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S U M M A R Y
This paper presents a method for calculating the electromagnetic field from a dipole source in
stratified media with general anisotropy. The formulation can be applied to geophysical applica-
tions such as ground-penetrating radar and marine controlled source electromagnetic (CSEM)
methods. In stratified media, the propagation of fields can be considered in the frequency–
wavenumber domain. The resulting set of ordinary differential equations consists of a field
vector, a system matrix, and a source vector. In each piecewise homogeneous region, the sys-
tem matrix is given by the material properties and the horizontal slownesses. The vertical
slownesses are the eigenvalues of the system matrix. A diagonalization of the system ma-
trix transforms the field vector into a mode-field that contains upgoing and downgoing field
constituents. For system matrices that account for general anisotropy, it is shown how the
electromagnetic field from any of the four basic dipole types can be calculated at any desired
position in the stratified medium. It is furthermore shown how the reflection and transmission
response from a stack can be calculated by a recursive scheme. Potential numerical instabilities
due to using propagators are avoided by using this reflectivity method. Due to an energy-flux
normalization of the eigenvector matrices, the reciprocity relations for reflection and transmis-
sion of electromagnetic fields in general anisotropic media can be derived. Several other useful
relations between the reflection and transmission matrices are obtained as well. The propaga-
tor method is dependent on the ability to calculate eigenvalues and eigenvectors of the system
matrix for all layers. In simple cases with isotropy or transversal isotropy in the direction of
medium variation, the eigenvalue problem can be solved explicitly. These eigenvector matrices
have useful properties, e.g. when processing data. The possibility to remove layers above or
below the receiver layer follows from the decomposition of a field into upgoing and downgoing
polarization modes. The propagator theory was implemented in order to model anisotropy in
marine CSEM. A modelling study shows that responses are affected by horizontal, vertical,
and dipping anisotropy in different manners. This suggests that when anisotropy is present at
a survey site, careful planning and interpretation are required in order to correctly account for
the responses.

Key words: anisotropy, electromagnetic modelling.

1 I N T RO D U C T I O N

Anisotropy is a phenomenon that occurs on various scales, and it is a concern or an advantage (depending on how it can be exploited), in

a variety of geophysical applications such as ground penetrating radar (GPR), which is towards the high frequency end of applications, and

marine controlled source electromagnetic (CSEM) methods or SeaBed Logging (SBL), which are applications that use very low frequencies.

In electromagnetic surveying of the subsurface, anisotropy effects will almost certainly be encountered to some extent. Thus it is important

to have an understanding of how various forms will affect the measurements. In elastic theory, a lot of work on anisotropy has been performed.

Helbig & Thomsen (2005) review its history in elastic wave propagation. One of their main points is that anisotropy in many cases can be

exploited in the exploration. Anisotropic effects when measuring electromagnetic fields in geophysical applications have also been studied for

quite some time. Much of this work has been for media with stratification and transversal isotropy in the same direction, e.g. Maillet (1947),

O’Brien & Morrison (1967), Sinha & Bhattacharyya (1967), Kong (1972), Chlamtac & Abramovici (1981) and Edwards et al. (1984). Another

type of anisotropy configuration that has been studied, is transversal isotropy in a direction normal to a layered structure, e.g. Li & Pedersen

(1991) and Yu & Edwards (1992). Everett & Constable (1999) studied the effects of such anisotropy on CSEM-data, and Yu et al. (1997)
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EM fields in anisotropic-layered media 45

considered triaxial (orthorhombic) anisotropy. For the modelling of GPR, Carcione & Schoenberg (2000) and Carcione & Cavallini (2001)

treated anisotropy with orthorhombic symmetry in 3-D structures. Arbitrary anisotropy was considered for the DC-resistivity method in layered

media by Yin & Weidelt (1999). Their solution approach, in terms of potentials, was extended to the controlled source audio-magnetotelluric

(CSAMT) method by Yin & Maurer (2001). Moreover, Yin (2006) considered the marine magnetotellurics (MT) forward problem formulated

for stratified media with arbitrary anisotropy.

There are many material configurations in the subsurface that might lead to anisotropy (Negi & Saraf 1989). It might be that there are

some preferred directions in the subsurface rocks, or some preferred orientation of grains in the sediments. Fine layering or a pronounced

strike direction might lead to an effective anisotropy. Alternations of sandstone and shales may give reservoir anisotropies. Kennedy & Herrick

(2004) examined the consequences of anisotropy in reservoir rocks.

Anisotropic material properties can often be described in terms of different parameters along three orthogonal coordinate axes in a

principal coordinate system for each property. Anisotropic media are furthermore often classified as triclinic, meaning that the various

material properties have no principal axes in common, monoclinic meaning they have one principal axis in common, or orthorhombic, which

means that the principal axes coincide for all the medium properties (Carcione & Schoenberg 2000). When two parameters in the principal

coordinate frame for an orthorhombic medium are equal, the medium can be referred to as transversally isotropic. In this case, we will refer

to the axis with the distinct parameter as the axis of anisotropy. In optics, one often works with anisotropy related to crystal classes. It is in

this case common to consider uniaxial and biaxial media meaning either one or two anisotropy axes, respectively (Born & Wolf 1999; Huard

1997; Stamnes & Sithambaranathan 2001).

In the following, we study stratified media with arbitrary anisotropy by using a matrix propagator method. There are several reasons

for studying plane-layered media. The calculation of electromagnetic fields in such media is often useful in order to simplify a problem for

interpretational purposes. In case of anisotropy, the added complication to the interpretation makes it worthwhile to study anisotropy effects

in 1-D models. In addition, plane-layer modelling-codes are fast and useful in, e.g. more complicated modelling-schemes and inversion.

Plane-layer modelling is also important as a verification tool for numerical algorithms that handle 2-D or 3-D structures.

The matrix propagator methods are well known techniques for treating wave propagation in stratified media: cf. Berremann (1972)

in optics, Suchy & Altman (1975) in plasma physics, Kong (1972) for the geophysical electromagnetic problem in stratified media with

transversal isotropy in the direction of medium changes, Griffiths & Steinke (2000) for wave propagation in locally periodic media, Kennett

(1983) for seismic wave propagation, Ursin (1983) reviewing elastic and electromagnetic wave propagation, and White & Zhou (2006) for

electroseismic prospecting in layered media.

However, to our knowledge, there has not been many applications of propagator techniques to electromagnetic problems in stratified

media with general anisotropy and loss. In the following, we derive equations that describe electromagnetic field propagation from any of the

basic dipole sources in general anisotropic media. An implementation and application of the theory will be presented after the theory sections.

During the derivation of the formalism, several useful relations for reflection and transmission in anisotropic media are derived.

The constitutive relations between the field variables are considered in terms of dyadic material parameters (second rank tensors). It

will be assumed that these dyads can be given in an orthogonal principal frame where they have only diagonal elements. This means that

a rotation into another (the main) coordinate frame will preserve the symmetry of the dyads (Onsager 1931). In geophysical applications

where one uses low frequencies, the important material parameter will be the dyadic conductivity. In applications such as GPR, the electric

permittivity is also important. Even if the magnetic permeability in many applications is assumed to be that of free space, all the material

parameters are taken to be dyads for completeness. Non-linear effects are however not considered, and the entries in the material dyads are

assumed to be frequency–domain scalars, meaning that they are local parameters in space. It should also be noted that crosscoupling between

electric and magnetic fields in the constitutive relations, so-called bianisotropy, is not considered since we expect these effects to be minimal

in geophysical applications.

Since the medium varies in one direction, the electromagnetic fields are Fourier transformed into the frequency–wavenumber domain.

This leads to a set of ordinary differential equations for the horizontal field components that can be written as in Ursin (1983). This involves

a field vector that contains the horizontal electromagnetic field components, a system matrix (4 × 4) that describes the medium seen by one

frequency–wavenumber component, and a source vector that can either be an infinitesimal electric or magnetic dipole. The system matrix

will in the general anisotropic case have no non-zero elements, but because of the assumption of symmetric material parameters, it will

contain symplectic symmetries (Chapman 1994). The eigenvalues of the system matrix can be obtained by solving a quartic equation, and

they correspond to vertical wavenumbers or slownesses (wavenumber divided by frequency). An alternative to solving the quartic equation,

is solving the eigenvalue problem with standard routines from linear algebra libraries. To this end it should be noted that the structure of the

matrix resembles the structure found in Hamiltonian systems (Bunse-Gerstner et al. 1992; Faßbender et al. 2001).

By introducing an ad hoc field, we show that the eigenvector matrix, which is used for the similarity transform of the system matrix,

should be chosen to be flux-normalized. In lossless media this is straightforward, but in lossy media, a general ‘energy invariant’ which

corresponds to the Poynting vector in the vertical direction for lossless media is introduced. A discussion of adjoint and conjugate fields for

these purposes can be found in Altman & Suchy (1998).

In a homogeneous region, the transformed physical field, using the flux-normalized eigenvectors, will be referred to as the upgoing and

downgoing mode-field. From considering propagation of the mode-field in a homogeneous region, across a source, across an interface or a

stack of layers, expressions for the electromagnetic field anywhere in the layered system are obtained. In homogeneous regions the differential
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46 L. O. Løseth and B. Ursin

equation is decoupled, and from the boundary conditions a description of reflection and transmission in terms of the eigenvector matrices

(2 × 2) at each side can be obtained. The reflection and transmission in a stack of layers can be described by a recursive scheme similar to

that found in Kennett (1983), Chapman (2004), Ursin & Stovas (2002) and Stovas & Ursin (2003). By using the recursive expressions, one

avoids the problem with exponentially large terms.

In order to handle a stack of layers that can contain general anisotropy as well as isotropy, various special cases of anisotropy configurations

are considered. In addition to arbitrary anisotropy which normally leads to four different magnitudes of the system matrix’ eigenvalues,

up/down-symmetric media, meaning that the eigenvalues for the upgoing and downgoing mode-fields are equal in magnitude are treated. A

medium with transversal isotropy in the horizontal direction (TIH) is an example of an up/down-symmetric configuration. With transversal

isotropy in the vertical direction (TIV), the eigenvalues and eigenvectors reduce to simple expressions. The polarization modes of the field

vector do not couple at the interfaces in this case. Even if this might happen for some wavenumbers in more complicated anisotropic

structures, it is only for TIV-media and isotropic media that the eigenvalues of the system matrix correspond to pure polarization modes which

are decoupled at interfaces between homogeneous regions for the entire wavenumber spectrum. The decoupling means that the 2 × 2-matrix

problem reduces to a scalar problem.

In most of the realistic problems in geophysics, the source medium will be TIV or isotropic. Assuming that the receiver (the position

where the field is calculated) layer has the same characteristics, but not necessarily is the same layer as that of the source, we derive explicit

expressions for the electromagnetic fields. In these formulas, other layers than the source and receiver layers may have general anisotropy.

It should be noted that the derived field components correspond to Green’ functions when normalized properly. The expressions have been

implemented in FORTRAN 90, and a modelling study of some scenarios from CSEM/SBL has been performed.

In the last appendix, an application of the separation into upgoing and downgoing field constituents is demonstrated. Depending on the

choice of eigenvector matrix, it is possible to remove the effect of a stack of layers above the source in the measured electromagnetic field. In

order to do this ‘free-surface’ removal, the horizontal field components should be known throughout a 2-D plane.

2 M A X W E L L ’ S E Q UAT I O N S

Maxwell’ equations in the frequency domain are (cf. Stratton 1941; Jackson 1998; Kong 2000)

∇ · D = ρ, (1a)

∇ · B = 0, (1b)

∇ × E − iωB = 0, (1c)

∇ × H + iωD = J, (1d)

where E is the complex electric field intensity and H is the complex magnetic field intensity. The fields vary with position x = [x , y, z]

and frequency ω. In the equations there are two more field quantities which are normally referred to as the electric displacement D and the

magnetic induction B. The density of free charges is described by ρ, and J is the current density. The charge-conservation is described by

the relation −iωρ = ∇ · J. In conductive media, it is convenient to split the current density J into a source term J0 and a conduction current

density Jc. For macroscopic media it might furthermore be advantageous to introduce a magnetic source term J0M into Faraday’ law (eq. 1c)

which in this case is modified to ∇ × E − iωB = −J0M . Charge-conservation then leads to the modification ∇ · B = ρ M where ρ M is the

magnetic source charge density. Although magnetic sources have not yet been found to exist, their introduction into the equations is justified

by the equivalence principle (Kong 2000). Since magnetic sources have been introduced, we will in the following refer to the source term J0

as the electric source.

In macroscopic media the constitutive relations between the field quantities might be very complicated (Nabighian 1987; Jackson 1998;

Kong 2000). In the following, non-linear effects found in ferroelectric and ferromagnetic materials are not taken into account. Unless otherwise

noted, only (piecewise) homogeneous regions are considered, and possible non-local effects in space of the material parameters are ignored.

The constitutive relations may then be written as

D = ε(ω)E, (2a)

B = μ(ω)H, (2b)

and in conductive media the relation between the conduction current density Jc and the electric field (Ohm’ law) is

Jc = σ(ω)E, (2c)

where σ is the electric conductivity. The material parameters ε, μ, and σ are dyads. The principal axes of the medium property dyads can

be illustrated using Fig. 1, where the main coordinate system xyz is sketched along with a rotated system x ′ y′z′. This rotated system may

represent the principal axes of one of the material dyads, e.g. conductivity. The dyads, which are diagonal in the principal coordinate frame,

will be symmetric after a rotation into a new coordinate frame when the principal axes are orthogonal (Onsager 1931).
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Figure 1. The main coordinate frame xyz and a principal system x ′ y′z′. Rotation from the main frame to the principal system (and vice versa) can be performed

in terms of the Euler angles φ, θ , and ψ . L represents the line of nodes.

In the following it will be assumed that the material dyads have been rotated from their principal system into the main coordinate system.

A procedure for doing so is presented in Appendix A. To simplify notation, the permittivity and conductivity can be written as a complex

electric permittivity

ε̃ = ε + iσ/ω, (3)

in the main coordinate frame. Note that by doing this, the meaning of the electric flux density changes. The charge density in Gauss’ law now

describes source charges instead of free charges.

As sources of the electromagnetic field in the stratified medium, electric and magnetic dipoles with general orientation are considered.

An infinitesimal electric dipole antenna can be represented by a periodic line current of length l = lx x̂ + ly ŷ + lz ẑ with current amplitude

I (ω). The frequency domain source current density can then be written as:

J0 = I (ω)
[
lx x̂ + ly ŷ + lz ẑ

]
δ(r), (4)

where r is the distance from the source, i.e. the radial vector is described in terms of Cartesian coordinates as r = x −xs , where the source

position is given as xs = [x s , ys , zs]. If the electric dipole moment is represented by P (polarization), the dipole current moment becomes

−iωP. The magnetic dipole moment is given by m = μI (ω) a, where a is the area of a current carrying loop with direction normal to the

loop. Analogous to the source current density for the electric dipole in eq. (4), an infinitesimal magnetic dipole source can be introduced as

J0M = −iωμI (ω)aδ(r) =

⎛
⎜⎝

−iωI (ω)
[
μxx ax + μxyay + μxzaz

]
δ(r)

−iωI (ω)
[
μyx ax + μyyay + μyzaz

]
δ(r)

−iωI (ω)
[
μzx ax + μzyay + μzzaz

]
δ(r)

⎞
⎟⎠ , (5)

where possible anisotropic effects have been taken into account.

In planarly stratified media the electromagnetic properties vary in one direction only. Consider a layered medium as depicted in Fig. 2,

and assume that the medium properties vary in the z-direction. The Fourier transform pair

φ(kx , ky, z, ω) =
∫ ∞

−∞
dx dy dt φ(x, y, z, t) exp

[−i(kx x + ky y − ωt)
]
, (6a)

φ(x, y, z, t) = 1

(2π )3

∫ ∞

−∞
dkx dky dω φ(kx , ky, z, ω) exp

[
i(kx x + ky y − ωt)

]
, (6b)

where k x and k y are the wavenumbers in the x- and y-directions, respectively, describe a transformation between the space-time and frequency–

wavenumber domains. Eq. (6a) transforms Maxwell’s equations in the time domain into the frequency–wavenumber domain and implies the

following operations: ∂ t → − iω, ∂ x → ik x , and ∂ y → ik y . The time and frequency part of eq. (6a) has already been applied in order to obtain

eq. (1) from the time-domain Maxwell’s equations. In the time domain, the variables in Maxwell’s equations are real, whereas in both the

frequency and frequency–wavenumber domains the variables might be complex. From Faraday’s law (eq. 1c) with source term and Ampère’s
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Figure 2. A sketch of the multilayer system. Four types of sources are considered: the horizontal electric dipole (HED), vertical electric dipole (VED), vertical

magnetic dipole (VMD), and horizontal magnetic dipole (HMD).

law (eq. 1d), a set of ordinary differential equations are obtained after using the wavenumber part of the transformation in eq. (6a):

d Ex

dz
= iωBy + ikx Ez − J M

y , (7a)

d Ey

dz
= −iωBx + iky Ez + J M

x , (7b)

−d Hy

dz
= −iωDx − iky Hz + Jx , (7c)

d Hx

dz
= −iωDy + ikx Hz + Jy . (7d)

The components in the z-direction are related to the horizontal components as

Dz = 1

iω
(−ikx Hy + iky Hx + Jz), (8a)

Bz = 1

iω

(
ikx Ey − iky Ex + J M

z

)
. (8b)

The variables J n and J M
n (n = x , y, z) denote the Cartesian components of the frequency–wavenumber domain appearance of the electric and

magnetic source, respectively. Likewise the field components E n , Dn , H n , and B n are frequency–wavenumber domain quantities. In order to

simplify notation it is convenient to introduce the slowness variables px = k x/ω and p y = k y/ω. With the constitutive relations Dn = ε̃nm Em

and B n = μnm H m(m = x , y, z), the system of equations can be written as(
I

d

dz
+ iωA

)
b = Lb = s, (9)

with field vector

b =
(

bE

bH

)
, bE =

(
Ex

Ey

)
, bH =

(−Hy

Hx

)
, (10)

identity matrix I , system matrix A, and source vector s. In addition, the operator L has been introduced. The system matrix is

A =
(

A0 A1

A2 A3

)
=

⎛
⎜⎜⎜⎜⎝

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎞
⎟⎟⎟⎟⎠ , (11)
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where

a11 = ε̃zx
ε̃zz

px + μyz

μzz
py, a12 = ε̃zy

ε̃zz
px − μyz

μzz
px , (12a)

a13 = μyy − μyzμzy

μzz
− p2

x
ε̃zz

, a14 = −μyx + μyzμzx

μzz
− px py

ε̃zz
, (12b)

a21 = ε̃zx
ε̃zz

py − μxz
μzz

py, a22 = ε̃zy

ε̃zz
py + μxz

μzz
px , (12c)

a23 = −μxy + μxzμzy

μzz
− px py

ε̃zz
, a24 = μxx − μxzμzx

μzz
− p2

y

ε̃zz
, (12d)

a31 = ε̃xx − ε̃xz ε̃zx
ε̃zz

− p2
y

μzz
, a32 = ε̃xy − ε̃xz ε̃zy

ε̃zz
+ px py

μzz
, (12e)

a33 = ε̃xz
ε̃zz

px + μzy

μzz
py, a34 = ε̃xz

ε̃zz
py − μzx

μzz
py, (12f)

a41 = ε̃yx − ε̃yz ε̃zx

ε̃zz
+ px py

μzz
, a42 = ε̃yy − ε̃yz ε̃zy

ε̃zz
− p2

x
μzz

, (12g)

a43 = ε̃yz

ε̃zz
px − μzy

μzz
px , a44 = ε̃yz

ε̃zz
py + μzx

μzz
px . (12h)

In the following it will be assumed that all the material dyads have a set of orthogonal principal axes. Thus the material parameters are

symmetric, and because of this reciprocity, 6 of the 16 entries in A are equal:

a23 = a14, a33 = a11, a34 = a21,

a41 = a32, a43 = a12, a44 = a22.
(13)

This implies that the system matrix is on the form

A =
(

A0 A1

A2 AT
0

)
, (14)

with AT
1 =A1 and AT

2 =A2.

The vertical components of the electromagnetic field are given in terms of the horizontal components as

Ez = 1

ε̃zz

(
py Hx − px Hy − ε̃zx Ex − ε̃zy Ey + 1

iω
Jz

)
, (15a)

Hz = 1

μzz

(
− py Ex + px Ey − μzx Hx − μzy Hy + 1

iω
J M

z

)
. (15b)

The source vector consists of an electric source vector s E and a magnetic source vector s M (s = s E + s M ):

s E =

⎛
⎜⎜⎜⎜⎝

px Jz/ε̃zz

py Jz/ε̃zz

Jx − ε̃xz
ε̃zz

Jz

Jy − ε̃yz

ε̃zz
Jz

⎞
⎟⎟⎟⎟⎠ and sM =

⎛
⎜⎜⎜⎜⎝

−J M
y + μyz

μzz
J M

z

J M
x − μxz

μzz
J M

z

−py J M
z /μzz

px J M
z /μzz

⎞
⎟⎟⎟⎟⎠ . (16)

The x- and y-components of the electric and magnetic sources will be referred to as the horizontal electric dipole (HED) and horizontal magnetic

dipole (HMD). In a plane-layer model the coordinate system may be rotated so that the horizontal component of the electric or magnetic

dipoles points in the x-direction, but it is sometimes advantageous to let the HED and HMD have components in both the x- and y-direction.

The vertical components of the electric and magnetic dipoles are referred to as the VED and VMD, respectively. In the frequency–wavenumber

domain the HED-components are

Jx = I (ω)lxδ(z − zs), (17a)

Jy = I (ω)lyδ(z − zs), (17b)

where x s = ys = 0, and the VED-component is

Jz = I (ω)lzδ(z − zs). (17c)

The HMD-components become

J M
x = −iωI (ω)(μxx ax + μxyay + μxzaz)δ(z − zs), (17d)

J M
y = −iωI (ω)(μyx ax + μyyay + μyzaz)δ(z − zs), (17e)

and the VMD-component is

J M
z = −iωI (ω)(μzx ax + μzyay + μzzaz)δ(z − zs). (17f)
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50 L. O. Løseth and B. Ursin

The infinitesimal or Hertzian dipoles are good approximations for any physical dipole source with finite length or size when the wavelength

of the radiated signal, or distances at which the fields are considered, are larger than the dimensions of the dipole (length of the electric dipole

and diameter of the magnetic dipole).

3 S Y M M E T RY R E L AT I O N S A N D E N E RG Y F L U X

From eq. (14) it can be seen that A has a symplectic symmetry (Goldstein 1980; Chapman 1994) which can be exploited in order to find

invariants and reciprocity relations. Consider eq. (9) in source free regions (Lb = 0). Introduce an operator L̃ in order to construct a new set

of equations for a field vector b̃:

L̃b̃ =
(

I
d

dz
− iωA

)
b̃ = 0. (18)

By using the property K A = (K A)T with

K = K −1 = K T =
(

0 I

I 0

)
, (19)

one obtains the invariant

d

dz
(b̃

T
K b) = 0. (20)

The time averaged Poynting vector in the z-direction is 〈Sz〉 = 1
2
Re(E × H∗)z which can be written as:

〈Sz〉 = 1

4

(
Ex H ∗

y − Ey H ∗
x + E∗

x Hy − E∗
y Hx

) = −1

4
b†K b. (21)

The superscript † denotes complex conjugate transpose. In lossless media A is real, and from eq. (9) and (18) it can be seen that b̃ = b∗ in this
case. The consequence is that b̃

T
K b = −4〈Sz〉 meaning that the time averaged energy flux in the z-direction is constant for lossless media.

Next, introduce an operator L̄ which is obtained from L by reversing the directions of the horizontal slowness components px , p y →
−px , −p y . The set of equations for the field vector b̄ is then:

L̄b̄ =
(

I
d

dz
+ iωA′

)
b̄ = 0, (22)

where A′ is obtained from A by changing the signs of A0 and AT
0 :

A′ =
(

−A0 A1

A2 −AT
0

)
. (23)

By using that (K ′ A′)T =K ′ A where

K ′ = −K ′−1 = −K ′T =
(

0 I

−I 0

)
, (24)

one obtains the invariant

d

dz

(
b̄

T
K ′b

)
= 0. (25)

4 D E C O M P O S I T I O N I N T O U P G O I N G A N D D O W N G O I N G F I E L D S

The system matrix A is diagonalizable when there is a set of four linearly independent eigenvectors of A (Horn & Johnson 1985). Then the

similarity transformation

AN = NΛ, (26)

where the eigenvector-matrix N is formed by the set of eigenvectors as columns, implies that the diagonal matrix Λ contains the four

eigenvalues of A along its diagonal. By using eq. (26), the differential eq. (9) can be written as

dw

dz
= −iωΛw− N−1 d N

dz
w+ N−1s, (27)

where the physical field vector b has been transformed into a mode-field vector w:

b = Nw and w = N−1b =
(

u

d

)
. (28)

Since Λ is diagonal, the solution of eq. (27) in a source free and homogeneous region

w(z) = exp [−iωΛ(z − z0)]w0(z0), (29)
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reveals that the mode-field vector w consists of upgoing (u) and downgoing (d) field constituents. Thus the eigenvalues of A are the vertical

slownesses and it is convenient to write Λ as

Λ =
(

ṕz 0

0 −p̀z

)
= diag{pzI, pzII, pzIII, pzIV}, (30)

where ṕz = diag{pzI, pzII} and p̀z = diag{−pzIII, −pzIV}. The two eigenvalues in ṕz are related to the upgoing field, and the two eigenvalues

in p̀z are related to the downgoing field.

Since it will simplify many derivations and relations at later stages, the eigenvector-matrix N and its inverse should be normalized with

respect to vertical energy flux. In order to achieve this, consider source free and homogeneous media and use the invariant in eq. (20). A

decomposition of the ad hoc field vector b̃ into b̃ = Ñw̃ then leads to

dw̃

dz
= iωΛ̃w̃, (31)

by using the similarity transform

AÑ = ÑΛ̃. (32)

Now Λ̃ must contain the same eigenvalues as Λ. From

Λ̃ =
(−p̀z 0

0 ṕz

)
, (33)

the invariant

d

dz

(
w̃T Kw

) = 0 (34)

is obtained by using that K Λ̃ = KΛ. In order for N to be energy normalized, the following relation must hold:

w̃T Kw = b̃
T

K b. (35)

By using that b =Nw and b̃ = Ñw̃ this means that

Ñ
T

K N = K . (36)

A relation between Ñ and N can now be obtained by multiplying eq. (26) by K ′ from the right and using that ΛK ′ = K ′Λ̃. This leads to

ANK ′ = NK ′Λ̃ which is consistent with eq. (32) if Ñ = NK ′. The latter result combined with eq. (36) yields

N−1 = J NT K , (37)

where

J = J−1 = JT =
(

I 0

0 −I

)
. (38)

The choice of sign in the derivation of Ñ = NK ′ is justified by considering the lossless case. The energy contained in the mode-field in the

vertical direction for lossless media is:

〈Sz〉 = 1

4

(
d†d − u†u

) = −1

4
w† Jw. (39)

Eq. (39) must be equal to the energy expression in eq. (21). This yields eq. (37) in the lossless case by using that the energy-normalized

eigenvector matrix in the lossless medium is real.

The eigenvector-matrix N can be written in terms of submatrices as

N = 1√
2

(
Ń E Ǹ E

Ń H −Ǹ H

)
. (40a)

Eq. (37) then implies that the inverse eigenvector matrix is given in terms of the submatrices transposed:

N−1 = 1√
2

(
Ń

T

H Ń
T

E

Ǹ
T

H −Ǹ
T

E

)
, (40b)

which means that the electromagnetic energy in the field vector b is preserved within the mode-field vector w after the transformation

w=N−1b.

5 P RO PA G AT I O N O F U P G O I N G A N D D O W N G O I N G F I E L D S

The mode-field vector w can be used to describe propagation of electromagnetic fields in homogeneous regions, across interfaces, and in

a system of layers. Now, represent propagation of w downwards in the positive z-direction in terms of the propagator Q̀, and propagation

upwards in the negative z-direction by Q́. Since the z-axis is pointing downwards, this means that if z > z0:

w(z) = Q̀(z, z0)w(z0), (41a)

C© 2007 The Authors, GJI, 170, 44–80

Journal compilation C© 2007 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/170/1/44/599986 by guest on 16 August 2022



52 L. O. Løseth and B. Ursin

w(z0) = Q́(z0, z)w(z). (41b)

The relation between a propagator and its inverse is thus

Q́(z0, z) = Q̀
−1

(z, z0). (42)

5.1 Source-free homogeneous regions

In a source-free homogeneous region, eq. (27) simplifies to dw/dz = −iωΛw with solution w(z) = exp[−iωΛ (z − z0)] w0(z0). Thus

propagation downwards within a homogeneous region from z0 to z is described in terms of the propagator matrix Q̀ in eq. (41a) where

Q̀(z, z0) =
(

e−iωṕz(z−z0) 0
0 eiωp̀z(z−z0)

)
. (43)

The propagation upwards is related to the propagation downwards as described in eq. (42).

5.2 Propagation across a source

A point source causes a discontinuity in the mode-field vector w. The transformation of the source in eq. (27) is denoted as

Σ = N−1s. (44)

Propagation across a source can be described by

w
(
z+

s

) = Σ(zs) + w
(
z−

s

)
, (45)

where zs denotes the source position and z−
s and z+

s are the positions just above and just below the source, respectively. The mode-domain

source can furthermore be written as Σ = (Σ́
T

Σ̀
T

)T , where �́ describes the upgoing radiation and �̀ describes the downgoing radiation.

5.3 Propagation in continuously varying media

In eq. (27) the term that contains the derivative of the eigenvector matrix describes possible medium variations. In homogeneous regions this

term is zero, and the medium-variations are discretized into piecewise homogeneous regions which are connected by applying the appropriate

boundary conditions. In several occasions it can be useful to consider medium variations by using the entire differential eq. (27). Write the

product of N−1 and the derivative of N as:

N−1 d N

dz
= −

(
F́ Ĝ

Ǧ F̀

)
, (46)

where

F́ = −1

2

(
Ń

T

H

d Ń E

dz
+ Ń

T

E

d Ń H

dz

)
, (47a)

F̀ = −1

2

(
Ǹ

T

H

d Ǹ E

dz
+ Ǹ

T

E

d Ǹ H

dz

)
, (47b)

Ĝ = −1

2

(
Ń

T

H

d Ǹ E

dz
− Ń

T

E

d Ǹ H

dz

)
, (47c)

Ǧ = −1

2

(
Ǹ

T

H

d Ń E

dz
− Ǹ

T

E

d Ń H

dz

)
. (47d)

Then eq. (27) in terms of the upgoing and downgoing fields can be written as

du

dz
= −iωṕzu + F́u + Ĝd + Σ́, (48a)

dd

dz
= iωp̀zd + F̀d + Ǧu + Σ̀. (48b)

Considerations of the symmetries in N and N−1 lead to Ĝ = Ǧ
T
, F́ = −F́

T
, and F̀ = −F̀

T
. Thus,

F́ =
(

0 f́ 12

− f́ 12 0

)
and F̀ =

(
0 f̀ 12

− f̀ 12 0

)
. (49)

These relations are useful e.g. when considering slow and continuous medium variations in for instance the WKB-approximation, and in the

calculation of approximate expressions for the reflection and transmission matrices at interfaces with weak contrasts as will be shown in the

next section.
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z
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z
-

R
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T

T

Figure 3. Reflection and transmission for an upgoing and downgoing incident plane-wave through a stack of layers.

6 R E F L E C T I O N A N D T R A N S M I S S I O N R E S P O N S E S

Fig. 3 describes reflection and transmission of a unit incident field in a region between the coordinates z− and z+. This region might contain

an arbitrary number of layers or just a single interface. The reflection and transmission at an interface when propagating downwards in the

positive z-direction can be written in terms of a propagator matrix Q̀(z+, z−):(
0

T̀

)
=

(
Q̀11 Q̀12

Q̀21 Q̀22

)(
R̀

I

)
and

(
I

Ŕ

)
=

(
Q̀11 Q̀12

Q̀21 Q̀22

)(
T́

0

)
, (50)

where R̀ and T̀ denote reflection and transmission of a downgoing field, and Ŕ and T́ denote reflection and transmission of an upgoing field.

The reflection and transmission coefficients can be written in terms of the elements of Q̀:

T́ = Q̀
−1

11 , (51a)

Ŕ = Q̀21 Q̀
−1

11 , (51b)

R̀ = −Q̀
−1

11 Q̀12, (51c)

T̀ = Q̀22 − Q̀21 Q̀
−1

11 Q̀12. (51d)

When propagating upwards in the negative z-direction, the relation between the incoming reflected and transmitted fields in terms of the

propagator Q́(z−, z+) is:(
R̀

I

)
=

(
Q́11 Q́12

Q́21 Q́22

)(
0
T̀

)
and

(
T́

0

)
=

(
Q́11 Q́12

Q́21 Q́22

)(
I

Ŕ

)
, (52)

and in terms of Q́, the reflection and transmission coefficients are:

T̀ = Q́
−1

22 , (53a)

R̀ = Q́12 Q́
−1

22 , (53b)

Ŕ = −Q́
−1

22 Q́21, (53c)

T́ = Q́11 − Q́12 Q́
−1

22 Q́21. (53d)

The propagators written in terms of the reflection and transmission coefficients become

Q̀(z+, z−) =
(

T́
−1 −T́

−1
R̀

ŔT́
−1

T̀ − ŔT́
−1

R̀

)
, (54a)

Q́(z−, z+) =
(

T́ − R̀T̀
−1

Ŕ R̀T̀
−1

−T̀
−1

Ŕ T̀
−1

)
, (54b)

where Q̀(z+, z−) = Q́
−1

(z−, z+).
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6.1 Reciprocity relations

Consider the field-vector b̄ in eq. (22). In this system the direction of the slowness vectors are reversed. Thus, the similarity transform of the

system matrix A ′ becomes

A′ N̄ = −N̄Λ. (55)

By using the diagonal matrix J from eq. (38), the relationship A ′ J +J A =0 is obtained. Using this property and comparing the expressions

in eqs (55) and eq. (26), gives that N̄ = J N. Inserted into eq. (37) this means that

N̄
T

K ′ N = J. (56)

Eq. (25) with the mode-field transformations (w̄ = N̄b̄ and w=Nb) and eq. (56) now lead to

w̄T Jw = constant. (57)

Consider the preservation of the quantity in eq. (57) between e.g. the interfaces z− and z+ (propagation upwards cf. eq. 52). For simplicity a

matrix where the left column represents the mode-field vector with incidence from above (left side of Fig. 3) and the right column represents

the mode-field with incidence from below (right side of Fig. 3) can be formed. Then eq. (57) leads to(
I R̀

′T

0 T́
′T

)
J

(
R̀ T́

I 0

)
=

(
T̀

′T
0

Ŕ
′T

I

)
J

(
0 I

T̀ Ŕ

)
, (58)

where the reflection and transmission in the slowness-reversed system are denoted R ′ and T ′, respectively. The upgoing and downgoing

incident, reflected, and transmitted fields have furthermore been swapped for the slowness reversed mode-field since there is a reversal of the

propagation direction in this system. This also implies that the reflection and transmission coefficients have opposite signs for the horizontal

slowness parameters in the slowness reversed and ‘normal’ systems. Thus the following reciprocity relations for the transmission and reflection

coefficients become evident:

R̀(px , py) = R̀
T

(−px , −py), (59a)

Ŕ(px , py) = Ŕ
T

(−px , −py), (59b)

T̀(px , py) = T́
T

(−px , −py). (59c)

These expressions are equivalent to the expressions found in Chapman (1994) for elastic anisotropic media.

6.2 Reflection and transmission at a single interface

Explicit expressions for the reflection and transmission coefficients at a single interface can be derived by using the boundary conditions.

The horizontal electromagnetic field components represented by b = Nw are continuous across an interface which leads to N (z−
j ) w (z−

j ) =
N (z+

j ) w (z+
j ), where z−

j and z+
j are the z-coordinates on each side of the interface at z j as illustrated in Fig. 2. Thus, the propagators across

the interface become

Q́
(
z−

j , z+
j

) = N−1
(
z−

j

)
N

(
z+

j

)
and Q̀

(
z+

j , z−
j

) = N−1
(
z+

j

)
N

(
z−

j

)
. (60)

In order to derive the 2 × 2 reflection and transmission matrices at an interface, it is convenient to introduce the matrices

Ć = [
Ń

−
H

]T
Ń

+
E , D́ = [

Ń
−
E

]T
Ń

+
H , (61a)

Ĉ = [
Ń

−
H

]T
Ǹ

+
E , D̂ = [

Ń
−
E

]T
Ǹ

+
H , (61b)

Č = [
Ǹ

−
H

]T
Ń

+
E , Ď = [

Ǹ
−
E

]T
Ń

+
H , (61c)

C̀ = [
Ǹ

−
H

]T
Ǹ

+
E , D̀ = [

Ǹ
−
E

]T
Ǹ

+
H , (61d)

where the superscripts ‘−’ and ‘+’ denote eigenvector matrices in the upper and lower homogeneous regions, respectively. The propagators

in both directions across the interface can now be written (using equations 60 and 40) as:

Q́ = 1

2

(
Ć + D́ Ĉ − D̂

Č − Ď C̀ + D̀

)
and Q̀ = 1

2

(
D́

T + Ć
T

Ď
T − Č

T

D̂
T − Ĉ

T
D̀

T + C̀
T

)
. (62)

The propagator elements are related to the reflection and transmission coefficients as described in eqs (51) and (53), and from this the reflection

and transmission matrices can be derived in terms of the C and D matrices:

t́ = 2
(
Ć + D́

)−T
, (63a)

ŕ = −(
Ĉ − D̂

)T (
Ć + D́

)−T = −(
C̀ + D̀

)−1 (
Č − Ď

)
, (63b)
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r̀ = (
Ĉ − D̂

) (
C̀ + D̀

)−1 = (
Ć + D́

)−T (
Č − Ď

)T
, (63c)

t̀ = 2
(
C̀ + D̀

)−1
. (63d)

Note the use of small boldface letters to denote reflection r and transmission t from a single interface.

6.3 Single interface weak contrast approximation

In case of weak contrasts at an interface, eq. (48) can be used to derive approximate expressions for the reflection and transmission matrices

in terms of F and G as in Ursin & Stovas (2002) and Stovas & Ursin (2003). In a source-free region a Taylor expansion of u leads to

u(z − �z) ≈ u(z) − du

dz
�z = (I + iωṕz�z − F́�z)u(z) − Ĝd(z). (64)

When �z → 0 this becomes

uout = (I − F́ )uin − Ĝd in, (65)

where uout is the resulting upgoing field after transmission of uin and reflection of d in. The propagation is in the negative z-direction and uout

and d in are on the upper side of the interface (z−
j ) whereas uin is on the lower side (z+

j ). The matrices F and G refer to F and G with the

derivatives replaced by the discontinuity in the parameters, and the parameters replaced by their average values. A Taylor expansion for d

leads to

d(z + �z) ≈ d(z) + dd

dz
�z = (I + iωp̀z�z + F̀�z)d(z) + Ǧu(z), (66)

which when �z → 0 leads to

dout = (I + F̀ )d in + Ǧuin. (67)

Thus from eq. (65) it can be seen that

t́ ≈ I − F́ and r̀ ≈ −Ĝ, (68a)

whereas eq. (67) gives

t̀ ≈ I + F̀ and ŕ ≈ Ǧ. (68b)

6.4 Recursive reflection and transmission responses

The eigenvalues in Λ will in general be complex and have a spectrum that contains evanescent waves and attenuation for both upgoing and

downgoing waves. A calculation of reflection and transmission responses from a stack of layers can be done by matrix multiplication of all the

propagator elements involved. However, in numerical simulations, this procedure may lead to numerical instabilities. It might thus be better

to obtain the overall reflection and transmission matrices from a recursive calculation: Consider a propagator through a stack of layers from

z N+1 to z+
j and furthermore propagation through the interface z j and the homogeneous region up to z+

j−1 (cf. Fig. 2):

Q́
(
z+

j−1, zN+1

) = Q́
(
z+

j−1, z−
j

)
Q́

(
z−

j , z+
j

)
Q́

(
z+

j , zN+1

)
. (69)

In the 4 × 4 propagator Q́(z+
j , zN+1), the 2 × 2 reflection and transmission matrices in the right column of eq. (54b) are denoted as Ŕ j+1

and T́ j+1. In the propagator Q́(z+
j−1, zN+1), the corresponding reflection and transmission matrices are denoted Ŕ j and T́ j . The propagation

across the single interface z j is described by eq. (54b) as well, and in this case the reflection and transmission matrices are written in lowercase

letters (r and t) with subscript j. For propagation upwards in the homogeneous region, the inverse of the matrix-expression in eq. (43) is used.

The following recursion formulas for the downward reflection and transmission matrices are then obtained:

R̀ j = eiωṕzh j
[
r̀ j + t́ j R̀ j+1(I − ŕ j R̀ j+1)−1 t̀ j

]
eiωp̀zh j , (70a)

T̀ j = T̀ j+1(I − ŕ j R̀ j+1)−1 t̀ j e
iωp̀zh j , (70b)

where h j = z j − z j−1, and where ṕz and p̀z are the eigenvalue submatrices in layer j. The initial values are R̀N+1 = 0 and T̀ N+1 = eiωp̀zhN+1 .

The same procedure can be used for the downgoing propagators to find recursive relations for Ŕ j and T́ j :

Ŕ j = eiωp̀zh j+1

[
ŕ j + t̀ j Ŕ j−1

(
I − r̀ j Ŕ j−1

)−1
t́ j

]
eiωṕzh j+1 , (71a)

T́ j = T́ j−1

(
I − r̀ j Ŕ j−1

)−1
t́ j e

iωṕzh j+1 . (71b)

Here, Ŕ j−1 and T́ j−1 describe reflection and transmission at z−
j whereas Ŕ j and T́ j describe reflection and transmission at z−

j+1. The initial

values are Ŕ0 = 0 and T́0 = eiωṕzh0 , and the eigenvalue submatrices are those of layer j+1. The initial conditions are not necessarily related to

the ‘top’ and ‘bottom’ of the stack as the interpretation of Fig. 2 might suggest; the recursion formulas can be applied to substacks anywhere

in the medium, but not across a source (cf. Fig. 4). Note that the structure of the formulas is the same for both the upward and downward

reflection and transmission matrices.
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Figure 4. A sketch of the multilayered medium with reflection and transmission responses that must be calculated in order to obtain the field anywhere above

or below the source in any layer.

7 System of layers containing a source

A system of homogeneous layers containing a source is shown in Fig. 2. The interfaces are denoted as 0, . . . j , . . .N along the positive

z-direction from the topmost interface to the bottommost interface. Now, consider propagation downwards from the source through the stack

below:

w(zN ) = Q̀
(
zN , z+

s

)
w

(
z+

s

) = Q̀
(
zN , z−

s

)[
w

(
z−

s

) + Σ(zs)
]
. (72)

In the lower half-space, that is, in the region below the interface z N , there are only downgoing fields. Furthermore, the downgoing field above

the source is the reflected upgoing field: d(z−
s ) = Ŕsu(z−

s ), where Ŕs is the reflection response from a stack above zs . Thus eq. (72) can be

written as(
0

d(zN )

)
= Q̀11

(
I −R̀s

Q̀
−1

11 Q̀21 Q̀
−1

11 Q̀22

) {(
u(z−

s )

Ŕsu(z−
s )

)
+

(
Σ́(zs)

Σ̀(zs)

)}
, (73)

where the relation R̀s = −Q̀
−1

11 Q̀12 from eq. (51c) has been used. The matrix R̀s represents the reflection response from the stack below zs .

The mode-field vector just above the source now becomes:

w(z−
s ) =

(
I

Ŕs

) (
I − R̀s Ŕs

)−1
(−Σ́ + R̀sΣ̀). (74)

In order to obtain an expression for the mode-field vector anywhere above the source, downward propagation of w (z) to w (z−
s ) where z <

zs , is considered by using eq. (54a). The relation between the upgoing mode-fields now gives

u(z < zs) = (
I − R̀u Ŕa

)−1
T́uu(z−

s ), (75)

when the relation d(z) = Ŕau(z) is used. The notation follows from Fig. 4: The reflection and transmission between z < zs and zs are denoted

T́u and R̀u whereas the reflection from the above layers is denoted Ŕa . The total mode-field vector is thus

w(z < zs) =
(

I

Ŕa

)
(I − R̀u Ŕa)−1T́u(I − R̀s Ŕs)−1(−Σ́ + R̀sΣ̀). (76)

Written in this way the mode-field expression contains multiple reflections in the source layer and in the receiver layer. In addition there is a

transmission matrix between these two layers.
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An expression for the mode-field vector below the source can be found by considering propagation from the source through the upper

stack:

w(z0) = Q́
(
z0, z−

s

)
w

(
z−

s

) = Q́
(
z0, z+

s

)[
w

(
z+

s

) − Σ(zs)
]
. (77)

The radiation condition for the upper half-space implies that there are only upgoing waves in this region, and the upgoing field below the

source equals the reflection response from the downgoing field u(z+
s ) = R̀sd(z+

s ). This leads to a corresponding relation to eq. (73):(
u(z0)

0

)
= Q́22

(
Q́

−1

22 Q́11 Q́
−1

22 Q́12

−Ŕs I

) {(
R̀sd

(
z+

s

)
d
(
z+

s

)
)

−
(
Σ́(zs)

Σ̀(zs)

)}
, (78)

where Ŕs = −Q́
−1

22 Q́21 from eq. (53c), and Ŕs is the reflection response from the stack above zs . The mode-field vector just below the source

now becomes

w(z+
s ) =

(
R̀s

I

)
(I − Ŕs R̀s)−1(Σ̀ − ŔsΣ́), (79)

and the mode-field vector anywhere below the source z >zs is found by propagating w (z) up to w (z+
s ) with the propagator in eq. (54b). By

using that u(z) = R̀bd(z), a relation between the downgoing fields can be derived:

d(z > zs) = (I − Ŕd R̀b)−1T̀d d
(
z+

s

)
. (80)

The reflection and transmission between z > zs and zs are denoted T̀d and Ŕd whereas the reflection from the bottom layers is denoted R̀b as

shown in Fig. 4. The total mode-field vector then becomes

w(z > zs) =
(

R̀b

I

) (
I − Ŕd R̀b

)−1
T̀d

(
I − Ŕs R̀s

)−1
(Σ̀ − ŔsΣ́). (81)

Note that eq. (76) can be obtained from eq. (81) and vice versa by switching the roles of upgoing and downgoing mode-fields, reflection,

transmission, and radiation. In addition, the signs of the mode-fields must be switched.

Within the source layer eqs (76) and (81) reduce to

ws(z < zs) =
(

e−iωṕz(z−zs )

Ŕae−iωṕz(z−zs )

)
(I − R̀s Ŕs)−1(−Σ́ + R̀sΣ̀), (82a)

ws(z > zs) =
(

R̀beiωp̀z(z−zs )

eiωp̀z(z−zs )

)
(I − Ŕs R̀s)−1(Σ̀ − ŔsΣ́), (82b)

where Ŕa in this case differs from Ŕs by a phase factor that corresponds to propagation down and up between the receiver and the source,

and likewise R̀b equals R̀s when the receiver is at the same z-level as the source. The eigenvalue submatrices in eq. (82) are those of the

source-medium.

8 E I G E N VA L U E S A N D E I G E N V E C T O R S

In the previous section, expressions for the mode-field from an infinitesimal dipole have been derived. The physical field follows from the

transformation b = Nw (eq. 28). In order to calculate the mode-field, the reflection and transmission from a stack of layers are needed. This

is provided by the relations in eqs (71) and (70). The reflection and transmission from a single interface is described by eq. (63). Finally, the

expression for the source vector in the mode-domain as given by eq. (44) is required.

In all of the derivations, the relations are obtained from the eigenvalues and eigenvectors of the system matrix A. Thus, the calculation of

the electromagnetic field is dependent on solving the eigenvalue problem for the system matrix in each homogeneous region. The eigenvalues

and eigenvectors of A are dependent on the material parameters in the specified region and the horizontal slownesses px and p y .

8.1 Eigenvalues

The eigenvalues of A are determined by solving det (A − pz I) = 0. This leads to the quartic equation

p4
z + b3 p3

z + b2 p2
z + b1 pz + b0 = 0, (83)

where

b3 = −2(a11 + a22), (84a)

b2 = (a11 + a22)2 + 2a11a22 − 2a12a21 − 2a14a32 − a13a31 − a24a42, (84b)
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58 L. O. Løseth and B. Ursin

b1 = 2a11[a12a21 + a14a32 + a24a42 − a22(a11 + a22)] + 2a12(a21a22 − a24a32 − a14a31),

+ 2a13(a31a22 − a21a32) + 2a14(a22a32 − a21a42), (84c)

b0 = a11

[
a11

(
a2

22 − a24a42

) + 2a12(a24a32 − a21a22) + 2a14(a21a42 − a22a32)
]
,

+ a12

[
a12

(
a2

21 − a24a31

) + 2a14(a22a31 − a21a32)
]
,

+ a13

[
a21(a22a32 − a21a42) + a22(a21a32 − a22a31) + a24

(
a31a42 − a2

32

)]
,

+ a14

[
a14

(
a2

32 − a31a42

)]
. (84d)

The solution of eq. (83) can be found using the approach in Abramowitz & Stegun (1962), page 17. This implies to determine one solution,

e.g. u1 of the cubic equation

u3 − b2u2 + (b3b1 − 4b0)u − [
b2

1 + b0

(
b2

3 − 4b2

)] = 0, (85)

and then determining the four roots from the two quadratic equations:

p2
z +

⎛
⎝b3

2
∓

√
b2

3

4
+ u1 − b2

⎞
⎠ pz +

⎛
⎝u1

2
∓

√
u2

1

4
− b0

⎞
⎠ = 0. (86)

The derived set of roots pzj (where j = {I,I I ,I I I ,I V}) must satisfy the following relations∑
pzj = −b3,

∑
pzj pzk pzl = −b1,

∑
pzj pzk = b2, and pzI pzII pzIII pzIV = b0. (87)

The eigenvalues represent slownesses in the vertical direction, and in general, these are all complex parameters. In order for the iterative

reflectivity method to work properly, cf. eqs (70) and (71), it is important that the eigenvalues that have positive (negative) imaginary parts

are sorted into the upgoing (downgoing) submatrix in eq. (30). Since the horizontal slownesses are real, this requirement (i.e. the radiation

condition) corresponds to the requirement that the direction of the energy flow should determine which eigenvalue that relates to upgoing and

downgoing constituents (cf. Chapman 1994; Carcione & Schoenberg 2000). In case of real eigenvalues, the determination of an eigenvalue

being upgoing or downgoing relies on the energy-flow condition. In Appendix C, a method for calculating the energy velocity in a homogeneous

region in terms of the slowness and material parameters is presented.

Within each eigenvalue submatrix for upgoing and downgoing constituents, the sorting of the eigenvalues does not matter as shown in

Appendix D. If it is desirable to derive the correct physical reflection and transmission matrices at an interface, the eigenvalues must however

have the same sorting on each side of the interface. This can be obtained by accounting for signs throughout the solution of the quartic

equation. Another method for sorting the eigenvalues is provided through the calculation of the energy velocity in Appendix C.

8.2 Eigenvectors

The eigenvector-matrix N can be written in terms of the eigenvectors, matrix elements, and submatrices as

√
2N = (nI nII nIII nIV) =

⎛
⎜⎜⎜⎜⎝

n11 n12 n13 n14

n21 n22 n23 n24

n31 n32 −n33 −n34

n41 n42 −n43 −n44

⎞
⎟⎟⎟⎟⎠ =

(
Ń E Ǹ E

Ń H −Ǹ H

)
. (88)

Thus, j = {I,I I ,I I I ,I V} in the eigenvectors (and corresponding eigenvalues), appear as j = {1, 2, 3, 4} for the second number in the subscript

of the eigenvector-matrix elements. The eigenvectors that correspond to the eigenvalues are found from solving

An j = pzj n j , (89)

and for each eigenvalue pzj, the following relations between the entries in an eigenvector can be obtained:

n2 j = β2 j

β1 j
n1 j , n3 j = ±β3 j

β1 j
n1 j , and n4 j = ±β4 j

β1 j
n1 j , (90)

where the plus sign is applied when j = {1, 2} and minus sign when j = {3, 4}, and where

β1 j = (a11 − pzj )(a22 − pzj )a14 − (a11 − pzj )a12a24

−(a22 − pzj )a13a21 − a2
14a32 + a12a14a21 + a13a24a32, (91a)

β2 j = a24(a11 − pzj )
2 − 2a14a21(a11 − pzj ) + a13

(
a2

21 − a24a31

) + a2
14a31, (91b)

β3 j = a21(a11 − pzj )(a22 − pzj ) − a24a32(a11 − pzj )

−a14a31(a22 − pzj ) − a12

(
a2

21 − a24a31

) + a14a21a32, (91c)

β4 j = −(a11 − pzj )
2(a22 − pzj ) + (a12a21 + a14a32)(a11 − pzj )

+ a13a31(a22 − pzj ) − a12a14a31 − a13a21a32. (91d)
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The n1 j -entries are obtained from the flux-normalization criterion. The relation N N−1 =I in terms of the eigenvector submatrices from

eq. (40) implies that

Ń E Ń
T

H + Ǹ E Ǹ
T

H = 2I, Ń H Ń
T

H = Ǹ H Ǹ
T

H ,

Ń H Ń
T

E + Ǹ H Ǹ
T

E = 2I, Ń E Ń
T

E = Ǹ E Ǹ
T

E . (92)

which provides the set of equations:

n2
11 + n2

12 − n2
13 − n2

14 = 0, (93a)

n11n21 + n12n22 − n13n23 − n14n24 = 0, (93b)

n11n31 + n12n32 + n13n33 + n14n34 = 2, (93c)

n11n41 + n12n42 + n13n43 + n14n44 = 0, (93d)

where n11, n12, n13, and n14 are the unknowns. The solution is given by

n2
11 = 2(α12α23 − α13α22)D−1

α , n2
12 = 2(α13α21 − α11α23)D−1

α ,

n2
13 = 2(α11α22 − α12α21)D−1

α , n2
14 = n2

11 + n2
12 − n2

13,

where

α11 = β ′
24 − β ′

21, α12 = β ′
24 − β ′

22, α13 = β ′
23 − β ′

24, (94a)

α21 = β ′
41 − β ′

44, α22 = β ′
42 − β ′

44, α23 = β ′
44 − β ′

43, (94b)

α31 = β ′
31 − β ′

34, α32 = β ′
32 − β ′

34, α33 = β ′
34 − β ′

33, (94c)

the quotient β ′
i j = β i j/β 1 j has been introduced, and

Dα = α11(α22α33 − α23α32) + α12(α23α31 − α21α33) + α13(α21α32 − α22α31). (94d)

The sign of the square root in the solutions for n11 and n12 can be chosen at will, but the sign of n13 and n14 must correspond to the selected

sign for n11 and n12, respectively.

9 U P / D O W N - S Y M M E T R I C M E D I A

When one of the principal axes in the anistropic medium coincides with the vertical axis of the main coordinate system, the relation between

the principal system and the main coordinate is given in terms of one rotation in the horizontal plane (cf. Appendix A). This corresponds to a

monoclinic medium with the horizontal plane as a mirror plane of symmetry, and the system matrix reduces to:

A =
(

0 A1

A2 0

)
. (95)

In this case the entries in the submatrices are denoted

A1 =
(

a′
13 a′

14

a′
14 a′

24

)
and A2 =

(
a′

31 a′
32

a′
32 a′

42

)
, (96)

where the same indices as in the general case are used. However, the expressions in the entries simplify compared to the general case and

become:

a′
13 = μyy − p2

x

ε̃v

, a′
14 = −μxy − px py

ε̃v

, (97a)

a′
24 = μxx − p2

y

ε̃v

, a′
31 = ε̃xx − p2

y

μv

, (97b)

a′
32 = ε̃xy + px py

μv

, a′
42 = ε̃yy − p2

x

μv

. (97c)

Now, because of the symmetry in the original 4 × 4-matrices, the eigenvalues and eigenvectors can be obtained from 2 × 2-matrices. The

product of the submatrices will become useful:

A1 A2 =
(

α′
11 α′

12

α′
21 α′

22

)
, (98)

where

α′
11 = a′

13a′
31 + a′

14a′
32, α′

12 = a′
13a′

32 + a′
14a′

42,

α′
21 = a′

14a′
31 + a′

24a′
32, α′

22 = a′
14a′

32 + a′
24a′

42.
(99)

C© 2007 The Authors, GJI, 170, 44–80

Journal compilation C© 2007 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/170/1/44/599986 by guest on 16 August 2022



60 L. O. Løseth and B. Ursin

The eigenvalues can be derived from the expression for the eigenvalues in eq. (83) where the terms b3 and b1 are zero for the up/down-

symmetric (u/d-symmetric) case. This means that the quartic equation reduces to a quadratic equation for the squared eigenvalues, which can

be written in terms of the submatrix product as:

pz = ±
{

1

2

[
tr(A1 A2) ±

√
tr2(A1 A2) − 4det(A1 A2)

]}1/2

. (100)

The two eigenvalues that correspond to the positive sign in front of the square root are pzI and pzII. These two quantities are furthermore

obtained by using the positive and negative sign inside the square root, respectively. Then pzIII = −pzI and pzIV = −pzII, which means that

the eigenvalue submatrices in eq. (30) are equal due to the u/d-symmetry: ṕz = p̀z = pz.

Because of the symmetry in the upgoing and downgoing field constituents, the submatrices in eq. (88) become pairwise equal:

N = 1√
2

(
N E N E

N H −N H

)
, (101)

where the block inverse and relation from the general expression for the eigenvector matrix (eq. 40) give:

N−1 = 1√
2

(
N−1

E N−1
H

N−1
E −N−1

H

)
= 1√

2

(
NT

H NT
E

NT
H −NT

E

)
. (102)

The following symmetry-relations thus appear:

N−1
E = NT

H , N−1
H = NT

E . (103)

The similarity transform AN = NΛ, where Λ = diag {pz, −pz} then gives the equations:

A1 = N E pz NT
E and A2 = N H pz NT

H . (104)

Complex symmetric matrices as A1 and A2 can always be diagonalized as in eq. (104) (Horn & Johnson 1985). It has previously been shown

that this choice of eigenvectors corresponds to a flux normalization.

By writing N E = (nI nII), the multiplication of A2 by A1 from the left in eq. (104) leads to:

A1 A2n j = p2
z j n j , (105)

where j = {I, I I}. Using the relations in eq. (103), the eigenvector-submatrices N E and N H can be written as:

N E =
(

n11 n12

n21 n22

)
, N H = 1

n11n22 − n12n21

(
n22 −n21

−n12 n11

)
. (106)

The elements in the eigenvector matrices can now be calculated in terms of the eigenvalues pzI and pzII from eq. (100) as follows: Find

a relation between the entries in the eigenvectors from eq. (105), and use eq. (104) to obtain a scaling between the eigenvectors that satisfies

the flux-normalization condition. It is useful to derive two sets of solutions: The following expressions can be used as long as the anisotropy

is not uniaxial and in the y-direction:

n21 =
[

a′
14α

′
21 + a′

24

(
α′

22 − p2
zII

)
pzI

(
p2

zI
− p2

zII

) ]1/2

, n22 =
[

a′
14α

′
21 + a′

24

(
α′

22 − p2
zI

)
pzII

(
p2

zII
− p2

zI

) ]1/2

, (107a)

n11 = p2
zI

− α′
22

α′
21

n21, n12 = p2
zII

− α′
22

α′
21

n22. (107b)

Equivalently the following set of eigenvectors can be used, except when the anisotropy is uniaxial and the direction coincides with the

x-direction:

n11 =
[

a′
14α

′
12 + a′

13

(
α′

11 − p2
zII

)
pzI

(
p2

zI
− p2

zII

) ]1/2

, n12 =
[

a′
14α

′
12 + a′

13

(
α′

11 − p2
zI

)
pzII

(
p2

zII
− p2

zI

) ]1/2

, (108a)

n21 = p2
zI

− α′
11

α′
12

n11, n22 = p2
zII

− α′
11

α′
12

n12. (108b)

9.1 Common principal and coordinate axes

The case where the principal axes of anisotropy coincide with the coordinate axes will be denoted as non-rotated orthorhombic. Since the

Fourier expansion of dipole radiation in stratified media gives a spectrum of slownesses in terms of px and p y , this orthorhombic case

does not in general lead to any simplifications compared to an u/d-symmetric case where the principal axes are rotated with respect to the

horizontal coordinate axes. However, the expressions for the eigenvalues simplify for uniaxial non-rotated orthorhombic media. Thus, it might

be enlightening to calculate the eigenvalues for biaxial orthorhombic media explicitly. To this end, note that it is possible to always choose

the coordinate system to coincide with the principal axes of anisotropy for u/d-symmetric media by decomposing the antenna into x- and

y-components that coincide with the principal axes.
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For non-rotated orthorhombic media, the material parameter dyads are ε̃ = diag{ε̃1, ε̃2, ε̃3} and μ = diag {μ1, μ2, μ3}. The eigenvalues

of A become:

pzI =
[

1 + f (px )

2

(
μ2ε̃1 − μ1

μ3

p2
x − μ2

μ3

p2
y

)
+ 1 − f (px )

2

(
μ1ε̃2 − ε̃1

ε̃3

p2
x − ε̃2

ε̃3

p2
y

)]1/2

, (109a)

pzII =
[

1 + f (px )

2

(
μ1ε̃2 − ε̃1

ε̃3

p2
x − ε̃2

ε̃3

p2
y

)
+ 1 − f (px )

2

(
μ2ε̃1 − μ1

μ3

p2
x − μ2

μ3

p2
y

)]1/2

, (109b)

where

f (px ) =
√

1 + 4 (μ1ε̃2 − μ2ε̃1) q1 p2
x(

μ1ε̃2 − μ2ε̃1 + q1 p2
x + q2 p2

y

)2
, (109c)

and q1 = ε̃1/ε̃3 − μ1/μ3, and q2 = ε̃2/ε̃3 − μ2/μ3. The eigenvalues can also be written as

pzI =
[

1 + f (py)

2

(
μ1ε̃2 − μ1

μ3

p2
x − μ2

μ3

p2
y

)
+ 1 − f (py)

2

(
μ2ε̃1 − ε̃1

ε̃3

p2
x − ε̃2

ε̃3

p2
y

)]1/2

, (110a)

pzII =
[

1 + f (py)

2

(
μ2ε̃1 − ε̃1

ε̃3

p2
x − ε̃2

ε̃3

p2
y

)
+ 1 − f (py)

2

(
μ1ε̃2 − μ1

μ3

p2
x − μ2

μ3

p2
y

)]1/2

, (110b)

where

f (py) =
√√√√1 − 4 (μ1ε̃2 − μ2ε̃1) q2 p2

y(
μ1ε̃2 − μ2ε̃1 + q1 p2

x + q2 p2
y

)2
. (110c)

Note that the quantity f (px ) is equal to one when px is zero, and similarly that f (p y) is equal to one when p y is zero.

When the anisotropy is uniaxial and in the x-direction, the expressions for the eigenvalues simplify since q 2 = 0 which means that

f (p y) = 1. Thus,

pzI =
√

μ1ε̃2 − μ1

μ3

p2
x − p2

y and pzII =
√

μ2ε̃1 − ε̃1

ε̃3

p2
x − p2

y . (111)

Similarly, when the anisotropy direction is along the y-axis only, q 1 = 0 and f (px ) = 1. Then

pzI =
√

μ2ε̃1 − p2
x − μ2

μ3

p2
y and pzII =

√
μ1ε̃2 − p2

x − ε̃2

ε̃3

p2
y . (112)

9.2 Reflection and transmission coefficients

In u/d-symmetric stratified layers the relations in eq. (59) reduce to

Ŕ = Ŕ
T
, R̀ = R̀

T
, and T́ = T̀

T
. (113)

At an interface between two u/d-symmetric media, the relations in eq. (63) reduce to:

t́ = 2 (C + D)−T , (114a)

ŕ = − (C − D)T (C + D)−T = − (C + D)−1 (C − D) , (114b)

r̀ = (C − D) (C + D)−1 = (C + D)−T (C − D)T , (114c)

t̀ = 2 (C + D)−1 , (114d)

since the relations in eq. (61) now are

C = [
N−

H

]T
N+

E and D = [
N−

E

]T
N+

H , (115)

because of the symmetries in the eigenvector submatrices in eq. (103). The superscripts ‘−’ and ‘+’ denote the upper and lower homogeneous

regions, respectively, and the matrices C and D have the property C DT = I. This way of writing reflection and transmission matrices for

u/d-symmetric media was introduced by Ursin & Stovas (2002). From eq. (114) it can be verified that the upgoing and downgoing reflection

matrices are related as

ŕ = −t̀ r̀ t̀
−1

and r̀ = −t́ ŕ t́
−1

, (116)

and that the reflection matrices are related to the transmission matrices as

ŕ 2 = I − t̀ t́ and r̀ 2 = I − t́ t̀ . (117)

The relations in continuously varying media also simplify with u/d-symmetry since F́ = F̀ = F and Ǧ = Ĝ = G. For weak contrasts,

the approximations in eq. (68) then imply that ŕ ≈ −r̀ .
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1 0 T R A N S V E R S A L I S O T RO P Y I N T H E V E RT I C A L D I R E C T I O N

Transversal isotropy in the vertical direction (TIV) means that the electromagnetic properties of a medium are rotationally symmetric about

the z-axis. In this case the constitutive relations simplify to ε̃ = diag{ε̃h, ε̃h, ε̃v} and μ = diag {μh , μh , μv}, and the system matrix has the

same form as eq. (95) with

A1 = 1

ε̃v

(
μh ε̃v − p2

x −px py

−px py μh ε̃v − p2
y

)
, A2 = 1

μv

(
μvε̃h − p2

y px py

px py μvε̃h − p2
x

)
. (118)

The eigenvalues of A now become

pzI = −pzIII =
√

μh ε̃h − μh

μv

(
p2

x + p2
y

)
, (119a)

pzII = −pzIV =
√

μh ε̃h − ε̃h

ε̃v

(
p2

x + p2
y

)
. (119b)

The eigenvector matrix and its inverse from eqs (101) and (102) have the submatrices:

N E = 1

pρ

⎛
⎝ py

√
μh
pzI

px

√
pzII

ε̃h

−px

√
μh
pzI

py

√
pzII

ε̃h

⎞
⎠ and N H = 1

pρ

⎛
⎜⎝ py

√
pzI

μh
px

√
ε̃h
pzII

−px

√
pzI

μh
py

√
ε̃h
pzII

⎞
⎟⎠ , (120)

where pρ =
√

p2
x + p2

y .

10.1 Reflection and transmission matrices

In the TIV-case, explicit expressions for the reflection and transmission matrices can be derived by inserting eq. (120) into (115) and using

eq. (114):

t̀ =

⎛
⎜⎝

2
√

μ−
h μ+

h p−
zI p+

zI

μ+
h p−

zI + μ−
h p+

zI

0

0
2
√

ε̃−
h ε̃+

h p−
zII p+

zII

ε̃−
h p+

zII + ε̃+
h p−

zII

⎞
⎟⎠ r̀ =

⎛
⎜⎝

μ+
h p−

zI − μ−
h p+

zI

μ+
h p−

zI + μ−
h p+

zI

0

0
ε̃−

h p+
zII − ε̃+

h p−
zII

ε̃−
h p+

zII + ε̃+
h p−

zII

⎞
⎟⎠ . (121)

Since these matrices are diagonal, the relations in eq. (113) and eq. (116) lead to

t́ = t̀ and ŕ = −r̀ . (122)

In eq. (121) the reflection coefficients are recognized as the Fresnel coefficients for transversal electric (TE) and transversal magnetic (TM)

polarization (cf. Stratton 1941; Jackson 1998). Thus, in the TIV-case, the eigenvalue pzI corresponds to a TE-mode, and the eigenvalue pzII

corresponds to a TM-mode. The transmission coefficients are symmetric across the interface. In order to obtain the Fresnel transmission

coefficients, another normalization of the eigenvectors can be chosen as shown in Appendix E.

10.2 Recursive reflection and transmission responses

When the transmission and reflection matrices describing propagation through one interface are diagonal, the expressions in eqs (70) and (71)

simplify. The result is scalar recursive reflection and transmission (RT) responses valid for both modes. By using the relations in eq. (117)

and (122), one gets:

Rm = rm + Rm+1

1 + rm Rm+1

e2iωpz hm , (123a)

Tm = tm Tm+1

1 + rm Rm+1

eiωpz hm , (123b)

where pz = pzI for the TE-mode and pz = pzII for the TM-mode. It is implicit that the eigenvalues take their respective values in the m’th

layer. The initial conditions at the start of the stack are R M+1 = 0 and TM+1 = eiωpz hM+1 . The expressions can be used both for upgoing and

downgoing reflection and transmission coefficients. In both cases hm describes the thickness from the m’th interface, where r m and t m are

evaluated, to the z-level of Rm and t m .

1 1 I S O T RO P I C M E D I A

In isotropic media the system matrix has the same form as in eq. (95), but now

A1 = 1

ε̃

(
με̃ − p2

x −px py

−px py με̃ − p2
y

)
, A2 = 1

μ

(
με̃ − p2

y px py

px py με̃ − p2
x

)
, (124)
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and the eigenvalues are

pz = pzI = pzII = −pzIII = −pzIV =
√

με̃ − p2
x − p2

y . (125)

Because of the degeneracy of the eigenvalues there are several possibilities for choosing a linear independent set of 4 eigenvectors that satisfy

the flux normalization condition. It will however be convenient to choose the same form of the eigenvector matrix as in the TIV-case. Thus,

the same eigenvector matrices as in eq. (120) can be used with μh = μv = μ, ε̃h = ε̃v = ε̃ and pzI = pzII = pz . All the relations that have

been derived and will be derived for TIV-media are hence valid for isotropic media.

1 2 E X P L I C I T E X P R E S S I O N S F O R T H E E L E C T RO M A G N E T I C F I E L D S

By using eqs (76) and (81) the electromagnetic field in a stratified medium with general anisotropy in all the layers can be obtained. However,

in many applications in geophysics the source medium is isotropic or transversally isotropic in the vertical direction. The purpose in this

section is to derive explicit expressions for the electromagnetic fields from sources that are either a horizontal electric dipole (HED), vertical

electric dipole (VED), horizontal magnetic dipole (HMD) or vertical magnetic dipole (VMD), when the source and receiver are situated in

TIV or isotropic media. The infinitesimal dipole source is contained in one of the layers as shown in Fig. 2, and the resulting electromagnetic

field can be obtained in any TIV or isotropic layer from the explicit expressions that will be derived. In all layers other than the source and

receiver layer(s), the anisotropy may be arbitrary.

The field expressions are given in the frequency–wavenumber domain, and a 2-D Fourier transform is required in order to get to the

spatial domain. It is only in the case of having TIV or isotropy in all the layers that the transformation to the spatial domain can be reduced to

a single integral by using cylindrical coordinates. The field expressions for such cases are given in Appendix F.

12.1 Up/down-symmetry in the source and receiver layer(s)

If the source and receiver layers have u/d-symmetry, the expressions for the mode-field vectors in eqs (76) and (81), and the corresponding

physical field vectors b = (bE ; bH ), simplify. The resulting fields from the four types of sources (HED, HMD, VED, and VMD) are considered.

The source vectors from eq. (16) is split into s E = (sv
E ; sh

E ) and s M = (sh
M ; sv

M ). The different source types in the mode-field domain then

become

HED :�̀ = −�́ = −NT
E sh

E/
√

2 and VED :�̀ = �́ = NT
H sv

E/
√

2,

HMD :�̀ = �́ = NT
H sh

M/
√

2 and VMD :�̀ = −�́ = −NT
E sv

M/
√

2,
(126)

where eq. (44) with the eigenvector matrices from eq. (101) has been used. The electromagnetic field is then given for any of these sources

by the expression

bE = N E R �̀/
√

2 and bH = N H R �̀/
√

2, (127)

where the coefficient matrices R (RT-amplitudes) are, respectively, RA and RD for the electric and magnetic field components in case of

a HED and VMD. When the source is a HMD or a VED, the coefficient matrices for the electric and magnetic fields are RB and RC ,

respectively. The RT-amplitudes above the source z < zs are:

ŔA = (I + Ŕa)(I − R̀u Ŕa)−1T́u(I − R̀s Ŕs)−1(R̀s + I), (128a)

ŔB = (I + Ŕa)(I − R̀u Ŕa)−1T́u(I − R̀s Ŕs)−1(R̀s − I), (128b)

ŔC = (I − Ŕa)(I − R̀u Ŕa)−1T́u(I − R̀s Ŕs)−1(R̀s − I), (128c)

ŔD = (I − Ŕa)(I − R̀u Ŕa)−1T́u(I − R̀s Ŕs)−1(R̀s + I), (128d)

and the RT-amplitudes below the source z > zs are:

R̀A = (R̀b + I)(I − Ŕd R̀b)−1T̀d (I − Ŕs R̀s)−1(I + Ŕs), (128e)

R̀B = (R̀b + I)(I − Ŕd R̀b)−1T̀d (I − Ŕs R̀s)−1(I − Ŕs), (128f)

R̀C = (R̀b − I)(I − Ŕd R̀b)−1T̀d (I − Ŕs R̀s)−1(I − Ŕs), (128g)

R̀D = (R̀b − I)(I − Ŕd R̀b)−1T̀d (I − Ŕs R̀s)−1(I + Ŕs). (128h)

The reflection and transmission matrices can be calculated from the relations in eq. (71) and (70). The single interface reflection and

transmission are described by eq. (63).
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64 L. O. Løseth and B. Ursin

12.2 RT-responses and polarization modes

In TIV or isotropic media the direction of the wavenumber vector for a plane-wave constituent and the electric and magnetic field components

form an orthogonal system (cf. Appendix C). This means that in presence of an interface, the electromagnetic field can be decomposed into

a TE and TM polarization mode. The interface normal and the wavenumber direction form the plane of incidence. The electromagnetic field

component where the electric field is normal to the plane of incidence is referred to as the TE-mode, and the field component where the

magnetic field is normal to the plane of incidence is referred to as the TM-mode.

For reflection and transmission in TIV-media there is no coupling of the polarization modes as seen from eq. (121), since the reflection and

transmission matrices are diagonal. From eq. (119) it can be observed that the vertical slowness that corresponds to the TE-mode is governed

by anisotropy in the magnetic permeability, whereas the vertical slowness that corresponds to the TM-mode is governed by anisotropy in the

complex electric permittivity. The modes are obviously also decoupled for reflection and transmission at interfaces between TIV and isotropic

media or between isotropic media. For isotropic media the slownesses are equal, cf. eq. (125).

At interfaces between media with more complicated anisotropy than TIV, the off-diagonal elements of the reflection and transmission

matrices (cf. eqs (63) and (114)) are non-zero and thus the polarization modes are coupled. However, in a general anisotropic homogeneous

region there are no pure TE- and TM-polarization modes since the propagation direction is not orthogonal to the field components (cf.
Appendix C). We will refer to the modes in such regions as quasi-TE (qTE) and quasi-TM (qTM). When the anisotropy simplifies into TIV,

the qTE-mode should then correspond to the TE-mode, and likewise the qTM-mode should give a TM-mode.

Consider the matrix expressions in eq. (1280) which can be written as:

R =
(
R11 R12

R21 R22

)
, (129)

where the notation R refers to all the eight different reflection and transmission responses in eq. (128). Let eq. (129) represent the RT-response

in a TIV or isotropic medium from an anisotropic stack due to a source in a TIV or isotropic medium. The sorting of eigenvalues in eq. (119)

then means that the subscript 1 in the matrix elements in eq. (129) is related to the TE-mode, whereas the subscript 2 is related to the TM-mode.

Thus the emitted TE-polarization and the resulting TE-mode response is represented by R11 whereas R12 is the resulting TM-mode from

the TE-radiation. In the same manner, the emitted TM-polarization is represented by R21 and R22 where the latter is the TM-mode in the

resulting electromagnetic field and R21 is the TE-mode due to the radiated TM-mode. In short, subscript 11 implies TE → TE, 12 is TE →
TM, 21 is TM → TE, and 22 is TM → TM. Note however, that in a stack with general anisotropy the R11-response will contain responses

which have been converted from TM to TE and then back from TM to TE within the stack. In the same manner the R22-response is not a pure

TM-response.

When all the layers in the stratified model are TIV or isotropic, there is no crosscoupling between the modes. Then the entries R12 and

R21 are zero, and the calculation of the RT-response reduces to a scalar problem in terms of the TE- and TM-mode.

12.3 Horizontal electric dipole

For a HED in the x-direction, the source vector from eq. (16) is s = (0 0 J x 0)T where J x is given by eq. (17a) and the delta function is

accounted for in eq. (45). Using eq. (126) this leads to

Σ̀ = −Σ́ = − 1√
2

NT
E

(
Jx

0

)
= − I lx√

2pρ

(
pyEs

pxM−1
s

)
, (130)

where the eigenvector submatrix from eq. (120) has been used since the source is assumed to be in a TIV layer, and where the variables

E =
√

μh

pzI
and M =

√
εh

pzI I
, (131)

have been introduced to simplify notation. The subscript s implies material parameters within the source layer. The electromagnetic field is

given by eq. (127):

b(z) = 1√
2

(
N ERA

N H RD

)
Σ̀(zs). (132)

The expression is valid for z < zs ; then R → Ŕ, and z > zs which implies that R → R̀. Written explicitly, the electric and magnetic fields

become:

Ex = − I lx

2p2
ρ

[
EEs p2

yRA
11 + E

Ms
py pxRA

12 + Es

M px pyRA
21 + 1

MMs
p2

xRA
22

]
, (133a)

Ey = − I lx

2p2
ρ

[
− EEs px pyRA

11 − E
Ms

p2
xRA

12 + Es

M p2
yRA

21 + 1

MMs
py pxRA

22

]
, (133b)

Hy = + I lx

2p2
ρ

[Es

E p2
yRD

11 + 1

EMs
py pxRD

12 + MEs px pyRD
21 + M

Ms
p2

xRD
22

]
, (133c)
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Hx = − I lx

2p2
ρ

[
− Es

E px pyRD
11 − 1

EMs
p2

xRD
12 + MEs p2

yRD
21 + M

Ms
py pxRD

22

]
. (133d)

The z-components of the electric and magnetic fields are found using eq. (15a) and (b), respectively, and become:

Ez = − I lx

2ε̃v

[
MEs pyRD

21 + M
Ms

pxRD
22

]
, (133e)

Hz = I lx

2μv

[
EEs pyRA

11 + E
Ms

pxRA
12

]
. (133f)

The electromagnetic field from a HED in the y-direction is found by letting pxJx → pyJy and pyJx → −pxJy in the equations above. When

performing the substitution in expressions where both px and p y is present, it is the rightmost slowness parameter that must be used (i.e. by

the notation used here it is this slowness parameter that can be ascribed to the source transformation).

In cases where all the layers are TIV (or isotropic), the RT-response simplifies. The crosscoupling coefficients are R12 = 0 and R21 = 0

in this case. The responses for the TE- and the TM-mode (R11 and R22, respectively) are then given by the same scalar expression. For z >

zs the RT-amplitudes are

R̀A = T̀d
R̀b + 1

1 − Ŕd R̀b

1 + Ŕs

1 − Ŕs R̀s

, (134a)

R̀D = T̀d
R̀b − 1

1 − Ŕd R̀b

1 + Ŕs

1 − Ŕs R̀s

, (134b)

and for z < zs the RT-amplitudes are

ŔA = T́ u
1 + Ŕa

1 − R̀u Ŕa

1 + R̀s

1 − R̀s Ŕs

, (134c)

ŔD = T́ u
1 − Ŕa

1 − R̀u Ŕa

1 + R̀s

1 − R̀s Ŕs

. (134d)

12.4 Horizontal magnetic dipole

A HMD implies that the source term from eq. (16) becomes s = (0 J M
x 0 0)T . In TIV-media the HMD-source in eq. (17d) reduces to J M

x =
−iωμh I a xδ(z − zs). The source in the mode-domain can thus be written:

Σ̀ = Σ́ = 1√
2

NT
H

(
0

J M
x

)
= −iωμs

h I ax√
2pρ

(
−pxE−1

s

pyMs

)
, (135)

where the superscript s on μh refers to the permeability in the source layer. To obtain the electromagnetic field, the expression in eq. (127) is

used:

b(z) = 1√
2

(
N ERB

N H RC

)
Σ̀(zs). (136)

Written explicitly the electric and magnetic fields become:

Ex = − iωμs
h I ax

2p2
ρ

[
− E

Es
py pxRB

11 + EMs p2
yRB

12 − 1

MEs
p2

xRB
21 + Ms

M px pyRB
22

]
, (137a)

Ey = − iωμs
h I ax

2p2
ρ

[ E
Es

p2
xRB

11 − EMs px pyRB
12 − 1

MEs
py pxRB

21 + Ms

M p2
yRB

22

]
, (137b)

Hy = + iωμs
h I ax

2p2
ρ

[
− 1

EEs
py pxRC

11 + Ms

E p2
yRC

12 − M
Es

p2
xRC

21 + MMs px pyRC
22

]
, (137c)

Hx = − iωμs
h I ax

2p2
ρ

[
1

EEs
p2

xRC
11 − Ms

E px pyRC
12 − M

Es
py pxRC

21 + MMs p2
yRC

22

]
. (137d)

The z-components are found using eq. (15):

Ez = − iωμs
h I ax

2ε̃v

[
− M

Es
pxRC

21 + MMs pyRC
22

]
, (137e)

Hz = − iωμs
h I ax

2μv

[ E
Es

pxRB
11 − EMs pyRB

12

]
. (137f)
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It can be seen from eqs (133) and (137) that there is a duality between the electromagnetic field from a magnetic and an electric dipole,

a subject that is treated in Appendix B. The fields from a source in the y-direction can be found by letting pxJM
x → pyJM

y and pyJM
x →

−pxJM
y .

If all the layers are TIV or isotropic, the crosscoupling terms are zero and the TE-mode and TM-mode responses are both given by:

R̀B = T̀d
R̀b + 1

1 − Ŕd R̀b

1 − Ŕs

1 − Ŕs R̀s

, (138a)

R̀C = T̀d
R̀b − 1

1 − Ŕd R̀b

1 − Ŕs

1 − Ŕs R̀s

, (138b)

when z > zs . For z < zs the RT-amplitudes are

ŔB = T́ u
1 + Ŕa

1 − R̀u Ŕa

R̀s − 1

1 − R̀s Ŕs

, (138c)

ŔC = T́ u
1 − Ŕa

1 − R̀u Ŕa

R̀s − 1

1 − R̀s Ŕs

. (138d)

12.5 Vertical electric dipole

The source term for a VED is given by eq. (16) as s = (px Jz/ε̃v py Jz/ε̃v 0 0)T where J z is given by eq. (17c). Thus,

Σ̀ = Σ́ = Jz√
2ε̃s

v

NT
H

(
px

py

)
= I lz pρ√

2ε̃s
v

(
0

Ms

)
, (139)

where the superscript s on ε̃h refers to the complex premittivity in the source layer. Since the upgoing radiation of the mode-source vector

equals the downgoing radiation, the VED has the same scattering coefficients as the HMD in eq. (136). Since the uppermost element in

eq. (139) is zero this means that

Ex = I lz

2ε̃s
v

[
EMs pyRB

12 + Ms

M pxRB
22

]
, (140a)

Ey = I lz

2ε̃s
v

[
− EMs pxRB

12 + Ms

M pyRB
22

]
, (140b)

Hy = − I lz

2ε̃s
v

[Ms

E pyRC
12 + MMs pxRC

22

]
, (140c)

Hx = I lz

2ε̃s
v

[
− Ms

E pxRC
12 + MMs pyRC

22

]
. (140d)

The vertical electric and magnetic components become (using eq. 15):

Ez = I lz p2
ρ

2ε̃s
vε̃v

MMsRC
22 + 1

iωε̃s
v

I lzδ(zs), (140e)

Hz = − I lz p2
ρ

2ε̃s
vμv

EMsRB
12. (140f)

When all the layers are TIV or isotropic the VED has pure TM-polarization components only, and there is no vertical magnetic field

(H z = 0).

12.6 Vertical magnetic dipole

The VMD-source is described by eq. (16) as s = (0 0 − pyJM
z /μv pxJM

z /μv)T . By using the expression for J M
z from eq. (17f), which in

TIV-media reduces to J M
z = −iωμv I a zδ(z − zs), one gets

Σ̀ = −Σ́ = − J M
z√
2μs

v

NT
E

(
−py

px

)
= −iωI az pp√

2

(
Es

0

)
. (141)

Since Σ̀ = −Σ́, the VMD has the same scattering coefficients as the field from a HED, cf. eq. (132). Then

Ex = − iωI az

2

[
EEs pyRA

11 + Es

M pxRA
21

]
, (142a)
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Ey = − iωI az

2

[
− EEs pxRA

11 + Es

M pyRA
21

]
, (142b)

Hy = iωI az

2

[Es

E pyRD
11 + MEs pxRD

21

]
, (142c)

Hx = − iωI az

2

[
− Es

E pxRD
11 + MEs pyRD

21

]
. (142d)

The z-components are found using eq. (15):

Ez = − iωI az p2
ρ

2ε̃v

MEsRD
21, (142e)

Hz = iωI az p2
ρ

2μv

EEsRA
11 − I azδ(zs). (142f)

When all the layers are TIV or isotropic the VMD produces pure TE-polarization components and the vertical electric field is zero

(E z = 0).

1 3 N U M E R I C A L R E S U LT S

The theory for electromagnetic field propagation in stratified anisotropic media has been presented in a rather general form. As long as the

constitutive relations are as given in eq. (2), the formalism can be applied to electromagnetic problems in geophysics from e.g. GPR to marine

CSEM or SBL. The expressions in eqs (76) and (81) can be used to model electromagnetic fields from electric and magnetic dipole sources

in stratified media with arbitrary anisotropy. Here, we apply the method to plane-layer marine CSEM modelling. We assume that the source

and receiver layers are TIV, and thus, eqs (133), (137), (140), and (142) can be used to calculate the electromagnetic fields. Other layers than

the source and receiver layer(s) may then have arbitrary anisotropy.

The expressions in eqs (133), (137), (140), and (142) are given in the frequency–wavenumber domain. In order to calculate the fields in

the spatial domain, the 2-D inverse Fourier transform in eq. (6b) must be applied. We consider the frequency-domain field expressions since

single frequency components of the source signal is studied. If the stratified medium is TIV in all the layers, the 2-D Fourier transform can

be reduced to a 1-D Hankel transform due to the rotational symmetry. Explicit formulas for this are given in Appendix F.

The field expressions were implemented in FORTRAN 90. Since marine CSEM is a low-frequency application in conductive regions,

the dielectric part of the permittivity dyad in eq. (3) is totally dominated by the conductivity dyad in all of the homogeneous regions, except in

the air half-space. This implies that the wavenumber-domain field components will have large variations in strength, and in order to accurately

calculate the fields in the spatial domain, the integration in the wavenumber domain requires large wavenumbers and careful sampling. We

implemented the 2-D Fourier transform using adaptive Gauss-Legendre quadrature, and the integration was performed between zero crossings

of the sine-function (extrema of the cosine-function). Series summation acceleration was implemented using continued fractions and Euler’s

method as described in Hänggi et al. (1998) and Press et al. (1997), respectively. For the types of input functions encountered here, numerical

solutions to the Fourier transform that use logarithmic spacing are often very efficient. The digital filter method described by e.g. Anderson

(1979), Mohsen & Hashish (1994) and Christensen (1990), was thus implemented. The efficiency and accuracy of the two different methods

(numerical quadrature and digital filter) depend on the input function (Anderson 1989).

The various models that have been considered are shown in Fig. 5. For simplicity, the permeability is taken to be constant. Thus, this

dyad is diagonal with all entries equal. The sea water is isotropic. In all of the figures the water depth is 300 m, the source height is 30 m,

the thickness of the overburden is 1 km, and the reservoir is 100 m thick. Anisotropy in the overburden and reservoir is considered separately

and for the two different cases of having a resistive reservoir and a conductive reservoir. The isotropic conductivities are σ = 3.2 S m−1 for

sea water and σ 1 = 1.0 S m−1 for the overburden and bottom half-space (σ 3 = σ 1). The conductivity in the reservoir is σ 2 = 0.01 S m−1 for

the resistive case and σ 2 = 0.5 S m−1 for the conductive case. To simplify interpretation, the anisotropy is taken to be transversally isotropic

(uniaxial). We refer to the direction with different conductivity than the two other as the direction of anisotropy. In addition to the isotropic

case, scenarios with transversal isotropy in the vertical direction (TIV), transversal isotropy in the horizontal direction (TIH), and dipping

transversal isotropy (TID), are modelled. The conductivity in the anisotropy direction is taken to be one-fourth of the isotropic conductivity.

This means for example that in the model with a TIV-overburden, the vertical conductivity is σ 1v = 0.25 S m−1 whereas the horizontal

conductivity is σ 1h = 1.0 S m−1. For the resistive reservoir case, the vertical conductivity in a TIV-model is σ 2v = 0.0025 S m−1, whereas the

horizontal conductivity is σ 2h = 0.01 S m−1. In the TIH-model, the azimuth angle between the direction of the source and anisotropy is 15◦

(cf. Fig. 1). When the model has dipping TID, the anisotropy direction has a 30◦ tilt from the vertical axis. This dip is furthermore taken to be

in the direction of the source antenna. The source frequency is 0.25 Hz.

For simplicity we consider the inline electric field from a HED (e.g. the field component in the same direction as the source dipole). The

plots are shown in Fig. 6 for the resistive reservoir case and Fig. 7 for the conductive reservoir. In both cases, Fig. (a) shows the magnitude

versus offset (MVO) when the overburden is anisotropic, and Fig. b shows the phase response versus offset (PVO). Figs (c) and (d) show the

MVO- and PVO-plots when the reservoir is anisotropic.
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Figure 5. Anisotropy models for some idealized CSEM/SBL-scenarios. The figures to the left (right) illustrate anisotropy in the overburden (reservoir). Three

basic uniaxial models are considered. Figures a and b show TIV-media, c and d illustrate TIH-media, and in e and f, media with dipping anisotropy (TID) are

sketched.

In the resistive reservoir case, the MVO plot that describes anisotropy effects in the overburden shows an increase in response when

anisotropy is present. This is due to the conductivity being less than in the isotropic case. Moreover, the response is largest for a TIH-overburden

since it is this direction that has the strongest support of field propagation between the seafloor and the reservoir. To this end, note that there

is a crosscoupling of polarization modes in the TIH-case. Using the same line of arguments, the effect of a dipping anisotropy should come

out with magnitude in between the TIV- and the TIH-cases as shown in the modelling. The phase behaviour is a bit more involved. The

signals propagate faster when anisotropy is present since they experience less conductivity. In consistency with the amplitude responses, at

far offsets the TIH-model leads to faster propagation than the TID-model, and the TID-model implies faster propagation than the TIV-model.

At intermediate distances, the behaviour is a bit more complicated since, in this case, the response from the guiding in the reservoir and the

lateral field propagation along the seabed are nearly equal in magnitude.

A rough interpretation of the consequences of anisotropy effects in the reservoir can be made along the following lines: The response

from the thin resistive layer is due to propagation in the horizontal direction of the reservoir and the important conductivity parameter is the

vertical conductivity. The TIV-reservoir has less conductivity in the vertical direction than the isotropic model, and thus, the TIV-case should

be expected to give an increase in the reservoir response. The same effect, but less, should be expected for the TID-reservoir, whereas TIH in

the reservoir should not influence the response to any particular extent. From Figs 6(c) and (d) it can be observed that the behaviour of the

modelled data has these characteristics. The dip in the phase curves for the isotropic and TIH case is due to the sea-surface response.

In the conductive reservoir case the thin layer has almost the same resistivity as the surrounding overburden and underburden (half

the value). From Fig. 7 it can be observed that anisotropy in the overburden have pronounced effects on the response. The small variation

in the isotropic conductivities leads to larger sensitivity to the anisotropy effects. The interplay between the lateral field propagation at the

sea-surface and seafloor along with the reflection from the reservoir, leads to the TIV-model having the strongest response for small distances
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Figure 6. Modelling results for the anisotropic models in Fig. 5. Fig. (a) shows the amplitude response for various kinds of anisotropy effects in the overburden,

whereas Fig. (b) shows the phase response. Figs (c) and (d) are the corresponding responses for an anisotropic reservoir. In all the figures the isotropic

conductivity-contrast between the overburden and the reservoir is 100.
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Figure 7. Modelling results for the anisotropic models in Fig. 5. The isotropic conductivity-contrast between the overburden and the reservoir is 2 in these

simulations. Figs (a) and (b) show the effect of anisotropy in the overburden, and Figs (c) and (d) show the responses for an anisotropic reservoir with low

resistivity.

and the TIH-model having the strongest response for larger distances. As seen from Figs 7(c) and (d), anisotropy in the reservoir has small

effects on the response when the reservoir is conductive.

The purpose of the modelling examples is to illustrate some of the effects of anisotropy. Even if responses from isotropic models can

be made to resemble more complicated anisotropic models (by carefully selecting the conductivity parameters in the direction normal to
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the propagation direction of the strongest signal contribution), isotropic models will seldom account for all the anisotropy effects. With one

more degree of freedom, a TIV-model can obviously account for anisotropic effects better than an isotropic model, but not fully explain more

complicated anisotropy phenomena. Another point to make by the simple modelling examples made here, is that anisotropy effects in the

overburden might confuse the interpretation of the response from a reservoir if not carefully rendered.

1 4 C O N C L U S I O N S

Electromagnetic field propagation from electric and magnetic dipoles in planarly layered lossy anisotropic media has been considered. The

set of first order ordinary differential equations in terms of the horizontal electromagnetic field components in the frequency–wavenumber

domain has been evaluated in terms of a system matrix. This matrix is dependent on the medium properties for a specific layer and the

horizontal wavenumbers for a plane-wave component in the wavenumber spectrum.

By evaluating the eigenvalues and corresponding eigenvectors of the system matrix, it has been shown that the resulting diagonalization

leads to two decoupled differential equations with upgoing and downgoing field constituents in a homogeneous region. The eigenvalues of

the system matrix correspond to the vertical slownesses. The reflection and transmission (RT) at an interface can be calculated from the

eigenvector matrices on each side, and a recursive scheme for calculating the RT-response across a stack of layers has been derived. Thus we

were able to obtain expressions for the field vector in any layer at any position in terms of eigenvalues, eigenvector matrices, RT-response

matrices, and the source function.

The assumption that the property dyads are symmetric, and the energy-flux normalization of the eigenvector matrices, made it possible

to obtain reciprocity relations for reflection and transmission responses. An example of an application of the reciprocity relations is that the

number of calculations in the inverse Fourier transform can be reduced by 50 per cent.

In addition to media with general anisotropy, configurations with simpler anisotropies have been studied. In anisotropic media the

diagonalized system matrix is in general not up/down-symmetric. Up/down-symmetry follows if one of the principal axes of the anisotropic

medium coincides with the coordinate axis normal to the planar interfaces. Then the diagonal submatrices in the system matrix are zero. In

vertically transversely isotropic (TIV) media, the mode-field is decoupled in a TE- and TM-mode throughout the layered system.

For a source and receiver in a TIV-medium, explicit expressions for the electromagnetic fields from the source dipoles HED, HMD, VED,

and VMD have been derived. If the entire stratified medium is characterized by TIV or isotropy, the recursive relations for the RT-responses

simplify to scalar equations. In this case the 2-D Fourier transform can be reduced to a 1-D Hankel transform.

A numerical implementation of the algorithms and a modelling study have been performed. The modelling example was taken from a

marine CSEM-setting. The obtained responses show different behaviour for different anisotropy configurations.

Finally, an application of the propagator method for isotropic media has been demonstrated in Appendix G.
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A P P E N D I X A : RO TAT I O N O F T H E A N I S O T RO P Y P R I N C I PA L A X E S

The electromagnetic property dyads are determined by three different values in their principal axes system. The axes of the principal system

are referred to as (1, 2, 3), and in a medium with triclinic anisotropy, each of the property dyads may have their own set of principal axes.

In order to rotate the principal coordinate system into the main coordinate frame (x, y, z), it is convenient to use Euler angles (φ, θ , ψ).

The convention used by Goldstein (1980) is followed. Now, as seen in Fig. 1, φ is the angle between the x-axis and the line of nodes, θ is the

angle between the z-axis and the 3-axis, and finally, ψ is the angle between the line of nodes and the 1-axis. Note that the ‘line of nodes’ is the

line defined by the intersection of the xy-plane and the 12-plane (horizontal planes of the coordinate frames). The entries of a property dyad

in the main coordinate frame are then obtained by transforming the dyad from the principal system as follows:

σ =

⎛
⎜⎝

σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

⎞
⎟⎠ =

⎛
⎜⎝

e11 e12 e13

e21 e22 e23

e31 e32 e33

⎞
⎟⎠

⎛
⎜⎝σ1 0 0

0 σ2 0

0 0 σ3

⎞
⎟⎠

⎛
⎜⎝

e11 e21 e31

e12 e22 e32

e13 e23 e33

⎞
⎟⎠ , (A1)

where

e11 = cos φ cos ψ − sin φ cos θ sin ψ, (A2a)

e12 = −cos φ sin ψ − sin φ cos θ cos ψ, (A2b)

e13 = sin φ sin θ, (A2c)

e21 = sin φ cos ψ + cos φ cos θ sin ψ, (A2d)

e22 = −sin φ sin ψ + cos φ cos θ cos ψ, (A2e)

e23 = −cos φ sin θ, (A2f)

e31 = sin θ sin ψ, (A2g)
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e32 = sin θ cos ψ, (A2h)

e33 = cos θ. (A2i)

This procedure σ = eσ p eT , where e is the coordinate rotation matrix with elements ei j = e j i, and σ p is the dyad in the principal system, can

be performed for all the three property dyads. In general, the principal axes may be different for all these dyads (which obviously requires

different rotation angles for each property dyad).

The entries in the conductivity matrix in the main coordinate frame are given by the rotation angles and the principal values as:

σxx = σ1e2
11 + σ2e2

12 + σ3e2
13, (A3a)

σxy = σ1e11e21 + σ2e12e22 + σ3e13e23, (A3b)

σxz = σ1e11e31 + σ2e12e32 + σ3e13e33, (A3c)

σyy = σ1e2
21 + σ2e2

22 + σ3e2
23, (A3d)

σyz = σ1e21e31 + σ2e22e32 + σ3e23e33, (A3e)

σzz = σ1e2
31 + σ2e2

32 + σ3e2
33, (A3f)

In u/d-symmetric media, the relation between the principal and main coordinate systems is described by one rotation only (for each

property dyad) in the horizontal plane (i.e. φ in equation A2). The conductivity dyad can in this case be written as⎛
⎜⎝

σxx σxy 0

σyx σyy 0

0 0 σv

⎞
⎟⎠ =

⎛
⎜⎝

cos φ sin φ 0

− sin φ cos φ 0

0 0 1

⎞
⎟⎠

⎛
⎜⎝

σ1 0 0

0 σ2 0

0 0 σv

⎞
⎟⎠

⎛
⎜⎝

cos φ − sin φ 0

sin φ cos φ 0

0 0 1

⎞
⎟⎠ , (A4)

whence

σxx = σ 2
1 cos2 φ + σ 2

2 sin2 φ, σyy = σ 2
1 sin2 φ + σ 2

2 cos2 φ,

σxy = σyx = (σ2 − σ1) sin φ cos φ.
(A5)

The relations presented in this section in terms of the conductivity dyad are equally valid for the permittivity and permeability dyads.

A P P E N D I X B : D UA L I T Y I N T H E F I E L D E X P R E S S I O N S

When magnetic sources are introduced into Maxwell’ equations, Faraday’ and Ampère’s laws can be written as

∇ × E = −J0M + iωμH, (B1a)

∇ × H = J0 − iωε̃E, (B1b)

where J0 is the electric source and J0M is the magnetic source. Using the equations of charge-conservation, the divergence equations can be

written in terms of the source current density as

∇ · (ε̃E) = − 1

iω
∇ · J0, (B1c)

∇ · (μH) = − 1

iω
∇ · J0M . (B1d)

From these equations one observes a simple relationship between the fields from a magnetic dipole and an electric dipole. Starting with Faraday’s

law (eq. B1a) and the corresponding divergence eq. (B1c), one can arrive at Ampère’s law (eq. B1b) and its corresponding divergence eq. (B1d)

by doing the following change of variables:

E → H, (B2a)

H → −E, (B2b)

μ → ε̃, (B2c)

ε̃ → μ, (B2d)

J0 → J0M . (B2e)

The opposite ‘transformation’, from Ampère’s law to Faraday’s law and their corresponding divergence equations, also holds. In this case the

relation

J0M → −J0 (B2f)
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is needed. In terms of the dipole sources used in eqs (4) and (5), the source transformations become:

I l → −iωμI a and iωμI a → I l. (B3)

In the main text, RT-responses from a multilayered medium are considered. If a change of variables as described above is performed, a change

in polarization modes and signs in the reflection coefficients must be taken into account due to the interchange of the electric and magnetic

field variables.

The explicit field expressions for the HMD and VMD (HED and VED) can be derived from the expressions for the HED and VED (HMD

and VMD), respectively, by using the change of variables in eqs (B2a) to (B2d) and (B3). In addition, the following change of variables for

the RT-response coefficients must be performed:

RA
11 ↔ −RC

22, RA
12 ↔ +RC

21, (B4a)

RA
21 ↔ +RC

12, RA
22 ↔ −RC

11, (B4b)

RB
11 ↔ −RD

22, RB
12 ↔ +RD

21, (B4c)

RB
21 ↔ +RD

12, RB
22 ↔ −RD

11. (B4d)

A P P E N D I X C : E N E RG Y V E L O C I T Y O F A P L A N E - WAV E C O M P O N E N T

The energy velocity can be defined as (Kong 2000; Carcione & Schoenberg 2000):

ve = Re(S)

Re(ue + um)
, (C1)

where S = 1
2
E × H∗ is the complex Poynting vector, ue = 1

4
E · D∗ is the electric energy, and um = 1

4
H · B∗ is the magnetic energy. Consider

a plane electromagnetic wave in a homogeneous source-free medium. Then Maxwell’s equations can be written as:

p · D = 0, (C2a)

p · B = 0, (C2b)

p × E = B, (C2c)

p × H = −D, (C2d)

where p is the slowness vector. From these equations it is seen that the slowness is in a direction perpendicular to both the D- and B-field.

It is thus convenient to rotate the coordinate system so that one of the axes coincides with the direction of the slowness. Some caution must

however be taken here; since the slowness vector is complex, the ‘rotation’ must be performed with complex angles. Thus the coordinate

system is rather transformed into a new state. We will as in Kong (2000) refer to the system after the transformation as the kDB-system, in

which the axes are denoted as 123. (cf. Fig. 1 where x ′ y′z′ can be pictured as 123). Note that the axes in the kDB-system are not the same as

any principal anisotropy axes. Now, an expression for the energy velocity in terms of the material and slowness parameters can be obtained.

From Fig. 1 it is seen that a rotation into the kDB-system described by the angles φ and θ can be written as:

ekDB =

⎛
⎜⎝

e′
11 e′

12 e′
13

e′
21 e′

22 e′
23

e′
31 e′

32 e′
33

⎞
⎟⎠ , (C3)

where

e′
11 = sin φ, e′

12 = − cos φ, e′
13 = 0, (C4a)

e′
21 = cos φ cos θ, e′

22 = sin φ cos θ, e′
23 = − sin θ, (C4b)

e′
31 = cos φ sin θ, e′

32 = sin φ sin θ, e′
33 = cos θ. (C4c)

which would take the values φ ∈ [0, 360◦), θ ∈ [0, 180◦) in a lossless case, but here the angles are complex with

cos φ = px√
p2

x + p2
y

and cos θ = pz√
p2

x + p2
y + p2

z

. (C5)

The material parameters in the kDB-system are obtained from the material parameters in the main coordinate frame by the dyadic transfor-

mation:

χ′ = ekDBχeT
kDB, (C6)
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where the resulting matrix is symmetric after the othogonal transformation. Next, a relation between D and B are needed. It is thus convenient to

introduce the impermeability and the complex impermittivity, which are the inverses of the permeability and complex permittivity, respectively

(Kong 2000):

E = ε̃−1D = κD and H = μ−1B = νB. (C7)

From the curl equations in (C2), the following relations between D and B can be obtained in the kDB-system:

D1 = p(ν ′
21 B1 + ν ′

22 B2), (C8a)

D2 = −p(ν ′
11 B1 + ν ′

12 B2), (C8b)

B1 = −p(κ ′
21 D1 + κ ′

22 D2), (C8c)

B2 = p(κ ′
11 D1 + κ ′

12 D2), (C8d)

where p = |p | is the slowness in the ê3-direction. Note that by definition, this is the direction of the total slowness. Note also that B 3 = 0 and

D3 = 0. From eq. (C8), the dispersion relation

u2 = −1

2

[
bu ±

√
b2

u − 4cu

]
, (C9a)

bu = (
κ ′

21ν
′
21 + κ ′

12ν
′
12 − κ ′

11ν
′
22 − κ ′

22ν
′
11

)
, (C9b)

cu = (
κ ′

21ν
′
21 − κ ′

11ν
′
22

) (
κ ′

12ν
′
12 − κ ′

22ν
′
11

)
− (

κ ′
22ν

′
21 − κ ′

12ν
′
22

) (
κ ′

11ν
′
12 − κ ′

21ν
′
11

)
,

(C9c)

and a relation between D1 and D2 can be obtained:

D2

D1

= u2 + κ ′
21ν

′
21 − κ ′

11ν
′
22

κ ′
12ν

′
22 − κ ′

22ν
′
21

= κ ′
21ν

′
11 − κ ′

11ν
′
12

u2 + κ ′
12ν

′
12 − κ ′

22ν
′
11

= �, (C9d)

where the complex velocity u = 1/p.

Hence, the electric field in the kDB-system in terms of D1 can be written as

EkDB = κ′DkDB =

⎛
⎜⎝

κ ′
11 + κ ′

12�

κ ′
21 + κ ′

22�

κ ′
31 + κ ′

32�

⎞
⎟⎠ D1, (C10)

whereas the magnetic field in the kDB-system is obtained using Faraday’s law:

HkDB = ν ′(p × EkDB) = p

⎛
⎜⎝

(ν ′
12κ

′
11 − ν ′

11κ
′
21) + (ν ′

12κ
′
12 − ν ′

11κ
′
22)�

(ν ′
22κ

′
11 − ν ′

21κ
′
21) + (ν ′

22κ
′
12 − ν ′

21κ
′
22)�

(ν ′
32κ

′
11 − ν ′

31κ
′
21) + (ν ′

32κ
′
12 − ν ′

31κ
′
22)�

⎞
⎟⎠ D1. (C11)

The complex Poynting vector in the kDB-system expressed in terms of D1 then becomes:

SkDB = 1

2
skDB p∗ D1 D∗

1 , (C12)

where

skDB =

⎛
⎜⎝

s11 + s12� + s13�
∗ + s14��∗

s21 + s22� + s23�
∗ + s24��∗

s31 + s32� + s33�
∗ + s34��∗

⎞
⎟⎠ , (C13a)

and

s11 = (ν ′
32κ

′
21 − ν ′

22κ
′
31)(κ ′

11)∗ − (ν ′
31κ

′
21 − ν ′

21κ
′
31)(κ ′

21)∗,
s12 = (ν ′

32κ
′
22 − ν ′

22κ
′
32)(κ ′

11)∗ − (ν ′
31κ

′
22 − ν ′

21κ
′
32)(κ ′

21)∗,
s13 = (ν ′

32κ
′
21 − ν ′

22κ
′
31)(κ ′

12)∗ − (ν ′
31κ

′
21 − ν ′

21κ
′
31)(κ ′

22)∗,
s14 = (ν ′

32κ
′
22 − ν ′

22κ
′
32)(κ ′

12)∗ − (ν ′
31κ

′
22 − ν ′

21κ
′
32)(κ ′

22)∗,
s21 = (ν ′

12κ
′
31 − ν ′

32κ
′
11)(κ ′

11)∗ − (ν ′
11κ

′
31 − ν ′

31κ
′
11)(κ ′

21)∗,
s22 = (ν ′

12κ
′
32 − ν ′

32κ
′
12)(κ ′

11)∗ − (ν ′
11κ

′
32 − ν ′

31κ
′
12)(κ ′

21)∗,
s23 = (ν ′

12κ
′
31 − ν ′

32κ
′
11)(κ ′

12)∗ − (ν ′
11κ

′
31 − ν ′

31κ
′
11)(κ ′

22)∗,
s24 = (ν ′

12κ
′
32 − ν ′

32κ
′
12)(κ ′

12)∗ − (ν ′
11κ

′
32 − ν ′

31κ
′
12)(κ ′

22)∗,
s31 = (ν ′

22κ
′
11 − ν ′

12κ
′
21)(κ ′

11)∗ − (ν ′
21κ

′
11 − ν ′

11κ
′
21)(κ ′

21)∗,
s32 = (ν ′

22κ
′
12 − ν ′

12κ
′
22)(κ ′

11)∗ − (ν ′
21κ

′
12 − ν ′

11κ
′
22)(κ ′

21)∗,
s33 = (ν ′

22κ
′
11 − ν ′

12κ
′
21)(κ ′

12)∗ − (ν ′
21κ

′
11 − ν ′

11κ
′
21)(κ ′

22)∗,
s34 = (ν ′

22κ
′
12 − ν ′

12κ
′
22)(κ ′

12)∗ − (ν ′
21κ

′
12 − ν ′

11κ
′
22)(κ ′

22)∗.

(C13b)
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The energy densities in the kDB-system can be written as

um = 1

4
H · B∗ = 1

4

(
H1 B∗

1 + H2 B∗
2

) = p∗

4p

(
E∗

1 D1 + E∗
2 D2

) = p∗

p
u∗

e , (C14a)

ue = 1

4
E · D∗ = 1

4

(
E1 D∗

1 + E2 D∗
2

) = 1

4

[
(κ ′

11 + κ ′
12�) + (κ ′

21 + κ ′
22�)�∗]D1 D∗

1 . (C14b)

The energy density is independent of the coordinate system in which it is calculated, whereas the Poynting vector must be transformed back

to the main coordinate frame S =eT
kDB SkDB. This leads to the following expressions for the energy velocity:

ve = n−1
v Re

(
p∗eT

kDBskDB

)
, (C15)

where

nv = Re

(
1

p

)
Re

[
p(κ ′

11 + κ ′
12�) + p(κ ′

21 + κ ′
22�)�∗)

]
. (C16)

If � → ∞, the Poynting vector and energy velocity can be calculated in terms of D2, which implies multiplying the expressions with �−1

(�−1)∗.

When the eigenvalues are found, their ordering into upgoing and downgoing constituents can be determined from the direction of the

z-component of the corresponding energy velocity. Moreover, the ordering of modes can be determined by matching the eigenvalue and the

complex velocity in the dispersion relation in eq. (C9a). The choice of sign that corresponds to what mode can be established by considering

what happens when the anisotropy simplifies into TIV. Then the fraction between D1 or D2 either approach zero or infinity depending on if

the slowness corresponds to a TE- or a TM-mode.

A P P E N D I X D : M I X I N G T H E qT E - A N D qT M - M O D E S I N A L AY E R

Consider reflection and transmission through a stack of three layers [from region (3) to (1) through layer (2)], and assume that the qTE- and

qTM-modes have been switched when sorting the eigenvalues into the upgoing eigenvalue submatrix in region (2). Then, in region (2), the

‘mixed’ eigenvector submatrices and eigenvalue matrix are related to the corresponding ‘correct’ matrices as

Ń
′
E =

(
n12 n11

n22 n21

)
= Ń E K , (D1a)

Ń
′
H =

(
n32 n31

n42 n41

)
= Ń H K , (D1b)

ṕ′
z = K ṕz K , (D1c)

where K is given by eq. (19). By using eq. (61), the C and D-matrices between medium (3) and (2) become:

Ć
′ = K Ć, D́

′ = K D́, Ĉ
′ = K Ĉ, and D̂

′ = K D̂, (D2)

since layer (2) has the mixed modes. Thus, the reflection coefficients are

t́
′ = 2

(
K Ć + K D́

)−T = K t́, (D3a)

ŕ ′ = − (
K Ĉ − K D̂

)T (
K Ć + K D́

)−T = ŕ , (D3b)

r̀ ′ = (
Ĉ − D̂

) (
K C̀ + K D̀

)−1 = Kr̀ , (D3c)

t̀
′ = 2

(
C̀ + D̀

)−1 = t̀ . (D3d)

When inserted into the recursive formula in eq. (70), this leads to

R̀
′
j = K eiωṕzh j K

[
Kr̀ j + K t́ j R̀ j+1(I − ŕ j R̀ j+1)−1 t̀ j

]
eiωp̀zh j = K R̀ j . (D4)

In the propagation between medium (2) and (1), the same procedure yields the relations:

Ć
′ = Ć K , D́

′ = D́K , Č
′ = Č K , and Ď

′ = ĎK , (D5)

which give the reflection coefficients

t́
′ = 2

(
Ć K + D́K

)−T = t́ K , (D6a)

ŕ ′ = − (
Ĉ − D̂

)T (
Ć K + D́K

)−T = ŕ K , (D6b)

r̀ ′ = (
Ć K + D́K

)−T (
Č K − ĎK

)T = r̀ , (D6c)

t̀
′ = 2

(
C̀ + D̀

)−1 = t̀ . (D6d)
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When inserted into the recursive formula, this becomes

R̀
′
j−1 = eiωṕzh j−1

[
r̀ j−1 + t́ j−1 K K R̀ j (I − ŕ j−1 K K R̀ j )

−1 t̀ j−1

]
eiωp̀zh j−1 = R̀ j−1. (D7)

The proof for mixing the downgoing modes is similar and leads to the same conclusion.

A P P E N D I X E : T H E F R E S N E L - E I G E N V E C T O R M AT R I X I N T I V- M E D I A

The flux-normalized eigenvector leads to a symmetry in the transmission coefficients in eq. (122) that might not be appropriate for all purposes.

In order to get the Fresnel transmission coefficients, a different scaling on the eigenvectors that make up the eigenvector matrix can be chosen:

N F = 1√
2pρ

⎛
⎜⎜⎜⎜⎝

py px py px

−px py −px py

py
pzI

μh
px

εh
pxII

−py
εzI

μh
−px

ε̃h
pzII

−px
pzI

μh
py

ε̃h
pzII

px
pzI

μh
−py

ε̃h
pzII

⎞
⎟⎟⎟⎟⎠ ,

N−1
F = 1√

2pρ

⎛
⎜⎜⎜⎜⎝

py −px py
μh
pzI

−px
μh
pzI

px py px
pzII

ε̃h
py

pzII

ε̃h

py −px −py
μh
pzI

px
μh
pzI

px py −px
pxII

ε̃h
−py

pxII

ε̃h

⎞
⎟⎟⎟⎟⎠ .

(E1)

With the choice in eq. (E1), the downgoing reflection matrix r̀ are as given in eq. (121) with ŕ = −r̀ . The upgoing and downgoing transmission

matrices are:

t̀ =

⎛
⎜⎝

2μ+
h p−

zI

μ+
h p−

zI + μ−
h p+

zI

0

0
2ε̃−

h p+
zII

ε̃−
h p+

zII + ε̃+
h p−

zII

⎞
⎟⎠ , t́ =

⎛
⎜⎝

2μ−
h p+

zI

μ+
h p−

zI + μ−
h p+

zI

0

0
2ε̃+

h p−
zII

ε̃−
h p+

zII + ε̃+
h p−

zII

⎞
⎟⎠ . (E2)

Note that the Fresnel transmission matrices are not symmetric, i.e. t̀ �= t́ , by contrast to the relation in eq. (122).

A P P E N D I X F : E M F I E L D S F O R T I V- M E D I A I N C Y L I N D R I C A L C O O R D I N AT E S

When all the layers in the stratified model are either TIV or isotropic, the double Fourier integral over the horizontal wavenumbers k x and k y

in eq. (6b) can be rewritten into a single integral in terms of Bessel functions and the polar horizontal wavenumber kρ . Thus, it is convenient

to introduce cylindrical coordinates:

kρ =
√

k2
x + k2

y, kx = kρ cos α, ky = kρ sin α, (F1a)

ρ =
√

x2 + y2, x = ρ cos β, y = ρ sin β, (F1b)

where α is the polar angle in the wavenumber domain, β is the angle in the spatial domain, and ρ is the polar radius. The inverse Fourier

transform from the wavenumber domain back to the spatial domain (eq. (6b) without the time and frequency part), can then be rewritten as∫ ∞

−∞

∫ ∞

−∞
dkx dky φ(kx , ky) eikx x+iky y =

∫ 2π

0

∫ ∞

0

dξdkρ kρ φ
(
kρ, ξ

)
eikρρ sin ξ , (F2)

where ξ = α − β + π/2. The exponential term that contains the sine function, can be expressed by a series of Bessel functions (Gradshteyn

& Ryzhik 1980):

exp (ikρρ sin ξ ) =
∞∑

n=−∞
Jn(kρρ)einξ . (F3)

By using the property J −n(kρ ρ) = (−1)n J n(kρ ρ), one arrives at the representation:

J0(kρρ) = 1

2π

∫ 2π

0

dξ eikρρ sin ξ , (F4a)

J1(kρρ) = 1

2π i

∫ 2π

0

dξ sin ξ eikρρ sin ξ , (F4b)

J2(kρρ) = 1

2π

∫ 2π

0

dξ cos 2ξ eikρρ sin ξ , (F4c)

where the following relationship between J 0, J 1 and J 2 holds:

J0(kρρ) + J2(kρρ) = 2

kρρ
J1(kρρ). (F5)
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Since the RT-response is symmetric about the vertical axis in a TIV or isotropic medium, the angle α is explicitly present in the field expressions

in eqs (133), (137), (140), and (142) in these cases. Thus, the angle-dependence in the wavenumber domain can be accounted for by the

higher orders of the Bessel functions. Now, rewrite the cosine and sine terms that contain α into expressions that contain ξ and β. Since terms

involving cos ξ and sin 2ξ do not contribute to the Bessel expansion, this means that

cos α → sin ξ cos β, sin α → sin ξ sin β, (F6a)

cos 2α → −cos 2ξ cos 2β, sin 2α → −cos 2ξ sin 2β. (F6b)

The field components in cylindrical coordinates are furthermore obtained from the Cartesian components by the rotation:⎛
⎜⎝

�ρ

�β

�z

⎞
⎟⎠ =

⎛
⎜⎝

cos β sin β 0

− sin β cos β 0

0 0 1

⎞
⎟⎠

⎛
⎜⎝

�x

�y

�z

⎞
⎟⎠ . (F7)

where Ψ = {E, H}.
In the following subsections, the electromagnetic field expressions in a TIV-medium for the four different source types are given in terms

of cylindrical coordinates. In a numerical implementation cylindrical coordinates are advantageous since they imply evaluation of one integral

instead of a double integral. The integral over the horizontal angles is contained within the Bessel functions as seen from eq. (F4). The vertical

slownesses pzI and pzII that will be used in the following equations are dependent on kρ = ωpρ as described in eq. (119).

F1 EM-field from a HED

From the expressions in eq. (133) the following field components from a HED is derived:

Eρ = − I lx

4π
cos β

[
IT M

A0 + 1

ρ

(
IT E

A1 − IT M
A1

)]
, (F8a)

Eβ = − I lx

4π
sin β

[
− IT E

A0 + 1

ρ

(
IT E

A1 − IT M
A1

)]
, (F8b)

Hρ = + I lx

4π
sin β

[
− IT E

D0 + 1

ρ

(
IT E

D1 − IT M
D1

)]
, (F8c)

Hβ = − I lx

4π
cos β

[
IT M

D0 + 1

ρ

(
IT E

D1 − IT M
D1

)]
, (F8d)

Ez = + I lx

4π

i cos β

ωε̃v

∫ ∞

0

dkρk2
ρ J1(kρρ) gT M

D (pzII), (F8e)

Hz = + I lx

4π

i sin β

ωμv

∫ ∞

0

dkρk2
ρ J1(kρρ) gT E

A (pzI), (F8f)

where

IT E
A0 =

∫ ∞

0

dkρkρ J0(kρρ) gT E
A (pzI), IT E

A1 =
∫ ∞

0

dkρ J1(kρρ) gT E
A (pzI), (F8g)

IT M
A0 =

∫ ∞

0

dkρkρ J0(kρρ) gT M
A (pzII), IT M

A1 =
∫ ∞

0

dkρ J1(kρρ) gT M
A (pzII), (F8h)

IT E
D0 =

∫ ∞

0

dkρkρ J0(kρρ) gT E
D (pzI), IT E

D1 =
∫ ∞

0

dkρ J1(kρρ) gT E
D (pzI), (F8i)

IT M
D0 =

∫ ∞

0

dkρkρ J0(kρρ) gT M
D (pzII), IT M

D1 =
∫ ∞

0

dkρ J1(kρρ) gT M
D (pzII), (F8j)

and

gT E
A (pzI) =

√
μh

pzI

√
μh

pzI

s

RT E
A (pzI), gT M

A (pzII) =
√

pzII

ε̃h

√
pzII

ε̃h

s

RT M
A (pzII), (F9a)

gT E
D (pzI) = −

√
pzI

μh

√
μh

pzI

s

RT E
D (pzI), gT M

D (pzII) = −
√

ε̃h

pzII

√
pzII

ε̃h

s

RT M
D (pzII), (F9b)

where the RT-amplitudes are given by eq. (134).
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F2 EM-field from a HMD

From the expressions in eq. (137) the field components from a HMD can be calculated:

Eρ = − iωμs
h I ax

4π
sin β

[
IT M

B0 + 1

ρ

(
IT E

B1 − IT M
B1

)]
, (F10a)

Eβ = + iωμs
h I ax

4π
cos β

[
− IT E

B0 + 1

ρ

(
IT E

B1 − IT M
B1

)]
, (F10b)

Hρ = − iωμs
h I ax

4π
cos β

[
− IT E

C0 + 1

ρ

(
IT E

C1 − IT M
C1

)]
, (F10c)

Hβ = − iωμs
h I ax

4π
sin β

[
IT M

C0 + 1

ρ

(
IT E

C1 − IT M
C1

)]
, (F10d)

Ez = − I ax

4π

μs
h

ε̃v

sin β

∫ ∞

0

dkρk2
ρ J1(kρρ) gT M

C (pzII), (F10e)

Hz = + I ax

4π

μs
h

μv

cos β

∫ ∞

0

dkρk2
ρ J1(kρρ) gT E

B (pzI), (F10f)

where

IT E
B0 =

∫ ∞

0

dkρkρ J0(kρρ) gT E
B (pzI), IT E

B1 =
∫ ∞

0

dkρ J1(kρρ) gT E
B (pzI), (F10g)

IT M
B0 =

∫ ∞

0

dkρkρ J0(kρρ) gT M
B (pzII), IT M

B1 =
∫ ∞

0

dkρ J1(kρρ) gT M
B (pzII), (F10h)

IT E
C0 =

∫ ∞

0

dkρkρ J0(kρρ) gT E
C (pzI), IT E

C1 =
∫ ∞

0

dkρ J1(kρρ) gT E
C (pzI), (F10i)

IT M
C0 =

∫ ∞

0

dkρkρ J0(kρρ) gT M
C (pzII), IT M

C1 =
∫ ∞

0

dkρ J1(kρρ) gT M
C (pzII), (F10j)

and

gT E
B (pzI) =

√
μh

pzI

√
pzI

μh

s

RT E
B (pzI), gT M

B (pzII) =
√

pzII

ε̃h

√
ε̃h

pzII

s

RT M
B (pzII), (F11a)

gT E
C (pzI) = −

√
pzI

μh

√
pzI

μh

s

RT E
C (pzI), gT M

C (pzII) = −
√

ε̃h

pzII

√
ε̃h

pzII

s

RT M
C (pzII), (F11b)

where the RT-amplitudes are given by eq. (138).

F3 EM-field from a VED

The field components from a VED are obtained from eq. (140):

Eρ = + I lz

4π

i

ωε̃s
v

∫ ∞

0

dkρk2
ρ J1(kρρ) gT M

B (pzII), (F12a)

Hβ = + I lz

4π

i

ωε̃s
v

∫ ∞

0

dkρk2
ρ J1(kρρ) gT M

C (pzII), (F12b)

Ez = − I lz

4π

1

ω2ε̃v ε̃s
v

∫ ∞

0

dkρk3
ρ J0(kρρ) gT M

C (pzII) + I lz

4π

1

iωε̃s
v

δ(z − zs)δ(x)δ(y). (F12c)

F4 EM-field from a VMD

The field components from a VMD are obtained from eq. (142):

Eβ = − I az

4π

∫ ∞

0

dkρk2
ρ J1(kρρ) gT E

A (pzI), (F13a)

Hρ = + I az

4π

∫ ∞

0

dkρk2
ρ J1(kρρ) gT E

D (pzI), (F13b)
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Hz = + I az

4π

i

ωμv

∫ ∞

0

dkρk3
ρ J0(kρρ) gT E

A (pzI) − I az

4π
δ(z − zs)δ(x)δ(y). (F13c)

F5 RT-amplitudes with source and receiver in the same layer

Consider the responses in eq. (F9) and (F11) with the source at zs = 0, and the receiver within the same layer at z. The RT-responses can

then be combined into a single expression for z < zs and z > zs , and the RT-expressions in eqs (134) and (138) can be split into a direct and

reflected field contribution:

RA = eiωpz |z| + RA, RA = R̀s(1 + Ŕs)e−iωpz z + Ŕs(1 + R̀s)eiωpz z

1 − Ŕs R̀s

, (F14a)

RB = sgn(z)eiωpz |z| + RB, RB = R̀s(1 − Ŕs)e−iωpz z − Ŕs(1 − R̀s)eiωpz z

1 − Ŕs R̀s

, (F14b)

−RC = eiωpz |z| + RC , RC = −R̀s(1 − Ŕs)e−iωpz z − Ŕs(1 − R̀s)eiωpz z

1 − Ŕs R̀s

, (F14c)

−RD = sgn(z)eiωpz |z| + RD, RD = −R̀s(1 + Ŕs)e−iωpz z + Ŕs(1 + R̀s)eiωpz z

1 − Ŕs R̀s

. (F14d)

In the expressions, pz = pzI for the TE-mode, and pz = pzII for the TM-mode.

A P P E N D I X G : U P / D O W N - S E PA R AT I O N A N D F R E E S U R FA C E R E M OVA L

Consider an isotropic source medium in which the electromagnetic fields from a dipole antenna e.g. HED is recorded. The propagator matrix

method with its implicit splitting of fields into upgoing and downgoing components, can be useful in processing real data from e.g. a marine

CSEM/SBL experiment in shallow water. A possible choice of the eigenvector matrix that diagonalize the system matrix into upgoing and

downgoing components of the electric field, is (Amundsen et al. 2006)

N A =
(

I I

N2 −N2

)
, N−1

A = 1

2

(
I N−1

2

I −N−1
2

)
, (G1)

where in isotropic media

N2 = 1

μpz

(
με̃ − p2

y px py

px py με̃ − p2
x

)
, N−1

2 = 1

ε̃pz

(
με̃ − p2

x −px py

−px py με̃ − p2
y

)
. (G2)

In this case, the eigenvector matrix is normalized with respect to the electric amplitude which leads to the relations

Ex = EU
x + E D

x and Ey = EU
y + E D

y . (G3)

Now b =N A wA, where wA = (EU
x EU

y ED
x ED

y )T . The quantity EU describes the part of the electric field that is upgoing, and E D describes

the downgoing electric field. From the equations for up/down-separation where N A is arranged to give E x = EU
x + ED

x , one thus gets

EU
x = 1

2

(
Ex − px py

ε̃pz
Hx − με̃ − p2

x

ε̃pz
Hy

)
, (G4a)

E D
x = 1

2

(
Ex + px py

ε̃pz
Hx + με̃ − p2

x

ε̃pz
Hy

)
. (G4b)

When inserting the field expressions from eq. (133) into eq. (G4) with the appropriate simplifications for isotropic media with source and

receiver within the same layer (eq. F14), one gets:

EU
x = I lx

2

[
μp2

y

pρ pz
f
( − z, RT E

A , −RT E
D

) + p2
x pz

ε̃pρ

f
( − z, RT M

A , −RT M
D

)]
, (G5a)

E D
x = I lx

2

[
μp2

y

pρ pz
f
(
z, RT E

A , RT E
D

) + p2
x pz

ε̃pρ

f
(
z, RT M

A , RT M
D

)]
, (G5b)

where

f (z, RA, RD) = 1 + sgn(z)

2
eiωpz |z| + RA + RD

2
. (G6)

From eqs (F14a) and (F14d), the following relations can be derived:

RA − RD

2
= 1

1 − R̀s Ŕs

R̀s(1 + Ŕs)e−iωpz z, (G7a)
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RA + RD

2
= 1

1 − R̀s Ŕs

Ŕs(1 + R̀s)eiωpz z . (G7b)

The TE- and TM-mode are not separated in these expressions. In order to derive expressions with separated modes, the eigenvector matrix

can be chosen as in eq. (E1). Then the mode-field vector describes the upgoing and downgoing TE- and TM-modes. In isotropic media⎛
⎜⎜⎜⎜⎝

U T E

U T M

DT E

DT M

⎞
⎟⎟⎟⎟⎠ = N−1

F b = 1√
2pρ

⎛
⎜⎜⎜⎜⎝

py −px py
μ

pz
−px

μ

pz

px py px
pz
ε̃

py
pz
ε̃

py −px −py
μ

pz
px

μ

pz

px py −px
pz
ε̃

−py
pz
ε̃

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

Ex

Ey

−Hy

Hx

⎞
⎟⎟⎟⎟⎠ . (G8)

By inserting the field expressions from eq. (133) with the appropriate simplifications for isotropic media with source and receiver within the

same layer, one then gets

U T E = I lx

2
√

2pρ

(
μpy

pz

{
[1 − sgn(z)]eiωpz |z| + RT E

A − RT E
D

})
, (G9a)

U T M = I lx

2
√

2pρ

(
pz px

ε̃

{
[1 − sgn(z)]eiωpz |z| + RT M

A − RT M
D

})
, (G9b)

DT E = I lx

2
√

2pρ

(
μpy

pz

{
[1 + sgn(z)]eiωpz |z| + RT E

A + RT E
D

})
, (G9c)

DT M = I lx

2
√

2pρ

(
pz px

ε̃

{
[1 + sgn(z)]eiωpz |z| + RT M

A + RT M
D

})
. (G9d)

Here the upgoing and downgoing fields are a mix of the electric and magnetic field.

In a marine CSEM/SBL experiment, the receiver is normally situated below the receiver, i.e. z > 0 in eq. (F14). The reflection response

from the lower stack can thus be obtained by dividing the upgoing component by the downgoing component. The reflection responses for the

TE- and TM-polarization components hence become:

U T E

DT E
= R̀T E

b and
U T M

DT M
= R̀T M

b , (G10)

where R̀b is the reflection response from the lower stack at the receiver (cf. Fig. 4). The decomposition matrix from eq. (120) would give the

same results since the difference between the eigenvectors lies within a normalization factor. By using the reflection response from the lower

stack when calculating the electromagnetic field from an artificial source, one might say that one in this way has removed the free surface

from the original data set. In order to do the free surface removal with the procedure described here, a 2-D data set with z > zs and which

contains all the horizontal components of the electromagnetic field, is needed.
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