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FIGURES

Principal views of 3-D prismatic body in an arbitrarily
layered earth. Dashes outline a typical discretization
of the body into rectangular cells, shown only for the -
right half of the body in section and the upper righthand
quadrant in plan. The algorithm can treat bodies cutting
across layer interfaces, although this is not shown in
the figure. .

Geometric relation between rectangular cells m and n. As
defined in equations (19) and (21), the electric field at
the center of cell m at %, is the sum of the fields due to
each subcell comprising cell n at Fn.. The subcell position
vector is Tp(jjk)-

- Distribution of basepoints around desired function for 2-D
cubic interpolating polynomial. A 2-D grid of basepoints ry

and zi is specified that is sufficient to cover all values
of r and z' encountered for a given body and range of
receiver distances.

. Our solution is verified by comparing the response of this
-elongate 3-D body to the response of a 2-D body of identical

cross section. Dashed lines show rectangular cell
discretization with only half of the body shown in plan
and longitudinal section. The smaller cells near the
center give greater accuracy to the scattered fields
along the y axis over the edge of the body. The

- strike length is 40 km, depth is 750 m, depth extent 1s

1000 m and width is 5 km,

 Profiles of normalized real. (Re) and 1maginary (Im) secondary

electric and magnetic field components at 1,0 Hz along the y

~axis of the 3-D body of Figure 4 and across a 2-D body of

| ~ identical cross section for a basement resistivity of

10. @-m. The response of ‘the 3-D body, of strike length

- (SL) 40 km, is plotted using filled dots while that of

6.

fthe 2-D structure is shown as solid curves.

_Profi]es of normalized rea],(Re) and imaginaryl(lm)ZSecondary
electric and magnetic field components at 1.0 Hz along the y

axis of the 3-D body of Figure 4 and across a 2-D body of
identical cross-section for a basement -resistivity of

© 200, @-m. The response of the 3-D body, of strike length
~(SL) 40 km, is plotted using filled dots while that of

the. 2-D structure is shown:as solid curves.
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7. Profiles of normalized real (Re) and imaginary (Im) secondary 19

-electric and magnetic field components at 1.0 Hz along the y

axis of the 3-D body of Figure 4, a similar 3-D body of

SL = 60 km, and across a 2-D body of identical cross section

for a basement resistivity of 4000. e-m. The response of

the 60 km long 3-D body, plotted using open triangles, shows
improved convergence over the response of the 40 km long

body with the 2-D transverse electric results.

A-1. Geometric relation between electric current element Jdv' at 28
(x',y',2"') in layer J to field point at (x,y,z) in layer .
Also shown are general solutions to Debye potentials ¢ and.©
in each medium, with upward and downward pointing arrows
denoting direction of propagation.




ABSTRACT

An algorithm based on the method of integraT equations has been
developed to simulate the electromagnetic response of 330 bodies in
léyered earths. The inhomogeneities are replaced mathematically by an
éQuivalent currenf distribution which is approximated by pylse basis
functions. A matr{x equation is constructed using the electric dyadic
Green's function appropriate to a layered earth and is solved for the
vector current'in each cell. Subsequently, scattered fields aré fodnd
by integrating electric and magnetic dyadic Green's functions over the

scattering currents.

Efficient evaluation of the dyadic Green's functions‘is a major
consideration fn reducing computation time. We find that tabulation/
interpolation of the six electric and five magnetic Hankel transforms
defining the secondary Green's functions is preferable to any direct

Hankel transform calculation using linear filters.

A comparison'of reSponses over elongate 3-D bodies with responses
over 2-D bodiesbof identica1~cross section using plané wave incident
fields is the only éheck‘avaiIab]é on our,solution.; Agreément is
excel]ent; hdwever,'the'lengtﬁ'that'a'B-D body must haverbefore

departures'between-z-n transversé eleétrié and corrésponding 3-D

~ ‘signatures are insignificant depends strongly on the layering. The 2-D
| :transverSe,magnetié;and corresponding 3-D calculations agree closely

|  regard1ess of the 1ayered‘host.L»




INTRODUCTION

Developments in Cdmputer and scale modeling over the past several
years have contributed'profoundly fo our understanding of the relations
bétﬁeen subsurface three-dimensional (3-D) resistivity structure and
observed electromagnetic (EM) quantities. 'However, with a few
éxceptions (Lajoie and West,‘1976; Meyer, 1977); EM simulations have

been confined to inhomogeneities in half-spaces.

The importance of overburden layers in determining EM signétures
ovér potential ore deposits has been recognized by mining geophysicists
for some time. In addition, large;scale resistivity structures such as
sedimentary basihs or magma chambers,‘importantlin cfust-mantle or
geothermal investigatiohs, may reside in an essentially one-dimehsional
regional host determined by the physiochemical conditions of the

particular tectonic environment (Brace, 1971; Wannamaker et al., 1980).

- 'To illuminate characteristics of EM scattering from bddiés in
layered earths, wé have extended an existing intégral equations
algorithm previously used to model inhomogeneities in hélf spaces
(Hohmann, 1975; Ting and Hohmann, 1981). Rather»than detaillreSponses
of particular geological structures,,which_we‘intend to do in subsequent
;vcpmmunication, we explore the theory and framework of the algorithm aﬁd
verify 1ts‘accura¢y§,iA major issue which must be addressed is the'
derivation and efficieht evaluation of the complicated électric and
magnetic dyédic Green's functionégﬂthe kernels’ of theviniegral

equations.




THEORY OF INTEGRAL EQUATIONS

| Governing Equations

~ Consider a 3-D body in an n-layered host shown confined to layer J

for simplicity in Figure 1. The total eiectric and magnetic fields

(Et’ H ) as a function of position r and for an etot time dependence
obey Maxwe]l s equations

-oxE, = 2R+ R, ()
and

Sl = 3,¢3, (@

-h

wherelﬁt = 9Et is the total current density, ¥ = g+ 4we is the admit-
tivity and 2 = iuy is the impedivity at -any point and where 31 and ﬁi
are impressed electric and magnetic source currents. Conductivity,

. ) ye

dielectric oermittivity and magnetic permeability are ¢, ¢ and .

- In our solution, the 3-D body is replaced by an equiva]ent
scattering current distribution (Harrington, 1961, p. 126). The total
fields (Et, ﬁt) in any layer are hence decomposed into an incident set
' (Ei’ "i) due to 51 and Mi- and a scattered set (Es, Hs), contributed by
| the body. Heimhoitz equations in iayer 1 with the body in layer J can

be written ' , | . : .
02+ KB)E, = (3 0% + 505, ¢ 5=, o, ®)
@ K, = (-illee-w 6,00, - 9x3, . g v (4)
e K)E =0 1% (5)
e KD, = 0 B | iv ,’ _’ e, (6)
@+ BE, = (%oa  35)3, ¢ g =i (D
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Figure 1. Principalwviews of 3-D_prfsmatic body in an arbitrarily
layered earth. Dashes outline a typical discretization of the body into
rectangular cells, shown only for the right half of the body in section

" and upper right-hand quadrant in plan. The algorithm can treat bodies

cutting across layer interfaces, although this is not shown in the
figure. ‘




and
3+ KA, = (£99 + §)f, - o3 t=5 , (8)

in which k; = ¢C§;§:' is the wavenumber in layer Z. In (7) and (8),
35 = (?b-9j)Eb and f’ls = (ib-ij)ﬁb are the equivalent scattering currents
substituting for the body, while the total fields within the body, as
yet unknown, are Eb and ﬁb' When layer boundaries intersect the body,
subscript.Jfreférs to any layer containing a portion of the body.
Henceforth we assume that yuj and u, equal the free‘space value ﬁo
everywhere and drop ﬁs from consideration.. ?unthermore,_displacement
currents in the earth may be neglected, so that ¥; = oz and ¥ = o

hereafter.

The solutions to (5) through (8) are given by the integral

equations
FF) I F)de - (9)
and

Hy (P = 3&56-.?‘).35ca-wv'_ | | -, (0

‘valid for bodies cutting across layers. The quantities éf(?;??
: and G {(F3F v are 3 x 3 dyadic Green's'functions relatinn a vector
fleld at Fin layer 1toa current element at F' in layer j, 1ncluding

“l= j; These functions are der1ved in Appendix A. '




Matrix Formation

Van Bladel (1951) has shown that (9) is valid even within the
inhomogeneity, provided a suitable principal value for the integral is
defined. A simple matrix solution can thus be found using the method of
collocation with pulse subsectional basis functions (Harrington, |
1968). The body 1is approximated by N rectangularly prismatic ce]is,
each of dimensions Mxn n by Myn n by Mzn ns Where Myns Myn and "zn are
positive integers and An is the size of a cubic subcell in ce11}n.(seg
Figures 1and 2). Over each cell, the body conductivity o, and total
electric field Eb are presumed constant. Reétangu]ar cells are useful
for approximating elongated inhomogeneities, since variations in Eb are
| more abrupt acroﬁs shorter dimensions of the body than across longer

ones.

Adding the solution of (3) to (9), the total electric field at the
center of cell m due to all N cells is approximated by (Hohmann, 1975)

& -

E (F) = E(Fo) + i(,,n 0D s (i Ep (P . (11)

in which the electric dyadic Green S function for a rectangular prism of

current is

mitn

| r(r~ F) = Sé(s S L (12)

Rearranging'(ll) and using more concise notation,

N ~ kﬂl -» ol -
2[00 Gy~ Band En = B (13)
‘where«
-1 T
= 14
mn 5 mEn




subce" ik

Vi

Figure 2. Geometric relation between rectangular cells m and n. As defined in equations (19) and (21), the |
electric field at the center of cell m at P, is the sum of the fields due to each subcell comprising cell n

at F,. The subcell}position vector is ?n(ijk)'




with 1 and 0 the 3 x 3 identity and null dyadics respectively. MWhen

written for all N values of m, (13) yields the matrix equation
[Z].[Eb] = [’éi] ‘- (15)

to be solved for the electric fields within the cells, From these,
scattered fields about the inhomogeneity are computed using discrete

versions of (9) and (10), specifically
N N T - . . .
’Es(f') = "%(o'bn-o—j)rl (FiFa) Eb("n) ‘ (16)
and

ne|

- N -
Hy®) = 206,70 Ty (F3 70 EglF,) - . (17)




COMPUTATIONAL CONSIDERATIONS

Integration of Green's Functions

Calculation of l"l(,,n o) from Gz(' 7;#) for the matrix elements
requires some care. When the inhomogeneity does not cut across layer
interfaces, as in Figure 1',’Z = J throughout in (13). Each cell in this
case is coupled to every other cell by a Green's'function composed of a
~primary or whole space component and a secondary component (see Appendix

A), i.e.,

PYE S~E

rl(mn) =

mn)

The primary component in turn is split into volume eurrent and free
charge contributions pertaining to the z,J. and §'vv J, terms in
(7). The free charge contribution can be defined as the gradient of a
scalar potential ‘¥ (Hohmann, 1975). | | |

~‘When computing matrix elements, a sufficient approximation for the

‘evolume 1ntegret16n is

P . n pnN o '
v !lmn) Y g:‘%. vr (V‘ &V‘nmk)‘ - ‘ (19)
~ where ,F lr m> ,uno) ' is the volume Green S function fbr a cubic

subcell of current as per Hohmann (1975) “As defined in Figure 2, the

'subee]l position'vector is
E Fn(;';&) = (xn"bn(ﬁ‘%“t‘l".'»z‘* (Yn".An (!b%ﬂ"j));"‘ (zn*dn(&éﬂ,'k))a . (20)

The charge term is similarly given as




PNE MenMyn Mg o g -
) = i{-l él k%l vl 7 (Bt Faa) (21)

but now :ﬁ:(\:m";najk)) , the charge Green's fu‘nct'ion for a cubic
subce]l, is evaluated using the more involved integro-difference scheme
adobted by Hohmann and Ting (1978). In calculating sﬁ:(";“) we do not
specify charge and current terms, though they can be defined from (7).
An integratibn analogous to (19) applies exceptAthat the cubic subcell

is treated simply as a dipole current source, meaning

sﬁf(ﬁm"i"nﬁjk)"‘ Aisa:(im'.i‘n(ijk\\ . (22)
If the body chts across layer interfaces, subscripts 1 and J in
(13)yrefer to the layers contaihing cells m and n respectively. Cells
in différent 1ayers are coupled only by secondary electric Green's
functions, for which charge and current terms are not given; Added
effort in determining Fémm is required since accurate ana1yt1c'
expressions like \fﬁf(sm;;,‘m) cannot be obtained. Whenever cells m
~and n are separated by an interféce and‘IFm—F,mk)h A, 2 furt.hg,r
division of the subcell into eight cubes, with each of these considered

as in (22), 1s adequate.

The quantities ’F‘f(r‘f;ﬁ‘) j an& F‘:(,F;;'F,,) in (15) and “'(16) come about
. fn;a'sfmi]ar fashibn, “When the fiéfd boini'resideS‘in theHSame layer as :

_jrthe éel], priméry and'secbndary'compbnénts ﬁo both‘electric andvmagnetic

Gréen'; functiong‘agaihrarise.}Aﬁaiogé'to (19) and;(ZI),are“also

: _‘embloyér‘dr:inr ’thé integraition',,with the I_cubic'su[),ce]ls' bevi‘r'lg.,trea'ted as
~dipole sources as_in'(éz)'for allvat’tﬁe charge‘tefm;"In‘thiS'latter

case, a surface integration over the cubic subcells in the manner of




‘Hohmann (1975) gives .;Ffli;i,.(.-jk)) . MWe add that, since no charge
appe&rs within any rectangular cell, no scalar potential contributions
to either matrix eleﬁents or scattered fields due to interior faces of
'the subcells need be computed in (21), thereby increasing the efficiency
of the'algorithm. When a receiver resides in a layer different from
that of the cell considered, only secondary Green's functions exisf,

with the cubib subcells once more treated as dipoles.

Our method of integrating the dyadic Green's functions over the
' kectangular cells, for both matrix terms and scattered fields, is
inherently more accurate than that of‘Das and Verma (1981), who replace

such prisms by spheres and cylinders regardless of their aspect ratios.

~Calculation of Green's Functions

Efficient evaluation of the dyadic Green's functions in Appendix A
is necessary to.avoid prohibitive computef time. The primary solutions
afe analytic expressions and’presént no problems, but the secondaﬁy
| ‘Green's;functibhs require Hankel transformation of complicated kernel

~functions.

. To speed ébﬁputation, tab1e§ of the six electric and five maghetic
Hénkei transforms are set up‘pfior to hatfix formation and scattered
field ca]c’ulatfon, ‘from which specific values of sﬁi(r‘;ﬁ') . and ‘55:(?;!")"

E are ébtainéd by cubic*fnterpolation uéing'Newton's D1§ided bifference

‘hethod (Carﬁahan ét'al.. 1969). For a giVeh ]ayeredrearth and |
‘ﬁfreduehcy; the trahsforﬁs aférfuhctiqns of hofiiont&l-diSt&nce (r),
field point depth (z) éndhcurreﬁt depth (z‘);‘,Hencé the matrix elements

require a 3-D interpoléting polynomial in r, z and z' whose formula is

10




o | F(r v 73) = §(r,z,2)) +V(r-r.1€[r,,".] ¥ (2-2)§ 20200+ (2-2)) §(2},2)]
4 (e-r XS 21+ (2 2X228 (23 2,2,) + (2226 (25,2, 2,
+ (wr.Xz-z.)ftr,,n;zg,§,l + (r-rX2 2§ [n r 522,20 ]+ (22 X2 200 6(2,2,5 22,2, ]
+rrXe-n)Xr)Snn n R + @222 23)§[25,22,20,2.]
+ (zzz,yz'.g;y(z-z',)t?[z; 23,20,20] ¥ (-rr-r)2-2)8 (0,1, 032,52, ] (23)
+ (pfp,xz-z,)(z-zg)q[r-,,r,-,z,,z,.,zJ + (P-rXr-rX2-20)§[r 1y 03 25,20 ]

+ (PRS0 0028 25,21 + (22Xe-20242)8(25,2:2,:2; 21]

+ (zvi.XzLZIXzﬁzé)9[Zz, c,za ,zz, '] + (r-r)Ye~2 X2~ 2,)5["3,?" :zllzhzznz ]

where a 3-D grid of basepoints ri, z; and zi 1s specified that is
sufﬁcient to cover all values of r, z and z' encountered for a given

body. Various difference terms are defined by

) = [5n2,20 fzzlGer) = Stanll,

flnnr] = flandl, - Serdl, 3/ = flnenl], z:
flrfara222) = ii[r,,r,, ]l - S-[,r,r}‘ ; ﬂz,_-z,) - G[r,:r,,r.;i‘,z.]lz‘
fpmans] « henal, - eomelyl

~ etc. (Carnahan et al., 1969).

Field poihts generally reside on specified di sérete levels of z
(nomally the surface at z = 0) and so the }fol'lowi"ng 2-D formula in' r

; and;‘z' ‘app] 1_'es::

?(rz) = Q(r., )+ (r-r§Ln nl ¢ (22, )5[21.2] + e Yr "ﬂﬁ"a h,"-}
B U SRR R L (ST |

(24)
ErdETXE-SIRSN ] ¢ @Kz 22§z 2,2, 24 ]

< + (r—r,)(r-r,)(z'-z:)s[r,.r,,r.-,z;,z'.] + (r-rX2-2)X2-23) § [ 23 ,25,20 ]

11




‘A schematic of this interpolating polynomial appears in Figure 3.

New Hankel transform table values must be coﬁpdted whenever layer
parameters, frequency, body geometry or range of receiver distances are
altered. These basepoint values are calculated using Anderson's (1975)

subroutines ZHANKO and ZHANK1. Note that exact function values are

~ returned whenever 2-D or 3-D interpolating polynomials are evaluated at

any of the basepoints. It therefore pays to select basepoints near cell

and receiver locations if possible.

Computation Times -

The cubic interpolating polynomiéls we use are certainly more time

_consuming than the linear interpolation of Hohmann (1975). However,

several imprdvements in other aspects of the algorithm have resulted in

computation times for construction and reduction of the matrix to be

essentially those described by Ting and Hohmann (1981). Of the total
run_tiMes for bodies consisting of more than about 40 cells, computation

of the Hankel transform tables takes less than 2-3%.

Das and Verma (1981) éuggest that direct use of a linear digital
filtérihg techniqué such as that of Anderson (1975, 1979) is an-

efficient,meahs df evaluating the Green's functions. We do not agree.

Linear filter methods versatile enough to handle the wide rangeVOf

A‘]ayered earths of interest in electrical geophysics.general1y need in

excess of 50 terms to evaluate a Hankel transform. Furtﬁermore,}the

kernel values in each of these terms require tﬁme;consumihg complex

exponehtiétioné,‘the numberrowahich increases with the number of‘layers,-
(see Appendix A). Our equations (21) and (22) have been programmed to

require just 32 and 16 complex mu1ﬁ1p1ications'and additions to evaluate

12
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~.for a given body and range of receiver distances. o




- a Hankel transform. Even so, the interpolations constitute the most
time consuming part of the integrations. Thus, we believe that an
algorithm such as ours, which employs tabulated transforms, uﬁlI‘perfonm
the .necessary integrations fOr'a given body-iéyering geometry in at
least an order of magnitude less time than wil].é routine using l1inear

filters throughout.

14




‘earth's surface,‘IE

CHECKS ON THE SOLUTION

To this time, no one has published calculated responses of 3-D

‘bodies in earths with layer interfaces both above and below the bodies,

either for plane wave or finite sources. To establish thé accuracy of

our algorithm for this most general case, we can only compare

-computations for elongate 3-D bodies with those for 2-D structures of

identical cross section‘dsing plane wave incident fields (see Appendix

B).

Our program can accommodate an arbitrary number df layers but, for
simplicity, wevhare considered an 1nhomogeneity in'the‘upper layer of a
two-layer earth (Figure 4). The body is a plateélike.feature 1000 m
thick at a depth of 750 m with the lower layer interface situated

closely below at 2250 m. Its strike length is 40 km; Horizontal plate-

like bodies within compact layer sequences demonstrate strongly the
special_effects of host layering on inhomogenéity responses. The
intrihsic resistivity of the body is 5 n-m while that of the iayer in
which it resides is 200 g-m. Basement resistivities of 10, 200 and 4000

Q-m were exam1ned for plane wave exc1tat1on at 1.0 Hz.

',Surface fields scattered from this 3-D body are compared with those |
from the corresponding ZQD structure, the latter célculated.using a |

f1n1te element routine (Rijo, 1977), in Figures 5, 6 and 7. The

Vsecondany e1ectric fie]d in the y-d1rect10n, Eys' corresponds in the 2-D
~case to the transverse magnetic (TM mode) of excitation‘and has been

: -normalized in the plots by the incident electric field magnitude}at4fhe |

yo|°’ The transverse electric (TE) components Eyes

Hysland H,¢ have been normalized respectively by |E,.|, |Hyo| and IHyOI.

15




Figure 4. Our solution is verified by comparing the response of this
elongate 3-D body to the response of a 2-D body of identical cross
section. Dashed 1ines show rectangular cell discretization with only
half of the body shown in plan and longitudinal section. The smaller
cells near the center give greater accuracy to the scattered fields:
along the y axis over the edge of the body. The strike length is 40 km,
depth is 750 m, depth extent is 1000 m and width is 5 km.
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Figure 5. Profiles of normalized real (Re) and imaginary (Im) secondary electric and magnetic field
components at 1.0 Hz along the y axis of the 3-D body of Figure 4 and across a 2-D body of identical cross
~section for a basement resistivity of 10. Q-m. The response of the 3-D body, of strike length (SL) 40 km,
is plotted using filled dots while that of the 2-D structure is shown as solid curves.
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Figure 7. Profiles of normalized real (Re) and imaginary (Im) secondary electric and magnetic field
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Agreement in Figure 5 between the 2-D and 3-D results for the 10
"n—m basement is excei]ent indicating that the 3-D body is sufficiently
long at this frequency to appear two-dimensional and, more importantly,
'that our 3-D results are accurate. The same statement can be made
regarding’the results of Figure 6 where a 200 q-m basement was used,
with the possible exception of the imaginery component of Hys° ,in
Figure 7 concerning the 4000 g-m basal ha]f—spece, however, a serious
discrepancy is apparent between the 2-D TE calcuiations‘and those for
the 4O km iong‘3QD.structure. Evidently, the lengthjthat a 3-D'body_

| must be for it to behave two-dimensionally for the TE mode depends upon

the 1-D sequence within which it resides.

By increasing the strike length of the 3-D body to 60 km, the
agreement between 3-D and ZQD TE;responses‘in Figure 7 is much
improved. The iack of agreement between 3-D and ZQD responSes when the

resistive basement is considered is not due,vfor the most part, to eny

- special features‘of the scattering currents.within'the'body.'iThe

primery or whole-space electric Greenfs functions dOminate the cell-to-
cell coupiing terms in the matrix % of equation (14), so that the | |
interior E-fie]d distributions using different layered ‘hosts are iargelv

i,scaled verions of each other with overall levels determined by Ei'

Indeed this is the maJor reason for the peak amp]itudes of Hys and H

‘increasing in Figures 5 through 7 as the basement resistivity

increases. For piane waves at a given frequency, resistive 1ayer {

sequences result in iarger values of Ei’ and hence Eb (but not Hi) than

do conductive ones.
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| ‘It,is instead the layered host containing a given 3-D body that
deiermines whether 2-D and_3-D results agree. Two factors are at work
here. First, dissipation of EM waves in resistive media is less than in
conductive ones. Sééond,.and we believe more importantly, current
perturbatioﬁs about a 3-D body overlying a resistive basement tend to be
confined to the léss résfstive uppek layer. This leads to a geometric
attenuation of the secondary fields with distance that is slower whén a
resistive basement is present than when a conductive.one is. In
particular then, the contribution of free charge on the ends of the 3-D
body to the secondary electric fields at the receiver points we have
considered is strqnger for a resistive basement than for a conductive
one. vSuch free éharge is not pfesent on ZED bodies for the TE mode.
Similarly, the absence of scattering current beyond the ends of fhe 3-D
structuré (current which is present in the 2-D TE case) has an effect on

the secondary H-fields at the receivers considered that is greater when

-a,resisthe basement is preseht than when a conductive one fs..

It is debatable whether the discrepancies remaining bétween the 3-D
and 2-D TE calculationé in Figure 7 seriously affect the magnetotelluric
apparent reéfﬁtivity_andl1mpedahce phase, since these functions include
the primany E- and ﬁ-fieldskin their definitions. However, the 10-15%
;qiffehences in the secondany,H-field componehts would'translate;to
commensurate dépaftures betWeeﬁ 3-Drand Z-DiTipper estimates; which we

do not find satisfactory.

The 2-D TM and 3-D E, profiles agree closely, regardless of the

Y
layered host, since free charge on the boundaries of the body is

included implicitly in both these fbrmu]ations. The lack of charge and
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‘vscatteking current beyond the ends of the 3-D body, Charge and current

which are present in the 2-D TM case do not contribute materially to its
secondary E-fields, A very small component of Hys exists for the
3-D body, which is zero for the 2-D TM mode, but its magnitude is less

than 3% of |H, | for the resistive basement, and even smaller for the

~ other basements, and does not affect in any 1mportant'mahner-the

apparent resistivity or impedance phase. These functions are

overwhe]mihg]y dominated by E-field variations.
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CONCLUSIONS

An algorithm based on integral equations is ah_accurate and
flexible means qf,simu]ating EM responses of 3-D bodies in layered
" earths. The calcu]afions we have shown, in additionvto verifying our
numerical solution, indicate that body vesponses may be strongly
influenced by the nature of the layering. Future commUnicatioﬁ by our
research grdup will pursue this matter for'geologjtal structures of

econonﬁciand ac;demic interest for both plane wave and finite sources.

Integrat1on of the. dyad1c Green's functions for the matr1x elements
and the scattered fields is the most time- consuming part of our
routine. We have found that tabulation and interpolation of the many
requisite Hankel transforms provide a much more efficient means of
computing the Green's functions than does a direct transform evaluation

using linear filters or any other method.
Pulse basis,funcfibns are a definite limitation on modeliﬁg very
sha]low or complex 3-D resistivity distributions. Befove these latter

_pfobIems become tractable, modeling techniques requiring far fewer

unknoWnS'than'durs must be deVeIOped; such as hybrid finite element-

’»'1ntegra1 equations concepts (Petrick et al., 1981 Lee et a]., 1981).

“We believe, however, that our method will be very valuable in EM survey
design. in recogniz1ng fundamental 3-D effects and-invdemonstratingfthe.

applieability of 1-D and Z-D'apprqaches in 3-D environments.
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APPENDIX A

DYADIC GREEN'S FUNCTIONS FOR AN AC ELECTRIC
DIPOLE IN A LAYERED CONDUCTING EARTH

Electric and magnetic fields at any point (x,y,z) in layer
1 are related to a current element ddv' at (x',y',z') in layer j (see
Figure A-1), Qhere
Jav' = J,dvl + Jydvi ¢ JdvR ,. (A-1)
by 3 x 3 dyadic Green's functions through
CEum = G- J@ndvt (A-2a)
and
Hy® = GYE:F) Jeeay . (A-2b)
Fields about a dipole in a layered earth have been been pub]ished.by
Weidelt (1975) and Stoyer (1977) using Hertz potentials and by Tang
(1979) using‘a TE-TM fdrmulation. However, for the sake bf others who
may wish to use our vork, it is important that our Green's functions be

specified in detail. Care was taken to define the functions in forms

amenable to computation.
o Our derivation empioys the Schelkunoff vector potentials R and ?,
- which 1s’possib1e since 6-E1=v~ﬁb= O for all 7 except at the source

'(ngrington, 1961, p. 129-132). These potentials Obey the wave

equations R o :
o oA -3 (a3)

" i =
kPR = M | ~, (A-3b)

“with J and M being volume distributions of electric and magnetic

current. Note with this definition that our source in (A-1), to be
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~ Figure A-1, Geometric relation between electric current element Jdv' at (x* ,',2') in layer 4 to fie’ld _
point at (x,y,z) in layer Z. Also shown are general solutions to Debye potentials ¢ and o in each medium,
with upward and downward pointing arrows denoting direction of propagation.




considered a volume di stribution, would be written as 3= Jav' 6(?—?‘1

o/ ; for use in (A-3a), with §(F-7') the Kronecker delta function. The
fie]ds may be obtained in each layer through
- - - " = 1 -
E, = 'V‘Fz S A ‘s‘ft’ 7 A, ,'(A-4a).»
and o
xS - _v > - - 1 e 2 E ’
Hy= TxBy - §F, « 5000 F . (A-4b)

-Following Harrington, we express our current source Jdv'* in terms
of an equivalent distribution of vertically oriented electric and' | |
magnetic sources. This reduces our task to determin‘ing only verticai |
components of Az (hereafter designated ¢1) and Fz (designated ez) which» '
obey the scalar wave equations

7%+ k304, = 33 - - (A-5a)
and .‘
(¥*+ k306, = m“‘ - 1 (A-5b)

with J‘*q and Meq being the equivalent vertical source distributions.

Equation(A-4) in cartesian coordinates becomes
| E,,_”= %%-% R H*“%%“%g_z’% 7 .(A%é-a)
. é;—ﬁ’; + -s—fl \ Hye = S8+ '51;‘%-:% , (A-6b)
'F—z; R TR 1 = e . o)

_Observe that Ezz is formuiated solely in terms of ¢; whiie sz is solely'
in terms of ;. This choice of potentiais has thus separated the fields

into modes transverse magnetic (TM) and transverse electric (TE) to z.




Using the two-dimensional spatial Fourier transform pair,

4"‘” »2) =

and

1 @
f,::i gF(kx)k‘h

+L(k, k,v) sk,

] _L . +k
F(kx nkYnz) K ﬁ:(’(l\/: o ‘/V)d dy

-~ (A-7a)

(A-7b)

?

the solutions to equation (A-5) in (kx; ky) space are given as upward

and downward propagating plane waves in each homogeneous region of the

form

%
and

&
for z < z', and ‘

k]

1

and

%%
for z > z'.

upward waves -( see Figure A-1) and u{=

now

ke 3% _ 1 ¢
EXZ sr -—9—1& -é-;k L"y 91
ky 0%
EYZ = Ll "a';L + bkxez
’ . .(k2+ kl
: E‘Zl ) ‘Pt

i

u

e~ tUg(zedyy) | gt
g et

- (Z dz |) " -64'
1 €

1.

- ty(z-dg) |, 4t
pe + ¢e

9: +u,,(2od,,) + 9+

‘and
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C. Ug(2- d;- )

-Ug(l Jz )
-ty (z-dy)

-ty (2-d;)

ki + ki - kg

222,_

(A-8a)
, (Afab)

(A-9a)

, (A-9b)

The righthand + and - superscripts refer to downward and .

. . Relation (A-6) is

= zk,#»t L, (A-10a)
Hyz = "tk ¢t "ky 99& ’ (A"lOb)
‘ 2.2 :
' k |
By = & - )ey . (A-10c)




The general solutions (A-8) and (A-9) are constructed as the sum of

'”_primany or partiou]ar solutions, which appear only in region J

o containing the source, plus source-free secondary or complementany

solutions, which appear everywhere and are chosen to satisfy boundary

- conditions (Harrington, 1961, p. 129-132). The primary solutions 43
and Pej result by equatirig relation (A-10c) to the vertical components
of eiéctric and magnetic fields for current components,Ji and J, in a
whole space of waienumber k*' These fields in turn are obtained by '
applying equation (A-4) to the whole space potentials (Harrington, 1961,
p.78)

P Jxdv A- 'ck [(x-x‘)z*(v—v‘)z+ (-2')*] " . :
g3
Ay = k3 [&-V+(wvf+hzi]T (A-11a)
and” ' _
P v € —zkj[(x-x')"«(w')‘+(z-z i Al
Azj T [(X-x)" + (y-y' )2+ (= z‘)‘]j. (A-11b)
which in (k,,k,) space are(Erdelyi, 1954, v. 2, p. 9)
Pa o Iy cilkdtkey) culzzl | )
Ay = 5y © e (A-12a)
and
| —uk —ulz-zl S
PA Jz e (kux "‘kyY) 5 (A-12b)

. zi ZU: e ‘ .

: ?or'Jx,ithe fields‘fnom‘a Fourief,transfonmedjversion’of”(Ae4) are

| , 7 ik, é__;q Ik -l(k,x +kyy?) -U;h-'l'l o V '
| 5:1 = ‘§;L 32 " * 35;;‘ | R (A-132)

*"Ne drop consideration of J for now. Green function ,
elements for this component gre derived by analogy with
those for J, and are simply stated at the end of this
analysis. X 4 : :
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and

Jx‘ky "(kxx +kyy) -u:'z‘z‘

Pyyx .1 P : -
Hy = ~ikyAy = - 24 , (A-13b)

where t applies above/below the current element. For Jys we find

J (k +|‘z! ~élkyx'+ k’IY') -UJ‘Z'Zl

Pz E Z) P . '
and

P :
Hy = 0 L ()

Eduating (A-10c) with (A-13), we have for an x-directed current element

x ik + kyY) oujlz-zl .
P¢;< — akaer cl( X'+ vY) cH | | (A-152)
and |
o} = - gtk it loy) gzl o

Equeting (A-10c) with (A-14), we have fof a z-dibecped current element

~and

Pz _ JE‘ ~ilkex' s kyy') -uilpl'l‘ o : - )
by = 25 © Sl E ' (A-162)
et s o B T R TE (A-16)

Comparing (A-15) and (A-16) with (A-12) the equivalent electric and
magnetic source distributions in terms of the original dipole are seen

- to be

€q Jeu th )
3 k) = £ m + J, (A-17a)

32




and -

M:%_(knsky) = = ?ﬁkﬁ

(A-17b) o

The equ1va]ent sources are not di screte current elements at (x'sy',z )

- but are distrlbuted over the x-y plane at z = z',

The upward and downward waves of equation (A-8) in any layer above

the dipole are related through reflection coefficients RTM and R"" by )

-+= _T“ -
o= R
and

-t

= "pTt &
6= Ry

. After Wait (1970), the reflection coefficients are

-an - z _-?
1 Zl .'."zl ‘
| and
"RTE - Yl - -?1
g+,

with the foHowing recurrence relations

Z -zt- "“Z, tanh(uhy)
Zz 'Zz,.tanhfu;h;). -

.".'21-

and

-?. =' Y "—71- + Y‘l tanh{uzht) .
t t Yz+ Yz tanh(“;"z)f‘l

| (A-18a)

(A-18b)

- (A-19a) |

(A-19b)

' (A-zoa)

(A-200)

" where Z, %‘- Y= -i-:- and hy= dp-d;_, . Hence (A-8) 1n region J-becomes o

+Uj(z-~ds., . - v dju
R s e
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and

B G GEEH]
Similarly, equation (A-9) in layer J becomes, for 2 5 i" .
T H, = IR UEd) , g RS
~and |

+ eJ [+ RTE + UJ(Z"dJ) ’uj (z-d; )]

8; = _(A-22b)

The reflection coefficients here, and for any other layer below the

dipole, are

’+ -m' zt 21. R o | (A-23
,Rl 2,+ +§5; o - .-( -232)
~and
+o ' - _' :
CHpTE Yz" Y1~ _ : A o
SRy Yz"'f?t _ v (A-23b)
| with /
. +2 z Zzn"'zz tanh(uhy) o (A-28a
L L Z; +Z;+|faﬂ“\(ulht) o ( )
Cand
ey, et Yeborhlahd) gy

e -t Yz+ Yyuy tanh(uhy)
| Uniike a dipoie beneath overburden (Lee et al., 1981), ¢J -and "o
1in (A-21) are not identified ‘with on]y the primary potentiais.' Instead,
: they are the sum of the primary plus secondary upward reflected .

potentials due to the layering beneath the dipole, We write.
- - - ‘ ’. d . ’ ' .
¢, = [P+ %4 J[ersE sty R € ““z ¥ )] -~ (A-25a)
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and

B« [+ e ) ] o

,Below the source however the primary potentials are downgoing, and the
‘total potentials here in layer j can be written

f‘&(z‘dj-l)‘ ¢ e uj(z dj-')*- Pw RTﬂe ul(z-‘j |) + 54; ”RT" —‘ﬁlz‘d,.|)

.¢=’4>

.and

(A-263)

e . ec“’ad’"’ "6, eu,a J,-.)+ 9 ch Uite-di-) | 9 R'rtcuj(l JJ_.) ’ (-A-26b)
~which must equal equation (A-22). In this latter relation, *;’RTc"q(z'J’)
~and *e[*RFEUT4) represent only secondary upward reflections due to the

basal'layering_ so; "wit'h '(A-26). we find

v‘rand,

| +¢; ‘+R-;n - Sﬁ" c‘rUjhi ' ' (A-27a)
: ..+ef+R1-e 6 "‘”Jh' - ’ | ‘ " . '(A-'27b)

- Thus, one may equate 4’3 ‘and e terms in (A- 22) and (A-26) to get

¢ [N ) % -m]f ™ --zw,k1 . ( A 283)'
S i =R ma;""%; o
.and e }.
- Pt v--- TE] +oTE ~2.u,'kj -
[ G+ Ri1'RS o (A-28b)

'__ +RT£ RTE *-Zu,kj

~ The re]ation between “q; and ° 4) and between e and e depends upon '

S _whether one considers J or J as the source._ For J aione, from

equation (A-15) R

P_‘4>;x = _e~20_,(2 d,-.)P*;X A : (A-292)
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and.

’ZUj(Z" di") Peex

P’...’ . : '. .
g =€ 8 , (A-29p)
‘where
Poyex _ -8, iky +u§(2"dj-.\ . | :
) (kD) © R (A-302)
and |
Cphax _ =S.Zicky  sul2-di) . R
6 = ‘ujzkn.k,i) ' . (A-300)
e ~ 2k + kyy!) ' . ;
For conciseness we have set s, "‘,Jz"']xe ok 'y‘, « For J, only, from
(A-16), there results | '
e couidi) P A L
P¢j2 =. e 2u;(z § p) ¢51 o v | o (A-31 ) L
with
Ptz . +u~(z;-d,;;|) s o ‘ . |

and where s;=3J, gk shy) | pinany, with (A-22), (A-23), (A-28),

(A-29) a'nd‘ '(A‘-3‘0').' one obtains for an x-cdnpo'nent‘ of turr‘ent“.density

- alone

g 'éxékx + ‘-ujlz-z'l‘ -nTM '—u5(z+z'-zd~..) XaTM +“j(z-di-n).~'; TS Ui(Z-di A-33a
4’5~W§[ev 1?‘3378‘_‘ }’v]*Ai[c._‘ '*ijc‘_‘ ’B ( 3a')
and - |
. -szj"kY s[ -u,!z 2 -R-n; -l'j(Zd ZJ,.,)J Aﬁ[ *u,(z J‘ .)+ Rr; -Uj(Z-JJ,,)]; (A 33b)
With (A-22), (A-23) (A 28), (A-31) and (A-32). one obtains for J alone f

3 ¢z= {[ -uJIz-zl + Rm -U(zez' zd, .)J A-m [ w,(z-d, .) . -R-m -a,(z-dj ')R ( A-3 4)
3 .
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. We have also defined

R S2uhy éi-Uj(2'°d.i-|)[~R1;~"\é'2“3‘Z"di-0_, 1]

© and |

XaTM _ (A-35a
A |- AT 'R;”e'z"""’ d |
Aj - 'R} ) (A=35b)

Z'rm ' +R-m -2ush; +u,(z-d:-:)[ e '?-“J(Z d,..)+ |] Sl A

Conti nuity of tangential electric and magnetic fields across
interfaces, along wi th (A-21) and (A-22), yields ‘the potentials in other

layers. For layer 1> g, we obtain

1+ *Riey tmhem o __+'m++ .

T E'++R1n ]-Eumhm] b o= By ¢ - (a-31a)
m-Jﬂ i ‘ |

| +"' TE “m"lm + o £+ R |
e 3 —ﬂ— E: +§TE']CZ.umhm] BT 3 S (A'-37b)'

m=]H
Specification of the soiution'for 7, =nis given later with the Green's

' functions. cOmbining (A-—33) and (A-37), we get for J,

£ GEAOTEIRTe y

and"_ g - |
6 ;le:::: )[,_ (W'z +U, j /«R'rz )][-o»er +u,(z d,) e“z(z d;)J R s (A-;38b')v
i( Tk e TR
‘Combini ng (A—34) and (A-37), for J,z and 1> ,7 we have
4) - Sz BT”(ZAT” suhy /+Rm 1] [+Rm +u,,(z-d,,i i€ otz dzi] (A-39)

L]
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For layer 7 < j above the current element, we have

- Up

¢ = [,+ Rmn 0T Tp™ ‘
¢l mzy-| [|+ R""n"‘ -Zumhm] 4)]' - BlJ 4)3 (A-40a)
‘and | |
| g =T [+ Rele b _ _ p’E & o
61 - _n—- [. + R-re —aumhm] 9 = B 6 . (A-40b)

Specification'when 1=0 1s also given later with the Green's
functions. Combining (A-33) and (A-40), we get for Jy
x S, ck M| -uj(z-d3- .) X, TM +Uy(2-dy.y) | —pTM 'Ut(2~41..) o
B, e + R, e A-41a
¢l (k2+ky)[ (€ +'A; N 1 ] | { )
and
s 23iky —us(zds. +u,(2~dy.,) -Ug(z-dy.)) ‘ v
g Uj";i y[ St .) re:)][ W2y +‘R’;‘c il | . (A-41b)

Finally, with (A-34) and (A-40), for J, andz < ; we have

4’2 - __z_:_ *B;; (églzLdi-.) +zn~;:n)][ e',"u‘(z'_'d‘")q- -R-r: é”t‘:'dt-o)] ,. (ht2)

1

| ~ The Green's function elements in (kx,ky) space are obtained by
sUbstituting equations (A-33), (A-34), (A-38), (A-39), (A-41) and (A-42)
in turn into relation (A-10) and setting the amplitnde of each component

of 3dv',equai to,unity., The resu]ts‘in cartesian Coordinates will tnen'

~ come about byﬁapolication»of~(A-7b5. Omitting all that algebra we |

~ proceed d1rectly to a Hankel transform definition of the elements, which

| is necessary for our computation. This requires (Banos, 1966)

‘(kxx kyy)

{{ F(k" k;) dk Jky = ‘zé.rfr(;x)u,(kr)ax . _(’A-4‘3') |

where N = kx+ky, ri= (x~x) + (y- y')iL and J (;\r) 1s the zeroth order
Bessel function of the first kind. We wi 1 furthermore need the

relations
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3

3 .F.T.-.’ .
ax 4@ Lk Wéﬁ ka R (A-44)

where F.T. denotes Fourier Transformation, and

..u,-lz-z'l ~uslz-2'] ' o o
:z S—) = teh . (A-45)
| i :

In addition we must use (Erdelyi, 1954, v. 2, p. ‘9)

~usle-2l -ck; R :
(€ A, ()\r) e’ (A-46)
o Yj R ’
~ where R% = r2 + (z-2' )2, along . with
.‘:k .LklR .1, . . : E o
A.‘%c._._..’ = - [R‘ + -'l,:’-] (x-x') , (A-47a)

R

cikiR kR | AR |
bb: ; = % [[%J'é%i-k’?]«-ﬂz' i"“%‘]} (A-47b)

and _ :
» é£k5R= okiR {[ 3
- oxoy R R UR R

.‘,-]éé-x')(y'-y')} o ':(A'_m,, -
We also require (Gradshteyn and Ryzhik 1980, p 968)

-S;(—[Jo()\r)] = "—‘—";‘-}‘-) XJ,()‘r) ! N (A-48a)
é‘md‘_ o | ‘ | . | . e
---[J (x )] = "‘"" x[J.,Ow) ,m . (m] s (A-éab'i, -

< where Jl(Ar) 15 the f'lrst order Bessel function of the first kind. From ,'

| - (A-48), there results

“"i‘ [Jg()\")] [ roxl? ])\J ()\") [(X_vé_ J)‘J 0\'.) | ‘A;49a)._ .

- (3;5 + )\Z) Jo (Ar) | | ‘- (A-49b)

39




 and

2 X=X .
{ S'i—a'; [Jo()\")]= [Z(XXXYY')]AJ 0‘) [L—)—q_-l—])\ J()\r)

(A-49c)

.In layer j, the particular and complementary potential solutions

give rise to primary and secondary dyadic elements, i.e.,

~vVE PNYE = swnE
G; = 65+ Gy
and
~H PNE  SwE
, +
6; = 65+ Gy

(A-50)

(A-51)

Using (A-33); (A- 34) and (A-43) through (A-47) the primary electric

elements are

oty oy MRTTHE -+ 6

_ X3 “IYS

,PG;:X = ini r(x-x')ty-y')] i |

VPGE l{'r [(x- ‘XZ‘Z)] X,

’ £ 1 (x' 'Ky-y)y P
_’G*Yi = T, [y ¥4

e L qyPRE me . ey
e A I

i (y-y X:z-z ] ;

zn l‘ﬁ

1 'Y ps ot
fzs :%_95 [(x x;‘(_: z)]ngi

1__crly-y')z-2' |
Gy Wy’;{[ o R
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(A-52a)
2

(A-52b)

, (A-52c)
. (A-524)

s (A-52¢)

- (A-52f) -
(A-52g)

(A-52h)




and

PAE ‘; 1 ggggz 2 RE
GzZJ . ‘I’fAj {[ ] X’J ZJ kj Ysj g ’ (A‘521) o
whére
-tk:R «
PE _ c‘k’-‘ 3 | 3il , :
¥ = %5 [w R K] 5 (A-532)
-iksR ; : . .
Py E R ey ik .
L CR , [Rz *"'ﬁi] . - (A-53b)
and
\‘3_‘] = ‘eR o ‘ . (A-53C)

We have returned'fo_consideratiOn 6f Jyvto specify all nine tensbrv
members, From”(A-33), (A-34), (A-43), (A-48) and (A-49), the setondany" o

‘ eiectric elements are

s 1 e 2 | (-x) “_ o

ey = "‘"‘mi (2T - ?.]‘Y.;‘ : ]’7"E 3‘ o (nst)

:‘ 2(x~ 9(Y‘ ) {(x-X)y-¥') ' -
-SG;(j = 2[ X=X 'IS . [.’E_"_%'.L] Xng , (A-§4b)

| ~, (A-58¢)
L (x-x)(z—z')is (x—x‘)é; z')]s I .

e ,—,,-:7-5[-‘13&~-]‘ | [‘ ]‘Y + k}’,f,fi ) (A-58e)

*efyf?ﬁIiHﬂ]sYé? SO B
oS s

a1




oyes = Fl“" ) it
-and

1
égﬁq - ?%ig'% ¥ed

with Hankel transforms "
({[ us A TH ‘g__x -r£] W;(l“‘i-'\ [ (-u,(z-dj..) xA-m) Rm

- Ui (c“:(‘i"dz-n) xA-;E) R‘f ] e -uj(t-ds.) g Jl(_)‘ﬁ ‘”‘

E_ Pe x 4»‘k1x'rev +Ui‘lz~d'-) - euy(2dig) xeTh v -
szje XHUJAT*&% Aj Jc LA i LU [Uj(& 2 1‘+,‘Aj )R‘;‘

K (4 e Y RIEJEH AN, (e

| 'fgs.x; *i[‘ﬂ“] sty "+ Ie “=“"” L) RY J ""’ ""m O )Jx
s Tx‘ﬂw."]é,"i‘*-‘i-h[(é“f‘*"'*':¥"+*A*")“R*."‘]é“’i""'"’l J.M 2
BN IR s ‘ e -

TR S
f S,';«Lﬂ’/!;"]é edd, [(c‘"*“"‘l-f’+‘/1',") R €503, 0mah

J

-jéhd ]
Simﬂarly, the primary magnetic'memb_ers become,

Pl -| .
.'GY"J | ﬁ.(zz) Y

!
PGH - -[ET—(Y'Y)PY“

25
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| +Uy(z-dj-, -zt z 2-djer -
‘1_ ”\ {[’A’""] Ujfz i ) [( u;d;. .) rn)an] °”:( -J; )“ (Xr)ﬂ

.(A-54h)j

(A-541)

(A-55a)

(A-55b)

(A-55¢) -

(A-55d)

 (A-55e)

(A-55f)

(A-SGa) |

(A-56b)

(A-56¢)




Pl 1 H
o = 7y Yy

P H
Mo =l PO

ZYJ

F "- (v- )PY

xzy

ik .',::-‘ (x-x) PY,;.‘

| and

vzj
P H
Gp; = O
where _‘
W "+'££i.
| 76 = -E"-'[E? =1

.The secondary el ements here are

SG"; _‘;1.}_ {[ ,‘.x- ; Js\(u [(x-x;\)(;-vi')]sxz;;g

H

X1

e taoet Cel L |
e Ti[-‘—r )

R L

i = .2,:'_:7_. Ha(x-x')(y-w) ]S [("""K:Y"Z Z}‘Y;; }

. n
[
=
1
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(A-56d)

(A-56e)

(A-56F)
, (‘A_-‘559 )

(A-56h)

: (A;ssi)

(A-57) |

 (A-58a) |
s
'»(Aesgc)~
;(Afssdi,

(A-58e)




(A-58f)

H o 1 [&x-x)]s H
Gay = ‘i“u’{ [Lr_] Y‘iji )
s":-——(-_"Y'SH‘ : B : | y
o wEIN e
s K J~ ¢ u) S K . ) : .
Opy = 47 i[%‘x"] Yst - (A-58h)
and
S, H. _ | S | o
Gy~ O . -, (A-581)
~with transforms
({[xA'm x'rE ] +U,(l’dj|) [( -u_,(z'-dj 0 ’;A;" -R-m
' A-59
+(E (-4 x") RTE] -4 (z-dj. :)Z 3, ()‘ Y\ ., ( a,)‘
‘_ ({FATn xATE] +Uj(2 drl) [( -Uj(Z' Jl) XATM) R'rn o - )
 (A-59b)

€AV RY] é""""’"’lx L ur)ax

S \':j ‘ ' ‘( {[xA-;z ] c#-l(.,-(zJj-J_ [( e—u,(z'.d.i'c) . XA;E )-R;E‘]c-ﬂj('l’lj-h} X Jol kﬂ d X , ( A-59_C) |

W= Sy Q) (TR IEE 000 (hesoa)
~ and - | |

. ' ’.,,,z ‘. | : . : ‘ -
's‘ﬁg‘* f _&x; fI’A?‘J aujk-d,-.) . [(c-u,-tz-JJ..)+xAvjn)fR§’f]g”i“ ‘“’};{Arw . (A-sgg)- -

| Since just complementary potential solutions exist in 1§yers other
‘than that containing the source, on1y secondary Gréen's”function
elements are defined. The forms of the secondary elements are identica1

to equations (A-54) and (A-58), with 4 substituted for Jeverywhere, and
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wi]] not be rewritten. The pertinent Hankel transfonns for the electric .
elements, for 1> 4, are _‘
- (ﬂu BTI“I(XATH Uihi /qu) R+ ..1.."3 (X \ '“‘: i /“RTF)*KT‘] "‘t‘z 4:’ .
. - (A-60a)
[u; ™ A'm u{.,hj /RT") - ...L BTE (xATE "uj‘\j/tk‘(‘)] Uz~ JJ} i 0") A)‘ o, .

= ( {[U BYM ATM +01h /+ ) TH kz + A-r; +u,k,/..ng R-rg]eq.ut(z de) Av .' |
_ 'mx*mefu,kj m) LL.'!‘B ( ATE *“:h 'rs)] stplz-dy 1 O\) A (A-.60b)
[U;B,g-(ﬂj ' /+Rj % /R] (4 f)\ d N

.";»YSEZ= ? B-rs ATE +ilj WTE)][+RTE -Hlt(bdg) -szl- z)R x 1 0\ v A)‘ , ( A-GOC)

M + ~ '- z 1.) .
‘l,,, §>\ '8}y A o TIRG e 6 ]}J Gedh | (A-60d)
:{%_2[1- m(,Am s 'm) [,.Rm +U,z- J,) -a,(t J,\ H)\ 3, (X A _(A.G,Oe)b
“and
e Rt IR g5 ""lm Gedk . (ae0r)

i

The magnetic transforms are

SY“ ({[’Bm("Am e’"’*’ /*R’“) Rm EJ%UB;;:( 7€ *Ujk)/{RTE) -rz] +u¢(z~d;) ('A;Gia)
. +B~m( Am w""/’k’") . ufsrz(xsz w,l\,/*g*re)] 1(2"«? .J()\r) AX - o

s'.H' ~r/1+ujk+-m+m 2;u +'r£ --ulmj ) TE Wzk-dz)
x4, fz(*s’"("A ,R)R o By (A € TYRENTT e

u, Uiz~ ( ¥ l )
e *“="=f g—,,;‘— BIECAT ‘":“/R")Ié g ""}u (x.»w

0 220

( _213_, {[4.575()5415 #u,ky;-R're ] [+ TE +u,(z Jg) Uz(Z dt)-%)‘ 3 (}\r) d )\ ’_ ( A-?Gl )
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( 2 z[ ( Art: +Ush .V#RTE)]F TE +Uz¢z-dz) -u;(z dp) R J ( )\ Od )‘ | : (A-61d )
®\2 ' . ‘ . -.z~“' | S
SY:Z = ‘_‘%i[} ;;(ﬂ;ﬂe*%kwr)][m‘;ﬂe*ul(z'dz)_’_ e”t( J‘l)Ji J'(AP)AA . (A_61e) ‘

For receivers in the basal half-space, the transforms simplify to

o grish 1
.-;z[*e*“(w )

z.;.  (A-62a)
lAre +Ushs /tR-re) -t (z-d )ZJ ()J‘)o()\ | :,“( a.)‘
\‘E . ?_i[ (XATM +U,kj/+RrM o | - -
¢ Sy by "m 0 m_' o
0 e A;‘e*""‘f/*sz)le*""“'“*-"n.s,wx e
Nyt :{o)‘ f[’B’“(XA’” o /’R’”) ) 3,00 )JA S, (a2d)
SFXE_‘ ?—& §[+ TM{ZATM +uibi ™ ~Un(z-dp-y) : | o e v .
- O ) U ,8,\5(745- e /*R_j e " )\_J,()\r)d).__ - (A,.sge)‘ )
’ and‘i",“. | | | ‘ o '
an (k i[+BTN(>ATM +“;ﬁ/+R'm =Up(z-dy- '?J (}\ )J)‘ o ‘  ,  (A-‘éZf) .
~along with
: SX,: = fFB-rM(xATM +u3h1/*R“'M) RN p y g | N ‘
. N z u +B-rc (xA-re +u_,h,/+R-.-g) -~ Up(Z-dy- "}J 0O )0')\ - (6-63a)

’ ~
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i[ T ™ _+ h v .
5 fB ”(XA " uJ j/...RWV\)
(A-63b)

 and

%7‘? +Bvre xAT; +Ushy /*RTE )] ~Up(Z-dy. .)I \ Jo (MH)‘ .
_SY“ - 3’;:3: {[*3"(’;4“ +Uy k,/+ TE’) - Uy(2-dn. °l)\3 ()\V‘)Ax | , (A-C3C) | S
x & (,511“__{[ BTE ATE flla 3 RTE)] Un(Z‘dn l)z J,()\r)d)‘ - ‘A‘Gsd)
~X{r TM +U, ANy ~Hn(2- Jv\ B .
= S /R e §3,0md) ~, (A-63e)

L LA +.7r1+1-/1 fT£= ¥ *TE
‘where "B, = [1+"RUT'B™ and "Bl = [1+ ]BM‘1 .

In layer z <' Js the electric Hankel transforms 'are

< f{[ Brn(c uy{2-d;. .) xA'm) + B‘rE ( '“:(ZLJJ ) XATE)] tU (-4

(A 64a)
v-[ﬂl g"’ ( UJ(I" 5-1) XATM) RTH L(j_, B"(eallz"” ')+XA;‘) R“]éatu.d‘ h]-l (x )dx y o
a[ul B4 ) g e sy ened) |
) i (A-64b)
WA LB hagma

aQ

| 5y : é 7}_2[ B'rt:(eu;(z d; ) 747‘)][ +Uz(z'dz .) -R-rE U,(z-d,.,;]bd 0‘ )A)\ 1 ’ (A_“d ,

N i[ B"(e”" 4 A’")][e*”l" =X e "]m A m L (A-64d)
: oo)‘z R Ldi, - *‘Z-,d., -TM'_-’ -d,., ’ 7 o ) ,

. 53;';= 5,*&?{[ ;;(cﬂj(z ’t“: %—’Aj")][e Uledg) Rz‘;‘/z(z d? )K)\Jo()\")d)\ L (A-64e),
4'and’

e NGB VI e a (esen)
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'm' th the magnetic integrals

- (iBmes ™4, ) #a:-sﬂ( 4 T e
['BT”(e'"’(z ~di-) WH)'RW gﬁ_ Bf: (c”‘(’ dj.) 4xj‘lf:) R-rg]e-u’l(z Jl,,ﬁ (Aﬁ , ‘( A-65a)

{ Z[ Bm c—”;(z dj.)) xAm) B-re (er(Z ~dj.)) + ¥A7£ )] cwz(z d,) | ‘_ ,
13 , - ‘
+ B'fn(c”;(z' d}:’-ﬂh’fﬂ) Rm,,;:_"_z_ Bft(e-a,(z di.), A;E) Rf]c”z“' d"')})\lo(kr)ax _ (A-65b)

S H “‘u, -.-; i(zd ), x-rz +U,(2-dy ,) r -d : o v
st é,z.l.a; e) 3 )][ d s szl z.,ﬂ)\so()\f‘)d)\ . (A65c)
.S H (2 d,, dy., - |
e fFMEnE Sl RT"e”’M“JZJ O )d)\ O (a-65d)
and
012 o . |
"t Sl L e o e B, O9h L (hesse)

Finally, for fields in the air, the. transfonns become ,

s = (i[“ B-rn(c”i(z “d;. d+x 'm)+ BTE(C’UJ‘I d, ) )hf:)] +u.ng ()m)dh 7 ,' (A-Sﬁla)v :

e ({[u (‘U;(zbJJ - :Am) + %g_ B:e ( -Uj(z*~d;.) !1’6)] Cw.zb\ J (X ) JA 3 . (A-‘GSb) |

20 ° 3 b)

"Y‘i ;ffv';ils*‘(e"z‘“‘v’ ”‘n L mw S
?Yqi'gfi[’BI?(é”"’ ”‘A"‘)] “"‘Zm )JAV ‘ : L (hessa)
J**i[s*”( Rk "‘74',”)] fxwrm |  (acsse)

_ o
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- [} )
Y = X ’uq;‘i[ B4 YT ] 413 O\r)d)( | , (A-66F)
along with |

lo °3 il

f\‘u ‘Z[Bm & il 4-) x'm) ?,u T¢(~Ux(2"l1') ATE) +a.21 3,00)d\ ’ (A'—67§) v

¢ 7 -".. —tE e i .
Y, = S (e o). =‘£; By (69 4, A}‘)]e"”"}u",(xr)ax . (A-67b)

Py, 2 e R
Y, (el e ey ’“"EU Godh o)
: é Z;ai[BTE( ;(Zf~dj..)+xA';z)]eroZ}J'()w)d)\ | o (a670)

and o o |
B R 1 (c e ’A’")]e.*”‘zi.l MW aeee)

&

where B 1R By and . D 'R*._‘]'B:; :
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APPENDIX B
PLANE WAVE FIELDS IN A LAYERED EARTH

For a vertically downward propagating incident plane wave at the

éurface,7the general solution for the electric field in layer Z}is

- . '_‘ - o s -d .

El(z) = E: [e kz(l J;)+ Rlétkt(z t‘] \ (B-l)
with
s 24 -6,(,2 o ﬁ',kcz | - ‘ . . R ‘..
EesBER RS e
~in the air and
. -iepz-dpe |

B Efgin®o (6-3)

in the‘basal half-space. The reflection coefficient relating upward and

‘ downward wave amplitudes at the bottom of the [/ layer is (Nard 1967 p. ,
117) | : Lo
Ry = %L:_ZJ o o (B-a)

, wmt Ly N

, indwhich Zz = wuz/Ky apd, with carat denoting appareﬁt,

Y kehy)

Z. = 2 Zn.* Zztanh(i th) - (Be5)
LTy Zzut""h(lkzhz) i Y

- The thickness Of the lth layer is hl' : ' S

, At the earth‘s’surface,

=B 0+R]  (8-6)
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)

~and- -

Since tangential Eefiers are continuous across interfaces, we find

o = ™ re i'k_'d'] = ,E,(o)‘ |
so that _
E]
where'ge have replaééd'dj Sy h1; .éy inducﬁion". 

L ESELLo+ R

In our éigbrithm;‘we set E; =»(i;,0;) by‘tonvention;

: ,Frbm Maxwell's equations, the maghetic_fieldéjare ER

. ~ - | - -dv B t "d )
H,(2) = ‘i"f:l(kx E; [k - g e k“z. ]

and

RURCE '%&(QXE:)C"&"I
: oKy e

..A

‘with k a unit vector in the z-direction.
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‘e E: [(I.,O.)+ Ro]eiik'k'/[(!.,o‘)‘+-R|'¢'2‘k-h']' .

Er = £ [0 RIS /[01,0) ¢ R €]

(8-7)

(8-8)

- (8-10)

- (B-11)

(-12)

(B-13) i




