ksp, is greater than the
momentum of propagating light having the same frequency [11]. This means that
on a planar interface the surface plasmon polariton cannot transform into radiation,
and vice versa, it cannot be excited on a planar interface by using conventional
(far field) illumination. However, in the case of periodically structured metal films,
the wave vectors for the propagating light and the surface plasmon polariton can
be matched thus allowing a direct excitation of surface plasmon polaritons on the
film [12]. Surface plasmons enhance the evanescent waves that tunnel through the
holes and thus increase the transmittance [11]. Also for thin enough films surface
plasmons on opposite surfaces of the film can interact resulting in a resonant tun-
neling effect [11]. It is thus possible to have enhanced transmission even through a
film without holes [124].

Transmission through a single slit

The enhanced transmission can occur also for single slit and hole structures [125–
131]. The hole and slit structures differ fundamentally in their transmission charac-
teristics [114] as the sub-wavelength holes do not support any propagating modes
whereas for slits the lowest TM mode, exhibiting surface-wave-like behavior [132],
has no cutoff. In the case of a single slit the resonant transmission of light has been
connected to Fabry-Pérot-like resonances [125, 127, 128]. The waveguide mode is
reflected at both ends of the slit and thus the slit acts like a resonator. For peri-
odic slit structures both the slit modes and the modes due to the periodic surface
structure affect the transmission [12]. The directionality of the transmitted light
can be modified by nanostructuring the metal film [129], and thus it is possible
to generate a well-directed source of light emitted from the sub-wavelength aper-
ture [133, 134]. The spectral properties of resonant transmission of light through a
single sub-wavelength slit in a metal film have been analyzed by characterizing the
effect of geometrical and material properties of the slit on the transmission spec-
trum. In particular, the resonance wavelength has been shown to depend strongly
on the material within the slit [Paper II]. This is depicted in Fig. 2, where the cal-
culated transmittance spectra of a 15 nm wide slit in a gold film with a thickness of
200 nm are presented for different materials in the slit. The shift of the resonance
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Figure 2: Transmittance spectra for a 15 nm wide slit in a 200 nm
thick gold film as the material within the slit is varied. As the refractive
index of the slit medium increases, the resonance peak shifts to longer
wavelengths. [Paper II]

peak in the transmission spectrum is suggested to be used to detect small changes
in the refractive index of the medium in the slit or in its immediate vicinity.

4.3 Plasmon resonances in metal nanoparticles
Electromagnetic surface excitations in bounded geometries are called localized sur-
face plasmons [12]. Frequencies at which these surface plasmon resonances occur
can be found in the quasi-static approximation which amounts to solving Laplace’s
equation [1]. The quasi-static approximation neglects the retardation effects, i.e.,
the speed of light is assumed to become infinitely large, and it is valid for systems
whose dimensions are much smaller than the wavelength of light. In fact, since the
quasi-static approximation leads to fields which are constant inside the particles, it
can be considered to be valid only for particles that are smaller in size than the skin
depth d of the metal, d = λ/(4π

√
εm), with εm being the relative permittivity of the

metal [1]. The plasmon resonances occurring in metal nanoparticles and nanowires
are of particular interest in nano-optics as at the resonance wavelength the field
can be locally significantly enhanced. Furthermore, the scattering cross-section can
become very large at the resonance.

For 2D problems the plasmon resonances occur only for TM-polarized light as
the electric field needs to have a component in the direction normal to the surface
in order to drive polarization charges to the interface [1]. The (relative) permittivity
of the dielectric material, ε2, can often be assumed to be constant and real whereas
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the metal’s dielectric function ε1 is strongly frequency dependent and complex. In
the quasi-static approximation for a thin, metallic, cylindrical wire with radius a,
the resonance condition is given by Re{ε1(ω)} = −ε2 [1]. For a spherical particle
of radius a, the resonance condition can be seen from the expression for the quasi-
static polarizability of the particle, which is [1]

α0(ω) = 4πa3 ε1(ω)− ε2

ε1(ω) + 2ε2

. (109)

For a sphere the resonance occurs when Re{ε1(ω)} = −2ε2. The resonance fre-
quency is seen to be sensitive to the medium where the wire or particle is embedded.

To go beyond the quasi-static approximation, which is necessary, for example,
in the case of larger particles or for modeling an array of particles, requires the
solution to Helmholtz equation. Spherical particles that are much smaller than the
wavelength of light can be approximated as point dipoles with a polarizability of a
sphere. However, the expression for the polarizability must be modified from the
quasi-static expression as it violates the optical theorem in the dipole limit; the ex-
tinct power is in this case identical with the absorbed energy and hence the light
scattering is not taken into account [1]. This problem is solved by including the
interaction of the particle with itself (radiation reaction) in the expression of the po-
larizability [1]. The analytical solutions to light scattering problems from a single
sphere or cylinder are known [37], but for more complicated particle shapes, and in
particular, for modeling interaction of several particles, a numerical solution to the
scattering problem is required. The resonances in nanowires have been calculated
using the volume integral method [135, 136], FDTD [137] and BEM [138–140].
Whereas for a single cylindrical nanowire there exists only one plasmon resonance,
more complicated particle shapes and interacting structures exhibit much richer
resonance spectra. Furthermore, the field enhancement in these structures can be
orders of magnitudes higher than for a single wire with cylindrical cross-section.
Currently, there is considerable interest in studies of nanoparticle chains [141–145]
and nanowires [137, 146–148], as these systems can act as near-field waveguides
enabling light guiding at sub-wavelength scales. Such structures could be used, for
example, to transfer energy between two distant quantum systems such as molecules
or quantum dots, as well as in addressing single nano-objects [149, 150].

The effect of plasmon resonances to the near field coherence properties of nano-
wires was analyzed in terms of the 3D degree of polarization and on the electro-
magnetic degree of coherence in Paper IV. The numerical calculations were based
on BEM discussed in Sec. 2.4. The results show that the plasmon resonances may
significantly affect the coherence and polarization characteristics of the near field
of nanowire structures. Furthermore, it was demonstrated that partial coherence can
influence the excitation of collective modes of nanocylinder arrays and affect also
the energy flow in these arrays.
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4.4 Molecules in nanostructures
Since Purcell’s pioneering work [151] in 1946, which showed that the spontaneous
emission is not an intrinsic property of atoms or molecules but depends on their en-
vironment, changes in the excited-state lifetimes and radiative shifts in spontaneous
emission have been extensively investigated both theoretically and experimentally
in various environments [16–18]. In particular, the tailoring of the radiative prop-
erties of molecules by modifying their environment offers exciting possibilities for
nanophotonics applications.

Radiative decay rate

The environment induced changes in the spontaneous emission rate of a molecule
or an atom can be obtained within the framework of classical electromagnetic the-
ory by considering an oscillating dipole and its interaction with its own field which
is scattered back from the environment [1, 16]. The decay rate b and the free-space
decay rate b0 can be obtained from the Green’s function of the system. It is con-
venient to write the total Green’s tensor as a sum of the free-space part

↔
G0 and the

scattered part
↔
Gs:

↔
G (r1, r2, ω) =

↔
G0 (r1, r2, ω)+

↔
Gs (r1, r2, ω). (110)

The free-space part is singular at r1 = r2 whereas the scattered part remains finite.
The ratio of the decay rates is determined by the scattered part

↔
Gs, and is given

by [16]
b

b0

= 1 + µ0ω
3 Q

b0

Im
{

µ· ↔Gs (r, r, ω) · µ
}

, (111)

where Q is the emission quantum efficiency and µ is the dipole transition moment.
The environment causes also a change in the frequency of the emitted light. How-
ever, this effect is very small and can usually be ignored [1].

Dipole-dipole interaction

The environment has an effect also on the interactions between the molecules. The
dipole-dipole coupling between two molecules or atoms has been studied in micro-
cavities [152–157], near an optical fiber [158, 159], planar dielectric surface [160],
nanosphere [161], and scanning near-field optical microscope tip [162]. In particu-
lar, the radiative properties of a molecule are shown to be significantly modified near
metallic nanoparticles that support plasmon resonances [163, 164]. Furthermore,
plasmon-mediated coupling through a thin metal film has been demonstrated [165].
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Figure 3: Energy-level diagram of the donor and acceptor molecules.
The states |e1〉 and |v2〉 are coupled by the dipole-dipole interaction
characterized by the coupling factor J12. The parameters Γv1,v2 and
Γe1,e2 denote the radiative decay rates from the excited states |v1,2〉 and
|e1,2〉 to the ground states |g1,2〉, whereas K denotes the non-radiative
vibrational relaxation rate. Furthermore, the energy associated with the
transitions |e1〉 → |g1〉 and |v2〉 → |g2〉 is h̄ω, and ω1 is the angular
frequency of the exciting light. [Paper V]

The fluorescence resonance energy transfer (FRET) between two molecules can
be analyzed by considering the molecules as three-level systems [166] with energy-
level diagrams depicted in Fig. 1. One of the molecules (the donor) is initially in an
excited state and the other (the acceptor) in its ground state. The excitation energy
is then transferred from the donor to the acceptor via a dipole-dipole coupling. The
donor is excited to the state |v1〉 by an incident optical field with angular frequency
ω1, while the acceptor is in its ground state |g2〉. After internal relaxation, charac-
terized by a (non-radiative) vibrational relaxation rate K, the donor resides in the
excited state |e1〉. The excited donor then couples by dipole-dipole interaction to
the excited level |v2〉 of the acceptor molecule. The dipole-dipole coupling factor
J12 for two molecules has the form [166]

J12 = −µ2·
↔
G (r2, r1, ω) · µ1, (112)

where µ1 and µ2 are the dipole transition moments associated with the transitions
between the levels |e1〉 and |g1〉, and |v2〉 and |g2〉, of the two molecules located at
r1 and r2, respectively.

The dipole-dipole coupling strength associated with FRET in a system con-
sisting of a chain of metallic nanoparticles can be enhanced at certain resonance
frequencies [Paper V]. Moreover, in this particle-chain mediated coupling, the en-
hancement is strongly polarization sensitive. This is illustrated in Fig. 4 where the
coupling strength Ω12 = Re{J12}/h̄ is shown for a straight particle chain consist-
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ing of 11 silver particles (radius 10 nm) having a center-to-center distance of 30 nm.
The donor and the acceptor molecules are placed at a distance of 20 nm from the op-
posite ends of the chain. The coupling is strongest when the dipole moments of the
acceptor and donor molecules are parallel to the chain. [Paper V] The coupling re-
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Figure 4: Coupling strengths as a function of the wavelength λ for
donor and acceptor molecules which are oriented parallel (solid curve)
and perpendicular (dashed curve) to the straight particle chain consist-
ing of 11 silver particles of radius 10 nm. The center-to-center distance
between the particles is 30 nm and the acceptor and donor molecules
are located at a distance of 20 nm from the opposite ends of the chain.
The coupling is strongest when the dipole moments of the acceptor and
donor molecules are parallel to the chain. [Paper V]

mains fairly strong also for curved particle chains. The orientation sensitivity of the
coupling can be utilized in a structure where the coupling to the different branches
of the chain depends strongly on the orientation of the donor dipole. This can be of
interest in developing optical components for plasmonics.

A more comprehensive picture of the interaction of electromagnetic field with
molecules in complex environments can be achieved by combining the classical
treatment of the field and the Green’s function formalism with quantum-mechanical
treatment of the molecules by employing optical Bloch equations [96].
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5 Coherence properties of optical near fields
So far the optical coherence theory has been applied almost exclusively to far fields
or planar waves such as (collimated) optical beams [24]. For these purposes the
scalar or 2D electromagnetic theory is adequate. However, in analyzing optical near
fields where the evanescent contribution is significant, the full 3D electromagnetic
treatment is necessary. Recently, some of the concepts of traditional coherence
theory, e.g., the degree of polarization and electromagnetic degree of coherence
were extended to 3D electromagnetic fields (see Sec. 3). Furthermore, the first
investigations on these quantities in optical near fields have appeared [22, Paper I,
Paper IV].

The conventional wisdom in coherence theory is that the spatial correlations of
an electromagnetic field extend, at least, over a distance on the order of the wave-
length of light. This holds also for fields which are generated by highly incoherent
sources such as thermal sources. However, in the conventional theory the role of
evanescent waves, which are significant in the near field of the source, is ignored.
In order to describe correctly the coherence properties of optical near fields, these
waves must be taken into account. Indeed, recent theoretical studies indicate that
the correlations in the optical near field of a thermal half-space source can be much
shorter than the wavelength of light [19, 20]. The extraordinary short spatial co-
herence length originates from the evanescent waves and absorption of the source
medium. In fact, recent theoretical work shows that there is no fundamental lower
limit for the spatial coherence length inside a finite source region even if the medium
is non-absorbing [167]. This result holds if the electromagnetic response of the ma-
terial can be described as local. However, it has been demonstrated that there ex-
ists a physical minimum value for the coherence length of thermal electromagnetic
fields near a planar surface [168]. This minimum coherence length is due to the
non-local dielectric response of the material which becomes important on the scale
of the electron mean free path [168].

In studies of coherence of optical near fields, thermal sources have obtained the
most attention. The spatial coherence properties of thermal half-space sources show
that the spatial correlations can be much shorter than the wavelength, or extend
over a distance of several wavelengths [19, 20]. If the thermal source is composed
of, e.g., slightly lossy glass, the field correlations in the immediate vicinity of the
surface have the sinc-form which is characteristic for sources obeying Lambert’s
law, such as a black-body source [24]. For strongly absorbing medium, such as
tungsten (W) at λ = 500 nm the correlation length very close to the surface is on
the order of the skin depth of the metal. Farther away, where the contribution of
the evanescent waves to the field becomes negligible, the field correlations assume
the sinc form. The extremely short spatial correlation length close to the surface is
explained by absorption over a skin-depth distance within the tungsten surface [19].
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On the other hand, field correlations may extend over several tens of wavelengths,
when resonant surface waves, such as surface plasmon or phonon polaritons, are
excited [19, 20]. Thus, physically, the resonant surface waves mediate coherence.
Studies of polarization properties in thermal near fields using the concept of 3D de-
gree of polarization shows that surface polaritons can also create highly polarized
thermal near fields [22]. In addition to the coherence and polarization properties,
also the spectrum of the near field may differ from the source and far-field values,
and the near field of a thermal source may even be quasimonochromatic when plas-
mon or phonon polaritons are excited. [21]. Based on these theoretical predictions,
it has been experimentally demonstrated that by diffracting the surface-polariton
field by a grating coupler etched on the source, highly coherent, directional emis-
sion from a thermal source can be obtained at certain wavelengths [169].

Spatial correlation lengths that are significantly shorter than the wavelength of
light have been experimentally observed in optical near fields in the close proximity
of highly scattering, randomly inhomogeneous media [170]. It has also been ex-
perimentally seen that the spatial coherence length in the near field depends on the
distance from the surface. This dependence vanishes at several wavelengths away
from the surface where the evanescent waves become negligible. These observa-
tions are consistent with the theoretical predictions discussed above.

The problems involved in measuring two-point correlations in near-field have
also been theoretically addressed [171]. It has been shown that it is not possible
to measure accurately spatial correlations of highly incoherent fields such as those
which may exist in the near-field of thermal sources. The measurement of field
correlations at two points requires the use of two near-field probes (dipoles). The
probes scatter the evanescent field and the scattered field is then detected in the far
zone. However, when the probes approach each other their interaction results in
spurious correlations that are not present in the actual field. Thus there exists cor-
relations in the measured signal that are artefact of the measurement apparatus. For
typical parameter values, it is estimated that these correlations become important
for distances ≤ 0.1λ [171].

The role of surface plasmons on planar surfaces has been shown to significantly
affect the near field coherence properties. This suggests that also localized surface
plasmons in metallic nanoparticles and nanowires can have a profound effect on the
spatial coherence of the near field. Analysis of plasmon resonances in cylindrical
nanowires shows a rich variety of electric-field correlation effects in the immedi-
ate near zone around the cylinders [Paper IV]. In particular, at the resonance wave-
length the near field of the metal cylinder can become highly polarized and coherent,
even if the illuminating field is highly incoherent. Figure 5 shows the spectral den-
sity, the 3D degree of polarization, and the electromagnetic degree of coherence for
two interacting silver nanocylinders of radius 25 nm. The center-to-center distance
between the cylinders is 55 nm and the wavelength of the illuminating 1D TM-
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polarized Gaussian Schell-model beam is 375 nm. This corresponds to a resonance
wavelength of the two cylinder configuration [136, 139]. It is also demonstrated
that in chains of nanocylinders the degree of spatial coherence can influence the
coupling of the incident field into the chain and alter the near- field intensity profile
[Paper IV].
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(a)

(b)

(c)

Figure 5: Illustration of the coherence properties of the near field
around two interacting silver cylinders (r = 25 nm) with a center-to-
center separation of 55 nm: (a) spectral density log10[S(r, ω)] (arbi-
trary units), (b) 3D degree of polarization P3(r, ω), and (c) electromag-
netic degree of coherence µel(r, 0, ω). The beam parameters of the inci-
dent (from above) 1D Gaussian Schell-model beam are w0 = 4.8λ and
σ0 = 0.6λ, and the wavelength of light is λ = 375 nm corresponding to
the resonance of the structure. [Paper IV]
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6 Summary and conclusions
The theory of coherence, in its classical and quantum-mechanical forms, consti-
tutes the fundamental basis of optics. All sources and the fields that they generate
fluctuate whether due to changes in the temperature, density and pressure of the
medium, or due to reasons quantum mechanical in their origin. In order to be able
to apply the theory in the domain of nanophotonics, it is necessary to take fully into
account the polarization properties of light and to consider also non-planar fields.
The presence of evanescent waves and surface excitations can make the coherence
properties of optical near fields significantly differ from those in far-fields. This is a
fact which needs to be paid attention to in nano-optics applications. The extension
of the electromagnetic coherence theory to the realm of nano optics and photonics
is thus of both fundamental and practical interest.

In this thesis, specific nano-optical systems have been studied with emphasis
on the polarization and spatial coherence properties of the electromagnetic field.
Both deterministic and statistical fields were considered. The recently introduced
concepts of electromagnetic coherence theory for 3D fields were applied to study
polarization and spatial coherence of fluctuating near fields. Also, an explicit form
of the coherent-mode representation was for the first time derived for fully three-
dimensional electromagnetic fields. The representation applies to fields whose elec-
tric cross-spectral density tensor is proportional to the imaginary part of the infinite-
space Green tensor.

The thesis includes an investigation of the transmission of partially polarized
light through a near-field probe. The concept of three-dimensional degree of po-
larization was applied to characterize the polarization of the electric field. The
calculations which were based on the boundary-integral technique made use of a
two-dimensional model for the probe tip. It was shown that there is a clear dif-
ference between the polarization properties of the transmitted and incident fields
which result from the fact that TM-polarized light is better transmitted through the
tip than TE-polarized light. For instance, a probe with a small opening angle and a
small aperture acts like a polarizer blocking the TE component and thus resulting in
a high degree of polarization for the transmitted field. Furthermore, a comparison
of the 2D and 3D degrees of polarization in the far field shows that both param-
eters provide similar information about the polarization properties of the far field
although they differ in their numerical values.

The boundary-integral technique was also applied to investigate the spectral
properties of resonant transmission of light through a sub-wavelength slit in a thin
metal film. The dependence of the transmitted spectrum on the geometry and mate-
rial properties of the slit was analyzed. In particular, the resonance wavelength was
shown to depend strongly on the material within the slit, and the shift of the reso-
nance peak in the transmission spectrum is suggested to be useful for detection of
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small changes in the refractive index of the medium in the slit. The boundary-
integral technique was also combined with the coherent-mode representation to
study plasmon resonances in cylindrical nanowires when the incident field is par-
tially coherent. It was shown that the coherence properties of optical near fields can
change at subwavelength scale. In particular, the near field of the metal cylinder can
be highly polarized and coherent even if the illuminating field is highly incoherent.
It was also demonstrated that in chains of nanocylinders the partial spatial coher-
ence can influence the coupling of the incident field into the chain and alter the near
field intensity profile, as well as the energy flow in the array.

The thesis also includes a study of the dipole-dipole coupling mediated by a
chain of metal particles. The calculation which was based on the coupled-dipole
method showed that the coupling strength can be enhanced at certain resonance
frequencies and that it is strongly polarization sensitive: the coupling is strongest
when the dipole moments of the acceptor and donor molecules are parallel to the
chain. It is demonstrated that the orientation sensitivity of the coupling can be
utilized in a structure where the orientation of the donor dipole decides to which of
the different branches of the chain the coupling occurs.

In this thesis electromagnetic fields in specific nano-optical systems were con-
sidered. In particular, the partial polarization and partial coherence of optical near
fields were studied in the context of two-dimensional systems, i.e., in a 2D-model of
a SNOM probe and in a system of metallic nanowires. There exist so far relatively
few studies on the spatial coherence properties of optical near fields. The extension
of the previous investigations to fully three-dimensional geometries, i.e., to a 3D
probe and to metallic nanoparticles, could provide further insight into the nature of
partially coherent and partially polarized electromagnetic near fields. Furthermore,
an analysis and detection of the coherence properties of optical near fields could
lead to additional optical information which cannot be obtained by detecting only
the intensity distribution with traditional SNOM techniques. For example, the de-
tection of near-field Stokes parameters would result in supplementary information
about the polarization statistics at the immediate vicinity of the source. Moreover,
the fact that for certain sources the transverse spatial coherence length in the near
field can be much shorter (and the longitudinal coherence length possibly longer)
than the wavelength of light excites an idea of a new type of probing technique
based on the coherence properties of electromagnetic fields. More precisely, prob-
ing the surface of such a source and detecting the interference between the light
from the probe and the source, gives in principle, coherence-based information on
the sample surface on the sub-wavelength scale as the transverse coherence length
is much smaller than the wavelength. Furthermore, since the longitudinal coher-
ence length exceeds the wavelength, the probe does not necessarily need to be at
a sub-wavelength distance from the source. The recent publications and the work
presented in this Thesis on electromagnetic coherence theory therefore suggest that
the investigation of coherence properties could not only provide additional informa-
tion on optical near fields, but possibly also provide basis for new applications in
nanophotonics.
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Abstracts of Publications I-V
I. We analyze the changes in the partial polarization of random, stationary light

fields in transmission through a near-field probe. The probe is modelled as
a two-dimensional metal-coated optical fiber tip through which the field is
propagated by applying the boundary-integral method. Both the magnitude of
the opening angle and the aperture size of the probe are found to significantly
influence the partial polarization of the field. We discuss the results in terms
of both the conventional two-dimensional and the recent three-dimensional
formalism for the degree of polarization.

II. We analyze the spectral properties of resonant transmission of light through a
sub-wavelength slit in a metal film. We show that the enhanced transmission
can be understood in terms of interfering surface-wave-like modes propagat-
ing in the slit. We characterize the effect of geometrical and material prop-
erties of the slit on the transmission spectrum. Furthermore, we show that
the wavelength of the transmission resonance strongly depends on the sur-
rounding medium. This effect may be utilized in sensors, imaging, and the
detection of, e.g. biomolecules.

III. It is known that statistically stationary, homogeneous, and isotropic source
distributions generate, in an unbounded low-loss medium, an electromagnetic
field whose electric cross-spectral density tensor is proportional to the imag-
inary part of the infinite-space Green tensor. Using the recently established
electromagnetic theory of coherent modes we construct, in a finite spheri-
cal volume, the coherent-mode representation of the random electromagnetic
field having this property. The analysis covers the fundamental case of black-
body radiation but is valid more generally; since a thermal equilibrium condi-
tion is not invoked, the electromagnetic field may have any spectral distribu-
tion. Within the scalar theory of coherent modes, which has been available for
more than two decades, the analogous formulation results in the first explicit
three-dimensional coherent-mode representation.

IV. We study the scattering of a partially coherent electromagnetic beam from
metallic nanocylinders and analyze the effects of plasmon resonances on the
coherence and polarization properties of the optical near field. We employ
the coherent-mode representation for the incident field and solve the scatter-
ing problem independently for each mode using a boundary-integral method.
Our results show that the plasmon resonances may significantly affect the
coherence and polarization characteristics of the near field, and that partial
coherence influences the energy flow in nanocylinder arrays.
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V. We study the dipole-dipole coupling between two fluorescent molecules in
the presence of a chain of metallic nanoparticles. We analyze the spectral
behavior of the coupling strength and its dependence on the molecular orien-
tation. Our results show that for certain resonant wavelengths the coupling
strength between the molecules is greatly enhanced and is strongly polariza-
tion sensitive. We also demonstrate how metallic nanoparticles can be utilized
in implementing a polarization-sensitive coupler.
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