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Abstract

The bulk electrical anisotropy of sedimentary formations is a macroscopic phenomenon which can result

from the presence of sand/shale laminae and varations in grain size and pore space. Accounting for its effects

on induction log response is an ongoing research problem for the well–logging community since these types

of sedimentary stuctures have long been correlated with productive hydrocarbon reservoirs. Presented here

is a staggered grid finite difference method for simulating EM induction in a fully 3D anisotropic medium.

Here, the electrical conductivity of the formation is represented as a full 3 x 3 tensor whose elements can

vary arbitrarily with position throughout the formation. To demonstrate the validity of this approach,

finite difference results are compared against analytic and quasianalytic solutions for tractable ID and 2D

model geometries. As an final example, we simulate 2C–40 induction tool responses in a crossbedded eolian

sandstone to illustrate the magnitude of the challenge faced by interpreters when electrical anisotropy is

neglected.

Introduction

Determination of the electrical anisotropy of geologic formations is a problem that has attracted the

attention of geophysicists for nearly 70 years (c.?. Maillet and Doll, 1932; Kunz and Moran, 1958). The

reasons why have varied greatly, ranging from ground water investigation (Christensen, 2000), to hydrocarbon

exploration (Moran and Gianzero, 1979; Anderson et al., 1998; Avdeev et al., 2000), to regional–scale crustal

mapping (Weidelt, 1999; Everett and Constable, 1999). Some materials, such as olivine, exhibit an inherent

electrical anisotropy (Constable et al., 1992). However, in the studies cited above and the work presented

here, the electrical anisotropy in question is regarded as a macroscopic effect arising from the presence of a
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regular sequence of alternating, “small scale” lithologic units (e.g. sand/sha2e

isotropic in nature.

Within an eolian sand unit (figure 1), variations in the grain size and

interbeds) which are themselves

pore space geometry alter the

directional mobility of electric charge carriers residing in the interstitial fluids (Klein et al., 1997). This

effect can hinder accurate formation evaluation when induction log measurements are interpreted in the

usual manner (Moran and Kunz, 1962; Anderson et ai., 1998). To lend clarity to this situation, we have

developed a numerical model which computes the electric and magnetic fields generated by inductive sources

in a fully three–dimensional (3D) anisotropic medium. The model is based on a staggered grid finite difference

(FD) solution to Maxwell’s equations in the quasi-static limit.

This work differs from a previously developed FD solution (Weidelt, 1999), also designed to simulate

induction in anisotropic media. Both methods incorporate the staggered grid approach: This study, an edge–

based discretization; Weidelt (1999), a face–centered discretization. For the face–based discretization, the

governing PDE (derived from Maxwell’s equations in the quasi–static limit) is discretized using components

of the electric field vector which are normal to and located at the centers of FD cell faces. However, the

continuity of electric current at cell interfaces renders these components of the electric field discontinuous

and requires a sophisticated averaging scheme to accommodatethe effects of electrical anistropy. In contrast,

the edgebased approach utilizes electric field components which are tangential to conductivity boundaries

and are thus locally continuous and well-behaved. The resulting scheme for accommodating an electrically

anisotropic medium is presented here and has the advantage in being simpler to implement.

The paper is organized as follows. We begin by deriving the governing partial differential equation (PDE)

which describes low–frequency electromagnetic induction in anisotropic media. Next, we introduce the FD

method for staggered grids used in solving the governing PDE. Incorporation of a fully generalized anisotropy

tensor into the FD method is discussed at length, but a detailed derivation of the discretized current density

terms is found later in the appendix. In closing the discussion of the FD method, we briefly comment on the

quasi–minimal residual method used here to solve the FD linear system of equations. Lastly, we present the

results of several numerical experiments. The first set of results illustrate the agreement between the FD

solutions and analytic/quasi-analytic solutions in lD and 2D model geometries. The last set of computations
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illustrates the magnitude

crossbedded formation.

of the effect of anisotropy on a 2C–40 induction logging instrument in a fully 3D

. .

Methodology

(1)

The governing equations for electromagnetic induction are Faraday’s law,

V x E = –iuB,

which relates the electric field E to the magnetic induction B, and Ampere’s law,

VxH=Ji+J$+iuD, (2)

which relates the magnetic field H to the induced and source current densities (J; and J~) and displacement

fields D. An exp(iwt) timeedependence is implicit in this formulation where w is angular frequency.

The induction and magnetic fields are related by the constitutive relationship B = pH, where p is the

magnetic permeability of the medium. Similarly, the displacement and electric fields are also assumed to

be linearly dependent, related by D = cE, where c is the electric permittivity. Lastly, the induced current

density Ji is assumed to be that due to purely ohmic conduction in an anisotropic medium and is written as

Ji = 5E, (3)

where @ is a symmetric 3 x 3 tensor. The symmetry of the conductivity tensor results from neglecting

the effect of Hall currents produced by Earth’s main magnetic field (Onsager, 1931) and is necessary for a

physically sensible energy dissipation within the Earth.

In formulating the electromagnetic induction problem, we note that the electric field E can be expressed

as the sum of a “primary” contribution E. due to source currents J~ embedded in a background reference

medium, and a “scattered” contribution E’

deviate from the background structure. That

arising from conductivity and permittivity variations which

is,

E= EO+E’. (4)

For the computations that follow, the background electrical structure is a uniform wholespace of conductivity

O., permittivit y Co, and free space permeabilityy Ho. Combining equations (1) through (4) yields a single,
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2nd order PDE in terms of the scattered electric field,

V x V x E’ + iup(a + iwe)E’ = –iLIJ/JJO. (5)

The Jo term is the effective source current density for the scattered fields

Jo = [(6(X) – CTOI)+ iLd(C(X)– 6.)1] EO,

and is given by the expression,

(6)

where the spatial dependence of the conductivity and permittivity is explicitly noted by the position vector

x and I is the 3 x 3 identity matrix. For a uniform wholespace, the background electric field E. is readily

computed in the low frequency limit from analytic formulae for dipolar sources (Ward and Hohmann, 1987).

At frequencies up to ~ = w/27r N 1 MHz, this approximation is a reasonable one since the permittivity

of the formation yields a negligible effect. Nonetheless, this term is retained in equations (5) and (6) for

completeness and to emphasize that the approach taken here is also applicable to higher frequency problems.

The unknown fields E’ in equation (5) are determined by the method of finite differences (FD) on

a staggered “Yee” grid (Yee, 1966) where the physical domain is

scattered electric field components (E:, EL and E;) are defined

magnetic fields are computed at cell faces as a postprocessing step

discretized into Cartesian cells and the

on the edge of the cells. If necessary,

based on a differences approximation to

Faraday’s Law, equation (1). Figure 2 illustrates the relationship between a cell and the computed electric

field components.

Examination of figure (2) indicates that the conductivity and dielectric permittivity will be required on

cell edges because that is where the electric field is sampled. In the isotropic case, following the work of

Newman and Alumbaugh (1995), the average conductivity/permittivity on the cell edge can be evaluated

using Ampere’s Law by tracing out a line integral of the magnetic field, centered on the midpoint of the cell

edge. The resulting conductivityy/permittivit y are simply a weighted sum of the conductivities/ permittivities

of the four adjoining cells, where the weighting is based on the area of each cell that is bounded by the line

integral. For the anisotropy problem, however, this approach must be extended because incorporating the

effects of a generalized anisotropy tensor (the 6E’ term in equation (5)) requires values of not only the

&component of the scattered electric field at the point (i + ~, j, k) but also the & and .%cornponents at
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We approximate the values of E: and E; at this point with a linear combination of their respective values

at the neighboring points, as indicated by the solid arrows in figure (2).

The method by which these terms are approximated is closely linked with that used to symmetrize

the FD system of linear equations. Newman and Alumbaugh (1995) noted that, for the isotropic case, the

coefficient matrix of the linear system would be symmetric if each equation arising from the &component

of equation (5) at (i+ ~, j, k) was first multiplied by a scale factor Axi (Ayj+l + Ayj_l ) (A,z~+l + A,zk_l )/4.

A similar pair of scale factors was then found for the equations arising from the j and .2-components

centered at points (i, j + ~, k) and (i, j, k + ~), respectively. For the case of slowly varying electric fields, the

symmetrization process is approximately equal to a volume integration over quadrants of the neighboring

cells. Therefore, to incorporate the effects of anisotropy and retain the symmetry of the coefficient matrix,

the volume integration over components of the BE’ term is carried out explicitly while the other terms in

the equation are simply scaled by the integration volume. For example, evaluating the volume integral of

equation (7) over the region Q : [xi < x < Z~+l; Vj– ~ < Y < ~j+~; Z~–~ < z < z~+~] results in a linear

combination of 9 electric field components (see figure 2). Specifically, from equation (7) we find,

J
1

ozzE~dV Y –Axi(AyjAZk~zz i j k + AyjAZk–~~zz ij k.- I

a’ 4

+ AY3–IAZkG.X ij–lk + A$/j-lAZk-l~zz ij–lk–l)E~ i+$jk.

Furthermore,

/
CzyE~dV E alEl + a2E2,

Q

(9)

(lOa)

where

1
al = –AxiAyj(Azk~Zy ijk + A2fk-lffzv ijk–l)t

8
(lOb)

1
C12= ~&iAyj-l(Azk~zv ij–1 k + Az,+lff.y ij–1 k–l)) (1OC)

El =Evij+~k+EYi+lj+~k and E2 =EYij_~k +EYi+l.j-~k. (lOd)

The expression for the remaining term in equation (7) follows in a similar fashion and is omitted here for

brevity. Contained in the appendix is a full account of the integration procedure for the remaining terms in
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equation (7) along with the FD equations for the y and z components of the current density J arising from

the product BE’ in equation (5).

We note that the choice of an “edg+centered” staggered grid instead of a “face-centered” one (Weidelt,

1999) results in comparatively simple expressions for the spatiaIly–averaged conductivity values (equations

10b–c). In the above expression, the conductivity values are averaged arithmetically since the Jz component

is continuous at the point (i + 1/2, j, k). In contrast, a fac+centered scheme requires a somewhat more

complicated geometric averaging scheme since the normal component of the electric field is discontinuous

across cell faces.

By applying the centered FD and symmetry operators to equation (5), including evaluation of elements

of the conductivity tensor at cell edges (see appendix for more details), a linear system of equations is

assembled,

Ax= b, (11)

where A is the complex symmetric coefficient matrix, x is the vector of unknown scattered electric field

components on cell edges, and b is the source vector containing values of Jo (see equation (6) ) evaluated at

the cell edges. For cell edges which lie on the boundary of the FD mesh, a homogeneous Dirichlet condition is

applied. This linear system is efficiently solved using the iterative quasi-minimal residual (QMR) algorithm

(Freund, 1992). The QMR belongs to the class of Krylov subspace methods which includes the conjugate

gradient method for real matrices. Following Newman and Alumbaugh (1995), we implement a Jacobi

preconditioned to improve the convergence rate of the QMR iterates. Recently however, Avdeev et al.

(2000) demonstrated a speedup of N 10 in wall-clock time by implementing a “low induction number”

preconditioned for isotropic 3D models. Adaption of this algorithm to the anisotropic case is currently

underway and will be presented in a future publication.

Examples

As a simplifying step when constructing a geologically sensible conductivity model, we choose to describe

the electrical conductivity tensor in terms of its principal axes reference frame. Therefore, in sedimentary

formations, for example, the tensor is compactly described as @ = diag(all, all, al), where all is the conduc-
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tivity in the bed–parallel direction and al is the conductivity perpendicular to the bedding planes. The

conductivity tensor is transformed from the principal axes reference frame to the reference frame of the

model (i. e. the z, y and z axes) via a rotation matrix R,

6 = R~diag(all, all, ~~)R, (12)

where the superscript T denotes the transpose operator. The elements of the rotation matrix R are given

by the direction cosines between the principal axes and the model reference frame. For the case presented

here where the conductivity in two of the three principal axes directions is equal, each of the six direction

cosines are uniquely expressed in terms of only two angles corresponding to the strike @ and dip 6 of the

laminations (figure 3). This brings the total number of unknowns for each model cell in figure (2) to four:

al, all, O and #. In the specific case the rotation matrix takes the form,

(

Cos!9Cos# sin $ sin @ cos #
RT . –cost?sin# cosq$ –sinf3sinq5

—sin O 0 Cos6 )

Note that the orientation of the principal axes, and therefore the values

(13)

within the rotation matrix in

equations (12) and (13), can vary as a function of position within the conducting formation.

To demonstrate the validity of the FD scheme developed in the previous section, we first present results

of comparisons with known analytic and quasi–analytic solutions. The first example (figure 4) illustrates

the agreement between the FD solution and the analytic solution for the case of a vertical magnetic dipole

embedded in an anisotropic wholespace, where Cl is the conductivity in the vertical direction. This is a

limiting case in which anisotropic effects are not realized by the source configuration; it serves as a baseline

for assessing the accuracy of the FD code in the isotropic limit. The second example used to illustrate the

accuracy of the code is taken from Avdeev et al. (2000) in which an array induction tool is situated in a

45° dipping conducting borehole in an anisotropic formation (figure 5). Again, the value of al describes

the conductivity of the surrounding formation in the vertical direction. Results from the FD method and a

Neumann series method (figure 6) show strong agreement for the fields computed along the receiver array.

As expected, the effects of the conducting borehole diminish with increasing distance from the transmitting

coil. Lastly, we conduct a self consistency check with the FD solutions to verify that the computed fields

are invariant under rotations of the principal axes of the conductivity tensor. Two models (figure 7) were
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constructed. In Model I the value al specifies the conductivity in the vertical direction (as in the previous

example) and the formation is excited by a 45° dipping array induction tool. In Model II, the array induction

tool is oriented vertically and the principle axes of the formation are rotated 45° in the z – z plane. For

each of these two models, the array is oriented 45° with respect to the prinipal axes, and thus, should

measure equivalent signals. Results of this last comparison among only FD solutions are shown in figure 8

and demonstrate an acceptable agreement.

As an example of an application of our FD anisotropy model, we consider the case of a borehole induction

tool in a crossbedded sandstone unit. Eoliamdeposited crossbedded sands have long been identified as

candidate reservoir rocks (e.g. the Jurassic Norphlet SS and Permian Rotliegendes SS) and remain targets

for hydrocarbon exploration. The modeling results presented here simulate the reponse of a 2C-40 borehole

induction tool in a brine–saturated sandstone across a bed–boundary and demonstrate the effects of electrical

anisotropy on the apparent conductivity curves inferred from this instrument.

Two classes of sedimentary structures were evaluated with the modeling software: symmetrically dipping

herringbone crossbeds and asymmetrically dipping crossbeds. Figure 9 illustrates the geometric configuration

for the symmetrically dipping case where the borehole axis intersects the bed boundary at 90°. We note

that this is not a limitation of the modeling software, but rather a restriction placed on the model to better

understand the effects of the formation anisotropy. For each of the models we set the conductivity values

al = 0.1 S/m and all = 1.0 S/m to simulate the conductivityy of a brine-saturated sand unit. The high

conductivityy ratio of 1:10 is consistent with that seen in clean sands (Klein et al., 1997). The FD method

can incorporate the effects of the borehole in the tool response. However, to isolate the effects of formation

anisotropy, the conductivity of the borehole and drilling mud were not included in the simulations.

Shown in figures (10) and (11) are the simulated apparent resistivity curves as the 2C40 tool traverses a

bed boundary in the brine-saturated sand. The 2C-40 induction tool is a coaxial loop system oriented parallel

to the borehole axis with a 40in transmitter–receiver coil separation and 20 kHz transmitter frequency.

Owing to the high conductivity of the formation, the apparent resistivity curves were “skh-effect boosted”

according to standard industry practice. Simply stated, the process incorporates higher–order terms into the

approximate mapping between apparent resistivity and receiver signal strength (Moran and Kunz, 1962).
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Furthermore, the curves in figures (10) and (11) were also corrected for formation dip 6. Knowledge of

bedding orientation can be obtained, for example, by a conventional dip meter. Correction for formation

dip in the logs shown here is achieved by a scaling factor of 1/ COS(0). This is in accordance with Moran and

Gianzero’s (1979) formula for the apparent conductivity,

~~ = 01A~A2 COS2e + sin2 8, (14)

where A2 = all/al. For the case of large values of A, as we have here (A2 = 10), a simple cosine correction

yields acceptable results as evidenced by the apparent resistivity values far from the bed boundary in figures

(10) and (11) where a. ~ ail = 1.0 S/m.

These examples demonstrate the effects of electrical anisotropy on apparent conductivity curves through

hydrocarbon reservoirs of eolian origin. Figures (10) and (11) show that for a simple 2C-40 induction tool,

the bed boundary in crossbedded sandstones can give rise to a complicated pattern of apparent conductivity

values that is difficult to interpret accurately with an isotropic model. These results underline the challenge

faced by well log analysts when interpreting anisotropic formations and are consistent with the general

findings of other recent modeling efforts (e.g. Anderson et al., 1998).

Conclusions

In summary, the algorithm presented here for modeling EM induction in an aniostropic medium rep-

resents a significant improvement in the ability to accurately simulate the effects geologic structures on

induction tool response. The FD method is used to solve the governing PDE which yields a complex sym-

metric system of linear equations. These are efficiently solved using fast, Kr ylov subspace methods. The

geologic models which can be evaluated are fully generalized, and contain an arbitrary assemblage of 3D

heterogeneities and complexities within the anisotropy tensor and can include the well bore.
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Appendix

To begin with, we point out that the staggered FD representation of equation (5) for the z-component

of the scattered electric field evaluated at point (i + 1/2, j, k) is given by,

[( E;i+lj+l/2 k – ‘~i3+l/2 k)/Axi – (E: i+l/2j+l k–% i+l/2j k)/AYj

~z~-1/2k)/Axi + (E; i+l/2jk – ‘~i+l/2j-lk)/Ayj-l]A~– (E~i+lj-1/2k – E

+ [(Ej i+l j k+l/2 – ‘~ ij k+l/2)/AZi – (E; i+l/2j k+l ‘E: i+l/2j k)/A2k

– (ELi+ljk-1/2
–E’. .

zt~ k–1/2)/AZi + (E&i+ l/2jk ~t+1,2 jk_l)@k-l]A~–Et,

+ iwPJx i-EI/2j ~ + iwpeE~ ~+1j2 ~~ = – ~WPJO. i+l/2j k)

(Al)

where Jz is the x–component of the anisotropic current density given by the quantity 2 . BE’, JOz is the

x–component of the effective source current density given by equation (6), and internodal spacings AK and

A% are given by (yj+l –yj-l )/2 and (z~+l ‘Zk-.-l2,2, respectively. Similarly, we define Am = (Zi+I –zi-1)/2

and, thus, the FD equations for the g and z components at points (i, j + 1/2, k) and (i, j, k + 1/2) are given

by,

[(E~ij+l k+l/2 - ‘; i j k+l/2)1Ayj - (E~ij+l/2 k+l-E~i j+l/2 k)fAZk

– (E; ij+l k-1/2 – ‘;ijk-l/2)/Ayj + (E~ij+l/2k – ‘~ij+l/2k-1)/AZk-l]A~

+ [(EJ i+l/2 j+l k – ‘; i+l/2 j k)/Ayj – (E~i+l j+l/2 k–E~i j+l/2 ,k)/Axi

– (E; i-1/2 j+l k – ‘;{-1/2 jk)fAyj + (E~ij+l/2k – ‘ii-l j+l/2k)/Axi-l]A~

+ iLJ~JYi j+lp k •1- iwpeE~i ~+112k = – iW/LJOYij+l/2j k

(A.2)

[(E~i+l/2jk+l - ‘Li+l/2jk )/A~k – (-% i+lj k+l/2–E~ i j k+~/2)/Axi

– (ELi-1/2 j k+l – ELi-1/2 jk)/A~k + (ELi.jk+l/2 – E~i-l jk+l/2)/Axi-l]AZ

+ [(E; i ~+1/2 k+l – E; i j+l/2 k)/A~k – (E; i j+l k+l/2 –ELi jk+l/2)/Ayj (A.3)

– (E~ij-1/2k+l – ‘~ij-l/2k)/AZk + (ELijk+l/2 – ‘~ij-l k+l/2)/Ayj-l]A~

+ iwtiJ. i j k+l/2 + W.@l ~j ~+1/2 = – iw~Jo. i j k+l/2.

As noted earlier in the text, the method for incorporating electrical anisotropy into the FD equations

is closely linked to the method by which the FD equations were first symmetrized for the isotropic case
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(Newman and Alumbaugh, 1995). To summarize their approach for the isotropic case, the linear system

of FD equations was made symmetric by scaling each of the equations arising from the ~–component of

the governing PDE (equation (A. 1)) by a “volume” scale factor, 0., the i–component by fly and the 2–

component by tlz. The scale factors are equivalent to one fourth of the total volume of any four cells which

share a common edge. In determining the scale factor !2., the common edge is the line segment extending

from xi < x < xi+l, which includes the point i + ~, and its value is given by Axi A~j AZk. For the other two

scale factors, flv and O., their values are given by ATi Ayj AZ~ and A?EiA~j A.zk respectively. This scaling

process is approximately equivalent to an integration over the corresponding volumes.

To summarize the new approach for anisotropic media, terms in the FD equations (Al through A.3)

not dependent on the anisotropy tensor are scaled as before with simple multiplication by the corresponding

factor, f2Z, flg or flz. Terms which arise from the discretization of the current density Jz, Jy and J,, are

scaled by a more careful integration over the scaling “volume”. In the discussion that follows, we demonstrate

how these integrals are evaluated to incorporate a symmetric conductivity tensor E into a symmetric FD

system of equations.

We begin by focusing our attention on the x–component of the current density (Jz) arising from the

tensor product BE’ in equation (5). Applying the usual scaling factor to this term is approximately equal

to the integration

I
J= i+ijkAxiA~AG ~ ~ J.dv, (A.4)

.

where flz is the volume such that xi < x < xi+l, yj_lp < y < Yj+lp and %-112 < z < zk+l/2. In consulting

figure 2, however, we note that only the x-component of the electric field is defined at the point (i+ 1/2, j, k)

on the FD staggered grid. In the most general case, computation of the current density at this point also

requires estimates of the y and z–components of the electric field since Jz = crzzE: + ozvE~ + CJzzEj. To

accommodate this apparent shortcoming of the staggered grid, the volume integral in equation (A. 1) can be

decomposed into the sum of three integrals, each involving only one component of the electric field.

(A.5)

At this stage we recognize that the first of these integrals is easily approximated by multiplication by the
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usual scaling factor. As for the other two, a reasonable approximation arises when examining the boundary

conditions on the fields required by the physics of the problem.

Consider four conducting cells arranged as shown in figure 2. Assuming that the electric field is defined

throughout this volume (and not just at the edges as we’ve done for the FD approximation), it is clear that

the E. component is also everywhere continuous since it is tangent to any possible jumps in conductivity

along cell boundaries. This is not the case for the other two components, -Ey and E.. Conductivity jumps in

the vertical direction necessitate a discontinuity in the ,?32component along the vertical dh-ection. Similarly,

lateral conductivity jumps necessitate a discontinuity in the Ey component along the same lateral direction.

TO accurately represent the possible discontinuities in the Eg and & fields, the remaining two volume

integrals from the FD approximation in equation (A.5) are evaluated in the following manner.

where the local coordinate transformation is implicit in the integration variable and the value &ZZ is the

volume weighted average of the azz for the four cells. The first integrzd in equation (A.6) is split into two in

order to accommodate the discontinuity in Ey as follows,

The second integral in equation (A.6) is then written as,

where

.

-—
u

Xz
= ~(Ayj~ZZij~-l + AYj-10ZZij-l k-1)/Ayj
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(All)



and

and

6$= = :( Ayjuzz .j~k + Ayj-IOZZij-I J/Avj.

Furthermore,

(A.12)

(A.13)

(A.14)

To complete the FD system of equations, a similar procedure is applied to the Jy components at points

(i, j+l/2) and the Jz components at points (i, j, k+l/2) The mathematics is straighforward and not presented

here in detail since the previous development serves as an adequate template. The final expressions for all

symmetrized components Jz, Ju and Jz in equations (A. 1-A.3) are as follows:

+ Ayj–lfbkffz. ij-1 k + Ay3–1fi~k-l~zzij-1 k–dE:i+~jk

~AxiAyj_l(Azk-lu. vij-lk-1 +A.wzyij-l k)(-E;i3_+ k + ‘;i+Ij-; k)
‘8

(A.15)

+ ~Ax~Ayj(Azk–l~zyijk–l + A.Wzvijk)(Ejij+~ k + ‘;i+lj+; k)

~AxiA~k(Ayj–l~zzij–lk+AYj~.. ijk)(E~ij,r.++ + ‘Li+ljk+~);
‘8

+ ~Ax~-lAyj(Azk-l~zvi-ljk-l + A~k~.yi-ljk)(E~i_+jk + E~i-+j+lk)
-1

(A.16)

~AyjA~k_l(Axi–l~vzi–ljk–l+ A$iffv.ijk-l)(E~ijk_+ + ‘lij+lk–~)
‘8

.
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and

/
Jz dV z ~~~k (Axi–lAvj–l~zz i-1j–1 k + Axi-I&Ijvzz i–Ij k

o.

+ AxiAyj–l~zzij–l~ + AXiAyjGZij JE:ijk+&

.

+ ;AyjAzk(A$i–lau, i–ljk+Axi~yzij–l k)(E; ij++k +E; ij++k+l)”



Figure 1. Crossbedded eolian deposits in the Jurassic Navajo Sandstone from Zion National Park, UT.

Macroscopic electrical anisotropy in this formation results from small-scale variations in grain size and pore

space which also give rise to the differential weathering shown here. This formation is analagous to the

Permian Rotliegendes and Jurassic Norphlet sandstones, classic reservoirs of the North Sea and Gulf Coast,

respectively. Photo courtesy of Prof. Duncan Huron, Duke Univ.
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..-’...

j+]+’””“J

Figure 2. Representation of the staggered grid stencil used for the FD computations. Discretization of

the V x V x operator for the &component of equation (5) at point (i + \, j, k) utilizes components of E’

from each of the 13 locations indicated by the arrows. A subset of 9 E’-components, indicated by solid

arrowheads, is used for discretization of the 6E’ term. Also shown is a model cell throughout which the

electrical conductivity tensor @i~–1~ remains constant. For notational convenience, we make the following

definitions: Axi = xi+l – xi, Ay3 = yj+l – yj and Az~ = z~+l – z~.
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z’ eJz

$x’

Figure 3. Geometric relationship between the model reference frame (z, y, z) and the principal axes reference

frame (s’, y’, z’). The plane labeled S intersects the origin and is perpendicular to the z axis. The plane

labeled S’, representing the bedding planes, intersects the origin and is perpendicular to the z’ axis. Angles

# and 8 represent the ‘strike’ and ‘dip’ of the plane S’ with respect to the plane S.
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–6 –4 –2 O 2 4 6

Distance Above VMD [m]

Figure 4. Comparison of analytic (lines) and FD (symbols) of the axial magnetic field magnitude due

to a 100 kHz vertical magnetic dipole embedded in an anisotropic wholespace. Vertical and horizontal

conductivities of the wholespace are 0.1 and 1.0 S/m, respectively. Open symbols and dashed lines represent

the imaginary component of the field while closed symbols and solid lines represent the real component.
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Figure 5. Schematic representation of a deviated borehole in an anistopic formation. The 45° deviation

is constrained to the zz–plane. The transmitter (Tx) and receiver array (Rx) are coaxial loops centered on

the borehole axis and each separated by 0.2m. Borehole conductivityy is a. = 10S/m. Anisotropic formation

conductivities are a.. = rsv~= l.OS/m and ax. = 0.25 S/m.
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Figure 6. Comparison of the magnetic field along the axis of a 45° dipping borehole due to an axially

aligned 160 kHz maguetic dipole. Shown here is the difference between the total field and the field due to

the same source located in vacuum.
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Model I Model II

45° Dipping I
~isotiopy ~ TX

()
a“ o CJxz

OOHO

cJ~z o o~~
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Rx
Array
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z

Figure 7. Schematic representation of two models constructed for an internal consistency check of the

FD solution. Shown are the receiver (Rx) coil spacing, FD reference frame and formation conductivity

tensor for each of the two models. The conductivity tensor of the formation is given by equation (11) where

al = O.IS/m and l. OS/m. The transmitter (Tx) frequency is 100kHz.
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Figure 8. Axial component of the magnetic field FD results from evalution of the two models shown in

figure 7. Shown here is the difference between the total field and the field due to the same source located in

vacuum. Two solutions are presented for model I: one for a preliminary version of the FD code based on a

strictly diagonal conductivity tensor (tri-45) and one which accepts a dense generalized conductivity tensor

(gen-45). The FD solution for model II is shown by the symbols labeled (gen-0).
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Figure 9. Photograph of a crossbedded sandstone with symmetric laminations dipping an angle 0 with

respect to the bed boundary. Also shown is the orientation of the borehole axis used in the numerical

simulation of this structure. Photo courtesy of Prof. Duncan Huron, Duke Univ.

25



.

w
c.-
0
n
.-
;

l+

z

c

c

1

1

Dip–corrected Not Dip-corrected
,,, ,,, ,
,,, , ,,,

I I I I I I I

1.00 1.20

4pparent Resistivity [Ohm-m]

,,,

III::!:::::E::

,.,..f..y...y.-; fi...:-

!./.../..../: 1 ~ :...... ,...--,-....-

l.l-.l!..-L.-!-
11 I I I I I

1.2 1.8

Apparent Resistivity [Ohm-m]

Figure 10. Apparent resistivity curves across a bed boundary in a symmetrically crossbedded formation

(see Fig. 9). The bed boundary is located at 0.0 on the vertical axis. Shown are the results for six cases of

symmetrically dipping laminae with Oranging from 0° to 50°. The set of curves shown on the left have been

scaled by a factor COS(O(Z))where z is the midpoint between the transmitter (Tx) and receiver (Rx) coils.

The unscaled apparent resistivity curves are shown on the right.
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Figure 11. Apparent resistivity curves across a bed boundary in an asymmetrically crossbedded formation.

The bed boundary is located at 0.0 on the vertical axis. Shown are the results for six cases where the

orientation of the laminations in the lower bed remains fixed at 50° while the laminations in the upper bed

vary by an angle 6 = 00,100, ..., 50°. Note the presence of “polarization horns” at N 0.2 on the vertical

axis. The set of curves shown on the left have been scaled by a factor COS(O(Z)) where z is the midpoint

between the transmitter (Tx) and receiver (Rx) coils. The unscaled apparent resistivity curves are shown

on the right.
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