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1. Introduction.

The scattering of an electromagnetic (EM) wave by an arbitrary object can be described using
the coupled dipole method or CDM, also called the discrete dipole approximation or DDA [1].
In the CDM, a given object is discretized into a collection of polarizable subunits, usually over
a cubic lattice. Provided the lattice constant is small enough compared to the spatial variation of
the EM fields inside the object, the dipole approximation holds for each subunit, and the object
can thus be treated as a collection of dipoles [2, 3, 4]. The CDM has been used successfully to
model not only light scattering, but also spontaneous emission in complex geometries [5, 6],
optical tomography [7], optical binding [8], optical trapping and manipulation [9, 10, 11, 12],
and optical torques [13, 14]. Traditionally, only electric dipoles are considered in the CDM,
however, we emphasize that this is circumstantial rather than a consequence of any limitation
of the method, and magnetic dipoles can also be accounted for [15, 16, 17, 18, 19].

For simple shapes, analytical methods can been used to study optical forces on magnetic
scatterers such as (2D) cylindrical particles [20, 21] and spherical scatterers [22]. However, to
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study optical forces and torques on arbitrary, magnetic objects a numerical approach needs to
be formulated.

Since in the CDM one represents an arbitrary object as a collection of dipoles, the physics of
the opto-mechanical coupling between light and the object must first be understood at the dipole
level. Previously, one of the authors derived the expression for the time-averaged optical force
on an electric dipole [23]. In the present article, we present a general derivation of the electro-
magnetic force and torque, in the case of a dipolar object with arbitrary dielectric permittivity
ε and magnetic permeability μ . We then describe how these results can be incorporated into a
more general CDM approach to find the electromagnetic force and torque experienced by an
arbitrary object (beyond the dipole approximation).

2. Optical force on a small particle.

We start by considering a small particle with permittivity ε and permeability μ , located at the
origin of our coordinate system. We seek to derive the optical force and torque experienced by
the particle, treated in the dipole approximation, when illuminated by an arbitrary incident EM
field {E0(r,ω),H0(r,ω)}, where ω is the angular frequency. Gaussian units are used through-
out. We assume a time-harmonic dependence (i.e., e−iωt ) and we shall henceforth omit the
dependence of the fields on ω .

The time-averaged total force F on the particle is derived from Maxwell’s stress tensor
as [24]:

F =
1

8π
Re

[∫
S

[
(E(r).n)E∗(r)+ (H(r).n)H∗(r)− 1

2
(|E(r)|2 + |H(r)|2)n]

dS

]
, (1)

where S is a surface enclosing the particle, the unit vector n defines the local outward normal
to S, ∗ denotes the complex conjugate, and Re represents the real part of a complex number.
E(r) and H(r) are the total fields, i.e. the sum of the incident EM fields {E0(r),H0(r)} and the
EM fields scattered by the object {Ed(r),Hd(r)}. Let p (m) be the electric (magnetic) dipole
induced by the electric (magnetic) field of the incident EM wave, and let r̂ be the unit vector in
the direction of r. The fields scattered by the object are [25]:

Ed(r) = eikr
{

[3r̂(r̂.p)−p]
(

1
r3 − ik

r2

)
+

k2

r
(r̂×p)× r̂− k2(r̂×m)

(
1
r

+
i

kr2

)}
(2)

= Teep+ Temm (3)

Hd(r) = eikr
{

[3r̂(r̂.m)−m]
(

1
r3 − ik

r2

)
+

k2

r
(r̂×m)× r̂+ k2(r̂×p)

(
1
r

+
i

kr2

)}
(4)

= Tmep+ Tmmm, (5)

where k is the wave vector. The quantities T are field susceptibility tensors [26] and the super-
scripts relate to the electric or magnetic nature of the field and the source. We emphasize that
the surface of integration S can be chosen arbitrarily as long as it encloses the object under con-
sideration. Because we treat the particle as a point particle we can take the surface S arbitrarily
close to it. Specifically, we can choose a spherical surface centered on the particle and with a
radius r � λ , where λ is the wavelength of the incident field. We can thus expand the incident
fields in Taylor series:

E0(r) = E0 + r(r̂.∇)E0 + · · · and H0(r) = H0 + r(r̂.∇)H0 + · · · (6)

If we insert the total fields into the expression of the stress tensor we obtain three types of terms:
those involving the incident field only, those involving the fields scattered by the dipoles only,
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and terms involving both incident and scattered fields. The terms involving the incident field
only (as if the particle were not there) give no net contribution to the force. Therefore we are
left with the contribution to the force from the fields scattered by the dipole only (F self), and the
contribution due to the cross terms involving both the scattered and incident fields (F mix). The
force can be written as:

F =
1

8π
Re

[∫
S
(Ed(r).n)E∗

0(r)+ (E∗
0(r).n)Ed(r)+ (Hd(r).n)H∗

0(r)

+ (H∗
0(r).n)Hd(r)− [Ed(r).E∗

0(r)+ Hd(r).H∗
0(r)]n

+ (Ed(r).n)E∗
d(r)+ (Hd(r).n)H∗

d(r)−
1
2

[|Ed(r)|2 + |Hd(r)|2
]

ndS

]
. (7)

Using Eq. (6) in Eq. (7), and retaining the near-field terms only in the expression of the scattered
fields, the ith Cartesian component of the force due to the cross terms is (repeated indices are
summed over):

Fi
mix =

1
6

Re

[
2p j∂ jE∗i

0 − pi∂ jE∗ j
0 + p j∂ iE∗ j

0 + 2ikε i jkH∗ j
0 pk

− 2ikε i jkE∗ j
0 mk + 2m j∂ jH∗i

0 −mi∂ jH∗ j
0 + m j∂ iE∗ j

0

]
, (8)

where ε i jk is the Levi-Civita tensor, and i, j, or k stands for either x, y or z. To simplify further
the expression of the force we can use Maxwell’s equations. We have ∇ ·E 0 = 0 and ∇ ·B0 = 0.
Furthermore, using ∇×E0 = ikH0 in the expression involving the electric dipole, and ∇×H0 =
−ikE0 in the expression involving the magnetic dipole, the contribution of cross terms to the
optical force on a dipolar particle becomes:

Fi
mix =

1
2

Re
[

p j∂ iE∗ j
0 + m j∂ iH∗ j

0

]
. (9)

Now if we consider the terms involving the scattered fields only in Eq. (7), one can show that
the integral of (Ed(r).n)E∗

d(r) + (Hd(r).n)H∗
d(r) gives no net contribution and there remain

only the terms involving the modulus of the electric and magnetic fields:

Fself =
1

8π
Re

[∫
S

[− 1
2

[|Ed(r)|2 + |Hd(r)|2
]

ndS

]
, (10)

If we express the fields in terms of the electric and magnetic dipole moments of the small
particle we get :

Fself = − k4

8π
Re

[∫
S

{
[(r̂×p∗)× r̂].(r̂×m)− [(r̂×m∗)× r̂].(r̂×p)

} n
r2 dS

]

= −k4

3
Re(p×m∗). (11)

The total force experienced by the particle can be now written as:

Fi =
1
2

Re

[
p j∂ iE∗ j

0 + m j∂ iH∗ j
0 − 2k4

3
ε i jk p jm∗k

]
. (12)

Note that the term Fself is important for a single particle but is negligible when describing a large
object as a collection of small polarizable subunits. If we introduce the electric and magnetic
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polarizabilities of a dipolar sphere of radius a, we have p = α e
0E0 and m = αm

0 H0 with the
polarizabilities written as [25]:

αe
0 = a3 ε −1

ε + 2
and αm

0 = a3 μ −1
μ + 2

. (13)

However, these expressions do not satisfy the optical theorem as they do not account for radia-
tion reaction (i.e., interaction of the dipole with its own field) [2, 27]. In the case of an electric
dipole, it has previously been shown that the radiation reaction term must be accounted for in
order to derive the correct expression for the optical force [23]. The same requirement applies
for a magnetic dipole. With this correction the polarizabilities become:

αe = αe
0/

(
1− 2

3
ik3αe

0

)
and αm = αm

0 /

(
1− 2

3
ik3αm

0

)
, (14)

and the net force can be written as:

Fi =
1
2

Re

[
αeE j

0∂ iE∗ j
0 + αmH j

0 ∂ iH∗ j
0 − 2k4

3
ε i jkαeE j

0

(
αmHk

0

)∗ ]
. (15)

We can notice that the first term on the right-hand-side of Eq. (15), pertaining to the electric
dipole contribution to the force, is the same as the optical force experienced by an electric
dipole that was derived in Ref. [23] using the Lorentz force. Obviously, the two approaches
(Maxwell stress tensor and Lorentz force) are equivalent [20, 21, 28]. Compared to the case of
a single electric dipole, we now also have a contribution to the optical force that comes from
the magnetic dipole and also from a self-interaction term involving the electric and magnetic
dipole moments.

3. Optical torque on a small particle.

Beside the optical force we can also derive the optical torque. From the expression of the force
in Eq. (1) the intrinsic optical torque can be written as:

ΓΓΓint =
1

8π
Re

[∫
S

r× [
(E(r).n)E∗(r)+ (H(r).n)H∗(r)− 1

2
(|E(r)|2 + |H(r)|2)n]

dS

]
, (16)

which, since r and n are collinear, can be simplified into:

ΓΓΓint =
1

8π
Re

[∫
S

r× [
(E(r).n)E∗(r)+ (H(r).n)H∗(r)

]
dS

]
. (17)

This time only the first term in the Taylor series for the incident field is needed, and after
simplification the torque becomes:

ΓΓΓint =
1
2

Re(p×E∗
0 + m×H∗

0). (18)

This expression represents the intrinsic part of the optical torque and does not depend on the
position of the particle (aside from a trivial spatial dependence through the incident field).
However, as emphasized in Refs. [14, 29, 30, 31], this expression should be modified in order to
satisfy the conservation of angular momentum. The modification consists in adding the radiative
reaction term to the electromagnetic field {E0,H0} which leads to:

ΓΓΓint =
1
2

Re [p× (p/αe
0)

∗ + m× (m/αm
0 )∗] . (19)
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As an example, let us consider a sphere that is small enough, compared to the wavelength
of illumination, to be treated as a dipole. The sphere is illuminated by a circularly polar-
ized plane wave. The electric field E0 = E0(1, i,0)eikz induces an electric dipole moment
p = αeE0(1, i,0)eikz and the magnetic field H0 = E0(−i,1,0)eikz induces a magnetic dipole
moment m = αmE0(−i,1,0)eikz. Then the optical torque experienced by the sphere is

ΓΓΓint = E2
0 Im [αe

0 + αm
0 ] ẑ. (20)

This result corresponds to the optical torque given in Ref. [30] for a sphere, in the limit of small
radius compared to the wavelength, i.e. the optical torque is proportional to the absorption cross
section.

4. Optical force and torque on an arbitrary magnetic particle.

The expression of the optical force we just derived can be used in the CDM to find the optical
forces on an arbitrary object. Consider an object with dielectric permittivity ε and magnetic
permeability μ . We emphasize that although for the sake of brevity we assume here that ε and
μ are scalars, the method still applies if they are tensors and/or functions of position [32]. The
object is discretized into N polarizable units, each characterized by an electric polarizability α e

and a magnetic polarizability α m. The polarizabilities are still given by Eqs. (13) and (14) with
the exchange of a3 by 3d3/(4π) where d is the spacing of the CDM grid. Notice that when
a sphere is discretized into N subunits, d is chosen such that the total volume represented by
the N subunits is equal to the volume of the actual sphere. The local-fields at subunit l can be
written as

El = E0l +
N

∑
n=1

[Tee
lnαe

nEn + Tem
ln αm

n Hn] (21)

Hl = H0l +
N

∑
n=1

[Tme
ln αe

nEn + Tmm
ln αm

n Hn] , (22)

where the terms T are the field susceptibility tensors defined in Eqs. (2)-(4). If we write the
equations for the local fields for all N subunits forming the object, we get a linear system of
size 6N × 6N which can be solved for the electric and magnetic fields inside the object. Once
the fields inside the object are known, the fields anywhere outside the object can be calculated
simply by adding the contributions of all the subunits. We now have the fields, however we also
need their spatial derivatives to derive the optical forces. The spatial derivatives of the fields at
any subunit l are obtained through:

∇El = ∇E0l +
N

∑
n=1

[∇Tee
lnαe

nEn + ∇Tem
ln αm

n Hn] (23)

∇Hl = ∇H0l +
N

∑
n=1

[∇Tme
ln αe

nEn + ∇Tmm
ln αm

n Hn] . (24)

From this point, the optical force on the object can be computed using a procedure similar to the
one presented in [33], i.e. once the fields and their spatial derivatives are known at all subunits,
the force on each subunit is derived using Eq. (15). The total net force on the object is then the
sum of the force over all subunits.

Beside the optical force, we can also use the CDM to compute the optical torque experienced
by an arbitrary object. The total torque on the object will be the sum of the individual torques
experienced by each polarizable subunit forming the object. However, since we are now dealing
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with a rigid body represented as a collection of dipoles, were we to merely use Eq. (18) to
calculate the intrinsic torque on each subunit and sum these contributions, we would not get
the correct result. In order to obtain the total torque the extrinsic torque experienced by each
subunit must be added (ΓΓΓext = r × F). This term obviously depends on the position of the
subunit within the object. Hence, when calculating the optical torque on an object using the
CDM, the net torque on the object must be written as:

ΓΓΓ =
N

∑
n=1

(
ΓΓΓext

n + ΓΓΓint
n

)
=

N

∑
n=1

(
rn ×Fn +

1
2

Re
[
pn × (pn/αe

0,n)
∗ + mn × (mn/αm

0,n)
∗]) . (25)

5. Computational remarks

The computation of optical force and torque using the CDM is done in two major steps: first we
compute the local fields and second, we compute the spatial derivatives of the local fields. The
computation of the local field requires us to solve the 6N ×6N linear system corresponding to
Eqs. (21)-(22). This is done using an iterative method (quasi minimal residual for example [34])
and fast Fourier transform (FFT) to perform the matrix vector product [35]. The same strategy
can be used to calculate the spatial derivatives of the local fields. The sums in Eqs. (23)-(24)
can be evaluated directly (method A), however, this process is quite slow. If we note that the
derivatives of the field susceptibility tensors, like the tensors themselves, depend only on the
difference of the position vectors r i − r j, the sums over the lattice can be viewed as convolu-
tion products which can be computed very efficiently using a FFT (method B). We can further
improve the computation of the derivatives of the tensors by noting that once the spatial deriv-
atives of the x and y components of the fields are known, the derivative of the z component of
the electric and magnetic fields can be found using Maxwell’s equations (method C).

6. Results

We use the exact Mie theory for a spherical scatterer to illustrate the validity of the CDM
approach.

6.1. Electromagnetic force and torque on a magnetic scatterer

We start by considering a sphere of radius a = λ/2, where λ is the wavelength, in vacuum,
of the incident field. The permittivity and permeability of the sphere are ε = μ = 2.25. In
Fig. 1(a) we plot (on a log scale) the computation time for calculating the derivatives of the
local fields, for the three methods outlined in the previous section, versus the number of dipole
used to discretize the sphere. Obviously, method A takes a very long time and using a FFT
drastically improves (by several orders of magnitude) the speed of the computation (method
B). We can also see that method C provides a further, albeit modest, increase in the speed of
the computation.

Using the exact Mie theory as a reference, we plot in Fig. 1(b) the relative error, in percent,
on the optical force calculated with the CDM, versus the number of dipoles N, for different
prescriptions of the polarizability: Clausius-Mossotti formula with the addition of radiation
reaction [2] noted as CR, the prescription by Lakthakia [36] noted as LA, the prescription
introduced by Dungey and Bohren [37], based on the first Mie coefficient, is labeled DB. Note
that there exists other forms of the polarizability [32, 38] however, the three discussed here are
the most common ones. Figure 1(b) shows, quite logically, a decrease of the relative error with
the number of dipoles. We can also observe that the DB polarizability yields the best result.

In Fig. 2(a) we plot the optical force for a sphere of radius a = λ/4 versus ε = μ for the
different forms of the polarizabilities. The sphere is discretized into N = 113104 elements. One
can see that there is an excellent agreement between the CDM and Mie theory (the relative
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Fig. 1. Sphere of radius a = λ/2 with ε = μ = 2.25. (a) Computation time versus number
N of dipoles for the calculation of the spatial derivatives of the local fields, for the three
different methods outlined in the text. (b) Relative error, in percent, between the optical
forces computed using the CDM and using Mie theory versus the number of dipoles. Dif-
ferent forms of the polarizability are considered: (CR) Clausius-Mossotti with radiation
reaction [2]; (DB) first Mie coefficient [37]; (LA) Lakthakia’s prescription [36].
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Fig. 2. (a) Optical force on a sphere of radius a = λ/4 versus ε = μ for N = 113104. (b)
zoom on the resonance around ε = μ ≈ 4.

error is not shown but once again the DB prescription for the polarizabilities works best). If
we zoom in on the sharp resonance around ε = μ ≈ 4 [Fig. 2(b)] we find that, of the three
forms of polarizability considered here, the DB prescription yields the most accurate position
of the resonance. A likely reason for the good performance of the DB prescription in the case
of magnetic materials is that since both the electric and the magnetic polarizabilities are based
on the corresponding first coefficient in the Mie series expansion, they both account for the fact
that we have ε �= 1 and μ �= 1. By contrast, CR and LA are based on the Clausius-Mossotti
relation which is derived in the static case where electric and magnetic effects are decoupled.

6.2. Influence of material losses

We now study the optical force and torque generated by a circularly polarized plane wave on
to a sphere with radius a = λ/4. The sphere is discretized into N = 113104 elements. The
material parameters of the sphere are Re(ε) = Re(μ) = 2.25. We are interested in the influence
of material losses on the electromagnetic force and torque. We start by assuming Im(μ) = 0
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Fig. 3. Sphere of radius a = λ/4 with Re(ε) = Re(μ) = 2.25 and Im(μ) = 0. (a) Optical
force versus Im(ε). Note that the three CDM plots corresponding to the three forms of the
polarizabilities are superimposed on the scale of the figure. (b) Relative error in percent
between the optical force obtained from the CDM and the Mie series. (c) Optical torque
versus versus Im(ε). (d) Relative error in percent between the optical torque obtained from
the CDM and the Mie series.

and we vary the imaginary part of the permittivity between 0 and 5. Figures 3 shows the optical
force [Fig. 3(a)] and torque [Fig. 3(c)] calculated by Mie theory and by the CDM, along with
their respective relative errors [Figs. 3(b) and 3(d)]. Note that the three CDM plots of the force
and the torque, corresponding to the three forms of the polarizabilities are superimposed on the
scale of the figures. A very good agreement is observed as confirmed by the plots of the relative
errors. Notice that the optical torque is zero for a lossless sphere in agreement with Eq. (20)
and Ref. [29]: a lossless, homogeneous spherical particle does not rotate when illuminated
by a circularly polarized plane wave. We emphasize that had we not accounted for radiation
reaction in the polarizabilities, we would have obtained a non-zero torque. This highlights the
fact that radiation reaction is not only required to satisfy the optical theorem in a scattering
configuration, it is also required to satisfy the conservation of angular momentum [14].

We now consider the case where Im(ε) = Im(μ) while still keeping Re(ε) = Re(μ) = 2.25.
The optical force and torque are plotted in Figs. 4(a) and 4(c), and the corresponding relative
errors in Figs. 4(b) and 4(d). Once again a very good agreement between the CDM and Mie is
observed over the range of absorption considered here.
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Fig. 4. Sphere of radius a = λ/4 with Re(ε) = Re(μ) = 2.25. (a) Optical force versus
Im(ε) = Im(μ). (b) Relative error in per cent between the optical force obtained from the
CDM and the Mie series. (c) Optical torque versus versus Im(ε) = Im(μ). (d) Relative
error in percent between the optical torque obtained from the CDM and the Mie series.

6.3. Electromagnetic force and torque on a scatterer with negative index

We now turn our attention to the case where the scatterer has material parameters ε = μ = −1,
i.e, a negative index of refraction. The optical force and torque are plotted in Figs. 5(a) and 5(c),
and the corresponding relative errors in Figs. 5(b) and 5(d). Because the CDM is based on a
representation of an object as a collection of dipoles, as one gets close to the dipole resonance
(ε = −2, μ = −2), the polarizabilities become very large in magnitude. Note that although the
Clausius-Mossotti polarizabilities are singular for ε = −2, or μ = −2, the final polarizabilities
are not [α e = αm = 3i/(2k3)] owing to the radiation reaction term. However, if the material
forming the object is not lossy, the convergence of the CDM becomes very slow around a dipole
resonance. Accordingly, we expect that, for a comparable level of discretization, the relative
error on the optical force and torque computed by the CDM will be larger for ε = μ = −1 than
it was in the cases considered in the previous paragraph.

This is indeed confirmed in Figs. 5(b) and 5(d) where we see that if the imaginary part
of ε and μ is zero or very small, the relative error increases up to about 10% for the optical
force. For the optical torque the relative error at low loss is even more significant, reaching over
100%. However, the seemingly bad result for the optical torque is mitigated by the fact that the
torque tends to zero for vanishing levels of absorption, which yields a significant relative error
even if the absolute error is quite small. Therefore, the overall performance of the CDM for the
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Fig. 5. Sphere of radius a = λ/4 with ε = μ =−1. (a) Optical force versus Im(ε) = Im(μ).
(b) Relative error in percent between the optical force obtained from the CDM and the
Mie series. (c) Optical torque versus versus Im(ε) = Im(μ). (d) Relative error in percent
between the optical torque obtained from the CDM and the Mie series.

calculation of optical forces and torques on an object with negative refraction is still excellent.
Note that for the case ε = −2 and/or μ = −2 a similar result would be obtained, however
a larger number of discretization cells would be required in order to achieve convergence, as
discussed in Ref. [19].

7. Conclusion

We have derived the analytic expressions of the force and torque induced by an arbitrary elec-
tromagnetic wave on a magnetic Rayleigh particle. From these expression we have developed
a formalism based on the coupled dipole method (CDM) to compute optical forces and torques
on arbitrary objects with an arbitrary dielectric permittivity and magnetic permeability, and
we have illustrated the method by comparing it to the exact Mie theory. The present approach
can be used to extend the study of the opto-mechanical coupling between light and matter to
magnetic and meta-materials.
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