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Electromagnetic fields inside a large room with perfectly conducting walls

G. Dolmans

Abstract

This EUT report describes the development of a model which can be used for the calculation of
the electromagnetic fields inside a perfectly conducting cavity. A modal analysis has been chosen
for the determination of the Green's functions inside the three dimensional enclosure. Using these
Green's functions, the electromagnetic fields are calculated. The Green’s functions have been written
as double series, which are slowly convergent near the source coordinates.

Much attention is paid to the convergence properties of the series. It has been found that the
convergence of the series is not only slow at the source coordinates but also at some other regions in-
side the cavity. An extraction technique has been used in order to improve the convergence properties
of the Green’s functions for a rectangular box cavity. Furthermore it has been shown that due to the
presence of the multipath environment, the amplitudes of the electromagnetic fields change rapidly.
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Chapter 1

Introduction

Mobile communication systems have become very popular in the last years. New applications have
been developed and antenna technology has made progress along with the advances in mobile com-
munication systems [1]. In the past, antennas were developed independent of the rest of the equipment
and the propagation environment. But in fact, the antenna, the equipment and the propagation envi-
ronment are closely interrelated. Therefore factors related to propagation, equipment and environment
conditions must be treated systematically when an antenna is designed.

There exists no theoretical electromagnetic framework for indoor propagation. The efforts on the
latter subject are mainly directed towards measurements and statistical characterizations of the indoor
channel [1]. Fujimoto [2] has noted that the general model for closed areas is very difficult to develop,
because the field distribution in these environments is usually very complicated. He notes that there
has been so far no positive action to define the field strength of such irregular fields.

In this report an attempt will be made to determine the field structure inside a closed cavity. In-
side a real indoor environment, the electromagnetic waves will interact with objects (cabinets, desks
etc.) and people which are moving around in the office. In this report we will restrict our analysis to
an empty environment. The power levels and the polarisations of the electromagnetic fields inside the
empty environment caused by a dipole antenna will be calculated. The walls, ceiling and floor of the
indoor environment will be modeled as perfectly conducting. The geometry of this model is depicted
by figure 1.1,

Figure 1.1: Geometry of a rectangular box cavity
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2 Introduction

The goal of this research is to develop a deterministic model which can be used for the prediction of the
phases, strengths and polarisations of the electromagnetic fields inside an indoor environment. The
information obtained by computing the electromagnetic fields can be used to evaluate the performance
of the telecommunication link.

In the past many authors [3], [4] have done research on the determination of the electromagnetic
fields inside a cavity resonator. The fields can be calculated by using a series expansion which is
slowly convergent near the source coordinates. Bressan [8] has developed an extraction technique
in order to accelerate the convergence of the series near the source coordinates, In this report the
extraction technique will be used for the case of the rectangular box cavity. Furthermore it will be
shown that much care must be taken by choosing which series will be used for the determination of
the electromagnetic fields inside the cavity.

The structure of this report is as follows:

In chapter two the Green’s functions inside a closed region have been presented. Green’s functions
are solutions of the electromagnetic fields caused by a point source, subjected to boundary conditions.
The Green’s functions inside the closed region have been written as triple series, which are related to
the various possible modes inside the enclosure. The electromagnetic fields generated by an arbitrary
source distribution can be calculated with the help of these Green's functions.

A specific case of a closed region is the rectangular box cavity. In chapter three, the Green's
functions for this configuration are discussed. It has been shown that the Green's functions can be
reduced to double sertes.

Chapter four focuses on the computation of the electromagnetic fields inside a cavity. The fre-
quency of the electromagnetic waves is 2 GHz. Due to the reflections of the waves against the walls
a multipath environment is created. It wili be shown that there are many standing waves inside the
cavity, so the amplitudes of the electromagnetic fields change rapidly. Much attention is paid to the
convergence behaviour of the double series. It has been found that the convergence is not only slow
at the singularities (observer near the source) but also at some other regions.

In order to accelerate the convergence of the Green’s functions near the source coordinates, the
Green'’s function has been divided into three parts, G|, G and G. The dyadics G and G- contain
the dominant singularity (like EI-T) and the weaker singularity {like % ), respectively. Unlike the
original dyadic, the third dyadic 5‘3 is finite at the source coordinates. In chapter tive an extraction
technique has been used to improve the convergence properties of the series for a rectangular box cavity.

Some examples of the convergence behaviour for the Green’s functions near the source coordinates
are given in chapter six.



Chapter 2

Electromagnetic fields inside a perfectly
conducting cavity

2.1 Introduction

In this chapter the electromagnetic fields inside a perfectly conducting cavity will be calculated. In
the past a lot of research has been done for the determination of the free resonances occurring in a
cavity (eigenvalue problem). The walls of the cavity are made of perfectly conducting material and
the internal volume of the cavity consists of free space, so there are no losses and therefore many
standing waves will build up inside the cavity.

In the following sections, the electromagnetic fields excited by an electric or magnetic source are
calculated inside the cavity (source problem). The expressions describing the fields contain triple
series, which are related to the various modes inside the cavity. Furthermore the formulae exist of
volume integrals. The integrands of these volume integrals contain the volume currents weighted by
the various eigenmodi. In section 2.3 the Green’s functions of a cavity will be calculated. These
Green’s functions are an important tool for the determination of the electromagnetic field inside the
closed region. A Green’s function is the solution of the electromagnetic field excited by a point
source. The fields inside the cavity generated by these point sources can be written as triple series.
Finally, some remarks concerning the convergence behaviour of the various field expansions are given
in section 2.4.

2.2 Eigenvector expansion of the electromagnetic field

A cavity surrounded by perfectly conducting walls is shown in figure 2.1,

] and I,,, are the electric and magnetic current densities. S, V' and 71 represent the surface of the
cavity, the volume of the cavity and the unit outward normal to the surface S, respectively. The
Maxwell's equations involving electric and magnetic sources can be written as

VxE= —J'iu.i,uof--l‘r—J’:,1 in V,

Vx H=jweoE+J. inV,

(2.1)
V.E= & in V,
V.H = ";—O in V,



4 Electromagnetic fields inside a perfectly conducting cavity

Figure 2.1: Arbitrary cavity containing electric and magnetic sources

where we have assumed a time-harmonic dependence of the form ¢/**, w is the radial frequency.

E, H are the electric and magnetic fields, respectively. The electric and magnetic charge densities
are represented by p. and p,,. The charges and current densities are the sources for the electric
and magnetic fields. The volume inside the cavity consists of free space with permeability pg and
permittivity €g, respectively. Outside the volume V), the cavity contains no sources, so the source free
Maxwell’s equations can be used in this particular area. The necessary boundary condition is given
by

—

nxE=0 on S. (2.2)

The vector wave equations can be obtained by taking the curl of the first two equations in (2.1):

VxVxE-— k%}j = —jw,ug.fc -V x J:n,
R ) ) ) 2.3)
V xVxH—kH=~jwed, +V x I,

where kg = w,/€opp denotes the free space wavenumber. A modal analysis will be used for the
determination of the electric and magnetic fields inside a cavity. This method is described by Collin
{4] and Van Bladel [9]. Using this modal analysis, the electromagnetic field can be written as an
expansion of the empty cavity eigenmodes. The eigenmodes are the solution of the source-free
Maxwell’'s equations and the relevant boundary conditions. From vector calculus it is known that
a vector function is uniquely determined by its curl and divergence. This means that an arbitrary
continuous vector field can be expressed in terms of the gradient of a scalar function and the curl of a
vector function. Thus an arbitrary field inside a cavity can be presented by solenoidal (divergenceless)
and irrotational (zero curl) eigenmodes.

Numerous workers have studied the problem of representing the electric or magnetic field in terms
of their eigenfunction representation. Collin [4], [5] has noted that the electromagnetic field inside
a cavity cannot be presented by solenoidal modes only. His conclusion was that an additional term
is needed in order that the condition V.F = pefc, will be satisfied. Consequently, to derive a
complete solution that is valid in both the source and source-free regions of the cavity, an additional
non-divergenceless term must be included in the expansion [6], [3], [7].

Using these conclusions, the electric and magnetic fields inside a cavity can be written as

[v. < « B 4]

E = Z Z Z ArstE‘:r-st + Brstf:rsh

r=0s=0¢=0
R ) 2.4)
H= Z Z Z C'r'stH-rst + Drst[(rsta

r=0s=01t=0
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where A, and B,y represent the amplitude coefficients of the orthonormal solenoidal E’}st and
orthonormal irrotational L., eigenmodes. Cyg and D, are the amplitude coefficients of the or-
thonormal solenoidal H,,,; and orthonormal irrotational K, ;; modes.

In numerical solutions only finite summations can be evaluated. The eigenfunctions will be ordered
in such a way that the lower order eigenfunctions are smoother than the higher order eigenfunctions,
If the function represented by an expansion of eigenfunctions (in this case the electric and magnetic
field) oscillates slowly, only a few eigenfunctions are needed. This is the reason that in practice the
electromagnetic fields can be calculated by a finite number of eigenfunctions.

First the properties of the eigenmodes will be discussed. As mentioned earlier, the eigenmodes are
the solution of the source-free Maxwell’s equations subjected to the relevant boundary conditions:

YV ox rst — _jwr.-rlﬂ‘()Gr.s'l in Va
V % Grgt = jwresi€oFrs in V, (2.5)
i X Frge =0 on S,

where F;St and G’r st are eigenvectors representing the electric and magnetic field, respectively. The

radial resonance frequency is denoted by the symbol w,.5;. Taking the curl of the above equations, the
following wave equations are obtained
VxVx ﬁrst - krzstﬁrn = *,

(2.6)
YV X V X Gret — k2,,Grgr = 0,

where k.5, = /w2, €0pt0 represents the three dimensional wavenumber of the cavity.

The solenoidal eigenmodes E.st used for the expansion of the electric field have the following
properties

(V2 + k2, ) B =0 in Vv,
V.E =0 in V, 2.7
X Ers, =0 on S.

These solenoidal eigenfunctions Em can be obtained from scalar functions [7]. Because the electric
eigenmodes Em_ are irrotational, the functions Em lie in the null space of the V x V x operator [4].
Therefore another method will be used for the determination of the irrotational functions. Using a
scalar Helmholtz equation, the irrotational functions can be generated from the gradient of the scalar
function ¢, ¢

(V2+182,)brt =0 in vV,
lrstirst = v@!’rst n V, (28)
VxLiag=0 in V,
X f,,.” =0 on S,
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The wavenumbers k4, and [,;; will be equal for a rectangular cavity. The same method will be applied
to the magnetic eigenmodes, the solenoidal magnetic eigenmodes H,; are given by

(V2+ k2 ) Hp =0 in v,
V.Hp =0 in Vv, (2.9)
ﬁ.ﬁm =0 on S.

The irrotational magnetic eigenmodes I_f'rst are given by

(vz + lgst)wrsf =0 m Vv,
lrst-[-(.rst = V'f,brst in \£ (210)
VxK,g=0 in V,
Akpse =0 on 8.

The coefficients A4, Brgt , Crst and Dy of the eigenfunctions can be calculated by using the
Maxwell’s equations and the orthonormal properties of the eigenfunctions. Multiplying the second
Maxwell equation with the scalar jwy, and taking the scalar product with the eigenmode I, , results
in

jwptoBrse (V x H) = <k (E.Erst) + jwpo (Jo-Eret) @11

Multiplying the second source-free Maxwell’s equation of the eigenmodes with the same scalar and
taking the scalar product with the electric field E gives

jwrst#OE- (v X ﬁrst) = —kgst (E-Erst) . (2.12)

Subtraction of these equations and using Maxwell’s equations results in

E.(V x V % E}st) - Em.(v x V x E) =

o . (2.13)
(krz‘st - AS)(EETH) + jw;‘[O(JE-ETsL)
The following relationship will be used [7]
/// FAV XV X Bugt) = Bont AV x ¥ x E)dV =
v
(2.14)

//S(E”* XV xE—~ExVxFEy)idS

Using equation (2.14) and the boundary conditions on the surface S results in

/ f ]V (R~ ) (B.Eeut) + jwno (JoErwt) aV = 0. 2.15)

The previous equation can be written as

oo —jwuoff f j:i--érstdv
[ [ [E Bty - e . (2.16)

st




2.3 [Eigenvector expansion of the Green’s functions 7

The orthonormal properties of the eigenmodes E.5 are represented by the following equation

f f f Errst-EprsidV = bpgt, 217

where E 1t and E.zrst are two solutions of the free-space wave equation (2.6). The kronecker symbol
6,5t equals unity when r = s = t. The kronecker symbol equals zero otherwise. Using the formula
of the expansion of the electric field (2.4) and the orthonormal properties of the eigenvectors results

in
Apst = _Jw”" / / f Ju.EpydV. (2.18)
rsl

A similar procedure can be followed for the calculation of the amplitude coefficients By.g, Crg and
Dy Detailed proofs of the orthogonality properties of the various eigenmodes can be found in [4]
and [11]. The expansion of the electric field can be written as

o0 oo
Zzzk ’jtsz/[J Ersth
r=0s=0t= _"r'st
oo 0
BN mf f / LeadV (2.19)
roo()ﬁ'o—o{)t
— ZZZAZ ’":'kz "Stf/,/va'H”‘dV'

E = —Jwio

o0
0
(o a]
+jwito
0
fea)

r=0s=0t=0 "Tst

The magnetic solenoidal eigenmodes I:fm are related to the electric solenoidal eigenmodes E,st by
the equation

H P v« Erer. (2.20)

rst —
krst

The magnetic field H (7) can be expanded in a similar way

o0 o0 o0

B = —jwe Zzzkz 3 mff/J HppedV

r=0s=0t=0 "T5t

+jweg iifm“ f f f I KrstdV (2.21)

r=0s=0t=0
o oo oo

+ ZZZ k’Z ritkz Tst//ﬁ/ Je.Ersth

r=0s=0t=0 "7s

2.3 Eigenvector expansion of the Green’s functions

At this point the electromagnetic fields are expressed in terms of eigenvectors involving an arbitrary
electric or magnetic source. The strengths of the sources determine the amplitude coefficients A,.,,
Bigt, Crgr and D, These coetficients are calculated by using a volume integral.

Another way to solve the problem is to calculate the expansions of the fields due to an elemen-
tary source. The solution of the electromagnetic field excited by a point source is called Green’s
function. The Green’s function method makes use of delta functions. A delta function is not a
function in common sense. One must be careful when taking derivatives of the delta function, these
derivatives must be specified in the distributional sense. The general solution (arbitrary source) can
be written as a superposition of the effects of the elementary sources at various locations [10].
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Figure 2.2: Coordinate system

The coordinate system used by the calculation of the Green’s function is drawn in figure 2.2.
S, and V,, are the surface boundary and the volume which contains the sources. The source coordinates
and the field coordinates are denoted by 7, and 7. The electric field caused by an elementary electric

. .5l
current source is represented by the dyadic G,

Hi

Oy
—~—
3
|
Pt
a—

(2.22)
ix G, =0, (2.23)

where I and 0 are the unit dyadic and the zero dyadic, respectively. The magnetic field caused by an
elementary magnetic current source is given by the following wave equation

VxVxG —&2 G =87, (2.24)

i. G,, =0. (2.25)

A vector can be presented by a tensor of rank one. In a similar way a dyadic is a tensor of rank two.
The dyadic has nine tensor components, each of which is a scalar. So the dyadic can be expressed in
terms of scalars and unit vectors as follows

G = Ggp€réy + Gryerfy + Gy ,E5E;
b GyalyEs + Gyl + Cubyls (2.26)
+ GZZEEZEJC + Gz:yé‘zé-y + Gzzgzgz

where the quantities G;; are scalars. This representation of a dyadic will be used frequently in this
report. When the solution for the unit source is known, the solution for an arbitrary source distribution
follows by superposition. Using this concept, the electric field can be written as

E'('F')=—jw;bo‘/'/./vﬂ G, 7 T () dV — f/]c* AW CAY Y (2.27)

Also the magnetic ficld caused by an arbitrary source distribution follows by superposition. The
magnetic field is given by

H(?")-—-Ju)fg/f/ (7, 7%). m(Fo)dVo—l-///v éi(?’,?"o).fe(ﬂ)dVo. (2.28)
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The algebra of dyadics has a very close correspondence with matrix algebra. Therefore in literature,
the electric Green’s functions are often written in a matrix form:

Gizs Geoy Glas
o= | Gl Gi, Gi. | (2.29)

1 T 1
GEZI GE:'y C =z

EZZ

where i=1,2. The magnetic Green’s functions are given by

AL ¢ o

TR L l] nrs
G =g 2
= 1 ?
m=| Ghe Ghy Ghys | (2.30)

i i 3
szx G Cm 2z

mzy

where i=1,2. Using the results of the modal analysis (2.19) , the Green’s functions of the electric field
can be written as

=333 —f”E—g( — LSS L) (),
=00 i=0 kg kg 7205010 2.31)

= ratErst Hrs To
G, Z Z Z () e (7 )

r=0s=0t=0 r.st
Using (2.21), the Green’s functions of the magnetic field can be written as

oooooo“’ oo 00 00

zzzr—ﬂ% EDI) B BMC TN

r=0s=i=l st ” r=0s5=01=0 (2 12)

=2 > o e rsersf rs To
P TY () Bt (7 )‘

=0 s=0 1=0 rﬂf #A"

2.4 Alternative Green’s functions and convergence properties

At this point the electric and magnetic field excited by an elementary source can be calculated when the
geometry of the boundary is given. The electric and magnetic field due to an arbitrary source can be
calculated by using the equations (2.27) and (2.28). Collin [4] has shown that outside the source region
(+ # 7,) the Green’s functions are completely described with solenoidal eigenfunctions. Yaghjian
[12] has given a rigorous mathematical theory which calculates a generalized Green’s function valid
inside as well as outside the source region without using the irrotational eigenvectors. Using these
generalized Green’s functions, the electric and magnetic fields are given by

L’:(‘F] = — jwpp hm / / / é" “ ). f( 7NV, — Ll—..fc(F')_"
f'*n K . . \:'_Vb wao
(2.33)
/ / / (T To) rrr( 0)dVa,
- s .  pop ='I* S oo — ~ E Ln(’-‘)
H{i = —qu’gﬂ] / / ].,—v5 G, (7 70 ) T () dV, — o
(2.34)

[1], Eeriom
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The source dyadics L and L; (not to be confused with the irrotational eigenvector L) are related to the
geometry of the principal volume V;. The electric or magnetic source is located inside this principal
volume Vj. Using a pillbox of arbitrary cross-section with a €. -axis for the principal volume Vg, the
twa source dyadics are given by

Li=1I,=¢.7.. (2.35)

w| =

Figure 2.3: Pill box

. . * = 1= . . .
The two generalized Green’s functions ;, and G, can be written as expansions of solenoidat
eigenvectors [4], | 13];

[ VI s RS 4]

rst'T n'( nf( )

g}sz()fz() U"“*’ ko ) ,
AL > i!'rst,}:-{rst(r}Hl"St- Fo)
Gm*ZZZ k?’(k uk{%) ’

r=0s5=0t=0 rst

(2.36)

So there are two representations of the electromagnetic fields inside a cavity, The first one is given
by the equations (2.27), (2.28), (2.31) and (2.32). This expansion uses irrotational eigenvectors. The
second type of expansion is given by the equations (2.33), (2.34) and (2. 36) The second expansion
does not contain irrotational eigenmodes, however, an additional term L. J is needed to calculate the
electromagnetic fields inside thz cavity.

To make a choice between these two expansions, it is important to evaluate the convergence of
these expansions Omar et. al. [13] have pointed out that in case of surface or filamentary currents,

the terms ﬁ and ﬁlﬁ_ have dirac-delta dependencies. The electromagnetic fields must be continuous

in the cavity, this means that a part of the series must compensate the dirac-deita dependence. When
the generalized Green's functions (z?(l,* and é’,l: are used for the calculation of the electromagnetic
fields, the series do not converge very well near or at the source coordinates. The series converge only
well if the source is a volume-distribution. It is advisable to use the pure solenoidal expansion for the
calculation of the electromagnetic fields when the source consists of a volume-distribution current. In
this report electric and magnetic dipoles will be used, therefore the expansions using the solenoidal
and the irrotational modes are chosen.

In this section the Green’s functions are described by using triple series. In the following sec-
tions one series is calculated in closed form, so the Green’s functions are given by double series. The
above conclusions are only valid when the Green'’s function’s are described by triple series.
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2.5 Conclusions

In this chapter we have determined the electromagnetic fields caused by an elementary electric or mag-
netic source inside a closed region. One way to calculate these fields is the use of Green’s functions.
A Green’s function is an important tool for the solution of electromagnetic problems. Because we
deal with a three dimensional problem, the Green’s functions are written as triple series containing the
eigenmodes of the cavity. In literature, many representations for the Green'’s functions exist, therefore
some remarks are made concerning the convergence behaviour of these different Green’s functions in
section 2.4,

The theory presented in this chapter will be used for the caleulation of the clectromagnetic ficlds
inside a rectangular box cavity.
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Electromagnetic fields inside a perfectly conducting cavity




Chapter 3

Eigenvectors of a rectangular box cavity

3.1 Introduction

In section 3.2 the four Green’s dyadics of a rectangular box cavity will be developed. The electromag-
netic fields cansed by an electric or magnetic source are completely described by these four Green'’s
dyadics. Using the analysis described in chapter two, the Green’s functions can be represented by
triple series of solenoidal and irrotational modes [3] [$4]. These modes will be calculated using vector
calculus on four scalar functions. The necessary computational time can be reduced by calculating
one of the three series in closed form. Because we can arbitrary choose which variable (r, s or £) will
be used, alternative representations can be obtained for the Green’s functions. This 1s an advantage
of the eigenfunction method, because we can now choose the representation with the best numerical
convergence behaviour in the region under consideration. The various expressions for the Green’s
functions will be compared with each other in chapter four.

3.2 Eigenvectors of a rectangular cavity

The rectangular box cavity and the coordinate system are shown in the following figure:

z

Figure 3.1: Rectangular box cavity

The dimensions of the cavity in the - - - and z -directions are denoted by «, b, and ¢, respectively.
The source coordinates of an electric or magnetic source are given by ( i,,¥., 2, } and the field
coordinates are represented by (., ¥, 2 ).

The complete set of solenoidal electric eigenvectors Erst can be found by using two scalar functions.
These scalars will be chosen in such a way that the boundary conditions have been fulfilled.

13
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14 Eigenvectors of a rectangular box cavity

Furthermore the eigenvectors rnust be independent and mutually orthogonal solutions of the vector
wave equation.

One scalar function for a rectangular cavity is given by

el ¥
TN STy
\'Pr-i - - e
S GRG)
where €,,, €05 and e, are the Neumann factors, which equal unity forr = 0, s = O and £ = 0,
respectively. These factors equal two otherwise. The first set of solenoidal modes M., is given by

3=
r—

€or€osfot TR smy . bWz
I 2 ) cos —— ¢os /sm——, 3.1
abe a b c

Mrst =V x (\Prsté‘z)a (3.2)

where €, is the unit vector into the z-direction. The second set of solenoidal modes N4 is obtained
from the second scalar function

I
2 21”2 1
. xr o, 8w tmz
Qmﬁz(ﬁq +(ﬂ) (Eﬁﬂﬂ)gmﬁLﬂn_ﬁm&Eﬂ (3.3)
@ b abe @ b c

krstﬁrst =VxVx ((Drstgz)a (34)

where the three dimensional wavenumber k., is given by

2 2 2
o G G G
a b c

Now the complete set of solenoidal electric modes E'm € {M,st, ]\Tfrst} has been derived for the case

of a rectangular box cavity. The irrotational electric modes f;r s¢ are given by

L
€or€os€or Y2 . TWX . smy | tmz
Y, = (-3-— sin —= sin —= sin ——,

abe a c (3.6)
k'rstf:rs!. = VTrst-

Note that the use of the irrotational functions was needed in order to derive the electromagnetic field
in the source region. However, these irrotational functions are responsible not only for the ficld in the
source region but also contributes to the electric field in a source-free region [3].

In the previous chapter the magnetic eigenvectors ﬁm and I:.’m were also needed for the calculation
of the electromagnetic field. Notice that the solenoidal magnetic eigenvectors can be found by using
the following equation

krstHpst = V X Erg. (3.7

The irrotational magnetic eigenvectors are given hy

1
€or€osEot \ 2 TTT STY tmz
Q= ———1} ©os—cos —cos —,
abe a

b c 3.8
krst}?rst = vnrst-
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In chapter two, solenoidal and irrotational eigenvectors are chosen for the representation of the

electromagnetic fields inside a perfectly conducting cavity. The Green’s functions used for the
expansion of the electric field are given by

2 QL EWMNEa() 1 QER s L
Gi= 35y Bl Dbealft) LSS L Lt

i e 0 r=0s=0t=0 (3.9)
C=~?' ZZZ ArstErsl("_‘)I:TN!( a).

r=0 s={) =0 ral 0

So these Green’s functlons representmg the electric field are known by means of calculating three
eigenvectors Erst, L, st and Hr st- As mentioned earlier, the eigenvectors are calculated using vector

operations on the scalar functions W, 5, @5 and Y, ;. Performing these operations, the first electric
Green’s function can be written as

o0 oo o0 €or€osCot
[ ar-os-o
Ge(?‘,?"o) = Z Z z b k kE) kZ
=0 5=0 t=0 *VC Frst 0/ ™0
2 r\2 T TTTe . STY . S$TYe tmz . tmze ., .
kg — | — 0§ —— COS sin —= sin sin — sin Eréy
a a b b c

|

2 tmy? TAL TTLy . STY , S§TY, trz imze , .
+ k.a - | — sin —— sin $In —— SIn —— COS coSs €,€,
[ i @ C [

12 s\ 2 TIT TRL, cos sTY c STYo ¢in tmz sin Tz, .. P
5 — | — sin — sin —— €08 in - e
0 b a a b b c v

b b
ram? TR TAL, . STY $TMYo tmz | tmzy ., .
- cos — sin 511 —— COS§ sin — sin ExEy
ab a a b b c
rSmE | rwE T, STY §TY, . tuz ImZo ., .
— sin —— cos cos — sin sin ——— sin €y€a
ab @ « b c c
?
stw= TaL TRX sTY STY, . tWz tmze o .
- sin — sin €08 —= §in —=— Sin — ¢os €€,
be i) @ b b c
st | rmxr . T, . sy MY, tmz | tmz, L
———§In —— Sin SN —— COS cos — Sin €€y
be a a b b ¢
rin? | rax TNE, . SAY . STMYo imz Iz .
— sin —— cos sin —— sin cos — sin €:€x
ac a a b b c
i
rimw- rmr L TALe L STY . STYe tmz tmzy . .
— —— CO§ —— $in —— §in —= §in —— sin — cos €5€s
ac @ a b b c c

Note that the first three components (¢..¢;, €,&,, €:¢.) of the Green’s dyadic have the same symmetry
properties. This fact will be used by the implementation of these functions in computer software. The
last six components of the Green’s dyadic have also equal symmetry propemeq The second magnetic
Green'’s function can be calculated by means of the eigenvectors Em and Hrsf

(3.10)
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The final result is given by

(=;2 o _ > oo.i €or€ostot
mif o) = Zzt (k2,, — K2)

rat

0
tw TTT TAL, . STY STYe . Inz inz, . .
— c0O§ —— COS sin —= sin $In —— COS €y
C ) @ b b ¢
b TR . TAI, sTY $TYq twz Tz,
—— §in — $i0 —— CO§ —— CO§ —— §in
C 7 It b b c

T AL ITLo §TY STYo . tmy | tmz, . . 3.1
— Sin —— cos COS —— COS§ ——— §in — sin €
a a a b b ¢ C

rT TUL T, sTY ST, imz twzy L o
—— 8in —— ¢cos sin —= sin COS —— COS €€y
a a a b c

ST TAL THZ, STY 8TYo tmz tmz,
— sih — sin sin —= cos CO§ —- COS
b a a b ¢

e

€:€x

s TTT TAL, STY §TYo tmrz iz L L
CO§ —— COS sin —= cos sin — sin €€
b a a b b c c

=2 . .
Note that the €;€,, €,€, and €, &, components of (7, equal zero. With the above formulae the electric
field due to an elementary electric and an elementary magnetic source inside a rectangular box cavity
can be calculated. The electric field caused by an arbitrary source is given by equation (2.27):

By =—jwno [ [ | G diiave- [ [ [ Gu@ i) Tuave  @12)

When the volume source distributions ]_; and fm are known, the electric field can be calculated using
(3.10), (3.11) and the above described relationship.

Now we will develop the three dimensional Green’s functions for the magnetic field inside the
cavity. Using the analysis described in chapter two, we know that the Green’s functions used for the
expansion of the magnetic field are given by

_..

_ o0 o0 oo ’F)H . 7 ) | 2.2 = .
G Z Z % - 1._2 Z Z Z I{rst(f‘)}-{rst(ﬁ:)a

r=0s=0t=0 "'Sf' - 0 0 r=0s=0t=0 (:)' }’{)
=2 o o rst}:Irst(rF)Erst("' o
Ge Z Z Z k . k2

r=0s=0t=0 rst 0

The magnetic field can be calculated in a similar way.
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The first magnetic Green’s dyadic is given by
] leiad Eor€as€
= - = ortostot
Gm( ’T‘-") - Zzzabc kz)k
r=0s=01t=0 7'-“ 0
rw\? T TTE, STY $TYo tmrz tmz, ., .
ko — $in —— sin CO§ —— CO§ —— CO§ —— COS €rCr
@ a b b c ¢
2
s TTE T s ST inz tmze .,
+ |kg — cos 25 cos T222 gin 2T gin 2E¥0 005 12 cos 22, 7,
N a a b b r .
-, tr 2 T TUE, STY §TYo . IWz tmz, . .
+ by — [ — COs —— COS c0S$ —— COS sin —— sin 6.0,
. ) a b b C c
rswl | r@x PTL, STY 5T tnz tmwz, L
- sin —— cos cos —— sin €0S — COS
al a a b b C 3.14)
rsme TUTL . TAZ, sTY §TYg tmz trze L
- COSs — sin sin —= cos C0S — COS
ab a a b c c
stw? AL TTETy . STY 5TYo trz tmze . .
——— COS —— €08 —— §ih —— C0§ —— CO0s§ — sin
be a a b b c
str? THEL TTZ, sTY sTY, . tmz tmzg
— —— COS —— COS§ CO§ —— Sin —— sin — cO§
be a @ b b c
rim? TTY THE, sTY §TYo . tmz tnzy ,
———cos —sin COS —= COS§ sin —- cos
ac a @ b b ¢
réme rTX TTX, sTY $TYo tmz tho L.
———§in - COS§ CO§ —— COS cos — sin
ac a a b c c
The second electric Green'’s function is given by
HAXINEED 35 P) pecac
abe (k (= kz)
r=0s=0t=0 rs
T . rAT . TAT, STY STYes tmz | twz, . .
——sin — sin CO§ —— COS ¢0s — sin €z Ey
c @ a b b ¢
tw T rTL, STy 5T Yo tmz th20 .,
— COS§ — CO5 sin — sin cos — sin €y€z
c e a b b C c
T TTL TALe . STY . 8T trz tmze L .
~— CO§ — 8in 2 sin Y sin Yo c0s — sin 9 €y€s 3.15)
@ a 7} b b c c
T rUE TRELy sTY §MYe . tmz |, tmwz,,
— cos — sin COs —= CO§ —— §In — §in €:€y
a a @ b b c
8T TR T, STY $TYo twz tnze ., .,
—— COS§ —— COS cos — sin sin — sin ErCy
b @ @ h c
ST . TAL . TAZL, STy 5TYe twz tnzy ., .
— §in — §in —— C0§ — sin c0S — COS €x€,
b a a b c c
The magnetic field excited by an arbitrary source is given by (2.28)
H(?-') = _JWEOfff G m("'o)dv + fff G J e(75)dV. (3.16)
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3.3 Double series representation of the Green’s functions

The nine components of the Green’s dyadic are now calculated using a triple series expansion. In
order to reduce the computational effort, the Green’s functions can be reduced (o double series,

As mentioned in section 3.2, the longitudinal components of the Green's dyadic (¢,.¢,, ¢,6,, @.72)
have the same symmetry properties. The G!__-component is chosen in this section to illustrate the
reduction of one series of a longitudinal component. Also the transverse components of the Green’s
dyadic have equal symmetry properties. The Gf'_,yx -component 1s chosen in this section 1o illustrate
the calculation of the closed form of a transverse component.

3.3.1 Elimination of one series of G

eTT

Using (3.10), the longitudinal Green’s function G1,, can be written as

TN e Aegr 2 r\ 2 AT TAT, . SAY . 8Tl
ea’:a: zz abckz 0 — (:1,—) COSTCOS a sin TsmT
(3.17)
X, sin hr_z sin t”—zﬁ
Z rsr - ;‘(% .
The last series will be calculated in closed form. We shall consider two regions.
A2
L) () 20
G, is written in the following form
sin 2 sin ze
= 5% , 3.18
2 Ao (3.18)
where the variables § and ¢ are given by
o 46 T rHE TIE g7 sTY
ZZ or ( ) Ycos 2L cos L0 gjn ST gin 2o (3.19)
rd a a a b b

m=\/(%‘?)2+(%)2-(%)2-

The above mentioned series can be written as

Gl =8¢y [i": cost(z — z, ﬂ/c Z cost(z + zo)m/c| (3.21)

exx ( ) 7
LA =0 -+ oy

The closed form expressions of these series are well known in literature. Using a known summation
result [15], the following relationship can be used

i coskz 7 coshay(m—z) 1
k2 + o} 201 sinhayw 20t

0<x<2m. (3.22)
k=1



3.3 Double series representation of the Green’s functions 19
2
2. () + ()7 - (&) <o
In this region G is written as
c >, sin 2 gjp £z
Glag =05 Z —— (3.23)
=1 2
where
koc\? re\? sc\?
w3 - (5 - (5) 320
T a b
Using [15], the following relationship can be used
— coshz | 0s vy —
Zu=m—,— WE—-—Tz(W——) 0< & <27 (3.25)
= B2 —0a; 205 200  sinogw
The expression of G|, consists of the term (z — z,) T, which value is located in the interval [—, 7],
Therefore we shall distinguish two regions: =z > z, and = < z,
o\ 2 2 hge)?
L)+ ()" - (=) >0
e z > z,. The final expression of the Green's function G, can be expressed as
1 €or ( kz (m)z)
C =
s abkz Z Z_: 23] sinh oW (326)
cos ﬂ cos 722 gin TTY Gin 2% Ginh a(m — Ez) sinh c¥; Ez0
@ it b c "
e z < z,. G! _ can be written as follows
ol - Z Z‘ or(g = (2)°)
ere abka‘rr =1 2] smhar,-r (327)
8 M .
cOos m cos [T %o sin Y sin Ll sinh o (7 — zzﬂ) sinh ¢ Ez.
a a b b c ¢
rey2 sey 2 koc z
2. ()7 + ()" — (B2) <o
e >z,
1 6or‘(‘r‘:() 1—1|-)2)
Cerr Z Z T
abk(}'fr o m sinogw (3.28)
P TAX, , SAY T . T, . m
cos cos $in —— sin sincep(m — —z)sincva—2z,
a a b b C c
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or (kg = (55)")
Gémm - abk2 ZZ 0 _

- [4%] sin [asYin (3.29)
L r:rr.c,, . STY . 8TYe T , 7
cOs —— €O8 sin — sin —— sinap{m — —-z,) sinap —z.
o b b c” ¢
The series used for the calculation of Céyy and G, have similar forms, therefore the corresponding

double series can be calculated in a similar way. Note that the choice of reducing the series over
the variable t is arbitrary. Calculating one of the two other series in closed form yields different
representations for the Green's functions. These representations might have different convergence
properties, this will be shown later on in chapter four.

3.3.2 Elimination of one series of (7!

ey

The Green'’s function G;yx can be written as

& Brsmt | rmx T, STY . $TY,
Z Z SN —— CO0S CO0S§ —j Sin Y
== a?blck 2p2ck2 a o b b (3.30)
itrz )
Z sm sin == £ 5in —2
t=0 Ikr‘st kO

The last series will be expressed in closed form. There are again two situations:

1 ()% + (597 - (B2) 2 0

e_,u:r

s z > z,. In this situation, the final expression of the Green’s function Geyx can be expressed as

—Ader
Géya’ = szzz

0 r=1s=

THX AL, STY . 5WYo . oL T
sin —— cos cos — sin —— sinh o (7w — —2) sinh ) — 2,
a c c

oy smhaf.

(3.31)

a b b

e z <z, Gl _canbe written as follows

yr

Ol = e 2L s
eyr — 23377
a“b*kj 1 smh am (3.32)
. TTx 1'77330 sTY sTY
sin —— cos cos > sin

o . K . T
sinh o) (m — —z,) sinha; — 2.
a a c c

2 (=) + () - (=) <0

T

s 2 > z,. In this situation, the final expression of the Green’s function G(ley:c can be expressed as

—4em
Geye = —mppa ZZ

Ty - [a%) sin [4X(8 (3‘33)
rTT r'rr:z:o STY . STYo . T m
sin —— Cos cos —— sin sinaz(wm — —z)sinaz—z,.
a b b c C
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o z< 2. G éym can be written as follows

| o2 v Sin agm Qo (3.34)

T 'TI':L‘ T‘:‘T.‘LO sty . smy
cos —— sin
b b

o . T ) T
sinaa(m = —2,) sinqva—z.
c c

Vartous forms of the Green’s function G Lyx can be obtained by choosing which series will be calculated
in closed form. In this section another representation of G, 4z Will be determined. The Green’s function
is written in the following form

[ ol o]

8rmw G T L, . tmz | twmz
= - — €08 sin - sin
eyl z% 320 azbck2 a a c €
r= (3.35)
>, smcos T gin e '
] 2—_”
s=0 b 'l‘rst

The closed form expression of the last series is also known in literature. Using [15], the following
cquations are valid

i ksinkx  msinhg(7 — )

= - O<z<2 3.36
S E T2 sohpim S (3.36)
— ksinkx  wsinfB(r —x) -
Z Fo@ =2 snfr 0<x<2m (3.37)

where

- O .
S CRERCH

The solution of G

ey

L (#) - (2) -

is divided in two regions

() 20

» ¥ > y,. The expression of the Green’s function G|, _ in this area can be expressed as

ey
ar > I
Gl = —
o al (Ln Z Z sinh 7 (3.40)
- t t
sin 2% cos 2222 gin 22 gin 2222 cosh Bi(m — —y) sinh [3. 7Y
143 [41 C [
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sin —— cos 2 sin -~ sin —2 sinh B1(m — —yo) cosh 81—y
a c c b b




22 Eigenvectors of a rectangular box cavity

“0i=0 S ‘Bﬂ (3.42)
rm TAT, . tmz . tmWz, ™ . s
sin ——— Cos sin sin —— cos o (w — —y) sin Fa—y,.
ft a c c b b
* Y < Yo
—4x
Ghye =
eyx azckz Z();) sin ﬁzﬂ' (3.43)
T ALy . IWz Imz, .
sin - cos sin —~ sin sin (7w — Eyo) cos [32 2

The calculatlon of the double series of the other transverse components (Ger,Gé,x, Gl ..) and
( Gezy, eyz } can be done in a similar way. By expressing different series in closed form, various

representations of the Green’s functions are obtained.

3.4 Conclusions

In this chapter descriptions of the electromagnetic fields are obtained inside a rectangular cavity. The
source inside the cavity, which excites the electromagnetic fields, is an arbitrary polarised magnetic or
electric dipole. Four Green's dyadics are needed in order to calculate the electromagnetic fields. The
components of these various dyadics can be expressed as triple series expansions using eigenvectors.
In the last section of this chapter, one series is calculated in closed form, so the Green’s functions are
described by double series. Because we can choose which series will be evaluated in closed form,
various representations of the Green’s functions are obtained. It will be shown in chapter four that
these various forms of the Green’s functions have different convergence behaviours at some regions
inside the cavity. This knowledge will be used when implementing the numerical algorithms.



Chapter 4

Results

4.1 Introduction

Our main interest concerns the intensities and the polarisations of the electromagnetic fields inside
the cavity. Using the analytical results derived in earlier chapters, we are now able to calculate the six
field components caused by an elementary source. Another concern will be the numerical problems
at the singularity points of the various Green’s functions. Therefore much attention will be given to
the evaluation of the convergence properties of the Green'’s functions in this chapter.

Some examples of field structures inside a particular cavity are presented in section 4.2. Due to
the singularity of the field, the convergence of the series in the neighbourhood of the source is very
slow. Furthermore it will be shown that the convergence might be slow at some other regions inside
the cavity, depending on which summation is calculated in closed form. In section 4.3, convergence
properties of the double series are compared with each other. The convergence behaviour of the series
are visualized by calculating the partial sums of the series. Finally, the electromagnetic fields inside
a cavity will be compared to the free space fields in section 4.4.

4.2 Electromagnetic fields inside a rectangular cavity

In this section the electromagnetic fields inside a cavity will be visualized. The model outlined in the
previous chapter is implemented in a FORTRAN code. With the help of this program, the electro-
magnetic tields caused by an electric or magnetic point source can be calculated. The wavelengths
of the electromagnetic ficlds are much smaller than the dimensions of the cavity. This means that the
amplitudes of the electromagnetic fields change very rapidly inside the cavity. In order to present a
clear picture, the electromagnetic fields will not be calculated inside the entire cavity. The plane in
which we will calculate the fields is called observation plane.

The geometry of the cavity is given by figure 3.1. The dimensions (a, b, ¢} of the cavity are equal
to (5.4 m, 3.7 m, 2.2 m). The wavelength of the monochromatic transmitted wave is 15 ¢cm. The
point source is located at the coordinates { a/4,0/2,c/2 ). The electric source is directed into the
z-direction. Furthermore, the z-coordinate of the observation plane is equal to ¢/2, this means that the
x- and y-polarised electric fields are zero in this plane.

Only the electric field in the shaded region of figure 4.1 will be calculated. The absolute value of the
electric field into the z-direction is presented in figure 4.2.

23
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Figure 4.1: Observation plane
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Figure 4.2: Ez-field at the observation plane

It is clear from figure 4.2 that the absolute value of the electric field changes rapidly. Because the
walls of the cavity are perfectly conducting, there will be many standing waves inside the cavity.
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Figure 4.3: Contour plot

The maximum values of the electric field at the observation plane are presented in figure 4.3. The
regions inside the closed contours have electric field components larger than 50000 V/m. The same
calculations have been made for the magnetic fields at the observation plane. The magnetic field into
the z-direction is zero inside the cavity. The magnetic field into the x-direction s given by figure 4.4.

The y-polarised magnetic fields have similar forms as shown in figure 4.4, therefore they will not be
presented here.
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Figure 4.4: Hx-field at the observation plane
4.3 Convergence properties of various series representations

In chapter three, various representations of the Green's functions for a rectangular cavity have been
analysed. In this section, some convergence properties of these Green'’s functions will be investigated.
The series, representing the electromagnetic fields, have complex arguments. Unfortunately, it is not
possible to evaluate the convergence properties of these series in a strict mathematical sense. However,
the convergence properties will be evaluated by a numerical analysis. Only the dyadic G., which
represents the electric field caused by an electric point source, will be evaluated. The other dyadics
have similar forms, so the analysis presented in this section can be used for the calculation of the other
dyadics as well. The electromagnetic field in the cavity will be calculated using double series and the
convergence properties of these double series will be analyzed by determining the partial sums. The
partial sums of a double series are given by

Sn=2 2 f(rs) @1

r=0s=0

The electromagnetic field at the observation plane is calculated twice. The first calculation has been
made by taking the partial sum index equal to 60. The second calculation has been made by taking
the sum index equal to 80. The differences between the two obtained results are calculated by

Sgo — Sg

8= - 0« 100% (4.2)

The observation plane for which the electromagnetic fields will be calculated is shown in figure 4.5.
Due to the fact that the source is located in the observation plane, we are able to evaluate the conver-
gence properties of the series at the singularities.

The dimensions of the cavity (a,b,c) are equal to (3.4 m, 3.7 m, 2.2 m). The electric source is
directed into the z-direction. The frequency is 2 GHz.

First the electric field into the z-direction will be determined. Using the double series representation,
the difference factor 3 at the observation plane is shown in figure 4.6.

The points between closed contours have a minimal 3-factor of 5 percent. It is remarkable that the
convergence is not only slow at the source coordinates but also around »: = a /4. Remember that the
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Figure 4.6: Difference factor 3 at the observation plane

Green’s function G, is given by the following equation

o0 00 2
€or€osCot tw sTY STYo tmz Imzg
ko — | — sin —= sin COs — cOS
Cesz Z Z abekd [ ( € ) ] b b c c
s=0 (4.3)
Z 1 sin UL sin THL,
o k§ o a

This equation, which consists of a triple series, can be transformed into a double series in three ways
by choosing which series will be written in closed form. In the above figure, the fields are calculated
by writing the last series in closed form. This series contains the field coordinates = and source coor-
dinates x,. From the above figure it is clear that the convergence will be slow when the coordinates
and x, are close together. In this case, there will always be a region with slow convergence properties
no matter which of the three series will be calculated in closed form.

We will change the z, coordinate of the source into 0.21 m. The series containing the coordi-
nates z and z, will be calculated in closed form. At the observation plane, the coordinates : and
2, will never be close together. So it can be expected that the convergence of the Green’s function
G!,, will be fast. For this case, the difference factor § is calculated. Using numerical calculations
it has been verified that the factor 3 is less than 1077 at the observation plane. In order to check the
earlier stated assumptions, the difference factors of the fields into the x- and y-directions have also
been calculated.
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Figure 4.7: Difference factor 3 of x-polarised electric field

One series of the triple series describing the x-polarised electric field is also written in closed form.
The fields are calculated by closing the series containing the coordinates y and . Again, the double
series is slowly convergent when the coordinates y and y, are close together.

The convergence properties of the electric field into the y-direction is given by figure 4.8.
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Figure 4.8: Difference factor § of y-polarised electric field

The electric fields into the y-direction have been calculated by closing the series containing the
coordinates :: and x,,. Again, the double series is slowly convergent when the observation and source
coordinates x and x, are close together.

4.4 Fields inside a cavity and in free space

The electromagnetic waves inside a cavity will be reflected when they approach the perfectly conduct-
ing walls. Therefore the electromagnetic fields at the field points consist not only the direct wave but



28 Results

also some reflected waves. So the multipath components arrive at the receiver in various directions
[16}. This is a typical situation in a multipath environment. In order to make an estimation of the
influence of the multipath environment, we will compare the electromagnetic fields inside the cavity
with the electromagnetic fields in free space.

The source will be a z-directed dipole. The geometry of the cavity ts given by figure 2.1. Just
like presented in section 4.2, the dimensions (a, b, ¢) of the cavity will be equal to (54 m, 3.7 m,
2.2 m). The wavelength of the electromagnetic field is 15 cm. The source is located at the source
coordinates (a/d, b/2, ¢/2). The z-coordinate of the observation plane is equal to ¢/2 and this plane is
presented by figure 4.1.

The fields in free space excited by an elementary source are calculated in appendix A. In section
4.2 it is stated that the x- and y-directed electric fields are zero at the observation plane due to the fact
that the coordinates = and z, are equal to /2. According to appendix A, the x-directed and y-directed
electric fields are also equal to zero in free space. So we will calculate the free space field E free space
only for the z-directed components. The free space electric field is shown in figure 4.9.
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Figure 4.9: Electric field in free space

There are no standing waves in the free space environment. It is clear from figure 4.9 that the strengths
of the fields in the free space environment differs to the fields in the multipath environment.

The x-directed magnetic field in free space is given by figure 4.10.
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Figure 4.10: Hx-field in free space

4.5 Conclusions

The electromagnetic fields for a particular cavity have been visualized in section 4.2. Due to the fact
that the wavelength is small cornpared to the dimensions of the cavity, there are many standing waves
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inside the cavity. There are many spots inside the indoor environment where several components of
the electric or magnetic field vanish. Inside these regions, it is to be expected that the noise level
exceeds the signal strength, so the telecommunication link wili be disturbed.

In section 4.3 some convergence properties of Green’s functions are investigated. It has been shown
that the fields are slowly convergent not only near the singularity, but also in some other regions inside
the cavity, depending on which series will be calculated in closed form. Therefore much care must
be taken by choosing which representation of the Green'’s function will be used for the determination
of the electromagnetic fields.

The electromagnetic fields inside the cavity have been compared with the electromagnetic fields in
free space in order to determine the influence of the multipath environment. In section 4.4 it has
been shown that propagation inside the multipath environment (cavity) differs much to the free space
electromagnetic fields.
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Chapter 5

Singularity extraction

5.1 Introduction

In the previous chapter it has been shown that the Green’s functions of a rectangular cavity are slowly
convergent when the observation coordinates are close to the source coordinates. This can be a
serious problem because Green'’s functions are used in numerical methods, which often require the
computaticon of the Green’s function inside the source region. Therefore the previous expressions for
the Green's functions are not well suited for the computation of the electromagnetic field calculated
by integral equations.

To overcome this problem the Green’s functions will be split into three parts. The first Green’s function
has a singularity of the order ﬁ'—;, where R is the distance between the observation coordinates and
the source coordinates. This function contains the dominant singularity. The second Green’s function
consists of a weaker singularity, this function is singular like lR The third Green’s function describes
the resonances of the cavity. Unlike the original Green’s functions, the third Green’s function is finite
at the source coordinates.

5.2 Decomposition of the Green’s function

Several authors [ £ 7}, { 18] have considered the extraction of the dominant singularity ( Ti".T ) for various
Green's functions. The resulting series converges better than the original series, but the convergence
is still slow. This can be explained by noting that the series still contains a singularity like %.
Bressan and Conciauro [19] decomposes the Green's function for a closed region in three parts. The
first dyadic represents the irrotational part of the original dyadic and diverges like ﬁl_f. The second
dyadic and the third dyadic are solencidal. The second dyadic diverges like lﬁ and the third dyadic is
finite at the source coordinates. So the Green's dyadic can be written as

Goli 7o) = GilF 7o) + Ga, 7o) + G (7 7). 1)
It has been shown in chapter two that four Green’s dyadics are needed to calculate the electromagnetic
field caused by an electric or magnetic point source. Because many components of these dyadics
have equal forms, only the extraction of the singularity for the dyadic G :, will be considered in this
chapter. It has been pointed out by several authors that the singularity of the function (:?,I, is essentially
the same as the one of the free space Green’s function G,,. The dyadic G, is given by the following
equation

Y A T e T 52
Go(7,Ty) = I+.‘TSVV pry 5.
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where R = |¥ — 7,|. The symbol I represents the unit dyadic. The free space Green’s function
can be approximated by expanding the exponential of the function in a Taylor series. The following
approximation is obtained

_ 1 I (s (F=@)F—7,)
GONk%vv4ﬂR+8 R(I+ - ) (5.3)

In this expansion all terms finite at B = 0 are neglected From this expansion it can be deduced that

the dominant singularity is given by the term —;VV #=7¢ » Which is irrotational. The weaker singularity

is given by the solenoidal term 3 [ I+ M’M] As an example only the singularity extraction
and G|

!
of the functions & ey

ery

w1ll be calculated. The singularities of the other components of the

. \ ) . N
four Green's dyadics can be extracted in a similar manner. Therefore only the dyadic G, will be
considered in the following analysis.

The first decomposition is given by the following equation

=1 - - _' = -
Go(7,70) = —k—VVog(r o) + GalF, 7o) + Gal7,7%), (5.4)
0
where V, means differentiation with respect to the source coordinates. The function g{,7,) is a
scalar Green’s function. The three components g, G and (73 are related by the following relationships

V2g(7, 7o) = —6(F — 7o), (5.5)
V X V x Go(F,7) = I6(F — 7) ~ VV,g(F,73), (5.6)
V % V X G3(F,7,) — k& Ga(F, 7)) = k2Go(F, 7), (5.7)

in the internal cavity volume V. The boundary conditions are given by

g=0 fix Gy=0 iix Gy=0. (5.8)
Taking the curl of the curl of (5.4) and using (5.5), (5.6), (5.7) results in
= =1 =
V XV x Go(F,70) — K2GA(F, 7o) = T6(7 — 7). (5.9)

Notice that this result is the same as equation (2.22), which has _beerl used for the definition of the
Green’s dyadic G.. Using the above equations, the components &', G2 and (3 can be calculated.

Unfortunately this is a tedious process, therefore other relationships will be derived in the next
sections in order to solve the three Green’s dyadics. First we note that the weakly singular term of the
Taylor expansion of the free space Green's function is &g - independent. The solenoidal dyadic Gy is
also ko -independent according to equation (5.6). Therefore the dyadic G2 will be written as

= . i = (:7:'_7-.' 7—:_7—.-0 - L
G (7,7} = o (1 + "])?(, )) + Gao(F,70), (5.10)
where ézﬂ. is a kp -independent dyadic and finite at the source coordinates. So the dyadic C:,‘Q COnSists
of a regular and a singular part. Using the analysis described in [19], the third Green’s function
G(7, 7») will be expressed as

C_-: F 7__. i i i k(z) rst(7 rsf.('ra) (5.11)
t=0

r=0s=0 rst(kfz'st_k(%) ’
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where E,,,(7) and E,..(7,) are the solenoidal eigenvectors of a cavity. This Green’s function contains
the resonances of the closed region and the function is finite at the source coordinates. At this point

the Green's dyadic G l can be written as
=1 o = . = o o o
G (7,7 = Gy (T Fo) + Ga(F, 7o) + G3(F,70)
1

— 7o 5 oo
= ——VV,Jg('.r 7o) + Tl) + G2o(7, 75) (5.12)

;‘ 2
OO oo 20 fnd
k3 E‘(f') )
DRPIE UL

r=0s=0 t=0 Wk — kg
Bressan and Conciauro [19], {20], [8] have calculated the three dyadics G Is éz and (=¥3 for a three
dimensional spherical cavity, a two dimensional circular resonator and a two dimensional rectangular
resonator. In the next sections the three dyadics will be calculated for a three dimensional rectangular
box cavity. As mentioned earlier, only the singularity extraction of the functions Gl . and G f:yx will
be considered.

)
‘:o|

5.3 Calculation of the irrotational dyadic G

The Green's dyadic G, which contains the dominant singularity, can be expressed as

G (7, 7) = 2vvag( 7o) (5.13)

A
This function G, represents a low frequency approximation of the electromagnetic field in the cavity.
The scalar Green’s function g 1s given by

V2g(F, 7)) = —6(F — 7) inVv,
g(7, 7o) ( (5.14)
g=0 atS.

This differential equation will be solved by using the method of images. The method of images is
described in many textbooks (e.g. [21]). Using this method, the original geometry is translated into
an equivalent configuration. In order to find the solution of the differential equation in the internal
volume of the cavity, the boundary will be replaced with images of the point source. The solution is
now only valid in the region of interest. The images plus the original source must satisfy the boundary
condition at the surface S. The equivalent problem at the plane z = 0 is drawn in figure 5.1.

The scalar Green’s function g consists of an infinite summation of the free space Green’s function at
the image coordinates. The sign of the Green’s function changes with each image source, because the
tangential electric field at the boundaries must be zero. The function g is given by

g(7 ZZZ

TM=—00 N=—00 f==—00

m+n+!{ ’
—l ) (5.15)

rmll
The distance between the observation points and the image sources are given by

Rt = /(& = 2 )2 + (y — 9 + (2 — 21)2. (5.16)
The coordinates of the original source and the image sources can be expressed as

Zm = (m+Ha+ (-D)™(z, - §),
i = (n+ %)b'i-(_l)n('yo" %)1 CRY))
a4 = (4 Ye+ (=Dl -9,

A e
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Figure 5.1: Equivalent sources

Note that the term Ry of the scalar Green’s function is singular at the source coordinates. Thus the
Green’s dyadic () can be writien as a combination of a singular and a regular part

G(F.F,) = —'—vv !

k “4n R
T 00‘0 oo (—l m-i-n+l ‘ (5]8)
vv Z Z Z Tan R {m,n, 1) #(0,0,0).

m=—oon=—ocix=—oo

As mentioned earlier, the longitudinal components of the Green’s dyadic have equal symmetry
properties. This is also true for the transverse components of the Green’s dyadic, therefore only two
components (G 1z, and Gyz) of the dyadic G, will be calculated.

5.3.1 Calculation of G,

The dyadic G, contains a singularity like I]f‘ Using earlier obtained results, the Green's function
(G 14z Can be written as

m—+—n+t

Z Z Z 47TRM- (5.19)

T To m——oon=—00 {=—00

Gl;r:.a: = -

:::Eo' -

Performing some elementary calculus yields

-1 2m+n+1(,E - )

Gree = W > 3oy S

0 m——oo n"—ool_—oo mnl

2m+n+£ (5.200
4 k‘2 Z Z Z

0 m=—oon=—00l=——0o0 mnt

This function consists of a triple series and the singular term is given by the term (m, n,{) = (0,0, 0).
The numerical convergence behaviour of these series will be evaluated in chapter 6.
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5.3.2 Calculationof G,
The Green’s function Gy, can be written as

| 32 o0 o0 0 (_ I )m+n+l

Gy =~ 1257~ o 5.21
! k% 8?!81'0 m:Z_oo n—z_oolzz_:oo 4"7Rmnt ( )
Performing the term-by-term differentiations results in
oo o0 2m+n+t
-1 T - v
Gy = 73 Z > 3 (R; )y = ¥n) (5.22)
‘0 in=—coni=—0 {=—00 mnl

5.4 Calculation of the solenoidal dyadic éz

It has been noted in section 5.2 that the solenoidal dyadic (2 can be obtained by using equations
(5.5) and (5.6). In order to simplify the necessary calculations, we shall use a different approach in
this report. The modal expansion of the electromagnetic field in a rectangular box cavity is given in
chapter three. We shall use this result to obtain expressions for the dyadics (_?2 and Gs. The two
dyadics depend each different on the wavenumber ko. Using (5.4) , the dyadic G5 can be obtained by

(GGy = lim

2 5 =
dim (kz)(k 2 (5.23)

Using (5.23), it’s not necessary to solve the set of differential equations (5.5), (5.6) and (5.7). We are
now able to use the results of the eigenfunction analysis outlined in chapter three. Again, only two
components (G2, and G2,,} will be calculated. These components consist of triple series, which
can be reduced to double series.

5.4.1 Calculation of G,

Remember that the fongitudinal Green’s function G, can be written as

; (F, 7y o o de,r
GrealTs70) = 2 2.2 G “ R
=0s=01=0 ) Tst T (5.24)
t tmz
kb — (E) } cos = cos T g 2T i 2TV gy T2 gjp 20
a a @ b c C
Using (5.23), G2, can be written as
2 2
) = SRR [(2) + (2)7]
e " - =0 s=0t=0 abc'l"rst (525)
rUT TAL g sSTY . 5MY, . tmz tmz,
COS —— oS sin — sin sin — §in .
: a a b c C

The Green’s function Ga,.,. is ko-independent. Furthermore, it is proportional to F‘l_, It can be
expected that the convergence of the series will be faster than the original series, which was proportional
to m For the case of a spherical resonator it is possible to extract the singularity in closed form
[20). Unfortunately, it is not possible to decompose the weakly singular series of a rectangular box

cavity into a regular and a singular part (e.g. 5.10). So the convergence of the dyadic G2 will be
slower than the corresponding series of a spherical resonator. The function Gy, is expressed as a
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triple series, but it is possible to reduce one series.
Equation (5.25) can be written in the following form

c 24 ii ( ) (H)z sin 5™ g 30 tmz . iz,
2me = g b ,  sin——sin

¢ ¢
Eor CoST(L — To) T o= Eor COST(T + o) T (5.26)
> +3 ,

o (r? + a?)? = (r? + o?)?

2 2
o= \/(%) + (t—g) . (5.27)

Hansen [22] presents the following series in closed form

where

Z cos!wc | + 7 2 cosh( )b
A:o a*b? sinh & (5.28)
. b mh b
+hasinh(r — @) — + , cosh —
a  sinh Z* fa
Using this result, the function Ga,,, can be written as
T 2T,
2 try2
+ ( )" . smy . swy, tnz | twz,
G = $in —— sin —— sin
2oz bc7r3 .;);I smh ar " p b c T
2coshor(m — E:.z:) cosh aixo
a a
(5.29)

T T T
+2a—z sinha{m — —x) cosha—z,
a a a

7 ™o T
—2a—z,cosha(r — —x)sinha—=x,
a a

Fife T i
+sinh o= [-.,osh aa(:, -- o)+ cosh a;(n. + .Lo)H .

The symbols x and , have to be interchanged in the region x < :t,. The numerical convergence of
this double series will be evaluated in chapter 6, it will be shown that the necessary computational time
reduces compared to the computational time needed for the calculation of the double series presented
in chapter 3. Note that the functions G2,y and G, can be calculated in a similar manner.

5.4.2 Calculation of G,

Using (5.23), the Green’s function G, can be written as

00 o OO

—8rsm?
Gaya (7, 7o) Z z Z aZblekd
r=0s=01=0 rst (5.30)

TR TRT, sTY STYo tmz tmz,

sin — cos €058 —— sin sin — sin
I o) b b c C

This series can also be reduced to a double series. Using (5.28), the function Gy, can be expressed
as
z 22
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3 oo oo

—c rs rIT L, STY . STWY,
Ga = — ———— SN —— CO5 —— CO§ —— §in —
Y albly rZ—o SZ_% o sinh aemr a b b

{2
. T T
[2 sinha{m — —z) sinha—z,
c ¢

+2a%z cosh a(mr — %z) sinh aizo G-31)
c

n . ™ mw
—2a—2z, sinha{r — —z)cosha—:z,
c c ¢

7r T
prFT— [cosh az(z - 2o} — cosh az(z + z,,)” ,

where

oo \/(i) 4 (fﬁ) (5.32)
a b

The symbols = and z, have to be interchanged when = < z,. The other transverse components of the
dyadic > can be calculated in a similar manner.

5.5 Calculation of C=¥3

The irrotational dyadic G contains the dominant singularity. This dyadic becomes important when
the source and the observation coordinates are very close together. In addition, this dyadic is a
low-frequency approximation of the original Green’s dyadic.

The solenoidal dyadic Gz contains the weaker singularity. This dyadic is mdependent of the fre-
quency. The solenoidal dyadic Gq will be calculated in this section. The dyadic G; becomes
important when the wavelength is smaller than the cavity dimension (propagative effects). The dyadic
é; is finite when the distance between the observation points and the source equals zero. G3 will be
calculated by using the following relationship

L lim (6L - tim i Bé. 5.33
e—%k;@o(o )—k(]_,oa(“( e)- (5.33)

Again, the two components Gy, and Gy, will be derived.

5.5.1 Calculation of G1,,

The Green’s function G

ErT

is given by

oo o OO

oo 4eop
Ge:r::n(rl TU) Z Z Z abC k - k(z)) l!"(ZJ

F=0 5220 £220 rst (5.34)
(TT:)Z} PR TRLe STY STYo . tWz | Wz,
A:O - — COS ~—— COS sin —= sin sin — sin .
a a @ b b c c
The function G5, can be calculated by using (5.33) and (5.34)
@ 2 2 —deorkd [(F) + (4]
G A 1 ) . i
z:(:, ;,,X:‘, abe(k§ — k2 )k (5.35)
TTL rTL, . 9TY SNy tmz | tmwz,
cOs —— CO$ sin —— sin sin — sin .
I b b c c
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The triple series can be reduced to a double series. There are two situations

L ()2 + ()" - ()" 2 0

The function G5, is given by

AkZad S [ fsm\2 tm\2 sSTY . STY, . twz . tmz
G = 5 — — sin — sin $in — sin °
doz br7r6 = ;’-—6 b + ¢ b b ¢ ¢

s eﬂr cos "I cos " re

2 7 oD+ PR

=0

2 () () - ()" <0

e

k205 S & | [ sm\*2 tr\2 L twz . tmz,
Gizr = o > (*ﬁ) + (_:rr) sin 224 gin 22 ST¥e n=
c

berS iz [\ b b ¢ ¢
i €or €OS T CoOs TR0
(r2 — o3 (12+ﬁ2)2’

r=(}

where

() - (Y- ()

The last series of (5.36) and (5.39) can be written as

rex cos % rrx cos m

COos —
Z(rzzl:al Y(r2 +3")2 = 442 ziau)

0(1

cos “2¥ cos TEe

Py
ﬁk:ga“ Tz:%) (7"2 + 42)

rox

cos ZZZ cos —"'
2

r=0

(5.37)

(5.38)

(5.39)

(5.40)

(5.41)

Using these formulae, we are able to calculate the double series representation of (73,,. Again, two

regions have to be distinguished.
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L (5)7+ () - (82)" 2 0

<

Using [15], [22], the function (73, can now be expressed as
T2 X,

2
o @ 4o ()P + (2] o s b
, - Y §TYo trz . tmwz
Gage = 5: Eﬁ o sstm ; sm—c—sm C"

1 T, T
cosh al(rr — Zz)coshar T,

%

g sinhoyym
cosh 3(m — Za)cosh 3Tz,
fsmh Jegs (5.42)
‘n’ "
—— 0" h _I
47T2ﬁ3 sinh 57 [2005 B aq:)coshﬁ T
+2ﬁzz sinh 3(7 — —:r)cosh ﬁ—xo
a a @
—Zﬁixo cosh g(m — gm) sinh ﬁzxo
a a
3 T T
hg—(z - hg-— .
+sinhﬁfr {cos ﬁa(a: To) + cos ﬁa(:c +$o)]”
5 o2
2 (3 + ()7 - (Be) <0
T
oo = 4a[(F) + ()] o tnz
y Tz | trwz,
Ga = sin —= sm 2 sin — sin
= Sgl tzl kgwbc b b c c
_cos co(m ~ Tx)cosar T,
a3 Sin QT
cosh B(m — Zx)cosh fz,
- sinh 8=
A:(,a?g (5.43)

—m {2coshﬁ(1r - —z)co‘;hﬁ o
+2,Hz.r: sinh (7 — E:a:) cosh ﬁ—.::,,

(r {2 @
—2[3-?5330 cosh #{mw — E:t:) sinh ﬁzmo

a a a

[cosh [J’—ﬂ:(:z: — 2,) + cosh ﬁz(:n + :r:,,)] ” .
a @

sinh g

The symbols x and x, have to be interchanged in the region # < z,. The convergence properties of
this double series will be evaluated in chapter 6. The longitudinal components 3, and G5 can be
calculated in a similar manner,
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5.5.2 Calculation of G,

The Green's function Giyx is given by (3.1

—8rsm
”IT - ZZZ”‘?(){AZ(AZ kz)
r=0s=01=(0 ‘T st "0 (5.44)
TN T sTY 5TYo trz Imze
§in — cos cos —— sin ] sit — sin .
b v ¢

7} It 7,

Using (3.10) and (5.33), the function Gz, can be written as
e — ~8rsmk3 . TTL TWX,
17— $in — cos

@ @ (5.45)

Gaye = Z Z Z a2b2c(k35t - k(z))krst

r=0s5=01t=0
§TY . &7 . twmz . twz
cos ¥ gin 20 i FTZ gin T2
b b c c

The triple series can also be reduced into a double series. Therefore the function (3, is written in

the following form

2
L ()7 + (597 - (&) 2 0
-8kt & T TTE, STY . STYo
G’h}:z: = W TZUEWU "5 §in T cOs o Cos b sin T < 6
Z sin HL2 gin 2o (5.46)
= 0(1‘2+n:| Y12 4 p)
2 ()4 (5)° - (B=) <o
8]62 5§ o0 co T
Gaye = W >3 rssin T2 cos 22 cos % sin ST;)yO
@ r=0s5=0 @ @ (5.47)
Z sin L2 sin 72 .
(12— ad) (2 + 62)
where
2 2 k 2
(T
a b 7T
ke 2 \ 2 2
- (5 -
T a b
N 2 2
5= \/(E) N (ff) , (5.50)
a ]
The last series can be written as
i sin £ sin e _ Z sin 2 gip
(tzia )(t2+ﬁ2|2 B Agc“ tZ:I:al )
smt sin “7—“2
5,51
k“c"' Z t2 ¥ 3} 51
Z gin Uze

SlIl
kﬂcz Z tz T ﬁ2)2
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The function Gz, can now be expressed as
2
()7 + ()7 - (%) >0
Z 2%
_ —4rsc TTE , UL, ., STY $TYo
Gz = 1; SZ:; B cos —= sin ——= sin —= cos —
sinha(m — Tz)sinha) T2,
vy sinh oy
sinh B(w ~ Zz) sinh 3% 2,
A B sinh B
ki . T (5.52)
—— 2 ~ —z)sinh 8—z
47233 sinh Sn [ sinb 5(m c Jsin ﬁc °
+2ﬁ£z cosh g(m — zT—:) sinh [3—7[:0
—2[3 = sinh g(m - %-’) cosh ﬁ—
g [ T
+sinhﬁ coshﬁ (z )—coshﬁc(z+zo)”].
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0 |2ginh B(x — Z =) sinh B2
423t sinh,thr[ sinh (x c )smhﬁczo

+2ﬁzz cosh #(m — E.-:') sinh Bgzo
c c ¢

~26%za sinh 3(m — Ez)cosh ﬁEza

w3
+ sinh A=

The symbols z and z, have to be interchanged when z < z,.

5.6 Conclusions

[cosh B—=(z — z,) — cosh ﬁ (z + zo)]H .

It is shown in chapter four that the Green’s functions are slowly convergent when the observation
coordinates are very close to the source coordinates. In this chapter, we have used the fact that the
singularity of the Green’s function for a rectangular cavity is essentially the same as the singularity
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of the free space Green’s function. The Green’s function is decomposed into three parts: G 1, Ga
and G3. These three Green’s cdlyadics are related to each other by three partial differential equations.
Solving these equations is a tedious process, therefore we will use another approach. The dyadics
depend each differently on the wavenumber £, this knowledge will be used when calculating the
Green’s functions. The dyadic G| contains the dominant singularity ( 7%; ) and this dyadic 1s a low fre-
quency approximation of the original Green’s dyadic. This dyadic has been expressed as a triple series.

The dyadic G- contains the weaker singularity ( ~1'$ ), this dyadic is independent of the wavenumber
ko. This dyadic can be expressed as a double series.

The dyadic G is finite at the source coordinates and contains the resonances of the cavity. It
becomes important when the wavelength is much smaller than the cavity dimensions. This dyadic has
also been expressed as a double series,

The numerical convergence properties of these series compared to the non decomposed Green’s
dyadic will be evaluated in the next chapter.



Chapter 6

Numerical results of the Green’s
functions using singularity extraction

6.1 Introduction

In this chapter the convergence properties of the decomposed Green’s functions (chapter 5) will be
compared to the original Green’s functions. The partial sums of the series will be evaluated to make
an appraisal of the convergence properties for the two different types of Green'’s functions. Similar
to the analysis in chapter five, only two components G} and Géyx will be calculated. Three regions
will be considered when comparing the two types of Green’s functions.

» Region 1. The distance between the source point and observation point is large
e Region 2. The observation point is very close to the source

= Region 3. The observation point is in the vicinity of the source, but not s0 near as region 2, we
will call this area the ’intermediate region’

It will be shown that the convergence properties of the two representations of the Green’s functions
are equal in region 1. In region 2, the convergence of the decomposed Green’s function is much faster
that the original function. The convergence of the decomposed series in region 3 is faster than the
convergence of the original sertes, but the convergence is still slow.

.

6.2 Large distance between source and observation point

We shali compare the convergence properties between the two representations for the Green's func-

tions in this section. The first Green’s function C’ is calculated in chapter three and the second
decomposed Green’s function is calculated in chapter five.

The series representing the Green’s functions are too complicated to permit a simple analysis of
their converging properties. Therefore we shall not evaluate the convergence properties in a mathe-
matical sense. Our discussion is based on a numerical analysis of the two types of Green’s functions.
Therefore the partial sums of the triple or double series will be calculated. These partial sums have
the following form

1 H

=> 2. f(rs) (6.1)

r=0s=0
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where S, denotes the partial sum. The above formula can also be calculated for the case of a triple
series
k13 n

Se=2.2.2 flrst) (6.2)

r=0s5=0t=0

The original Green’s function will be calculated by using a double series representation. The decom-
posed Green’s function can be written in the following form

GL7 7o) = GUF, 7o) + Gal(F, 7o) + Gs(F, 7o) 6.3)

The dyadic G will be calculated by a triple series, the other two dyadics by a double series. So the
partial sums of the decomposed Green’s functions can be written as

n n T 1 n

Se=3 33 flr,s, )+ > glr,s) (6.4)

r=0s=0{=0 r=0s5=0

As mentioned earlier, two components of the Green’s dyadic will be calculated (G, and Géyﬂ.).
These Green’s functions are implemented in a Fortran code. We shall evaluate the convergence
propertics of the Green’s functions using this code. The geometry of the cavity is given by figure 3.1.
The dimensions of the cavity are equal to ( @, b, ¢)=(3.4m,3.7 m, 2.2 m). The frequency is 2 GHz
and the source dipole is directzd in the x-direction. In this section the coordinates of the source and
the field point are equal to { Z,, Yo, 2o ) =( Im, im, Im ) and ( x, y, 2 } = (2m, 2m, 2m ), respectively.
First the longitudinal Green’s function ., will be calculated.

o . L L 3 A s
0 10 20 30 40 50 60 70 a0
Partial sum index n (without extraction)

4 T T T . T T

1Gxx|
M
:
1

0 L 1 s 1 . 1
0 10 20 30 40 50 60 70 80
Partiat sum index n (with extraction)

Figure 6.1: Comparison between two representations of Gz

The convergence properties of both Green’s functions appear to be equal. This is due to the fact that
the distance between the observation point and the source is large. Note that the decomposed Green’s
function consists of more mathematical expressions (subtraction, multiplication etc.) compared to the
original Green’s function. So in practice the computational time used for the calculation of the de-
composed Green’s function will be larger than the time used for the calculation of the original function.
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Figure 6.2: Comparison between two representations of Gy,

The convergence properties of the original transverse component G, have been compared to the
decomposed Green’s function in figure 6.2.

It 1s clear from figure 6.2 that the convergence properties of the two representations for the Green’s
functions (7, are equal. It can be concluded that in this region (large distance between the source
and the observation point}, the original Green's function is the best representation for calculating the
electromagnetic fields inside the cavity. Less computational time is needed for the calculation of the
original Green’s function compared to the decomposed Green'’s function.

6.3 Observation point very close to the source

In this region the dyadic G, which contains the dominant sin gularity of the order Rig, will be very large
compared to the other dyadics. According to equation (5.18), the singularity is expressed in closed
form. So it can be expected that the convergence properties of the decomposed Green's functions are
better than the properties of the original Green’s functions.

The position of the source is still ( 4, Yo, 20 ) = { Im, Im, im ). First we will calculate the Green’s
function Gy,. The coordinates of the observation point are ( z,y, z ) = ( 1.005m, 1.005m, 1.005m ).
The two representations of the function G, are shown in figure 6.3.

Note that the two figures have different scales with respect to the vertical axis. The convergence of
the original seres is very slow, while the decomposed Green’s function is rapidly convergent. In this
case (source near observation point), the best choice is to use the decomposed Green’s function for
calculating the electromagnetic fields.

The same comparison between the two forms of Green’s functions can be made for the compo-
nent ¢.... The position of the source is {I m, 1 m, | m) and the coordinates of the field point are
{1.00000005 m, 1.00000005 m, 1.00000005 m).

These figures have also different scales with respect to the vertical axis. The best choice is to use the
decomposed Green’s functions for calculating the electromagnetic fields inside the cavity.
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Figure 6.3: Comparison berween two representations of Gyz
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Figure 6.4: Comparison between two representations of Gz,
6.4 Numerical convergence of the Green’s function in the intermediate
region

In region one and two, the convergence of the decomposed Green’s functions is fast. In region one,
the source is far away from the observation point. So the field points, which are parameters of the
Green’s functions, are not in the neighbourhood of the singularity in this region. Therefore the series
will converge well in this region. In region two the source is very near the observation point. The
dominant singularity of the series is expressed in closed form. The series converge also well in region
two. In region three, the weaker singularity (like %) is important. This singularity is not expressed in
closed form, it can be expected that the convergence properties are not very well in this region. The
convergence behaviour of the Green’s function G, will be visualized in figure 6.5. The coordinates
of the source are (1 m, 1 m, 1 m) and the coordinates of the field point are (1.03 m, }.03 m, 1.03 m).
The convergence of the decomposed Green’s functions Gz is not so fast as in the other two regions.
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Figure 6.5: Comparison between two representations of Gy

Nevertheless, the convergence behaviour of the decomposed Green’s functions is better than the con-

vergence properties of the original function.

The partial sums of the function G, are displayed n figure 6.6. The coordinates of the source

are (1 m, | m, | m) and the coordinates of the observation point are (1.001 m, 1.001 m, 1.001 m).

5
x 10

o«
T

1Gxx|

oy
T

0 P — " 1

0 10 20 30 40 50 60 70 80 a0 100

Partial sum index n (without extraction)

/’1-_/—:/ L L L N Y y 5

0 10 20 30 40 50 6C 70 80 a0 100

Partial sum index n (with extraction)

Figure 6.6: Comparison between two representations of Gy
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6.5 Conclusions

The convergence properties of the Green’s functions have been improved using an extraction tech-
nique. To compare the representations with and without the extraction technique, the internal volume
of the cavity has been divided into three regions.

In region 1, the distance between the observation point and source is very large. From the figures
presented in section 6.2, it can be concluded that the numerical convergence of the original Green's
function resembles the convergence properties of the extracted Green’s function. However, in practice
the computational time used for the calculation of the extracted Green's function will be larger than
the time used for the calculation of the original Green’s function. This 1s due to the fact that the
decomposed Green’s function consists of more mathematical expressions.

The cbservation point is very close to the source point in region 2. The convergence properties of the
original Green’s function is very slow inside this region, while the decomposed Green’s function is
rapidly convergent.

In the intermediate region, the observation point is in the vicinity of the source, but not so near as region
2. The convergence behaviour of the decomposed Green’s function is better than the convergence
properties of the original function. However, the convergence is not so fast as in the other regions.



Chapter 7

Conclusion

In order to predict the phases, strengths and polarisations of the electromagnetic fields inside an
indoor environment, a deterministic model has been developed. The electromagnetic fields inside
a perfectly conducting rectangular box cavity can be calculated by using the analysis presented in
this report. Much attention is given to the convergence properties of various series representing the
electromagnetic field. It has been shown that the electromagnetic fields are slowly convergent not
only near the source, but also in some other regions inside the cavity. This depends on which series
will be calculated in closed form.

Furthermore it has been shown that the convergence propertics can be improved by using a so
called "extraction technique’. Especially near the source much computational time can be saved by
using this extraction technique.

Finally various field distributions and polarisations inside a cavity are investigated in this report.

Due to reflection of the waves against the walls a multipath environment is created. It has been shown
in this report that the amplitudes of the electromagnetic fields change rapidly inside the cavity.

49
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Conclusion




Appendix A

Free-space Green’s functions

In chapter four the electromagnetic fields inside a cavity are compared to the electromagnetic fields
in free space. The electromagnetic fields in free space are usually given in spherical coordinates in
literature. We will derive in this section the clectromagnetic fields caused by a z-directed electric
dipole developed in rectangular coordinates. The electromagnetic field can be determined easily by
using a vector potential. The vector potential A,, is given by

1t €= TR0lF o]

Aee = o o) (A1)
The magnetic field can be calculated by using
= I
H=—VxA,..e, (A.2)
Ho
This will be written as
- I 34,. I 9A..
fio ey 1 0An (A3)
jo Oy o dx -
Using the above equations, the magnetic field is given by
| L l ] eyl
HI Erg— — — - FholF—7o] A4
dn [|'F’— Tol? |7 — T} s B9
-—] _jko l ] _J‘kul-'_-‘ I
—_— — — T — o T—Te A.S
a= 3 [|F~ R T Foap) T e (A3)
H.=0 (A.6)
The electric field can be calculated from the vector potential
- 1
I = - V x V x.,.0 (A
JWEofty
The above equation can be written as
L —| IF H . 1 [OoH, JH.
Fo= - | OH, o l (‘H'r oy + = [ - (- L ] i (A.8)
Jwe, dz Juwhi, dz Jwe, | dy

The electric field components are given by

B —kg 1 3 3
T dnwe, |jholf — TP RAT -l GKAF — 7l

] (x — z,)(z — z,,)e_jk"l’?":c'l (A.9)
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Free-space Green's functions

: drwe,

B, = ~ i [ |

Fho|P— 7o) k(?;h"'— 7|4 ij|Fﬂ Ty
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I ~jk3

_ 1 [ ko ;o)zc—jkt¢||F'-ﬁ,|
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