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Electromagnetic fields inside a large room with perfectly conducting walls 

G. Dolmans 

Abstract 

This EUT report describes the development of a model which can be used for the calculation of 

the electromagnetic fields inside a perfectly conducting cavity. A modal analysis has been chosen 

for the determination of the Green's functions inside the three dimensional enclosure. Using these 

Green's functions, the electromagnetic fields are calculated. The Green's functions have been written 

as double series, which are slowly convergent near the source coordinates. 

Much attention is paid to the convergence properties of the series. It has been found that the 

convergence of the series is not only slow at the source coordinates but also at some other regions in

side the cavity. An extraction technique has been used in order to improve the convergence properties 

of the Green's functions for a rectangular box cavity. Furthermore it has been shown that due to the 

presence of the multipath environment, the amplitudes of the electromagnetic fields change rapidly. 
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Chapter 1 

Introduction 

Mobile communication systems have become very popular in the last years. New applications have 

been developed and antenna technology has made progress along with the advances in mobile com

munication systems [I]. In the past, antennas were developed independent of the rest of the equipment 

and the propagation environment. But in fact, the antenna, the equipment and the propagation envi

ronment are closely interrelated. Therefore factors related to propagation, equipment and environment 

conditions must be treated systematically when an antenna is designed. 

There exists no theoretical electromagnetic framework for indoor propagation. The efforts on the 

latter subject are mainly directed towards measurements and statistical characterizations ofthe indoor 

channel [I]. Fujimoto [2] has noted that the general model for closed areas is very difficult to develop, 

because the field distribution in these environments is usually very complicated. He notes that there 

has been so far no positive action to define the field strength of such irregular fields. 

In this report an attempt will be made to determine the field structure inside a closed cavity. In

side a real indoor environment, the electromagnetic waves will interact with objects (cabinets, desks 

etc.) and people which are moving around in the office. In this report we will restrict our analysis to 

an empty environment. The power levels and the polarisations of the electromagnetic fields inside the 

empty environment caused by a dipole antenna will be calculated. The walls, ceiling and floor of the 

indoor environment will be modeled as perfectly conducting. The geometry of this model is depicted 

by figure 1.1. 

, 

, 

receiver 

}--~y 

b 

a 

, 

Figure 1.1: Geometry of a rectangular box cavity 
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2 Introduction 

The goal of this research is to develop a deterministic model which can be used for the prediction of the 

phases, strengths and polarisations of the electromagnetic fields inside an indoor environment. The 

information obtained by computing the electromagnetic fields can be used to evaluate the perl'ormance 

of the telecommunication link. 

In the past many authors [3], [4] have done research on the determination of the electromagnetic 

fields inside a cavity resonator. The fields can be calculated by using a series expansion which is 

slowly convergent near the source coordinates. Bressan [8] has developed an extraction technique 

in order to accelerate the convergence of the series near the source coordinates. In this report the 

extraction technique will be used for the case of the rectangular box cavity. Furthermore it will be 

shown that much care must be taken by choosing which series will be used for the determination of 

the electromagnetic fields inside the cavity. 

The structure of this report is as follows: 

In chapter two the Green's functions inside a closed region have been presented. Green's functions 

are solutions of the electromagnetic fields caused by a point source, subjected to boundary conditions. 

The Green's functions inside the closed region have been written as triple series, which are related to 

the various possible modes inside the enclosure. The electromagnetic fields generated by an arbitrary 

source distribution can be calculated with the help of these Green's functions. 

A specific case of a closed region is the rectangular box cavity. In chapter three, the Green's 

functions for this configuration are discussed. It has been shown that the Green's functions can be 

reduced to double series. 

Chapter four focuses on the computation of the electromagnetic fields inside a cavity. The fre

quency of the electromagnetic waves is 2 GHz. Due to the reflections of the waves against the walls 

a multipath environment is created. It will be shown that there are many standing waves inside the 

cavity, so the amplitudes of the electromagnetic fields change rapidly. Much attention is paid to the 

convergence behaviour of the double series. It has been found that the convergence is not only slow 

at the singularities (observer near the source) but also at some other regions. 

In order to accelerate the convergence of the Green's functions near the source coordinates, the 

Green's function has been divided into three parts, a" a2 and a,. The dyadics a, and a2 contain 

the dominant singularity (like -h! and the weaker singularity (like * ), respectively. Unlike the 

original dyadic, the third dyadic G, is finite at the source coordinates. In chapter five an extraction 

technique has been used to improve the convergence properties of the series for a rectangular box cavity. 

Some examples of the convergence behaviour for the Green's functions near the source coordinates 

are given in chapter six. 



Chapter 2 

Electromagnetic fields inside a perfectly. 

conducting cavity 

2.1 Introduction 

In this chapter the electromagnetic fields inside a perfectly conducting cavity will be calculated. In 

the past a lot of research has been done for the determination of the free resonances occurring in a 

cavity (eigenvalue problem). The walls of the cavity are made of perfectly conducting material and 

the internal volume of the cavity consists of free space, so there are no losses and therefore many 

standing waves will build up inside the cavity. 

In the following sections, the electromagnetic fields excited by an electric or magnetic source are 

calculated inside the cavity (source problem). The expressions describing the fields contain triple 

series, which are related to the various modes inside the cavity. Furthermore the fonnulae exist of 

volume integrals. The integrands of these volume integrals contain the volume currents weighted by 

the various eigenmodi. In section 2.3 the Green's functions of a cavity will be calculated. These 

Green's functions are an important tool for the detennination of the electromagnetic field inside the 

closed region. A Green's function is the solution of the electromagnetic field excited by a point 

source. The fields inside the cavity generated by these point sources can be written as triple series. 

Finally, some remarks concerning the convergence behaviour of the various field expansions are given 

in section 2.4. 

2.2 Eigenvector expansion of the electromagnetic field 

A cavity surrounded hy perfectly conducting walls is shown in figure 2.1. 

J and .1" arc the electric and magnetic current densities. S, V and i, represent the surface of the 

cavity, the volume of the cavity and the unit outward normal to the surface S, respectively. The 

Maxwell's equations involving electric and magnetic sources can be written as 

V' x E = -jwfloH - J~, on V, 

V' x H = jWEoE + ]e on V, 
(2.1) 

V'E=& . EO on V, 

V'H=£!m . flO m V, 

3 



4 Electromagnetic fields inside a perfectly conducting cavity 

v s 

Figure 2.1: Arbitrary cavity containing electric and magnetic sources 

where we have assumed a time-harmonic dependence of the form cjwt
, w is the radial frequency. 

E, jj are the electric and magnetic fields, respectively. The electric and magnetic charge densities 

are represented by Pe and Pm. The charges and current densities are the sources for the electric 

and magnetic fields. The volume inside the cavity consists of free space with permeability l1a and 

permittivity <a, respectively. Outside the volume Vo the cavity contains no sources, so the source free 

Maxwell's equations can be used in this particular area. The necessary boundary condition is given 

by 

ii. x B = 0 on S. (2.2) 

The vector wave equations can be obtained by taking the curl of the first two equations in (2.1): 

~ 2~ . ~ ~ 

V' x V' x E - "aE = -lWILa.Jc - V' x .lm, 
(2.3) 

~ 2~ . ~ ~ 

V' x V' x H - J.'aH = - lW<a.l", + V' x .1" 

where ko = WJ<aILa denotes the free space wavenumber. A modal analysis will be used for the 

determination of the electric and magnetic lields inside a cavity. This method is described by Collin 

[4] and Van Bladel [9]. Using this modal analysis, the electromagnetic field can be written as an 

expansion of the empty cavity eigenmodes. The eigenmodes are the solution of the source-free 

Maxwell's equations and the relevant boundary conditions. From vector calculus it is known that 

a vector function is uniquely determined by its curl and divergence. This means that an arbitrary 

continuous vector field can be expressed in terms of the gradient of a scalar function and the curl of a 

vector function. Thus an arbitrary field inside a cavity can be presented by solenoidal (divergenceless) 

and irrotational (zero curl) eigenmodes. 

Numerous workers have studied the problem of representing the electric or magnetic field in terms 

of their eigenfunction representation. Collin [4], [5] has noted that the electromagnetic field inside 

a cavity cannot be presented by solenoidal modes only. His conclusion was that an additional term 

is needed in order that the condition \l.B = Pel Eo will be satisfied. Consequently, to derive a 

complete solution that is valid in both the source and source-free regions of the cavity, an additional 

non-divergenceless term must be included in the expansion [6], [3], [7]. 

Using these conclusions, the electric and magnetic fields inside a cavity can be written as 

= = = 
E = I: L L ArstE.rst + BrstLrs/l 

r=Os=Ot=O 
= = = 

ii = L L L Crstilrst + DrstR~r5tj 
r=Os=Ot=O 

(2.4) 



2.2 Eigenvector expansion of the electromagnetic field 5 

where A", and B", represent the amplitude coefficients of the orthonormal solenoidal E", and 

orthonormal irrotational Lrst eigenmodes. erst and D rst are the amplitude coefficients of the or

thonormal solenoidal if", and orthonormal irrotational K", modes. 

In numerical solutions only finite summations can be evaluated. The eigenfunctions will be ordered 

in such a way that the lower order eigenfunctions are smoother than the higher order eigenfunctions. 

If the function represented by an expansion of eigenfunctions (in this case the electric and magnetic 

field) oscillates slowly, only a few eigenfunctions are needed. This is the reason that in practice the 

electromagnetic fields can be calculated by a finite number of eigenfunctions. 

First the properties of the eigenmodes will be discussed. As mentioned earlier, the eigenmodes are 

the solution of the source-free Maxwell's equations subjected to the relevant boundary conditions: 

v X f'r.~1 = -jwrstll·OG,.,<;/ In V, 

V x G'rst = jWrst€OFr.s t In V, (2.5) 

ii x F", = 6 on S, 

where Fc ." and G", are eigenvectors representing the electric and magnetic field, respectively. The 

radial resonance frequency is denoted by the symbol w",. Taking the curl of the above equations, the 

following wave equations are obtained 

(2.6) 

where k rst = J W;st€Olto represents the three dimensional wavenumber of the cavity. 

The solenoidal eigenmodes E", used for the expansion of the electric field have the following 

properties 

in V, 

v.Erst = 0 in V, (2.7) 

'-7 x Erst = 0 on S. 

These solenoidal eigenfunctions E", can be obtained from scalar functions [7]. Because the electric 

eigenmodes £", are irrotational. the functions £", lie in the null space of the \7 x \7x operator [4]. 

Therefore another method will be used for the determination of the irrotational functions. Using a 

scalar Helmholtz equation, the irrotational functions can be generated from the gradient of the scalar 

function q,,,, 

(\7
2 + e"lq,,,, = 0 In V, 

lrstirst = \7 ¢rst In V, 
(2.8) 

v x i rst = 0 In V, 

',i X £rsl = c1 on S. 
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The wavenumbers k", and I", will be equal for a rectangular cavity. The same method will be applied 

to the magnetic eigenmodes, the solenoidal magnetic eigenmodes Ii", are given by 

2 ,,--- ---
(V' + k;,,) lir " = () In V, 

V' . Ii", = () In V, (2.9) 

ii,Nrst = 0 on S. 

The irrotational magnetic eigenmodes j(", are given by 

(V'2 + 1;")1/1,,, = 0 In V, 

I",!?:", = V'1/1", In V, 
(2.10) 

V' X K", = 6 In V, 

r1.i(rst = 0 on S. 

The coefficients A rst • Erst erst and Drsl of the eigenfunctions can be calculated by using the 

Maxwell's equations and the orthonormal properties of the eigenfunctions. Multiplying the second 

Maxwell equation with the scalar ,iwf'O and taking the scalar product with the eigcnmode l~, .. " results 

In 

(2.11 ) 

Multiplying the second source-free Maxwell's equation of the eigenmodes with the same scalar and 

taking the scalar product with the electric field E gives 

. -( -) 2(--) JWrstfLoE. V' x H rst = -krst E.Erst . (2.12) 

Subtraction of these equations and using Maxwell's equations results in 

(2.13) 

The following relationship will be used [7] 

(2.14) 

J is (E", x V' x E _. E x V' x E",).ii dS 

Using equation (2.14) and the boundary conditions on the surface 5 results in 

(2.15) 

The previous equation can be written as 

(2.16) 



2.3 Eigenvector expansion of the Green's functions 7 

The orthonormal properties of the eigenmodes E", are represented by the following equation 

J J J El",.E2",dV = D"" (2.17) 

where E1", and E2", are two solutions of the free·space wave equation (2.6). The kronecker symbol 

D", equals unity when r = s = t. The kronecker symbol equals zero otherwise. Using the formula 

of the expansion of the electric field (2.4) and the orthonormal properties of the eigenvectors results 

in 

A,sl = .; J~~2 J J J J,..E",dV. 
kr>1 ko 

(2.18) 

A similar procedure can be followed for the calculation of the amplitude coefficients BT>', CT " and 

Dr." Detailed proofs of the orthogonality properties of the various eigenmodes can be found in [4] 

and [II]. The expansion of the electric field can be written as 

(2.19) 

The magnetic solenoidal eigenmodes Hrs' are related to the electric solenoidal eigenmodes Ers' by 

the equation 

- I -
H rst = -k \7 x Erst. 

T>I 
(2.20) 

The magnetic field H (f) can be expanded in a similar way 

(2.21) 

2.3 Eigenvector expansion of the Green's functions 

At this point the electromagnetic fields are expressed in terms of eigenvectors involving an arbitrary 

electric or magnetic source. The strengths of the sources determine the amplitude coefficients A, ..• " 

Brsl , C"sl and Drsl . These coefficients are calculated by using a volume integral. 

Another way to solve the problem is to calculate the expansions of the fields due to an elemen· 

tary source. The solution of the electromagnetic field excited by a point source is called Green's 

function. The Green's function method makes use of delta functions. A delta function is not a 

function in common sense. One must be careful when taking derivatives of the delta function, these 

derivatives must be specified in the distributional sense. The general solution (arbitrary source) can 

be written as a superposition of the effects of the elementary sources at various locations [10]. 
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o 

Figure 2.2: Coordinate system 

The coordinate system used by the calculation of the Green's function is drawn in figure 2.2. 

So and Vo are the surface boundary and the volume which contains the sources. The source coordinates 

and the field coordinates are denoted by To and T. The electric field caused by an elementary electric 

current source is represented by the dyadic a! 
(2.22) 

= I = 
ii x Ge = 0, (2.23) 

where I and 0 are the unit dyadic and the zero dyadic, respectively. The magnetic field caused by an 

elementary magnetic current source is given by the following wave equation 

(2.24) 

=1 .... 
fi. Gm = O. (2.25) 

A vector can be presented by a tensor of rank one. In a similar way a dyadic is a tensor of rank two. 

The dyadic has nine tensor components, each of which is a scalar. So the dyadic can be expressed in 

terms of scalars and unit vectors as follows 

(2.26) 

where the quantities Gij are scalars. This representation of a dyadic will be used frequently in this 

report. When the solution for the unit source is known, the solution for an arbitrary source distribution 

follows by superposition. Using this concept, the electric field can be written as 

(2.27) 

Also the magnetic field caused by an arbitrary source distribution follows by superposition. The 

magnetic field is given by 

fiCT) = -jwfQ J J J a~(T,ro).J:'(fo)dVO+ J J r a:(T, fo) . .i;(To)dVo. 
~, J~ 

(2.28) 
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The algebra of dyadics has a very close correspondence with matrix algebra. Therefore in literature, 

the electric Green's functions are often written in a matrix form: 

G~xx G~xy G~x= 
=, 
Gc = G~yx G~yy G~y= (2.29) 

C;;zx G~=y G~;:;= 

where i= 1.2. The magnetic Green's functions arc given by 

(;;'/:1::1: C;,LI:Y C; 
r 111./';:; 

=i 
Gm = G~yX C;nyy C:ny :; 

(2.30) 

C:nzx G~nzy C!n:::z 

where i= I ,2. Using the results of the modal analysis (2.19), the Green's functions of the electric field 

can be written as 

6 1 = ~ ~ ~ E",(f")E",(fo) _ ~ ~ ~ ~ L ("'L (") 
e L- L- L- k2 _ k2 k2 L- L- L- Tsf r I rst 10 , 

1'=0 s=O t=O rst 0 0 r=O 8=0 t=O 

62 = ~ ~ ~ k",E",(i,)H",(fo) 
m L- L- L- k2 _ k2 . 

1'=0 s=O t=O rst 0 

(2.31) 

Using (2.21), the Green's functions of the magnetic field can be written as 

C
=I =~~~H",(i')H.",(,"'o)_~~~~,-,. (""-,, (.,,) 
rl/l L- L- L- '1 ') ') L- L- L- 1\.1'51, 1 ).1\.1'81, 10 , 

1'=05=0 /.=0 !.:~.~I - kij h:o r=() s=O I=() 

=,2 = ~ ~ ~ k,."H,.,,(i')E,.,,(i'o) 
Crt' LLL ') () . 

1'=0 $::::0 /::::0 k~,~1 - '0 

(2.32) 

2.4 Alternative Green's functions and convergence properties 

At this point the electric and magnetic field excited by an elementary source can be calculated when the 

geometry of the boundary is given. The electric and magnetic field due to an arbitrary source can be 

calculated by using the equations (2.27) and (2.28). Collin [4] has shown that outside the source region 

(," # '-'0) the Green's functions are completely described with solenoidal eigenfunctions. Yaghjian 

[12] has given a rigorous mathematical theory which calculates a generalized Green's function valid 

inside as well as outside the source region without using the irrotational eigenvectors. Using these 

generalized Green's functions, the electric and magnetic fields are given by 

~ .. /. ! ! = I. _ _ - _ II .. fe(n 
E(n = -.IW/'O 11m G,. (I', r") . ./,.(Tn)dV,, - -'-.--".:'--'-

/I--->{) • • . \;,_\'" ]WfO 

(2.33) 

(2.34) 
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The sourcedyadics Lt and L2 (not to be confused with the irrotational eigenvector L) are related to the 

geometry of the principal volume V6. The electric or magnetic source is located inside this principal 

volume V6 . Using a pillbox of arbitrary cross-section with a e-; -axis for the principal volume V" the 

two source dyadics are given by 

The pillbox is shown in figure 2.3. 

e, 

a 

Figure 2.3: Pill box 

h _ a 
a 

(2.35) 

The two generalized Green's functions 

eigenvectors 14 J. II 31: 

= '* = 1* 
G ~ and G m can be written as expansions of solenoidal 

(2.36) 

So there are two representations of the electromagnetic fields inside a cavity. The first one is given 

by the equations (2.27), (2.28), (2.31) and (2.32). This expansion uses irrotational eigenvectors. The 

second type of expansion is given by the equations (2.33), (2.34) and (2.36). The second expansion 

does not contain irrotational eigenmodes, however, an additional term L.J is needed to calculate the 

electromagnetic fields inside the cavity. 

To make a choice between these two expansions, it is important to evaluate the convergence of 

these expansions. Omar, et. a!. [13] have pointed out that in case of surface or filamentary currents, 

the terms J: and ~ have dirac-delta dependencies. The electromagnetic fields must be continuous 
.JW(II ]Wlto 

in the cavity, this means that a part of the series must compensate the dirac-delta dependence. When 
= I. ::: h 

the generalized Green's functions G c and G}/I are used for the calculation of the electromagnetic 

fields, the series do not converge very well near or at the source coordinates. The series converge only 

well if the source is a volume-distribution. It is advisable to use the pure solenoidal expansion for the 

calculation of the electromagnetic fields when the source consists of a volume-distribution current. In 

this report electric and magnetic dipoles will be used, therefore the expansions using the solenoidal 

and the irrotational modes are chosen. 

In this section the Green's functions are described by using triple series. In the following sec

tions one series is calculated in closed form, so the Green's functions are given by double series. The 

above conclusions are only valid when the Green's function's are described by triple series. 
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2.S Conclusions 

In this chapter we have determined the electromagnetic fields caused by an elementary electric or mag

netic source inside a closed region. One way to calculate these fields is the use of Green's functions. 

A Green's function is an important tool for the solution of electromagnetic problems. Because we 

deal with a three dimensional problem, the Green's functions are written as triple series containing the 

eigenmodes of the cavity. In literature, many representations for the Green's functions exist, therefore 

some remarks are made concerning the convergence behaviour of these different Green's functions in 

section 2.4. 

The theory presented in this chapter will be used for the calculation of the electromagnetic fields 

inside a rectangular box cavity. 
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Chapter 3 

Eigenvectors of a rectangular box cavity 

3.1 Introduction 

In section 3.2 the four Green's dyadics of a rectangular box cavity will be developed. The electromag

netic fields caused by an electric or magnetic source are completely described by these four Green's 

dyadics. Using the analysis described in chapter two, the Green's functions can be represented by 

triple series of solenoidal and irrotational modes [3] [14]. These modes will be calculated using vector 

calculus on four scalar functions. The necessary computational time can be reduced by calculating 

one of the three series in closed form. Because we can arbitrary choose which variable (r, s or t) will 

be used, alternative representations can be obtained for the Green's functions. This is an advantage 

of the eigenfunction method, because we can now choose the representation with the best numerical 

convergence behaviour in the region under consideration. The various expressions for the Green's 

functions will be compared with each other in chapter four. 

3.2 Eigenvectors of a rectangular cavity 

The rectangular box cavity and the coordinate system are shown in the following figure: 

y 

b 

Figure 3.1: Rectangular hox cavity 

The dimensions of the cavity in the x -,Y - and z -directions are denoted by a, b, and c, respectively. 

The source coordinates of an electric or magnetic source are given by ( ;1:", Yo, z" ) and the field 

coordinates are represented by (1:, y, Z ). 

The complete set of solenoidal electric eigenvectors E", can be found by using two scalar functions. 

These scalars will be chosen in such a way that the boundary conditions have been fulfilled. 

13 

1 'j '''o:::::::! 
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Furthermore the eigenvectors must be independent and mutually orthogonal solutions of the vector 

wave equation. 

One scalar function for a rectangular cavity is given by 

I 

[(
"I"7f) " (87f)"]~' ('''''0''0,)1 T7f:" .'7f!J. t7f.: 'Prst = - + - cos -- cos -- Sin-, 
a b abc abc 

(3.1 ) 

where Eor> Eo< and Eo' are the Neumann factors, which equal unity for T = 0, s = 0 and t = 0, 

respectively. These factors equal two otherwise. The first set of solenoidal modes Mr.,' is given by 

(3.2) 

where ez is the unit vector into the z-direction. The second set of solenoidal modes N", is obtained 

from the second scalar function 

_ [(T7f)2 (S7f)2] ~l 
<1>r.,'. - + I a ) 

I 

(

€orEosEot)2 . nrx . S7fY tn;; 
sm -- sm -- cos

abc abc ' 

where the three dimensional wavenumber k", is given by 

(3.3) 

(3.4) 

(3.5) 

Now the complete set of solenoidal electric modes E", E { M"" N",} has been derived for the case 

of a rectangular box cavity. The irrotational electric modes L", are given by 

I 

Y (
EortosEot) '2 • nrx . S7TY . t7rz 

rst = Sin --sm-- sm-, 
abc abc (3.6) 

krstLrst. = '\71rs t. 

Note that the use of the irrotational functions was needed in order to derive the electromagnetic field 

in the source region. However, these irrotational functions are responsible not only for the field in the 

source region but also contributes to the electric field in a source-free region [3]. 

In the previous chapter the magnetic eigenvectors H", and K", were also needed for the calculation 

of the electromagnetic field. Notice that the solenoidal magnetic eigenvectors can be found by using 

the following equation 

(3.7) 

The irrotational magnetic eigenvectors are given by 

I 

_ (EorEosEot) 2 , rwx SKY t7rz 
Qrst - b cos -- cos -b- cos-, 

a cae (3.8) 

krstKrst = \7Qrst. 
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In chapter two, solenoidal and irrotational eigenvectors are chosen for the representation of the 

electromagnetic fields inside a perfectly conducting cavity. The Green's functions used for the 

expansion of the electric field are given by 

(3.9) 

So these Green's functions representing the electric field are known by means of calculating three 

eigenvectors E"" L", and if",. As mentioned earlier, the eigenvectors are calculated using vector 

operations on the scalar functions '1',.", <1>", and 1'",. Performing these operations, the first electric 

Green's function can be written as 

C
=I( __ ) 

e T, To 

00 00 00 

L L L fO;fQSEot2 2 

,=0,=0,=0 abc (k", - kol ko 

[ [k
2 (1'7r) 2] r1l'x r1l'Xo. 811'y . 811'Yo . t1l' Z . t1l' Zo __ 

'0 - - cos -- cos -- sm -- Sm -- sm - Sm --exex 
a a a b bee 

[ 
2 (811') 2] . T7fX . T7rXo SKY snyo. t7r Z . t7r Zo ... _ + ko - - Sm -- sm -- cos -b- cos -- SIO - SIO --eyey 

b a abc e 

[
, (I'll') 2] . r1l'x . r1l'Xo . 811'Y . 811'Yo t1l' Z t1l' Zo __ 

+ ko - - sm -- sm -- sm -b- 810 -b- cos - cos --ezez 
c a ace 

1'87[2 1'1r:r. T7rXo . SK]) S7fYo. t7rZ . t7fZo ... __ 

- --;;r; COS ----;;: sm -a- sm -b- cos -b- sm ~ sm -e-exey 

rS7r
2 

. T1fX T7fXo 87fY. S7fYo . t7rZ . t7fZo ........ 
- -- sm -- cos -- cos -- Sm -- Sin - sm --eyex 

ab a a Ii bee . 

st1f2 . nfX . T7rXo SKy. snyo . in z t7f Zo -0 .... 

- -- Sm -- Sm -- cos -- Sm -- Sm - cos --eye, 
be a a b bee 

st7r2 . T7rX . T7fXo . S7fY S7fYo in z . t1f zo .... ... 
- -- sm -- Sm -- sm -- cos -- COs - Sm --e,ey 

be a a b bee 

rt7r2 . nfX T1TXo . S7fY . snyo t7fz. t7rZo -0 ..... 

- -- sm -- cos -- sm -- sm -- cos - Sm --ezex 
oc 0 a b bee 

1'f1r2 'l'7r:l:. T7fXo . 8'Try . S7fYo . t7rz t7rZo .... ... ] 
- -- cos -- sm -- sm -- sm -- sm - cos --exez 

ae a a b bee 

(3.10) 

Note that the tirst three components (,T",'" c"e", e,e,) of the Green's dyadic have the same symmetry 

properties. This fact will be used by the implementation of these functions in computer software. The 

last six components of the Green's dyadic have also equal symmetry properties. The second magnetic 

Green's function can be calculated by means of the eigenvectors E", and if",. 
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The final result is given by 

[ 

t7r T7rX T7fXo . SKY . S7rYo . tn z t1l" Zo .... .... 
- cos -- cos -- sm -- sm -- sm - cos --eX e1 
c a a b bee Y 

hr . Tn:z: . 1'11":1:0 SKY 8KYo. hr:: hr::o .... .... 
-- sm -- Sin -- cos -- cos -- sm - cos --e1j e:1' 

c a a b be c' 

T1f . 1'7r;1: 1"7r.z:o B'Tr'y S7r ilo . hr:; . t7r 2 0 ..... ..... 
- sm -- cos -- cos -- cos -'- sm - sm --etJe:; 
a a a b be c' 

Tn . T7rX T7r:Z;o. 87ry . S7rYo t7rZ t7rzo .... .... 
-- sm -- cos -- sm -- sm -- cos - COS --e,ey 

a a a b bee 

S'ff . T7fX . T7rXo . SKY srryo t7rZ t7rZo ..... ..... 
- sm -- sm -- sm -- cos -- cos - cos --ezex 
b a a b bee 

sn T7rX T7rXo . S7rY S7rYo. tnz . t7rZo ..... _J 
- - cos -- cos -- sm -- cos -- sm - sm --exe.,. 

b a a b bee' 

(3.11 ) 

Note that the exex, eyey and e,ie, components of G~ equal zero. With the above formulae the electric 

field due to an elementary electric and an elementary magnetic source inside a rectangular box cavity 

can be calculated. The electric field caused by an arbitrary source is given by equation (2.27): 

(3.12) 

When the volume source distributions ,J; and 1m are known, the electric field can be calculated using 

(3, 10), (3.11) and the above de.5cribed relationship. 

Now we will develop the three dimensional Green's functions for the magnetic field inside the 

cavity. Using the analysis described in chapter two, we know that the Green's functions used for the 

expansion of the magnetic field are given by 

(3.13) 

The magnetic field can be calculated in a similar way. 
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The first magnetic Green's dyadic is given by 

C
=I( __ ) 

m 1',1'0 

= = = L L L EO;EosEot2 2 

r=O,=O ,=0 abc (k", - ko) ko 

[ [ 
2 (T7') 2] . T7rX . T7rXo SKY S7rYo t7rZ t7rZo ..... ..... 

ko - - sm--sm--cos--cos--cos-cos--exex 
a a a b bee 

[

,.2 (S7r)2] r7rX T7rXo . S7rY . S7rYo t7rZ t7rZo __ + li,O - -, COS -- COS -- sm -,- sm -,- cos - cos --e1,f:V , a. a ) ) r ('. . 

[
, (tn)2] T7rx T7r:l:o SKY snyo. i7rz . t7fZo ......... + kij - - cos--cos--cos-b-cos--sm-sm--c;;c:; 

(' a abc c 

r S7[2 . nrx 7"JrXo SKy. snyo t7r z t7r Zo .... -+ 

-~ sm ----;;: COS -a- cos -b- sm -b-cOS ---;:- cos -c- exEy (3.14) 

r 81[2 T7fX. T1fXo . S7rY snyo t1r Z t1r zo .... .... 
--- cos -- sm -- sm -- cos -- cos - cos --e ex 

ab a a b bee y 

st1r2 TWX T1rXo . SKY S7rYo t1rZ. t1rZo ......... 
- -- cos -- cos -- sm -- cos -- COS - sm --e e, 

be a a b bee Y 

st7r2 T1rX T1rXo SITY. S1fYo . t1r Z t1f Zo ..... .... 

- bc cas -;;- cos -a- cos -b- sm -b- sm ----;;- cos -c-ezey 

rt1r2 T1rX. T1rxo S1fY snyo. tn z t7rZo .... .... 
--- cos -- sm -- cos -- cos -- sm - cos --ezex 

ac a a b bee 

rhr2 . T7r:l: T7rXo SKY S7rYo t7rz. t7rZo ..... _] 
--- sm -- COS -- COS -- cos -- cos - sm --exe~ . 

ac a a b be c· .. 

The second electric Green's function is given by 

= 00 00 

L L 2: for~osEot ~2 

r=O ,=0 '=0 abc (k", - ko) 

[

in . T7rx . T7rXo S7rY S7rYo t7r Z . t7r Zo .... ..... 
-- sm -- sm -- cos -- cos -- cos - sm --exey 

c a a b bee 

t7r nrx T7rXo . SKY . snyo t1fZ. t7rZo ........ 
- cos -- cos -- sm -- sm -- COS - sm --eyex 
c a a b bee 

r7r T7rX. T7rXo . S7rY . S7rYo t7r Z . t7r Zo __ 
-- cos -- sm -- sm -- sm -- cos - sm --e e, 

a a a b be c Y 

T7r 1'7fX. T7rXo SITY snyo. t7r Z . i7r Zo -0 -0 

- COS -- sm -- cos -- cos -- sm - sm --eZ e1 

a a a b bee Y 

131f r1f:l: r1fXo S1fy. S1fYo . t7r Z . tn Zo -0 .... 

- - cos -- cos -- cos -- sm -- sm - sm --(~zex 
b a a b bee' 

S7r . T7rX . 1'7rXo S7rY. S7rYo tn Z t7r Zo .... .... ] 
- Sin -- sm -- COS -- sm -- cos - cos --exez . 
b a a b bee 

The magnetic field excited by an arbitrary source is given by (2.28) 

(3.15) 

(3.16) 
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3.3 Double series representation of the Green's functions 

The nine components of the Green's dyadic are now calculated using a triple series expansion. In 

order to reduce the computational effort, the Green's functions can be reduced to double series. 

As mentioned in section 3.2, the longitudinal components of the Green's dyadic (<"J',,, (7,Jr", <'of:,) 
have the same symmetry properties. The a!xx-component is chosen in this section to illustrate the 

reduction of one series of a longitudinal component. Also the tmnsverse components of the Green's 

dyadic have equal symmetry properties. The a!YX-component is chosen in this section to illustrate 

the calculation of the closed form of a transverse component. 

3.3.1 Elimination of one series of G !xx 

Using (3.10), the longitudinal Green's function a!xx can be written as 

~ ~ 4<or [k2 (1'7r) 2] 1'7rx "7TXo . S7TY . S7TYo 
~~-- 0- ~ cos--cos--sm-sm--
r=O,=O abcq a a a b b 

00 sin t7rZ sin t7rzo 
'\" c c 

~ k2 k 2 
t=O 'rst - '0 

(3.17) 

The last series will be calculated in closed form. We shall consider two regions. 

G !xx is written in the following form 

2 00 sin t7rz sin t1rZQ 

a t < C '\" c c 
exx = u 2 ~ 2 2 

7T 1=1 t + 00 1 

(3.18) 

where the variables band 001 are given by 

< ~ ~ 4<or (k 2 (r7T)2) r7TX r7TXo . S7TY . S7TYo 
u = ~ ~ --2 0 - - cos -- cos -- sm -- sm --, 

r=O ,=0 abcko a a a b b 
(3.19) 

(3.20) 

The above mentioned series can be written as 

a l = ~(~)2 [~cost(Z - Zo)7T/C _ ~ cost(z + ZO)7T/C] 
exx 2 ~ t2 2 ~ t2 2 . 

7r t=O . + 0', t=O + 0:, 
(3.21) 

The closed form expressions of these series are well known in literature. Using a known summation 

result [15], the following relationship can be used 

f: coskx = 7T coshal(7T - x) __ 1_ 

k= 1 k2 + aT 2001 sinh 0'1 7T 200; 
o ~ x ~ 27T. (3.22) 
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In this region C !xx is written as 

c2 00 sin 17rz sin t7rZq 

C I - < " c c 
exx - u 2 L- 2 2 

7r t=! t - 02 

(3.23) 

where 

(3.24) 

Using [15], the following relationship can be used 

f cos b: __ 1 __ 7r COS0'2(7r - :r) 

k= I /,;2 - (\'~ - 2a~ 2(\'2 sin ct27r 

(3.25) 

The expression of C ;""" consists of the term (z - 0 0 ) ~, which value is located in the interval [-7r, 7r). 

Therefore we shall distinguish two regions: 0 2: 0 0 and 0 < 0 0 

• Z 2: ZOo The final expression of the Green's function C!xx can be expressed as 

(3.26) 

• :; < ':0' G !,.I'.r. can be written as follows 

C I 2c 00 00 fo,(k5 _ (,:)2) 

exx abk2Jr L L a I sinh 0' 11T o ,=0,=1 (3.27) 
nrx T7rXo . SKY . snyo . 7r. 7r 

cos -- cos -- sm -- sm -b- smhal(7r - -zo) smhal-z, 
a abc c 

• z 2:: Zoo 

G~:rx 
~ f f fo,(k5 ~ (~)2) 
abko7f r=O s= I 0'2 Sin 0:2 7r (3.28) 

'l"7r:r T7fJ:o . S7fY . 81fYo. ( 7r). 7r 
COS -- cos -- sm -- sm -- Sin 0'2 1T - - z sm ()I2 - Zo0 

a a lJ bee 
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• Z < Z00 

2c 00 00 Eor(k5 _ (~)2) 

abk6; ~~ Q2 Sina21f (3.29) 
T7rX T7r:Co . S7rY . S7rYo . 1T. 1f 

cos -- cos -- Sin -- Sin -- Stn0'2(7r - -Zo) SlOa2-Z' 
a a b b c c 

The series used for the calculation of G;yy and G!" have similar forms, therefore the corresponding 

double series can be calculated in a similar way. Note that the choice of reducing the series over 

the variable t is arbitrary. Calculating one of the two other series in closed form yields different 

representations for the Green's functions. These representations might have different convergence 

properties, this will be shown later on in chapter four. 

3.3.2 Elimination of one series of G !YX 

The Green's function G!yX can be written as 

00 00 81'S7r
2 

. '/'7[";1: T7rXo SKY. 87rYo 
- " '"" ---- sm -- cos -- cos -- Sin --
~ ~ a2 b2ck2 a a b b 
r=Os=O 0 

00 sin t1CZ sin t7rZq 

L ' , 
'=0 k;" - k5 

The last series will be expressed in closed form. There are again two situations: 

(3.30) 

• Z 2: ZOo In this situation, the final expression of the Green's function G!yX can be expressed as 

-4C1T 00 00 1'8 

a2b2 k2 L L 0'1 sinhoq7r 
Or=I,=1 (3.31) 

· T1rx T7rXo SKy. S7rYo . 7r. 7T 
Sin -- cos -- cos -- Sin -- Sinh a,,(7r - -z) Sinha" -=0' 

a a b b c c 

• z < Zoo G !yx can be wTltten as follows 

-4C7r 00 00 T S 

a2b2 k5 ~ ~ a" sinh" I 7r (3.32) 
· T7rX T7rXo S7fy. S7fYo . 7f. 'IT 

Sin -- cos -- cos -- Sin -- Slnh"I(7r - -zo) Sinh "1-=. 
a a b b c c 

• z 2: Zoo In this situation, the final expression of the Green's function G!yX can be expressed as 

-4C7r 00 00 r8 

a2b2k5 ~ ~ Q2 sin 0'211" (3.33) 
· T7fX T7fXo S7ry. snyo . 1T. 7T 

sm -- cos -- cos -- Sin -- smO:2(1r - -z) 5100:2-zo_ 
a a b b c c 
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• Z < ZOo G!yX can be written as follows 

-4C'7r 00 00 T S 

a2b2 k2 L L Gz sin Q:27r o r=1 5=1 

· T7TX T7rXo S7rY. S7rYo . 7r. 7r 
sm -- cos -- cos -b- sm -- SmC>2(K - -Zo) sm C>2-Z. 

a abc c 

21 

(3.34) 

Various forms of the Green's function G !yx can be obtained by choosing which series will be calculated 

in closed form. In this section another representation of G !YX will be determined. The Green's function 

is written in the following form 

00 00 8 
'"' ~ T7r . r7rx T7rXo . tnz . t7rZo 

- ~ ~ --- sm -- cos -- sm - sm --
r=O t=O a

2
bck'5 a ace 

~ S7r cos y. sin ~ 

~ b .,2 ,,2 
8=0 'rst - h'D 

(3.35) 

The closed form expression of the last series is also known in literature. Using [15], the following 

equations are valid 

where 

K sinhill(K - :r) 

2 sinh illK 

K sin il2 (K - :r) 

2 sin i32K 

ill (~r + (~r (¥f 

il2 = c~br c:r c:r 

0< x < 2K, 

0< l; < 2K. 

The solution of G !YX is divided in two regions 

• y ~ Yo. The expression of the Green's function G!yx in this area can be expressed as 

G!'!J.!' 

47r CX' 00 r 

a2d;2 L L sinh lilK 
(} 1'=0 (=0 

· "l"K;r ,·KXo . tK Z . tK Zo (K ). ., K 
sm -- cos -- sm - sm -- cosh ill K - -I Y smh 1)1 -YO· 

(/. ace ) b 

• y < Yo. G!yX can be written as follows 

-47r 00 00 r 

a2ck5 ~ ~ sinh i3IK 

· TWX T7rXo . t7r Z . in Zo . 7r) K 
SIn -- cos -- Sin - SIn -- SInh i3, (K - -b Yo cosh ill -b y. 

a ace 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

(3.41) 
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• 11 ?: Yo' 

411" ~~ l' 

~k2 ~ ~ -'-(3-
a c '0 r:::::O 1,::::0 SIn 21T (3.42) 
. rlf" 1'11""0. t1l"Z . t1l"Zo ( 11"). 11" 

sm -- cos -- sm - sm -- cos Ih 11" - -y sm /32 -Yo' 
a ace b b 

• y < Yo' 

-471" 00 00 r 

--"''''-
a2ck5 f='o ~ sin (3211" (3.43) 
. r 7rX 1'1rXo. t7f Z • t7r Zo . 7r 'iT 

sm -- cos -- sm - sm -- sm(32(1I" - -Yo) cos (32-Y. 
a ace b b 

The calculation of the double series of the otber transverse components (G~XY' G~", G~xz) and 

( G~zy, G~yz ) can be done in a similar way. By expressing different series in closed form, various 

representations of the Green's functions are obtained. 

3.4 Conclusions 

In this chapter descriptions of the electromagnetic fields are obtained inside a rectangular cavity. The 

source inside the cavity, which excites the electromagnetic fields, is an arbitrary polarised magnetic or 

electric dipole. Four Green's dyadics are needed in order to calculate the electromagnetic fields. The 

components of these various dyadics can be expressed as triple series expansions using eigenvectors. 

In the last section of this chapter, one series is calculated in closed form, so the Green's functions are 

described by double series. Because we can choose which series will be evaluated in closed form, 

various representations of the Green's functions are obtained. It will be shown in chapter four that 

these various forms of the Green's functions have different convergence behaviours at some regions 

inside the cavity. This knowledge will be used when implementing the numerical algorithms. 



Chapter 4 

Results 

4.1 Introduction 

Our main interest concerns the intensities and the polarisations of the electromagnetic fields inside 

the cavity. Using the analytical results derived in earlier chapters, we are now able to calculate the six 

field components caused by an elementary source. Another concern will be the numerical problems 

at the singularity points of the various Green's functions. Therefore much attention will be given to 

the evaluation of the convergence properties of the Green's functions in this chapter. 

Some examples of field structures inside a particular cavity are presented in section 4.2. Due to 

the singularity of the field, the convergence of the series in the neighbourhood of the source is very 

slow. Furthermore it will be shown that the convergence might be slow at some other regions inside 

the cavity, depending on which summation is calculated in closed form. In section 4.3, convergence 

properties of the double series are compared with each other. The convergence behaviour of the series 

are visualized by calculating the partial sums of the series. Finally, the electromagnetic fields inside 

a cavity will be compared to the free space fields in section 4.4. 

4.2 Electromagnetic fields inside a rectangular cavity 

In this section the electromagnetic fields inside a cavity will be visualized. The model outlined in the 

previous chapter is implemented in a FORTRAN code. With the help of this program, the electro

magnetic fields caused by an electric or magnetic point source can be calculated. The wavelengths 

of the electromagnetic fields are much smaller than the dimensions of the cavity. This means that the 

amplitudes of the electromagnetic fields change very rapidly inside the cavity. In order to present a 

clear picture, the electromagnetic fields will not be calculated inside the entire cavity. The plane in 

which we will calculate the fields is called observation plane. 

The geometry of the cavity is given by figure 3.1. The dimensions (a, b, c) of the cavity are equal 

to (5.4 m, 3.7 m, 2.2 m). The wavelength of the monochromatic transmitted wave is 15 em. The 

point source is located at the coordinates ( a/4, b/2, c/2). The electric source is directed into the 

z-direction. Furthermore, the z-coordinate of the observation plane is equal to c/2, this means that the 

x- and y-polarised electric fields are zero in this plane. 

Only the electric field in the shaded region of figure 4.1 will be calculated. The absolute value of the 

electric field into the z-direction is presented in figure 4.2. 
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Figure 4.1: Observation plane 
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Figure 4.2: Ez-field at the observation plane 

It is clear from figure 4.2 that Ihe absolute value of the electric field changes rapidly. Because the 

walls of the cavity are perfectly conducting, there will be many standing waves inside the cavity. 
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Figure 4.3: Contour plot 

The maximum values of the electric field at the observation plane are presented in figure 4.3. The 

regions inside the closed contours have electric field components larger than 50000 V 1m. The same 

calculations have been made for the magnetic fields at the observation plane. The magnetic field into 

the z-direction is zero inside the cavity. The magnetic field into the x-direction is given by figure 4.4. 

The y-polarised magnetic fields have similar forms as shown in figure 4.4, therefore they will not be 

presented here. 
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Figure 4.4: Hx-field at the observation plane 

4.3 Convergence properties of various series representations 

In chapter three. various representations of the Green's functions for a rectangular cavity have been 

analysed. In this section, some convergence properties of these Green's functions will be investigated. 

The series, representing the electromagnetic fields, have complex arguments. Unfortunately, it is not 

possible to evaluate the convergence properties of these series in a strict mathematical sense. Jlowever, 

the convergence properties will be evaluated by a numerical analysis. Only the dyadic Ce , which 

represents the electric field caused by an electric point source, will be evaluated. The other dyadics 

have similar forms, so the analysis presented in this section can be used for the calculation of the other 

dyadics as well. The electromagnetic field in the cavity will be calculated using double series and the 

convergence properties of these double series will be analyzed by determining the partial sums. The 

partial sums of a double series are given by 

n n 

Sn = 2:2:1(1",8) (4.1) 

r=Os=O 

The electromagnetic field at the observation plane is calculated twice. The first calculation has been 

made by taking the partial sum index equal to 60. The second calculation has been made by taking 

the sum index equal to 80. The differences between the two obtained results are calculated by 

(3 = S80 - S60 x 100% 
S60 

(4.2) 

The observation plane for which the electromagnetic fields will be calculated is shown in figure 4.5. 

Due to the fact that the source is located in the observation plane, we are able to evaluate the conver

gence properties of the series at the singularities. 

The dimensions of the cavity (a,b,c) are equal to (3.4 m, 3.7 m, 2.2 m). The electric source is 

directed into the z-direction. The frequency is 2 GHz. 

First the electric field into the z-direction will be determined. Using the double series representation, 

the difference factor (3 at the observation plane is shown in figure 4.6. 

The points between closed contours have a minimal j3-factor of 5 percent. It is remarkable that the 

convergence is not only slow at the source coordinates but also around j; = a/4. Remember that the 
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Figure 4.5: Observation Plane 
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Figure 4.6: Difference Jactor (3 at the observation plane 

Green's function G!u is given by the following equation 

~ ~ £o,£o,£ot [k2 (/.7r)2]. S7rY . S7rYo t.7rZ t7rZo 
LL---- - - - sm--sm--cos-cos--
,=0 t=O abck6 0 c b b c c 

~ I..' T7rX . T7fXo L- Sin -- SIn --

r=O k;st - k(5 a a 

Results 

(4.3) 

This equation, which consists of a triple series, can be transformed into a double series in three ways 

by choosing which series will be written in closed form. In the above figure, the fields are calculated 

by writing the last series in closed form. This series contains the field coordinates x and source coor

dinates Xo' From the above figure it is clear that the convergence will be slow when the coordinates x 

and Xo are close together. In this case, there will always be a region with slow convergence properties 

no matter which of the three selies will be calculated in closed form. 

We will change the Zo coordinate of the source into 0.21 m. The series containing the coordi

nates z and Zo will be calculated in closed form. At the observation plane, the coordinates z and 

Zo will never be close together. So it can be expected that the convergence of the Green's function 

G!zz will be fast. For this case. the difference factor (3 is calculated. Using numerical calculations 

it has been verified that the factor (3 is less than 10-5 at the observation plane. In order to check the 

earlier stated assumptions, the difference factors of the fields into the x- and y-directions have also 

been calculated. 
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w4 

x-direction 

Figure 4.7: Difference factor /3 of x-polarised electric field 

One series of the triple series describing the x-polarised electric field is also written in closed form. 

The fields are calculated by closing the series containing the coordinates y and Yo' Again, the double 

series is slowly convergent when the coordinates y and Yo are close together. 

The convergence properties of the electric field into the y-direction is given by figure 4.8. 
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5% 

w4 -. 
x-direction 

o b/2 b 

y-direction 

Figure 4.8: Difference factor j3 ofy-polarised electric field 

The electric fields into the y-direction have been calculated by closing the series containing the 

coordinates;/: and :1:0 , Again, the double series is slowly convergent when the observation and source 

coordinates x and Xo are close together. 

4.4 Fields inside a cavity and in free space 

The electromagnetic waves inside a cavity will be reHected when they approach the perfectly conduct

ing walls. Therefore the electromagnetic fields at the field points consist not only the direct wave but 
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also some reflected waves. So the multipath components arrive at the receiver in various directions 

[16]. This is a typical situation in a multipath environment. In order to make an estimation of the 

influence of the multi path environment, we will compare the electromagnetic fields inside the cavity 

with the electromagnetic fields 10 free space. 

The source will be a z-directed dipole. The geometry of the cavity is given by figure 2.1. Just 

like presented in section 4.2, the dimensions (a, b, c) of the cavity will be equal to (5.4 m, 3.7 m, 

2.2 m). The wavelength of the electromagnetic field is 15 cm. The source is located at the source 

coordinates (a/4, b/2, c/2). The z-coordinate of the observation plane is equal to c/2 and this plane is 

presented by figure 4.1 . 

The fields in free space excited by an elementary source are calculated in appendix A. In section 

4.2 it is stated that the x- and y-directed electric fields are zero at the observation plane due to the fact 

that the coordinates z and 20 are equal to e/2. According to appendix A, the x-directed and y-directed 

electric fields are also equal to zero in free space. So we will calculate the free space field Efree 'paee 

only for the z-directed components. The free space electric field is shown in figure 4.9. 

!~L 
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Figure 4.9: Electric field in free space 

There are no standing waves in the free space environment. It is clear from figure 4.9 that the strengths 

of the fields in the free space environment differs to the fields in the multipath environment. 

The x-directed magnetic field in free space is given by figure 4.10. 
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Figure 4. 10: Hx-field in free space 

4.5 Conclusions 

The electromagnetic fields for a particular cavity have been visualized in section 4.2. Due to the fact 

that the wavelength is small compared to the dimensions of the cavity, there are many standing waves 
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inside the cavity. There are many spots inside the indoor environment where several components of 

the electric or magnetic field vanish. Inside these regions, it is to be expected that the noise level 

exceeds the signal strength, so the telecommunication link will be disturbed. 

In section 4.3 some convergence properties of Green's functions are investigated. It has been shown 

that the fields are slowly convergent not only near the singularity, but also in some other regions inside 

the cavity, depending on which series will be calculated in closed form. Therefore much care must 

be taken by choosing which representation of the Green's function will be used for the determination 

of the electromagnetic fields. 

The electromagnetic fields inside the cavity have been compared with the electromagnetic fields in 

free space in order to determine the influence of the multi path environment. In section 4.4 it has 

been shown that propagation inside the multipath environment (cavity) differs much to the free space 

electromagnetic fields. 



30 Results 



Chapter 5 

Singularity extraction 

5.1 Introduction 

In the previous chapter it has been shown that the Green's functions of a rectangular cavity are slowly 

convergent when the observation coordinates are close to the source coordinates. This can be a 

serious problem because Green's functions are used in numerical methods, which often require the 

computation of the Green's function inside the source region. Therefore the previous expressions for 

the Green's functions are not well suited for the computation of the electromagnetic field calculated 

by integral equations. 

To overcome this problem the Green's functions will be split into three parts. The first Green's function 

has a singularity of the order h, where R is the distance between the observation coordinates and 

the source coordinates. This function contains the dominant singularity. The second Green's function 

consists of a weaker singularity, this function is singular like ~. The third Green's function describes 

the resonances of the cavity. Unlike the original Green's functions, the third Green's function is finite 

at the source coordinates. 

5.2 Decomposition of the Green's function 

Several authors [17], [IS] have considered the extraction of the dominant singularity ( h ) for various 

Green's functions. The resulting series converges better than the original series, but the convergence 

is still slow. This can be explained by noting that the series still contains a singularity like ~. 

Bressan and Conciauro [19] decomposes the Green's function for a closed region in three parts. The 

first dyadic represents the irrotational part of the original dyadic and diverges like h. The second 

dyadic and the third dyadic are solenoidal. The second dyadic diverges like ~ and the third dyadic is 

finite at the source coordinates. So the Green's dyadic can be written as 

(5.1) 

It has been shown in chapter two that four Green's dyadics are needed to calculate the electromagnetic 

field caused by an electric or magnetic point source. Because many components of these dyadics 

have equal forms, only the extraction of the singularity for the dyadic G! will be considered in this 
=1 

chapter. It has been pointed out hy several authors that th~ singularity of t~e function G,. is essentially 

the same as the one of the free space Green's function Go. The dyadic Go is given by the following 

equation 

(5.2) 

31 
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where R = If - i';,1. The symbol 1 represents the unit dyadic. The free space Green's function 

can be approximated by expanding the exponential of the function in a Taylor series. The following 

approximation is obtained 

C "'~\7\7-I- _1_(1 (r-i';,)(r-ro)) 
o k5 41fR + 81fR + R2 . 

(5.3) 

In this expansion all terms finite at R = 0 are neglected. From this expansion it can be deduced that 

the dominant singularity is given by the term -& \7\7 4;R ' which is irrotational. The weaker singularity 

" 
is given by the solenoidal term 1;; R [ 1 + (i'-i'°klf-?"J]. As an example only the singularity extraction 

of the functions G!TX and G !YX will be calculated. The singularities of the other components of the 
=1 

four Green's dyadics can be extracted in a similar manner. Therefore only the dyadic G,. will he 

considered in the following analysis. 

The first decomposition is given by the following equation 

(5.4) 

where \70 means differentiation with respect to t~e sour~e coordinates. The function g(r, ro) is a 

scalar Green's function. The three components g, O2 and 03 are related by the following relationships 

\72g(r, ro) = -8(T - ro), 

\7 x \7 x C2(r, ro) = her - ,c;,) - \7\7 og(r, r-;'), 

\7 x \7 x C3(i",ro) - k6C3(i""c;,) = k6C2(i',ro), 

in the internal cavity volume V. The boundary conditions are given by 

g=O ii x c, = o. 
Taking the curl of the curl of (5.4) and using (5.5), (5.6), (5.7) results in 

" " C=I( __ ) k2 G=I(--) 1='(- -) 
v x v X e T 1 To - 0 e T J To = u l' - r 0 . 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

Notice that this result is the same as equation (2.22), which has been used for the definition of the 

Green's dyadic C e . Using the above equations, the components C
" 

C 2 and C3 can be calculated. 

Unfortunat<:ly this is a tedious process, therefore other relationships will be derived in the next 

sections in order to solve the three Green's dyadics. First we note that the weakly singular term of the 

Taylor expansion of the free space Green's function is ko - independent. !he solenoidal dyadic 02 is 

also ko -independent according to equation (5.6). Therefore the dyadic O2 will be written as 

= I (= (i"-;')(;'-1")) = 
G2(i",i';,) = 81fR 1+·' OR> 0 + G20(i",ro), (5.10) 

where C 20 is a ko -independent dyadic and finite at the source coordinates. So the dyadic C2 consists 

~f a regular and a singular pan:. Using the analysis described in [19), the third Green's function 

03(i", i';,) will be expressed as 

(5.1I ) 
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where Er>' (1') and E", (f'o) are the solenoidal eigenvectors of a cavity. This Green's function contains 

the resonances of the closed region and the function is finite at the source coordinates. At this point 
= I 

the Green's dyadic Ge can be written as 

G =I(~~) e T, To 

(5.12) 

Bressan and Conciauro [19], [20], [8] have calculated the three dyadics G I, G2 and G3 for a three 

dimensional spherical cavity, a two dimensional circular resonator and a two dimensional rectangular 

resonator. In the next sections the three dyadics will be calculated for a three dimensional rectangular 

box cavity. As mentioned earlier, only the singularity extraction of the functions G!xx and G!yX will 

be considered. 

5.3 Calculation of the irrotational dyadic (j I 

The Green's dyadic G I, which contains the dominant singularity, can be expressed as 

= I 
GI U', To) = - 1.2 \1 \1og(f,fo). 

·'0 

(5,13) 

This function G 1 represents a low frequency approximation of the electromagnetic field in the cavity. 

The scalar Green's function 9 is given by 

\12g(T, To) = -o(T - f'o) 

g=O 

in V, 

at S, 

(5,14) 

This differential equation will be solved by using the method of images, The method of images is 

described in many textbooks (e,g, [21]). Using this method, the original geometry is translated into 

an equivalent configuration. In order to find the solution of the differential equation in the internal 

volume of the cavity, the boundary will be replaced with images of the point source, The solution is 

now only valid in the region of interest The images plus the original source must satisfy the boundary 

condition at the surface S, The equivalent problem at the plane z = 0 is drawn in figure 5.1, 

The scalar Green's function 9 consists of an infinite summation of the free space Green's function at 

the image coordinates. The sign of the Green's function changes with each image source, because the 

tangential electric field at the boundaries must be zero. The function 9 is given by 

I 00 00 00 ( _ I )'n+n+1 

9 (i'. To) = 47T I: I: I: '---:R':----
111=-00 11=-00 1=-00 7nul 

(5,15) 

The distance between the observation points and the image sources are given by 

Rmnl = J(x - xm)2 + (y - Yn)2 + (z - ZI)2, (5.16) 

The coordinates of the original source and the image sources can be expressed as 

lIn 
(5.17) 
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Figure 5.1: Equivalent sources 

Note that the ten!' Roan of the scalar Green's function is singular at the source coordinates. Thus the 

Green's dyadic 0 1 can be writlen as a combination of a singular and a regular part 

1 
- - V' V' 0-:--:::--

ki5 47rRooo 
1 00 

- k 2 V'V'o L 
a 1n=-oo n:::-oo l=-oo 

00 ( _1)=+n+1 

47r Rmnl 
(m,n,/)"# (0,0,0). 

(5.18) 

As mentioned earlier, the longitudinal components of the Green's dyadic have equal symmetry 

properties. This is also true for the transvers~ components of the Green's dyadic, therefore only two 

components (G lxx and Glyx) of the dyadic 0 1 will be calculated. 

5.3.1 Calculation of G Ixx 

The dyadic G lxx contains a singularity like J1,. Using earlier obtained results, the Green's function 

G 1:1:,'1: can be written as 

G,.c,,: 
iJ2 00 00 00 

- .. 2 iJ iJ I: L L 
'0 x ;1:0 7H=--OO 11=-00 [=-00 

Performing some elementary calculus yields 

Glxx 

(-I )'n+n+1 

47rRmnl . 
(5.19) 

(5.20) 

This function consists of a triple series and the singular term is given by the term (m, n, I) = (0,0,0). 

The numerical convergence behaviour of these series will be evaluated in chapter 6. 
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5.3.2 Calculation of G I yx 

The Green's function Glyx can be written as 

I 82 00 00 00 (_ I)~+n+l 

G lyx = - k2[)8 L L L 41TR 
'0 Y Xo »1=-00 n=-oo [=-00 mnl 

(5.21) 

Performing the term-by-term differentiations results in 

3 00 00 00 (-I )2m+n+l(x - x~)(Y - Yn) 
G I !l.r - - '" '" '""' - 41Th2 L.. L.. L.. R5 . 

o In=-oo n=-oo 1=-00 mnl 

(5.22) 

5.4 Calculation of the solenoidal dyadic (h 

It has been noted in section 5.2 that the solenoidal dyadic G2 can be obtained by using equations 

(5.5) and (5.6). In order to simplify the necessary calculations, we shall use a different approach in 

this report. The modal expansion of the electromagnetic field in a rectangular box cavity is given in 

chapter three. We shall use this result to obtain expressions for the dyadics g2 and G3. The two 

dyadics depend each different on the wavenumber ko. Using (5.4) ,the dyadic G2 can be obtained by 

= . 82 
2 =1 

G2 = hm 8( 2) (koG,). 
kll-O ko 

(5.23) 

Using (5.23), it's not necessary to solve the set of differential equations (5.5), (5.6) and (5.7). We are 

now able to use the results of the eigenfunction analysis outlined in chapter three. Again, only two 

components (G2x" and G2y,,) will be calculated. These components consist of triple series, which 

can be reduced to double series. 

5.4.1 Calculation of G2xx 

Remember that the longitudinal Green's function G;xx can be written as 

0000= 4 

L L L abc (k2 Ear k2) k2 
r=O 8=0 t=O rst - 0 0 (5.24) 

[k
2 (T1T) 2] T1TX T1TXa . S1TY . S1TYa . t1T Z . t1T Za 
~O - - COS -- COS -- sm - sm -- sm - sm --. 

a a a b bee 

Using (5.23), G2xx can be written as 

00 00 00 4Ear [(',;')2 + (1;)2] 

LLL abck4 
1'=08=0 t_=O rst 

nrx T7rX o . S7fY . S7fYo . t7f Z . t7r Zo 
cos -- cos -- sm - Sin -- sm - sm --. 

a a b bee 

(5.25) 

The Green's function Gl.T .• is ko-independent. Furthermore, it is proportional to f--. It can be .. , 
expected that the convergence of the series will be faster than the original series, which was proportional 

to k' I_
k
,. For the case of a spherical resonator it is possible to extract the singularity in closed form 

rst () 

[20]. Unfortunately, it is not possible to decompose the weakly singular series of a rectan_gular box 

cavity into a regular and a singular part (e.g. 5.10). So the convergence of the dyadic G2 will be 

slower than the corresponding series of a spherical resonator. The function G2:r.:,: is expressed as a 
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triple series, but it is possible to reduce one series. 

Equation (5.25) can be written in the following form 

where 

2a
3 ~ ~ [(S,,)2 (t,,)2]. S"Y . S"Yo . t"z . t"zo --L-L- - + - sm--SIn--SIn-SIn--

bC,,4,=O'=0 b C b b c c 

[
~ Eor cosr(x - xo)~ + ~ Eor cosr(x + xo)~] 
~ (r2 + ( 2)2 ~ (r2 + ( 2)2 ' 
1'=0 1'=0 

Hansen [221 presents the following series in closed form 

I "[ b] - + acosh(" - x)- . 
2b4 4a2b3 sinh nb a 

a 

Ii "Ii /1.1,] 
+/i:l:sinh(" - '1')- + -,--, cosh - . 

a smh ~ (f 

" 
Using this result, the function G2"" can be written as 

x > Xo 

G2xx 

3 00 00 (,,)2 ('n)2 t 
a '"" ,. b + c . S7rY . S7rYo. 7rz. t7fZo 
--L-L Stn-Stn--SIn-SIn--
bc,,3 '=0'=(; a 3 sinh a" b b c c 

[2coSha(" - ~x)cosha~xo 
a a 

" " " +2a-xsinha(" - -x)cosha-xo 
a n a 

2 " (")'" - a-xo cosh ct 7r - -x Sinh a-Xn 
a a a 

+ . :a [COSh,,~(.,,-:ro)+COSh"~("'+:"o)]]. 
sIn OK a a 

(5.26) 

(5.27) 

(5.28) 

(5.29) 

The symbols ;1: and :/:0 have to be interchanged in the region :l; < ;CO' The numerical convergence or 
this double series will be evaluated in chapter6, it will be shown thatthe necessary computational time 

reduces compared to the computational time needed for the calculation of the double series presented 

in chapter 3. Note that the functions G2yy and G 2u can be calculated in a similar manner. 

5.4.2 Calculation of G2yx 

Using (5.23), the Green's function G2yx can be written as 

00 cx~ 00 -8r S7T2 

LL_L a2/hk4 
1'=05;:::;0 t=O rst (5.30) 

. T1,X T7rXo S1rY. S7rYo . tn z . t7r Zo 
sm -- cos -- cos - SIn -- SIn - SIn --. 

" n b b c c 

This series can also be reduced to a double series. Using (5.28), the function G2yx can be expressed 

as 

z> Zo 
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3 0000 

-c '"'"" '"'"" T S . T7rX T7rXo S7rY. S7rYo 
--L-L- . sm--cos--cos-sm--
a2b2

1[ r=D 5=0 ()3 Sinh Qt7r a a b b 

[2 sinh a(1f - .:':z)sinha.:':zo 
c c 

7r 7r. 'iT 
+2a-zcosha(1f - -z)sIDha-zo 

c c c 

(5.31) 

-2a.:':zosinha(7f - .:':z)cosha.:':zo 

+ :a [coSha.:':(: - zo) - c:sha.:':(z + Zo)]] , 
sm (\I7r C C 

where 

(5.32) 

The sym_bols z and Zo have to be interchanged when z < zoo The other transverse components of the 

dyadic G2 can be calculated in a similar manner. 

5.5 Calculation of (;3 

The irrotational dyadic (; I contains the dominant singularity. This dyadic becomes important when 

the source and the observation coordinates are very close together. In addition, this dyadic is a 

low-frequency approximation of the original Green's dyadic. 

The solenoidal dyadic G2 contains the weaker singularity. This dyadic is independent of the fre

quency. The solenoidal dyadic 03 will be calculated in this section. The dyadic 03 becomes 

important when the wavelength is smaller than the cavity dimension (propagative effects). The dyadic 

63 is finite when the distance between the observation points and the source equals zero. (;3 will be 

calculated by using the following relationship 

= _ = I I . .2 = I . 82 
.2 = I 

G 3 - Ge - , hm (kOGe ) - hm -(-2 (koGe )· 
ki5 k,,~O k,,~O 8 ko) 

(5.33) 

Again, the two components G3-,-, and G3yx will be derived. 

5.5.1 Calculation of G3xx 

The Green's function G!xx is given by 

co ex:> ex:> 4 

L L L abc (k2 for k2) k2 
r=Q s=O t::::O rst - 0 0 (5.34) 

[ 
2 (T1f) 2] T7rX T7rXo . S1fY . S1fYo • t7r Z . tn Zo 

kO - - cos -- cos -- SID -- SID -- sm - sm --. 
a a a b bee 

The function G3x .• can be calculated by using (5.33) and (5.34) 

00 00 00 -4. k2 [(,~)2 + (!!I)2] LLL or 0 b , 

1'=08=0 !.=() ubc(kfi - 1.:;$[ )I.::.~t 
'I'7r:1: T7rXo . S1fY . S1TYo . tn z . t7r Zo 

cos -- cos -- SID - SID -- sm - SID --. 
a a b bee 

(5.35) 
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The triple series can be reduced to a double series. There are two situations 

The function G3xx is given by 

G3xx 

where 

G3xx 

where 

4k5a5 ~~.'~ [(SK)2 (tK)2]. SKY. SKYo . tKZ . tKZo --L-' - + - sm-sm--sm-sm--
bC'7r

6 .~=o~:o b ebb c c 
00 for COS nr:r. COS 1'1r:/:q 

" 0 0 

~ (T2 + ,,2)(T2 + /J2)2' 
r=O I 

4k5a5 ~,~ [(SK)2 (tK)2]. SKY. SKYo . tKZ . tKZo 
--L.J' - + - sm-sm--sm-sm--
bCK

6 .,=o~;;;; b C b b C c 
00 COS nrx COS nr;r:q 

'""" Eor a a 

~ (,.2 _ ,,2)(T2 + /J2)2' 
r={) 2 

The last series of (5.36) and (S.39) can be written as 

00 cos r1rx cos T7rX Q 

L a a 
_ (r2 ± ,,2 )(r2 + f32)2 

r_O 1,2 

1T4 00 COS nrx COS T7rXo 

" a a 
k4/14 ~ (r2 ± ,,2 ) 
o r=O 1,2 

7r4 co COS nrx COS T7rXq 

" a a 
- k 4a4 ~ (r2 + f32) 

o r=O 
2 00 cos T7rx COS T7rXq 

1r "'"' a a 
- k2a2 ~ (r2 + f32)2 . 

o r=O 

(5.36) 

(5.37) 

(S.38) 

(S.39) 

(S.40) 

(5.41) 

Using these formulae, we are able to calculate the double series representation of G3xx . Again, two 

regions have to be distinguished. 
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Using [15). [22), the function G3xx can now be expressed as 

x> Xo 

~~4a.[(T)2+(~)21 . 81f1/ . 81fYo. t1fZ . t1fZo 
= ~~ ,,2 b sm-b-sm-b-sm-sm--

s=1 t=1 lI'orr c C C 

[

COSh oq (1f - ~x) cosh Oq ~xo 

Cl'lsinhcq7r 

cosh(3(1f - ~:,,)cosh(3~xo 

p sinh (31f 

k5a [ 1f 1f 

4 
2(33 . h(3 2cosh(3(1f - -x) cosh (3-xo 

1rSIn7r a a 

+2(3~xsinh(3(1f - ~x)cosh(3~xo 
a a a 

-2(3~xocosh(3(1f - ~x)sinh(3~xo 
a. a a 

+ Si::(31f [COSh(3~(X - xo)+ coSh(3~(x + Xo)]]]. 

, '()2 2. (T, t + (~t - ¥ < 0 

~~4a[(T)2+(~)21 . S1f1/ . 81f1/0 . t1fZ . t1fZo 
L-L- sm-sm--sm-sm--
,=It=1 k51fbc b bee 

[ 

COSQ2Crr - ~X)COSQ2~Xo 

0:2 sm Q121r 

cosh(3(1f - ~x)cosh(3~xo 

tJ sinh (31f 

k
2
a
f 

[ 1f 1f 
4 ,/. J 2cosh(3(1f--:/:)cosh(3-.To 

rr-/· sinh/- 1T a. {/. 

+2/J~."sil1hli(1f - ~:")coshli~.",, 
(/. n a 
rr 7r . rr 

-2(3-xo cosh f:I(1f - -x)smhf:l-xo 
a a a 

+ .1f(J [COSh ri~(:l: - :1:0 ) + cosh f3~(:1: + :1:0 )]]], 

smh f:l1f (I. a 

39 

(5.42) 

(5.43) 

The symbols :/: and :1:0 have to be interchanged in the region x < Xo' The convergence properties of 

this double series will be evaluated in chapter 6. The longitudinal components G,yy and G,zz can be 

calculated in a similar manner. 
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5.5.2 Calculation of G 3yx 

The Green's function G!yx is given by (3.10) 

000000 82 

G~,,,x = L L L -(12!J2(';2(~.~7r ,.2) 
1'=0 .~=O 1=0 .. '0 '1'81- - '0 

. Tn:]: ,,"rr:co SKy. snuo . tlf:; . hr:.:o 
510- ·cos--cos-sm--sm-sJn--. 

(J. (1. b b (' (" 

Using (3.10) and (5.33), the function G3yx can be written as 

00 00 00 

G3yx = LLL 
1'=Os=Ot=O 

-8rS7r2k6 . r7rX r7rXo 

2b2 (k 2 _ k2 )k4 Sin - cos --
a erst 0 rst a a 

S7fY . snyo . t7r Z . t7r Zo 
cos - Sin -- Sin - Sin --

b b c c 

(5.44) 

(5.45) 

The triple series can also be reduced into a double series. Therefore the function G3yx is written in 

the following form 

where 

-8k5C5 ~ ~~ . T7r:r 1"TrXo SKy. snyo 
2b

2 
4 L-1......J r8 sm -- cos -- cos -b- SIn--

a 7r 1'=Os:::O a a b 
00 sin t7rz sin trrzp 
"\' ' , 
~ (t2 _ ",2)(t2 + (32)2' 
t=O 2 ' 

",= (~r+(~r-(¥r 

"'2 = (¥r -(~r -c:r 
(3 = ccr + (~;r 

The last series can be written a.s 

00 sin t7r Z sin tn Zp 
"\' , , 
t:o (t2 ± "b)(t2 + (32)2 

4 00 sin tn::: sin ~ 
7T ~ c c 

k4c4 ~ (t2 ± ,,2 ) a t::::O 1,2 
Ji"4 00 sin brz sin t7rZq 

- k~c4 L (t~ + (32) , 
o t=O 

2 00 sin ttfZ sin ~ 
7i '""' c c 

- k2c2 ~ (t2 + (32)2 
o t=O 

(5.46) 

(5.47) 

(5.48) 

(5.49) 

(5.50) 

(5.51 ) 
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The function G3yx can now be expressed as 

G3yx 

00 00 4 
"" "'"'" - T SC1T" T7rX. T7rXo . SKY S7rYo 
L., L., k2a2b2 cos ---;;- sm -a- sm -b- cos -b-
r=) 8=1 0 

[

sinh oq (1r - ~ z) sinh oq ~ Zo 

0'1 sinhnJ7r 

sinh,li(1r - ~z)sinh,li~zo 

,Ii sinh,li1r 
k4,2 [ 1r 1r 

-421'0. ,Ii 2sinh,li(1r--z)sinh,li-zo 
1r f· smh 1r C C 

+2fi7rzcosh,li(1r - -"z) sinh li7rzo 
r: c c 
Jr, 1f 1f 

-2fi-z"smh,li(1r - -z)cosh,li-zu 
(' C (' 

+ Sin~,li1r [cosh,li~(Z - zo) - cosh,li~(z + Zo)]]]. 

2. (,,;;,,)2 + (%,,)2 _ (¥)2 < 0 

G3yx 

00 00 4 "" ,,- r SC7r T7rx. T1rXo . S1rY S7rYo 
= L., L., k2a2b2 cos ---;;- sm -a- sm -b- cos -b-

r=ls=1 0 

[

Sin Ct2(7r - ~z) sin Q2~Zo 

Ct2 Sin 0'271" 

sinh,li(1r - ~z) sinh,li~zo 

,Ii sinh,li1r 

k
4

c
2 

[ 1r 1r _ 0. 2sinh,li(1r--z)sinh,li-zo 
41r2 /J' smh li7r C C 

+2,1i-"zcosh,li(1r - -"z)sinh,li-"zo 
C C C 

-2,1i-"zosinh,li(7r - -"z)cosh,li-"zo 
C C C 

+ Sin~,li1r [coSh,li~(z - zo) - cOSh,li~(z + Zo)]]]. 

The symbols z and Zo have to be interchanged when z < zoo 
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(5.52) 

(5.53) 

It is shown in chapter four that the Green's functions are slowly convergent when the observation 

coordinates are very close to the source coordinates. In this chapter, We have used the fact that the 

singularity of the Green's function for a rectangular cavity is essentially the same as the singularity 



42 Singularity extraction 

of the free space Green's function. The Green's function is decomposed into three parts: G" G2 

and G3. These three Green's dyadics are related to each other by three partial differential equations. 

Solving these equations is a tedious process, therefore we will use another approach. The dyadics 

depend each differently on the wavenumber ko, this knowledge will be used when calculating the 

Green's functions. The dyadic G, contains the dominant singularity ( Jl, ) and this dyadic is a low fre

quency approximation of the original Green's dyadic. This dyadic has been expressed as a triple series. 

The dyadic G2 contains the weaker singularity ( -k ), this dyadic is independent of the wavenumber 

ko. This dyadic can be expressed as a double series. 

The dyadic G3 is finite at the source coordinates and contains the resonances of the cavity. It 

becomes important when the wavelength is much smaller than the cavity dimensions. This dyadic has 

also been expressed as a double series. 

The numerical convergence properties of these series compared 10 the non decomposed Green's 

dyadic will be evaluated in the next chapter. 



Chapter 6 

Numerical results of the Green's 

functions using singularity extraction 

6.1 Introduction 

In this chapter the convergence properties of the decomposed Green's functions (chapter 5) will be 

compared to the original Green's functions. The partial sums of the series will be evaluated to make 

an appraisal of the convergence properties for the two different types of Green's functions. Similar 

to the analysis in chapter five, only two components G!xx and G!yX will be calculated. Three regions 

will be considered when comparing the two types of Green's functions. 

• Region I. The distance between the source point and observation point is large 

• Region 2. The observation point is very close to the source 

• Region 3. The observation point is in the vicinity of the source, but not so near as region 2, we 

will call this area the' intermediate region' 

It will be shown that the convergence properties of the two representations of the Green's functions 

are equal in region I. In region 2, the convergence of the decomposed Green's function is much faster 

that the original function. The convergence of the decomposed series in region 3 is faster than the 

convergence of the original series, but the convergence is still slow. 

6.2 Large distance between source and observation point 

We shall compare the convergence properties between the two representations for the Green's func-
=1 

tions in this section. The first Green's function G,. is calculated in chapter three and the second 

decomposed Green's function is calculated in chapter five. 

The series representing the Green's functions are too complicated to permit a simple analysis of 

their converging properties. Therefore we shall not evaluate the convergence properties in a mathe

matical sense. Our discussion is based on a numerical analysis of the two types of Green's functions. 

Therefore the partial sums of the triple or double series will be calculated. These partial sums have 

the following form 

/I /I 

5" = 2:2:1(1',8) (6.1) 

,/,=08=0 
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where 5" denotes the partial sum. The above formula can also be calculated for the case of a triple 

series 

It 1/. n 

5" = L L L I(r, s, t) (6.2) 

r=Os=Ot=O 

The original Green's function will be calculated by using a double series representation. The decom

posed Green's function can be written in the following form 

(6.3) 

The dyadic G 1 will be calculated by a triple series, the other two dyadics by a double series. So the 

partial sums of the decomposed Green's functions can be written as 

It n n 11 II 

Sn = LLLI(r,s,t) + LLg(r,s) (6.4) 
r::::Os=Ot=Q 

As mentioned earlier, two components of the Green's dyadic will be calculated (G;u and G~y,.). 

These Green's functions are implemented in a Fortran code. We shall evaluate the convergence 

properties of the Green's functions using this code. The geometry of the cavity is given by figure 3.1. 

The dimensions of the cavity are equal to ( a, b, c) = ( 3.4 m, 3.7 m, 2.2 m). The frequency is 2 GHz 

and the source dipole is directed in the x-direction. In this section the coordinates of the source and 

the field point are equal to (xa, Yo, Zo ) = ( I m, I m, 1m) and (x, y, Z ) = (2m, 2m, 2m), respectively. 

First the longitudinal Green's function G,,, will be calculated . 

• ,10 
4 

3 

.. 
~2 

0 
I 

0 10 20 30 40 50 60 70 80 
Partial sum index n (without extraction) 

x 10' 
4 

3 v 

" ~2 

0 
I 

0 10 20 30 40 50 60 70 80 
Panial sum inde)[ n (with extraction) 

Figure 6.1: Comparison benveen two representations of G xx 

The convergence properties of both Green's functions appear to be equal. This is due to the fact that 

the distance between the observation point and the source is large. Note that the decomposed Green's 

function consists of more mathematical expressions (subtraction, mUltiplication etc.) compared to the 

original Green's function. So in practice the computational time used for the calculation of the de

composed Green's function will be larger than the time used for the calculation of the original function. 
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Figure 6.2: Comparison between two representations of G yx 

The convergence properties of the original transverse component Gyx have been compared to the 

decomposed Green's function in figure 6.2. 

It is clear from figure 6.2 that the convergence properties of the two representations for the Green's 

functions Gyx are equal. It can be concluded that in this region (large distance between the source 

and the observation point), the original Green's function is the best representation for calculating the 

electromagnetic fields inside the cavity. Less computational time is needed for the calculation of the 

original Green's function compared to the decomposed Green's function. 

6.3 Observation point very close to the source 

In this region the dyadic G I, which contains the dominant singularity of the order -b, will be very large 

compared to the other dyadics. According to equation (S.18), the singularity is expressed in closed 

form. So it can be expected that the convergence properties of the decomposed Green's functions are 

better than the properties of the original Green's functions. 

The position of the source is still ( :fo , Yo, Zo ) = ( I m, I m, 1m). First we will calculate the Green's 

function G y," The coordinates of the observation point are ( x, y, z ) = ( 1.00Sm, 1.00Sm, 1.00Sm). 

The two representations of the function Gyx are shown in figure 6.3. 

Note that the two figures have different scales with respect to the vertical axis. The convergence of 

the original series is very slow, while the decomposed Green's function is rapidly convergent. In this 

case (source near observation point), the best choice is to use the decomposed Green's function for 

calculating the electromagnetic fields. 

The same comparison between the two forms of Green's functions can be made for the compo

nent G", .. The position of the source is (I m, I m, I m) and the coordinates of the field point are 

(1.00000005 m, 1.00000005 m, I.OOOOOOOS m). 

These figures have also different scales with respect to the vertical axis. The best choice is to use the 

decomposed Green's functions for calculating the electromagnetic fields inside the cavity. 
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Figure 6.3: Comparison between two representations oIGyx 
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Figure 6.4: Comparison befJrveen two representations of Gxx 

6.4 Numerical convergence of the Green's function in the intermediate 

region 

In region one and two, the convergence of the decomposed Green's functions is fast. In region one, 

the source is far away from the observation point. So the field points, which are parameters of the 

Green's functions, are not in the neighbourhood of the singularity in this region. Therefore the series 

will converge well in this region. In region two the source is very near the observation point. The 

dominant singularity of the series is expres:-;ed in closed form. The series converge also well in region 

two. In region three, the weaker singularity (like k) is important. This singularity is not expressed in 

closed form, it can be expected that the convergence properties are not very well in this region. The 

convergence behaviour of the Green's function Gyx will be visualized in figure 6.5. The coordinates 

of the source are (I m, I m, I m) and the coordinates of the field point are (1.03 m, 1.03 m, 1.03 m). 

The convergence of the decomposed Green's functions G yx is not so fast as in the other two regions. 
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Nevertheless, the convergence behaviour of the decomposed Green's functions is better than the con

vergence properties of the original function. 

The partial sums of the function Gx ., are displayed in figure 6.6. The coordinates of the source 

are (I m. I m, I m) and the coordinates of the observation point are (1.00 I m, 1.00 I m, 1.00 1m). 
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Figure 6.6: Comparison between two representations ofGa:x 
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6.5 Conclusions 

The convergence properties of the Green's functions have been improved using an extraction tech

nique. To compare the representations with and without the extraction technique, the internal volume 

of the cavity has been divided ilnto three regions. 

In region I, the distance between the observation point and source is very large. From the figures 

presented in section 6.2, it can be concluded that the numerical convergence of the original Green's 

function resembles the convergence properties of the extracted Green's function. However, in practice 

the computational time used for the calculation of the extracted Green's function will be larger than 

the time used for the calculation of the original Green's function. This is due to the fact that the 

decomposed Green's function consists of more mathematical expressions. 

The observation point is very close to the source point in region 2. The convergence properties of the 

original Green's function is very slow inside this region, while the decomposed Green's function is 

rapidly convergent. 

In the intermediate region, the observation point is in the vicinity of the source, but not so near as region 

2. The convergence behaviour of the decomposed Green's function is better than the convergence 

properties of the original function. However, the convergence is not so fast as in the other regions. 



Chapter 7 

Conclusion 

In order to predict the phases, strengths and polarisations of the electromagnetic fields inside an 

indoor environment, a deterministic model has been developed. The electromagnetic fields inside 

a perfectly conducting rectangular box cavity can be calculated by using the analysis presented in 

this report. Much attention is given to the convergence properties of various series representing the 

electromagnetic field. It has been shown that the electromagnetic fields are slowly convergent not 

only near the source, but also in some other regions inside the cavity. This depends on which series 
will be calculated in closed form. 

Furthermore it has been shown that the convergence properties can be improved by using a so 

called 'extraction technique'. Especially near the source much computational time can be saved by 

using this extraction technique. 

Finally various field distributions and polarisations inside a cavity are investigated in this report. 

Due to reflection of the waves against the walls a multipath environment is created. It has been shown 

in this report that the amplitudes of the electromagnetic fields change rapidly inside the cavity. 
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Appendix A 

Free-space Green's functions 

In chapter four the electromagnetic fields inside a cavity are compared to the electromagnetic fields 

in free space. The electromagnetic fields in free space are usually given in spherical coordinates in 

literature. We will derive in this section the electromagnetic fields caused by a z-directed electric 

dipole developed in rectangular coordinates. The electromagnetic field can be determined easily by 

using a vector potential. The vector potential A" is given by 

The magnetic field can be calculated by using 

~ I 
H = -\7 x A"e, 

JI,o 

This will be written as 

~ '8..1.,., ~ 'iiA,., ~ 
fl = ~-.-()./" - --'-("1 

1'0 iiI! I'u ii.I: . 

Using the above equations, the magnetic field is given by 

H - -' [ -jko - ' 1 ( _ ) -jk"Ii'-i'ol 
x - 47r Ii" _ i"012 Ii" _ 1":,13 Y Yo e 

The electric field can be calculated from the vector potential 

E = v x V x .. ',.J, 
jvJfo/lo 

The aoove equation can be written as 

I~ = ~ nr~" t, + _. _1_ i)l~.,. i'y + _: _,_ [UJIy _ iJH., 1 ", 
.JWfo iJ~ juJ( () U_ JWfu v./. iJy 

The electric field components are given by 

(A.I) 

(A.2) 

(A.3) 

(A.4) 

(A.S) 

(A.6) 

(A.7) 

(A.S) 

E - -k6 [ , _ 3 _ 3 ] (x _ x Hz _ z )e-jk,,(T-rol (A 9) 
x - 41fWEo jkoli" - i'013 killi" _ i"014 j k61i" _ T;,15 0 0 . 

SI 
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E =-- - - (I'-If Z-Z (,-. ".- n(A.IO) -k(1 [I 3 3])() ,', \7 ,7 \ 

11 4rrWf" jkoli' - ,";,11 kal? -,";,1 4 jk~W -,,,;,15 ' , " " 

(A.I I ) 
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