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a b s t r a c t

Following Keller (Proc Symp Appl Math 1962;13:227–46), we classify all theoretical

treatments of electromagnetic scattering by a morphologically complex object into first-

principle (or ‘‘honest’’ in Keller’s terminology) and phenomenological (or ‘‘dishonest’’)

categories. This helps us identify, analyze, and dispel several profound misconceptions

widespread in the discipline of electromagnetic scattering by solitary particles and

discrete random media. Our goal is not to call for a complete renunciation of

phenomenological approaches but rather to encourage a critical and careful evaluation

of their actual origin, virtues, and limitations. In other words, we do not intend to deter

creative thinking in terms of phenomenological short-cuts, but we do want to raise

awareness when we stray (often for practical reasons) from the fundamentals. The main

results and conclusions are illustrated by numerically-exact data based on direct

numerical solutions of the macroscopic Maxwell equations.
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1. Introduction: microphysical and phenomenological

approaches to electromagnetic scattering

Scientific, biomedical, and engineering problems invol-

ving the scattering of light (or other electromagnetic

radiation) by a morphologically complex macroscopic

object are quite common. Among typical examples of a

complex scattering object are a cloud, a particulate surface,

a particle suspension, a tissue sample, or an isolated

morphologically complex particle. Quite often electromag-

netic scattering by a complex object is addressed without

an explicit solution of the macroscopic Maxwell equations

(MMEs). In some cases it is acknowledged that the MMEs

do control the scattering phenomenon, but then it is

claimed that a direct solution of the MMEs is far too

difficult to attempt. In many cases the MMEs are not

mentioned at all. Instead, an ad hoc ‘‘approximation’’ is

used and is essentially elevated to the level of an

independent basic physical principle, as exemplified by

the phenomenological radiative transfer theory (RTT).

Usually this is done based on vague ‘‘physical grounds’’,

which is a traditional implicit excuse for not being able to

derive the desired outcome mathematically from primor-

dial equations such as the MMEs.

Such approximations are often based on ‘‘physical

concepts’’ many of which are the consequence of trying to

describe a complex physical phenomenon using a simpli-

fied analogy. For example, the propagation of electro-

magnetic waves is often described as being analogous to

the propagation of waves on the surface of a pond. Such

an analogy may serve to increase the level of mental

comfort of students by helping them ‘‘visualize’’ a physical

phenomenon that escapes completely human natural

senses. However, this analogy can be quite misleading

and contains no real physics whatsoever since electro-

magnetic waves are not mechanical surface waves.

Instead, real physics is contained in the proper selection of

mathematical equations intended to adequately describe

specific natural phenomena. Once these primordial equa-

tions have been formulated, solving these equations

directly without invoking any ad hoc ‘‘physical concepts’’

would solve all real needs of the physicist.

Let us imagine, for example, that we have at our

disposal a direct computer solver of the MMEs (in the

form of a suitable {computer; computer program} combi-

nation) applicable to an arbitrarily complex object. Then

we would not need any approximation and any physical

concept not already contained in the MMEs in order to

interpret laboratory or remote-sensing measurements of

electromagnetic scattering. Indeed, the output of any

measurement could then be modeled by solving the

MMEs once for a fixed object or many times for a

representative set of realizations of a random object (such

as a cloud) supplemented by statistical averaging of the

relevant optical observables.

Unfortunately, a direct solver of the MMEs applicable

to a real cloud of liquid water droplets or ice crystals does

not exist and is unlikely to become available in the near

future. Hence the widespread use of ‘‘approximate’’

treatments of electromagnetic scattering by complex

macroscopic objects.

Paraphrasing Keller [1] and using his terminology, all

theoretical methods for treating electromagnetic scatter-

ing by a morphologically complex object can be classified

into two categories: ‘‘honest’’ (or microphysical) and

‘‘dishonest’’ (or phenomenological).1 An honest method

is the result of solving the MMEs, perhaps after making

one or more specific and well defined assumptions

intended to simplify the solution. For example, the

Rayleigh approximation [2] is the result of solving the

MMEs under the assumption that the product of the wave

number and the maximal particle dimension is much

smaller than unity, while the Fresnel formulas and

coefficients follow from the assumption that a plane

wave is incident on a perfectly flat interface separating

two homogeneous half-spaces with different real-valued

refractive indices. The practical applicability of a micro-

physical method usually requires no validation provided

that all underlying assumptions are indeed satisfied.

However, if an honest method is used to model situations

in which one or more of the underlying assumptions are

violated then the quantitative applicability of this

approach must be carefully examined [3].

Fundamentally, an honest method is by definition the

result of an explicit direct solution of the MMEs, e.g., a

closed-form analytical solution or a numerically-exact

computer solution. The former is often the consequence of

taking an asymptotic limit (e.g., assuming that the

product of the wave number and the distance from the

scattering object to the observation point is much greater

than unity, which renders the far-field approximation).

The latter is the outcome of running a direct computer

solver of the MMEs generating numbers with a guaran-

teed number of correct decimals. The number of correct

decimals may vary depending on the available computer

resources and practical accuracy requirements. However,

all reported decimals can, in principle, be validated by

modifying computer program settings in order to accom-

modate a more stringent accuracy requirement.

Quite often the use of a microphysical analytical

method allows one to identify certain idealized physical

concepts. Typical examples would be the asymptotic

short-wave concept of a light ray propagating in a

continuous medium, the concepts of reflection and

refraction of waves by a plane interface, the concepts of

wave interference and diffraction, and the concept of far-

field scattering. Such concepts are unnecessary in princi-

ple and are nothing more than verbal characterizations of

formulas derived from the MMEs. However, they consti-

tute what is usually called ‘‘physical understanding of the

problem’’ and as such may have some positive heuristic

value and facilitate qualitative ‘‘interpretation’’ of for-

mulas, digital computer outputs, or experimental data,

1 Of course, the words ‘‘honest’’ and ‘‘dishonest’’ are intended to

characterize methods rather than human character traits. However, the

terms ‘‘honest’’ and ‘‘dishonest theoretical methods’’ can be viewed by

some as having the connotation of a moral judgment about the

practitioners of such methods. Minding those who believe that Keller’s

terminology may be excessively figurative, we will often use the words

‘‘microphysical’’ and ‘‘phenomenological’’ as substitutes for ‘‘honest’’ and

‘‘dishonest’’, respectively.
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wherein formulas and numbers are ‘‘explained’’ or

‘‘interpreted’’ by using words. However, it is very

important to remember that such derivative concepts

represent idealizations, cannot replace the original math-

ematical formulas, and should not be used outside the

range of their validity defined by the explicit solution of

the MMEs.

A phenomenological approach to electromagnetic

scattering is not based on an explicit solution of the

MMEs for the specific scattering object in question.

Instead, it is a conglomerate of formulas and concepts

borrowed, on an ad hoc basis, from various honest (or

even other phenomenological) approaches. Almost always

a phenomenological approach is ‘‘derived’’ by saying

words under the pretense that these words represent a

‘‘physical understanding of the problem’’ which, presum-

ably, allows one to bypass writing down the MMEs and

solving them mathematically.

A classical example of a phenomenological approach is

the geometrical theory of diffraction (GTD) of electro-

magnetic waves in inhomogeneous media [4,5]. In fact,

the book by Borovikov and Kinber [4] is quite remarkable

in that it states explicitly that the GTD is based on a set of

‘‘postulates’’ intended to define the ‘‘directions of dif-

fracted rays’’. In other words, it is recognized that the

‘‘intuitively obvious’’ concept of rays is incompatible with

the physical phenomenon of diffraction of waves, and so

ad hoc postulates (i.e., patches) not following directly

from the MMEs are necessary to combine these motley

concepts into a practical computational procedure.

Unfortunately, such honest accounts of phenomenologi-

cal approaches are quite rare. Usually it is not recognized

that a verbally stated ‘‘physical understanding’’ represents,

in fact, one or several postulates which implicitly supple-

ment or even replace the MMEs. It is, however, a well-

known mathematical fact that a properly formulated

combination of the MMEs and boundary conditions has a

solution, this solution being unique. This means that any

additional postulate is unnecessary at best and can contra-

dict the MMEs at worst. As a consequence, phenomenolo-

gical approaches often serve as a plentiful source of

misconceptions hindering further progress in the theory of

electromagnetic scattering and its practical applications.

The main objective of this essay is to identify, analyze,

and dispel several such misconceptions widespread in the

discipline of electromagnetic scattering by an isolated

particle or a discrete random medium (DRM). To para-

phrase Keller [1] once more, our goal is not to call for a

complete renunciation of phenomenological approaches

but rather to encourage a critical and open evaluation of

their actual origin, virtues, and limitations. It is hoped that

in certain cases this can result in an improved justification

of a phenomenological method by showing that its results

are, in some cases, useful quantitative approximations to

a microphysical solution.

2. Framework

In what follows, we will assume that the interaction of

electromagnetic radiation with an isolated particle or a

DRM is fully described by the MMEs supplemented by

appropriate boundary conditions [6–8]. In other words, it

is assumed that at each moment in time, the entire

scattering object can be represented by a specific spatial

configuration of a number NZ1 of discrete finite particles

(Fig. 1). A solitary particle (N=1) or any constituent

particle of a group (N41) is assumed to be sufficiently

large so that it can be characterized by optical constants

appropriate to bulk matter. In terms of classical

macroscopic electromagnetics, the presence of a particle

means that the optical constants inside the particle

volume are different from those of the surrounding host

medium. The spatial distribution of the optical constants

throughout the scattering object defines the

corresponding boundary conditions which, along with

the radiation condition at infinity [9,10], make the

solution of the MMEs unique.

A more fundamental way to treat electromagnetic

scattering by the object shown in Fig. 1 would be to

consider it as a vast collection of elementary particles and

use the formalism of quantum electrodynamics (QED). We

do not do that for two reasons. First of all, the direct

application of this approach is impracticable, given the

enormous complexity of the scattering object at the

elementary-particle level, and, to the best of our knowl-

edge, has never been attempted. Second of all, it is known

that by combining the concepts of QED and statistical

mechanics and assuming that the scattering object is

macroscopic, one can arrive at the classical MMEs [11,12].

This means that certain optical observables can be

computed with sufficient accuracy by solving the MMEs,

which allows us to adopt them as primordial physical

equations in the specific context of our analysis of

electromagnetic scattering. Importantly, by virtue of

having their origin in QED, the MMEs themselves

represent an honest approach to the quantitative descrip-

tion of a wide range of electromagnetic phenomena.

Another basic assumption will be that all fields and

sources vary in time according to the complex-exponen-

tial time dependence exp(� iot), where t is time, o is the

angular frequency, and i=(�1)1/2. In other words, our

analysis will be explicitly limited to frequency-domain

electromagnetic scattering [6,9,10,13,14]. For the sake of

brevity, the factor exp(� iot) will thereafter be omitted.
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Fig. 1. Scattering object in the form of a group of N discrete particles.
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It is important to recognize that QED is based on the

quantization of the microscopic electromagnetic field

interacting with elementary particles and involves

photons, each photon being a quantum of a single normal

mode of the microscopic field [15–21]. As such, photons

are neither waves nor localized particles of light [15–23].

During the explicit derivation of the MMEs from QED,

photons and elementary particles ‘‘disappear’’, so that the

MMEs involve only the macroscopic electromagnetic field

and macroscopic optical constants. Therefore, if one wants

to invoke the concept of photons to describe electro-

magnetic scattering by a macroscopic object, the proper

way to do that is to retract the MMEs and consistently use

the equations and concepts of QED to describe the

interaction of the group of elementary particles constitut-

ing the scatterer with the microscopic electromagnetic

field.2 Otherwise juggling with ‘‘photons’’ and ‘‘waves’’ at

will and ascribing to the ‘‘photons’’ desirable rather than

actual properties results in the notorious ‘‘photonic

confusion’’ discussed in detail in [7,8,25].

3. Scattering and causality

Perhaps the most profound misconception in the

discipline of electromagnetic scattering is that scattering

by an isolated particle is a solitary process unfolding in

time continuously wherein the incident field becomes

transformed into the scattered field (see [25] for a more

extensive discussion). This process allegedly involves a

preceding incoming wave, the physical interaction of this

wave with the particle, and the subsequent transforma-

tion of the incident wave into the outgoing scattered

wave. Furthermore, the incident wave is often portrayed

as the physical cause of the scattered wave.

However, the actual way to define electromagnetic

scattering is to solve the MMEs twice. The first solution, in

terms of the respective pair of the electric and magnetic

fields fE1ðrÞ,H1ðrÞg, corresponds to the situation with

no scattering object, whereas the second solution,

fE2ðrÞ,H2ðrÞg, corresponds to the situation with a

scattering object present, where r is the position vector

of the observation point (Fig. 1). The second solution is

intentionally sought in the form

E2ðrÞ ¼ E1ðrÞþE3ðrÞ, ð1Þ

H2ðrÞ ¼H1ðrÞþH3ðrÞ, ð2Þ

where the vector fields E3(r) and H3(r) are required to

satisfy the radiation condition at infinity [9,10] by decay-

ing as the inverse distance from the object. The total field

in the absence of the particle is called the incident field,

whereas the difference between the total field in the

presence of the particle and the total field that would

exist in the absence of the particle is called the scattered

field:

EscaðrÞ � E3ðrÞ ¼ E2ðrÞ�E1ðrÞ ¼ E2ðrÞ�EincðrÞ, ð3Þ

HscaðrÞ �H3ðrÞ ¼H2ðrÞ�H1ðrÞ ¼H2ðrÞ�HincðrÞ: ð4Þ

Thus, it is the modification of the total electromagnetic field

resulting from the presence of the particle that is called

electromagnetic scattering. This means that although electro-

magnetic scattering can be said to be a physical phenomenon

(amounting to the fact that the total fields computed in the

presence and in the absence of a particle are different), it is

not a solitary physical process.

Eqs. (3) and (4) demonstrate that the total field in the

presence of the particle is intentionally represented as the

sum of the incident and scattered fields:

EðrÞ � E2ðrÞ ¼ EincðrÞþEscaðrÞ, ð5Þ

HðrÞ �H2ðrÞ ¼HincðrÞþHscaðrÞ, ð6Þ

where EincðrÞ and HincðrÞ are obtained by solving the MMEs

in the absence of the particle. This makes both the

incident and the scattered field, as they appear in Eqs. (5)

and (6), purely mathematical quantities. This implies, in

particular, that

� the incident field is not modified by scattering and is

not transformed into the scattered field;

� the purely mathematical incident field cannot interact

physically with the particle;

� the purely mathematical incident field cannot be a

physical cause of the purely mathematical scattered field;

� only the total field, either in the absence or in the

presence of the particle, is a real physical field.

These points are well exemplified by the so-called

volume integral equation (VIE), which follows directly

from the MMEs. The VIE for the electric field reads

EðrÞ ¼ EincðrÞþk21

Z

VINT

dr0G
2

ðr,r0Þ � Eðr0Þ½m2ðr0Þ�1�

¼ EincðrÞþk21 I
2

þ
1

k21
r �r

 !

�

Z

VINT

dr0Eðr0Þ
expðik1jr�r0jÞ

4pjr�r0j
½m2ðr0Þ�1�,

r 2 R3
, ð7Þ

where m(r0) is the refractive index of the particle interior

relative to that of the host exterior medium, k1 is the wave

number in the host medium, G
2

ðr,r0Þ is the free space

dyadic Green’s function, I
2

is the identity dyadic, � is the

dyadic product sign, VINT is the interior volume of the

particle, and R3 is the entire three-dimensional space.

One can see that the VIE expresses the total field

2 Note in this regard that the so-called ‘‘cavity QED’’ based on the

quantization of the macroscopic electromagnetic field remains a

phenomenological theory [24]. In fact, this theory can hardly be self-

consistent in principle since the MMEs are derived by quantizing the

microscopic electromagnetic field in the first place. The legitimacy of a

repeated quantization of the resulting macroscopic electromagnetic field

is quite questionable and does not follow from any fundamental physical

principles. As a consequence, the cavity QED and similar approaches

based on the quantization of the macroscopic electromagnetic field

remain ‘‘dishonest’’ theories.
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everywhere in space in terms of the total field inside the

scattering object.3 If the scattering object is absent then

mðr0Þ � 1, and the total field is identically equal to the

incident field. Otherwise the total field can be represented

mathematically as a vector sum of the incident and

scattered components, the latter being given by the

second term on the right-hand side of Eq. (7).

Eq. (7) makes it quite obvious that the particle

interacts with the total field rather than with the incident

field. Therefore, if one wants to identify the cause of the

scattered field then it is the very presence of the particle.

This conclusion is quite consistent with the above

definition of the phenomenon of electromagnetic

scattering.

The erroneous characterization of electromagnetic

scattering by a particle as a solitary physical process

unfolding in time undoubtedly stems from the above-

mentioned ‘‘photonic confusion’’ (e.g., ‘‘a photon flies up

to a macroscopic object and bounces off of it, thereby

creating the scattered field’’) as well as from the misuse of

geometrical optics (e.g., ‘‘a ray impinges on the surface of

the particle and gets partly reflected from and partly

refracted into the particle; the reflected rays and the rays

refracted outside, perhaps after two or more internal

reflections, create the scattered field’’). Such characteriza-

tions of electromagnetic scattering fall apart as soon as

one begins to scrutinize the exact definitions and physical

meaning of the specific terms involved (e.g., [25]).

The verbally formulated causality of electromagnetic

scattering has been used to derive the so-called sum rule

for the extinction cross section by expressing the integral

of the extinction cross section over all wavelengths in

terms of a simple product of the particle volume and a

coefficient depending on the particle shape and static

dielectric function [27]. Several other sum rules have been

derived, again using the ‘‘causality’’ consideration (see,

e.g., references in [28]). However, as discussed above, the

scattered field is not caused by the incident field. There-

fore, alleged mathematical incarnations of the erro-

neously stated ‘‘physical’’ causality must be derived

directly from the MMEs rather than accepted

as ‘‘physically obvious’’ facts. Otherwise, they represent

additional postulates which, in fact, may contradict the

MMEs. Therefore, the resulting sum rules should be

considered unproven hypotheses rather than outcomes

of rigorous derivations from first principles [28].

4. Geometrical optics

An instructive example of a phenomenological theore-

tical approach is the geometrical optics method (GOM)

widely used to describe far-field electromagnetic scatter-

ing by a nonspherical particle [29,30]. The GOM is often

characterized as an asymptotic solution of the MMEs

in the limit k1Dmin-N, where Dmin is the smallest

dimension of the particle, although this characterization

is generally incorrect. In the case of scattering by a perfect

homogeneous sphere, many features of the GOM can be

justified, at least partially, by studying the asymptotic

behavior of the Lorenz–Mie coefficients [31–35]. How-

ever, the availability and great numerical efficiency of the

exact Lorenz–Mie theory limit the practical usefulness of

the GOM in the particular case of spherical particles. The

GOM is most useful in application to nonspherical

particles, since all numerically-exact techniques become

quite time-consuming, if even applicable, when the

particle size becomes much greater than the wavelength

[36–38]. In this general case, however, the GOM has never

been derived directly from the MMEs by evaluating the

limit k1Dmin-N. Instead, it remains a collection of ad hoc

formulas, recipes, and concepts united by ‘‘simple physi-

cal considerations’’. This does not allow one to character-

ize the GOM as an honest technique. Given the complexity

of the general scattering problem, this situation is unlikely

to change in the future.

Besides the simplest version of the GOM combining the

Snell–Fresnel ray tracing with diffraction on the particle

projection, several more sophisticated versions of the

GOM have been proposed, such as the GTD and the so-

called Kirchhoff approximation (see, e.g., [4,5,29,39–41]

and references therein). Like with any phenomenological

approach, the range of applicability of these and similar

techniques is not well defined, and their quantitative

applicability should be extensively examined versus

numerically-exact results [41–47].

As an example, Fig. 2 depicts the results of GOM and

Lorenz–Mie computations of the phase function a1(Y) for

nonabsorbing homogeneous spheres [36,48], where Y 2

½0,p� is the scattering angle defined as the angle between

the incidence and scattering directions. The phase

function describes the angular distribution of scattered

light for unpolarized incident intensity and is normalized

according to

1

2

Z p

0
dY sinYa1ðYÞ ¼ 1: ð8Þ

The Lorenz–Mie results are averaged over a narrow size

distribution with an effective variance of 0.07, so that x

represents the effective size parameter k1reff, reff being the

effective radius of the size distribution [48]. The GOM

results are computed for a single sphere with a size

parameter x=k1a, where a is the sphere radius. The ray-

tracing and diffraction components of the GOM phase

functions have been averaged over 11-wide angular

bins. One can see that the GOM phase-function

results for spheres become reasonably accurate only

at size-parameter values exceeding several hundred.

Furthermore, the simple GOM is unable to reproduce the

strong enhancement of intensity in the backscattering

direction traditionally called the glory. However, the

indisputable heuristic value of the GOM is the

qualitative prediction of the local maxima at scattering

angles close to 1371 and 1301 called the primary and

secondary rainbows.

Fig. 3 shows the results of approximate GOM and

numerically-exact T-matrix computations of the phase

3 Note that writing the VIE in the form of the first line of Eq. (7)

implies that the singularity of the dyadic Green’s function is treated in an

appropriate way (see [26] and references therein). This comment also

applies to Eq. (14) below.
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function for monodisperse, randomly oriented circular

cylinders with a diameter-to-length ratio of unity and a

relative refractive index m=1.311 [36,44]. The quasi-

periodic ripple in the T-matrix curves is caused by

interference effects characteristic of monodisperse

particles, the scattering-angle frequency of this ripple

being inversely proportional to particle size parameter

(see the discussion in the following section). Contrasting

Figs. 2 and 3 appears to suggest that GOM results for

nonspherical particles in random orientation may be

somewhat more accurate for a given size parameter

than those for surface-equivalent spheres. Again, the

heuristic value of the GOM in this case is its ability to

predict qualitatively specific scattering-angle features

such as the 461 halo and the strong and narrow

retroreflection peak centered at the exact backscattering

direction.

5. Multiple scattering

Throughout scientific literature, one can encounter

various definitions of ‘‘multiple scattering’’, all of them

stemming from an intuitive idea of successive scattering

events caused by a sequence of particles in a multi-

particle group. However, the characterization of a mor-

phologically complex object, such as a cloud, as being

composed of separate particles is based solely on the
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Fig. 2. Phase function versus scattering angle computed with the GOM and Lorenz–Mie theory for homogeneous spheres with a relative refractive index

m=1.33 and size parameters x=40, 160, and 600. The vertical axis scale applies to the curves with x=600, the other curves being successively displaced

upward by a factor of 100.
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human visual perception and is immaterial in the frame-

work of the MMEs. Indeed, the same VIE describes

electromagnetic scattering by a ‘‘multi-particle system’’

shown in Fig. 1 as well as by a ‘‘single isolated particle’’,

even though the interior volume VINT in the

former case is the union of the ‘‘constituent-particle

volumes’’. In other words, an object remains a single,

unified scatterer irrespective of the complexity of its

morphology.

To illustrate this point, let us consider far-field

scattering of a plane electromagnetic wave by three fixed

objects shown in Figs. 4a–c: an oblate spheroid with an

aspect ratio of 2, a circular cylinder with a diameter-to-

length ratio of one, and a cluster of 80 small identical

spherical particles randomly distributed throughout an

imaginary spherical volume V having a radius A. The

volume-equivalent-sphere size parameters of the

spheroid and the cylinder are the same and are equal to

that of the spherical volume: k1A=40. The size parameter

of the constituent spherical particles is k1a=4. The relative

refractive indices of the spheroid, the cylinder, and the

constituent spherical particles are the same and are equal

to 1.32. The coordinates of the constituent spheres

populating the volume V were selected using a random

number generator, but otherwise they are fixed.

The laboratory spherical coordinate system used to

describe far-field electromagnetic scattering is shown in

Fig. 4d, in which the unit vectors n̂
inc

and n̂
sca

specify the

directions of incidence and scattering, respectively. The

orientation of a scattering object with respect to the

laboratory frame is specified by the Euler angles of

rotation, as shown in Fig. 5 [36]. The corresponding sets

of the Euler angles fa,b,gg are given by {1451, 521, 01} for

the spheroid and the cylinder and by {01, 01, 01} for the

spherical volume.

The angular distribution and polarization state of the

scattered light in the far-field zone of the entire scattering

object is fully described by the so-called Stokes phase

matrix Z [36]. The latter expresses the Stokes parameters

of the light scattered in the observation direction n̂
sca

in

terms of those of the incident light:

Isca

Q sca

Usca

Vsca

2

6

6

6

4

3

7

7

7

5

pZðn̂
sca

,n̂
inc

Þ

Iinc

Q inc

Uinc

V inc

2

6

6

6

4

3

7

7

7

5

: ð9Þ

The Stokes parameters of the incident and scattered light

are defined with respect to the corresponding meridional

planes. The zenith and azimuth angles of the incidence

direction are assumed to be yinc=01 and jinc=01 which

implies that the meridional plane of the incidence

direction coincides with the xz half-plane with xZ0.

The incident light is taken to be circularly polarized in

the counter-clockwise sense when looking in the direction

of propagation, which implies that Vinc= Iinc and

Qinc=Uinc=0.

The left-hand panels of Figs. 6a–c show the far-field

angular distributions of the total intensity, Isca, scattered

in the backward hemisphere by the three fixed objects.

These intensity distributions were computed using the

numerically-exact T-matrix programs described in [36,49]

and demonstrate typical speckle patterns of comparable

complexity. The origin of the speckles can be explained

qualitatively as follows.

Using the VIE (7), it is rather straightforward to show

that sufficiently far from the entire scattering object, the

scattered field is given by the following formula of the far-

field approximation [36]:

EscaðrÞ ¼
r-1

expðik1rÞ

r

k21
4p

ð I
2

�n̂
sca

� n̂
sca

Þ �

Z

VINT

dr0½m2ðr0Þ�1�

�Eðr0Þexpð�ik1n̂
sca

� r0Þ, ð10Þ

where r is the distance from the origin of the laboratory

coordinate system to the observation point. The cause of
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Fig. 3. GOM and T-matrix phase functions for monodisperse, randomly oriented circular cylinders with surface-equivalent-sphere size parameters xse=40

and 180.
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the speckle is the complex exponential factor

expð�ik1n̂
sca

� r0Þ on the right-hand side of Eq. (10).

Indeed, the electric field contributions from two

arbitrary elementary volumes of the scattering

object centered at r0 and r00 interfere in the far-field

zone, the result of the interference being controlled

by the product expð�ik1n̂
sca

� r0Þ½expð�ik1n̂
sca

� r
00

Þ�� ¼

exp½�ik1n̂
sca

� ðr0�r
00

Þ�, where the asterisk denotes a

complex-conjugate value. Depending on the angle be-

tween n̂
sca

and r0�r
00

and on jr0�r
00

j, this complex

exponential can be a rapidly varying function of n̂
sca

.

As a result, the angular scattering pattern in the far-

field zone can be expected to be a superposition of

multiple maxima and minima generated by different

pairs of elementary volume elements of the scatterer.

The most rapidly changing component of the scattering

pattern should be caused by the pairs of elementary

volume elements with ðr0�r
00

Þ ? n̂
sca

and jr0�r
00

j 	 2Amin,

where Amin is the radius of the smallest circumscribing

sphere of the scattering object. Therefore, the far-

field angular pattern can be expected to vary quite

significantly even when the scattering direction

changes by as little as p=ð2k1AminÞ (rad) since this change

corresponds to a change of the phase k1n̂
sca

� ðr0�r
00

Þ equal

to p The actual angular distribution of the intensity

maxima and minima depends, of course, on the morphol-

ogy of the scattering object, as the left-hand panels of

Fig. 6 vividly demonstrate.

Line of nodes

y

x ′

y ′

z ′

α
β

γ

z

x β

Fig. 5. Euler angles of rotation transforming the laboratory coordinate

system fx,y,zg into the particle coordinate system fx0 ,y0 ,z0g: The z0 axis for

the spheroid and the cylinder is directed along the axis of rotational

symmetry.
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The speckle patterns in Figs. 6a and b appear to be

somewhat less irregular than that in Fig. 6c. This can be

explained qualitatively by the greater morphological

complexity of the random multi-sphere group, the less

regular spatial distribution of the elementary volume

elements contributing to the integral on the right-hand

side of Eq. (10), and the fact that empty spaces between

the constituent spheres do not contribute to the scattered

field.

The right-hand panels of Fig. 6 show the results of

averaging the scattered intensity over the uniform

orientation distribution of the respective objects. Not

surprisingly, the average intensity distributions are

rotationally symmetric relative to the incidence direction.

Fig. 6. Total intensity scattered by the spheroid (a), the cylinder (b), and the spherical volume (c) in fixed (left-hand panels) and random (right-hand

panels) orientations. The grey scale was individually adjusted in order to maximally reveal the fine structure of each scattering pattern. Fig. 7 shows the

angular coordinates used for all six panels.
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300°60°

240°

180°

= 160°120° 140°

�    = 0°

�
sca

sca

Fig. 7. Angular coordinates used in Fig. 6.
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The scattering patterns for the randomly oriented spher-

oid and cylinder show residual interference effects,

whereas that for the randomly oriented multi-particle

group is rather featureless, with the exception of a strong

and narrow backscattering peak. Note that the

dotted curve in Fig. 3 largely reproduces the radial profile

of the scattered intensity in the right-hand panel of

Fig. 6b, the small differences resulting from the different

definitions of the particle size parameter (in terms of

those of the surface- and volume-equivalent sphere,

respectively).

Fig. 6 demonstrates that there can be vast differences

between instantaneous or statistically averaged scattering

patterns generated by different objects. However, these

differences result from differences in the objects’ char-

acteristics (such as the overall size relative to the

wavelength, morphology, and relative refractive index)

rather than from differences in fundamental physical laws

describing electromagnetic scattering. The physics of

electromagnetic scattering, as embodied by the MMEs or

the mathematically equivalent VIE, remains the same

irrespective of the nature of the scattering object. To the

extent that analytical or numerically-exact solutions of

these primordial equations are possible in practice, they

incorporate and represent all the physics of the scattering

problem.

Despite this irrefutable fact, there is a tendency to

believe that the ‘‘multi-particle’’ morphology shown in

Fig. 4c somehow results in a multiple-scattering object,

whereas the ‘‘single-particle’’ morphologies shown in

Figs. 4a and b result in single-scattering objects. We have

mentioned, however, that multiple electromagnetic scat-

tering is not a real physical phenomenon. Indeed, all three

left-hand panels in Fig. 6 are the result of solving the same

MMEs and describe single electromagnetic scattering by

three morphologically different objects. The computation

of the left-hand panel in Fig. 6c did not involve any new

equations and, thus, any new physical phenomena.

However, multiple scattering can be viewed as a useful

mathematical abstraction facilitating, in particular, the

derivation of such important honest theories as the

microphysical theories of radiative transfer (RT) and

coherent backscattering (CB). The specific way to intro-

duce the mathematical concept of multiple scattering is as

follows.

Consider an arbitrary scattering object, e.g., the spheroid

shown in Fig. 4a, and subdivide it arbitrarily into a number

N of non-overlapping volume elements Vi such that

VINT ¼
[

N

i ¼ 1

Vi: ð11Þ

The volume elements need not be infinitesimally small. The

next step is to represent the total scattered field at an

observation point r as a vector superposition of partial

fields scattered by the individual volume elements:

EðrÞ ¼ EincðrÞþ
X

N

i ¼ 1

Esca
i ðrÞ, r 2 R3

, ð12Þ

where Esca
i ðrÞ is the ith partial scattered electric field. Then it

can be shown that the partial scattered fields are found by

solving vector so-called Foldy–Lax equations (FLEs) which

follow directly from the VIE and are exact [7,50]. Specifi-

cally, the ith partial scattered field is given by

Esca
i ðrÞ ¼

Z

Vi

dr0G
2

ðr,r0Þ �

Z

Vi

dr
00

T
2

iðr
0
,r

00

Þ � Eiðr
00

Þ, ð13Þ

where Eiðr
00

Þ is the electric field ‘‘exciting’’ volume i, and the

N dyadics T
2

i are found by solving individually the following

Lippmann–Schwinger equation:

T
2

iðr,r0Þ ¼ k21½m
2
i ðrÞ�1�dðr�r0Þ I

2

þk21½m
2
i ðrÞ�1�

Z

Vi

dr
00

G
2

ðr,r
00

Þ � T
2

iðr
00

,r0Þ, r,r0 2 Vi,

ð14Þ

where dðrÞ is the three-dimensional delta function. The T
2

i

is the dyadic transition operator of the ith volume element

with respect to the fixed laboratory coordinate system

computed in the absence of all the other volume elements.

Thus, the N dyadic transition operators are totally indepen-

dent of each other. However, the exciting fields are

interdependent and are found by solving the following

system of N linear integral equations:

EiðrÞ ¼ EincðrÞþ
X

N

jðaiÞ ¼ 1

EijðrÞ, r 2 Vi, i¼ 1, . . . ,N, ð15Þ

where the ‘‘partial’’ exciting fields EijðrÞ are given by

EijðrÞ ¼

Z

Vj

dr0G
2

ðr,r0Þ �

Z

Vj

dr
00

T
2

jðr
0
,r

00

Þ � Ejðr
00

Þ: ð16Þ

The FLEs (12)–(16) are equivalent to the VIE. However,

the fact that T
2

i for each i is an individual property of the

ith volume element computed as if this volume element

were alone allows one to introduce the mathematical

concept of multiple scattering. Indeed, let us rewrite Eqs.

(12), (13), (15), and (16) in a compact operator form:

E¼ Eincþ
X

N

i ¼ 1

ĜT̂ iEi, ð17Þ

Ei ¼ Eincþ
X

N

jðaiÞ ¼ 1

ĜT̂ jEj, ð18Þ

where

ĜT̂ jEj ¼

Z

Vj

dr0G
2

ðr,r0Þ �

Z

Vj

dr
00

T
2

jðr
0
,r

00

Þ � Ejðr
00

Þ: ð19Þ

Iterating Eq. (18) yields

Ei ¼ Eincþ
X

N

jðaiÞ ¼ 1

ĜT̂ jE
incþ

X

N

jðaiÞ ¼ 1

lðajÞ ¼ 1

ĜT̂ jĜT̂ lE
inc

þ
X

N

jðaiÞ ¼ 1

lðajÞ ¼ 1

mðalÞ ¼ 1

ĜT̂ jĜT̂ lĜT̂mE
incþ � � � , ð20Þ

whereas the substitution of Eq. (20) in (17) gives

E¼ EincþEsca, ð21Þ
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Esca ¼
X

N

i ¼ 1

ĜT̂ iE
incþ

X

N

i¼ 1

jðaiÞ ¼ 1

ĜT̂ iĜT̂ jE
inc

þ
X

N

i¼ 1

jðaiÞ ¼ 1

lðajÞ ¼ 1

ĜT̂ iĜT̂ jĜT̂ lE
incþ � � � : ð22Þ

The last two equations are nothing more than what is

usually called the Newmann or the Born expansion of the

total field. However, if one really wishes to introduce

the concept of multiple scattering, it is these formulas

that can be interpreted, purely mathematically, as an

order-of-scattering expansion. Indeed, the dyadic transi-

tion operators are independent of each other, and each of

them can be characterized as a unique and complete

electromagnetic identifier of the corresponding volume

element. Therefore, ĜT̂ iE
inc can be interpreted as the

partial scattered filed at the observation point generated

by the ith volume element in response to the excitation by

the incident field only, ĜT̂ iĜT̂ jE
inc is the partial field

generated by the same volume element in response to

the excitation caused by the jth volume element in

response to the excitation by the incident field, etc.

Thus, the first term on the right-hand side of Eq. (22)

can be interpreted as the sum of all single-scattering

contributions, the second term is the sum of all double-

scattering contributions, etc. The first term on the right-

hand side of Eq. (21) represents the unscattered (i.e., the

incident) field.

We intentionally began the discussion of the FLEs by

referring to a scattering object in the form of a spheroid.

Indeed, no one would claim that a spheroid is a multiple-

scattering object, which demonstrates once again that the

FLEs and their order-of-scattering representation do not

describe multiple scattering as a real physical phenomen-

on. For example, the term ĜT̂ iĜT̂ jĜT̂ lE
inc on the right-hand

side of Eq. (22) cannot be interpreted by saying that ‘‘the

incident wave approaches volume element l, gets scattered

by volume element l towards volume element j, ap-

proaches volume element j, gets scattered by volume

element j towards volume element i, approaches volume

element i, gets scattered by volume element i towards the

observation point, and finally arrives at the observation

point’’. Indeed, it follows from Eqs. (15) and (16) that all

mutual excitations EijðrÞ occur simultaneously and are not

temporally discrete and ordered events. Furthermore, they

are not, in general, electromagnetic waves and do not

propagate in a specific direction. All this shows again that

Eqs. (21) and (22) are nothing more than a mathematical

expansion of the total field in a certain series.

In the limit N-N, Vi-0 8i the FLEs yield the same

result as a widely used numerically-exact method called

the discrete dipole approximation [26,51]. Otherwise they

may appear to be too complicated to find extensive

practical applications. It turns out, however, that the

order-of-scattering form of the FLEs is a convenient

mathematical tool that can be used to derive the honest

microphysical theories of RT and CB. This recent devel-

opment will be discussed in the following section.

6. Microphysical theories of radiative transfer and

coherent backscattering

The phenomenological RTT pioneered by Lommel,

Chwolson, and Schuster [52–54] is a thoroughly phenom-

enological theory based on an eclectic combination of

principles and concepts borrowed on an ad hoc basis from

honest theories such as classical electromagnetics and

QED as well as from phenomenological approaches such

as the GOM and classical radiometry. The numerous

inherent inconsistencies and the overall inadequacy of the

phenomenological RTT have been exposed and exten-

sively discussed in [7,8,25,55]. Importantly, however, the

phenomenological RTT, as applied to a DRM composed of

randomly positioned macroscopic particles, has been

replaced by the honest microphysical RTT [56,57] and,

thus, has been rendered unnecessary.

The natural way to start the derivation of the micro-

physical theories of RT and CB is to apply the FLEs to an N-

particle group (Fig. 1) and choose N volumes Vi such that

each of them coincides with the interior of an entire

particle. As a consequence, the T
2

i in Eq. (13) becomes the

dyadic transition operator of the entire ith particle with

respect to the fixed laboratory coordinate system computed

as if all the other particles did not exist. In other words, the

T
2

i now serves as a complete and unique electromagnetic

identifier of particle i.

The resulting FLEs and their order-of-scattering form

can be greatly simplified by making the following two

assumptions:

� The N particles forming the group are separated widely

enough that each of them is located in the far-field

zones of all the other particles.

� The observation point is located in the far-field zone of

any particle from the group.

Indeed, the partial contribution of the jth particle to the

field exciting the ith particle in Eq. (15) now reduces to a

simple outgoing spherical wavelet centered at the origin

of particle j. The radius of curvature of this wavelet at the

origin of particle i is much larger than the size of particle i

so that the wavelet can be effectively considered as locally

plane and locally homogeneous. Hence the scattering of this

wavelet by particle i can be described in terms of the

conventional far-field scattering dyadic A
2

i centered at the

origin of particle i [7,36]. As a consequence, the original

system of the integral FLEs is converted into a system of

algebraic equations, while the original order-of-scattering

expansion becomes purely algebraic.

Specifically, assuming that the incident field is a plane

electromagnetic wave propagating in the direction of the

unit vector n̂
inc

, we have for the total field at an

observation point r located in the respective far-field

zones of all the N particles [7]:

EðrÞ ¼ EincðrÞþ
X

N

i ¼ 1

GðriÞA
2

iðr̂ i,n̂
inc

Þ � EincðRiÞ

þ
X

N

i ¼ 1

GðriÞ
X

N

jðaiÞ ¼ 1

A
2

iðr̂ i,R̂ ijÞ � Eij, ð23Þ
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where GðrÞ ¼ expðik1rÞ=r, ri is the distance between the

origin of particle i and the observation point, r̂ i is the unit

vector directed from the origin of particle i towards the

observation point, Ri is the position vector of the ith

particle origin, R̂ ij is the unit vector directed from the

origin of particle j towards the origin of particle i (Fig. 8),

and Eij are the distance-independent amplitudes of the

mutual particle–particle excitations. Eq. (23) shows that

the total field at any observation point located sufficiently

far from any particle in the group is the superposition of

the incident plane wave and N spherical waves generated

by and centered at the N particles. The Eij are now found

by solving a system of N(N�1) linear algebraic (rather

than integral!) equations [7]:

Eij ¼ GðRijÞA
2

jðR̂ ij,n̂
inc

Þ � EincðRjÞ

þGðRijÞ
X

N

lðajÞ ¼ 1

A
2

jðR̂ ij,R̂ jlÞ � Ejl, i,j¼ 1, . . . ,N, jai,

ð24Þ

where Rij is the distance between the origins of particles j

and i. The resulting order-of-scattering expansion of the

total field also becomes much simpler:

E¼ Eincþ
X

N

i ¼ 1

B
2

ri0 � E
inc
i þ

X

N

i ¼ 1

X

N

jðaiÞ ¼ 1

B
2

rij � B
2

ij0 � E
inc
j

þ
X

N

i ¼ 1

X

N

jðaiÞ ¼ 1

X

N

lðajÞ ¼ 1

B
2

rij � B
2

ijl � B
2

jl0 � E
inc
l þ � � � , ð25Þ

where

E¼ EðrÞ, Einc ¼ EincðrÞ, Einc
i ¼ EincðRiÞ, ð26Þ

B
2

ri0 ¼ GðriÞA
2

iðr̂ i,n̂
inc

Þ, ð27Þ

B
2

rij ¼ GðriÞA
2

iðr̂ i,R̂ ijÞ, ð28Þ

B
2

ij0 ¼ GðRijÞA
2

jðR̂ ij,n̂
inc

Þ, ð29Þ

B
2

ijl ¼ GðRijÞA
2

jðR̂ ij,R̂ jlÞ: ð30Þ

One can see indeed that now the role of the unique

electromagnetic identifier of each particle is assumed

by the corresponding particle-centered scattering dyadic,

that is, the same quantity that would completely describe

far-field scattering of a plane electromagnetic wave

by this particle if it were solitary rather than a member

of the group. In other words, the far-field scattering

dyadics A
2

i (i=1,y,N) are computed by solving the

MMEs separately for each particle, which is much

simpler than solving the MMEs for the entire multi-

particle group.

Each term on the right-hand side of Eq. (25) can be

viewed as a multi-particle wave path resulting in a partial

transverse electromagnetic wave at the observation

point. Each partial wave is characterized by a well-defined

phase obtained by evaluating the respective product of

the participating G-factors. This means that one can

evaluate the result of the interference of any pair of such

‘‘multiply-scattered’’ waves at the observation point as a

function of the phase difference between the waves.

Most typically, random movements of the constituent

particles during the measurement cause a randomly

varying phase difference between two multi-particle

wave paths such as those shown in Fig. 4g. As a

consequence, averaging over particle positions yields a

zero net result.

There are, however, two classes of wave pairs whose

contributions survive the averaging over particle coordi-

nates. Fig. 4h gives an example of the so-called ladder

diagram [58] wherein both multi-particle wave paths are

self-avoiding (i.e., are not allowed to go through a particle

more than once) and go through the same string of

particles. In this case the corresponding phase difference

is identically equal to zero irrespective of particle

positions, thereby causing constantly constructive inter-

ference. The summation of all ladder-diagram contribu-

tions in the limit N-N coupled with averaging over the

uniform distribution of particle positions throughout the

scattering medium yields the vector radiative transfer

equation (RTE) [56,57]. The latter is valid at any observa-

tion point except far-field observation points located in

the exact forward-scattering direction.

Another class of wave pairs causing a non-zero

contribution in the far-field zone of the entire scattering

object is exemplified in Fig. 4i. Such pairs of self-avoiding

wave paths are called cyclical diagrams [58]. In this case

the two conjugate wave paths go through the same string

of particles, but in opposite directions. The corresponding

phase difference at a remote observation point is given by

D¼ k1ðRn�R1Þ � ðn̂
inc

þ n̂
sca

Þ: ð31Þ

If the observation direction n̂
sca

is far from the exact

backscattering direction given by �n̂
inc

then D varies

randomly with particle coordinates, and so the average

effect of the interference is zero. However, at exactly the

backscattering direction, n̂
sca

¼�n̂
inc

, the phase differ-

ence between the conjugate wave paths involving any

string of particles is identically equal to zero, and the

j

Rij

O
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i
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r

r
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point

ri

Rij

ˆ
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Fig. 8. Scattering contribution caused by particle i in response to

excitation by particle j.
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interference is always constructive, thereby causing an

intensity peak. The summation of all cyclical-diagram

contributions in the limit N-N coupled with averaging

over the uniform distribution of particle positions

throughout the scattering medium yields the microphy-

sical theory of CB [7].

The classical integro-differential form of the RTE reads

q̂ �r~Iðr,q̂Þ ¼ �n0/Kðq̂ÞSx
~Iðr,q̂Þ

þn0

Z

4p
dq̂

0
/Zðq̂,q̂

0
ÞSx

~Iðr,q̂
0
Þ: ð32Þ

In this equation, ~Iðr,q̂Þ is the 4�4 so-called specific

intensity column vector, /Kðq̂ÞSx and /Zðq̂,q̂
0
ÞSx are the

extinction and the phase matrix per particle, respectively,

averaged over all particle states (i.e., sizes, shapes,

orientations, and relative refractive indices), and n0=N/V

is the particle number density. The specific intensity

column vector is a function of spatial coordinates of the

observation point r and the ‘‘propagation direction’’ q̂ and

can be decomposed into the coherent and diffuse parts,

~Iðr,q̂Þ ¼ dðq̂�n̂
inc

ÞIcðrÞþ ~Idðr,q̂Þ, ð33Þ

each satisfying its own RTE:

n̂
inc

�rIcðrÞ ¼�n0/Kðn̂
inc

ÞSxIcðrÞ, ð34Þ

q̂ �r~Idðr,q̂Þ ¼�n0/Kðq̂ÞSx
~Idðr,q̂Þ

þn0

Z

4p
dq̂

0
/Zðq̂,q̂

0
ÞSx

~Idðr,q̂
0
Þþn0/Zðq̂,n̂

inc
ÞSxIcðrÞ,

ð35Þ

where dðq̂Þ is the solid-angle delta function. The coherent

column vector Ic reduces to the Stokes column vector of

the incident plane wave at the illuminated boundary

of the medium, but is subject to exponential attenuation

and, possibly, the effect of dichroism inside the medium.

According to Eq. (33), the fundamental difference

between the coherent Stokes column vector Ic and the

diffuse specific intensity column vector ~Id is that the

former describes a monodirectional whereas the latter

describes an uncollimated flow of electromagnetic energy.

For example, the first element of the coherent Stokes

column vector, i.e., the coherent intensity Ic(r) is the

electromagnetic power per unit area of a small surface

element DS perpendicular to the incidence direction n̂
inc

,

whereas the first element of the diffuse specific intensity

column vector, i.e., the diffuse specific intensity ~Idðr,q̂Þ, is

the electromagnetic power per unit area of a small surface

element DS perpendicular to q̂ per one steradian of a

small solid angle DO centered around q̂. This interpreta-

tion of Ic(r) and ~Idðr,q̂Þ implies that both quantities can be

measured by appropriately placed and oriented detectors

of electromagnetic energy flux, which explains the

practical usefulness of the RTT.

7. Range of applicability of the honest theories of

radiative transfer and coherent backscattering

The discussion in the preceding section demonstrates

that RT and CB are idealized mathematical concepts valid

under specific circumstances. Since the microphysical

theories of RT and CB follow directly from the MMEs upon

making a sequence of well-defined assumptions [7,8],

their practical applicability does not require any valida-

tion provided that all these assumptions are fulfilled.

For example, there is little if any doubt that the RTE

describes adequately the results of photopolarimetric

observations of clouds in planetary atmospheres, as

exemplified by the remote-sensing discovery of micro-

meter-sized sulfuric acid droplets in the atmosphere of

Venus [59]. However, if either theory is used to model

situations in which one or more of the underlying

assumptions are violated then its quantitative applicabil-

ity must be carefully and extensively examined. The

requisite test results can be the outcome of a direct

numerically-exact solution of the MMEs or a controlled

laboratory experiment.

For example, one of the basic assumptions that one

has to make in order to arrive at the mathematical

concepts of RT and CB is that the particles forming a DRM

are located in the far-field zones of each other, which

implies a very low particle packing density. However,

both concepts have been used frequently to describe

electromagnetic scattering by densely packed DRMs such

as particle suspensions and particulate surfaces with

volume packing densities comparable to or even exceed-

ing 10%.

One way to validate the quantitative applicability of

the concepts of RT and CB to such densely packed DRMs

is to compare the results of numerical computations

with those of controlled laboratory experiments. As

discussed in [3], there is a fundamental difference

between controlled laboratory measurements and labora-

tory observations. In the former, one fully controls all

the conditions of the experiment and has complete

independent knowledge of all physical parameters speci-

fying the scattering medium (e.g., the size distribution,

shape, refractive index, and packing density of the

particles and the geometrical dimensions of the scattering

medium) as well as the capability to change them one

at a time. The known parameters of the medium then

serve as input for numerical computations of electro-

magnetic scattering, thereby making possible a direct

and unambiguous comparison of theoretical and mea-

surement results. Laboratory observations do not differ

from remote-sensing (e.g., astronomical) observations

in that one measures only the parameters of the scattered

light, without providing independently a complete

physical and compositional specification of the scattering

medium. As such, laboratory observations cannot be

used for validation purposes. Instructive examples of

the use of controlled laboratory measurements of electro-

magnetic scattering for validating the applicability of the

low-packing-density concepts of RT and CB to densely

packed DRMs can be found, e.g., in [60–62].

Another way to test the applicability of an honest low-

density theory of electromagnetic scattering to a densely

packed DRM is to use the results of direct computer

solutions of the MMEs. There are three numerically-exact

computer solvers of the MMEs that have been applied

recently to model electromagnetic scattering by media

consisting of large numbers of randomly positioned

particles: the superposition T-matrix method [36,49],
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the finite-difference time-domain method [63,64], and the

discrete dipole approximation [26,51]. By directly solving

the MMEs one can

� generate benchmark numbers by eliminating any

uncertainty associated with the use of an approximate

honest theoretical approach or a phenomenological

theory;

� control precisely all physical parameters of the

scattering medium and vary them one at a time;

� compute all requisite optical observables at once.

Such modeling can be viewed as an ideal controlled

laboratory experiment in which one studies unambigu-

ously the onset, evolution, and potential decay of all

observable manifestations of RT and CB as the particle

packing density gradually increases from zero to values

typical of actual particulate surfaces and particle suspen-

sions. Numerous applications of this approach can be

found in [65–79].

The right-hand panel of Fig. 6c gives an example of

how a direct numerically-exact solution of the MMEs

reproduces, at least qualitatively, the main prediction of

the low-density theory of CB, viz., the strong and narrow

backscattering intensity peak. Indeed, by averaging the

scattered intensity over all orientations of the multi-

particle group shown in Fig. 4c, one effectively models a

macroscopic scattering volume filled with randomly

positioned particles.

Another example of numerically-exact T-matrix results

is given in Fig. 9, which depicts the far-field angular
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identical spherical particles. The relative refractive index and size parameter of the particles are fixed at k1a=4 and m=1.32.
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dependence of the elements of the normalized Stokes

scattering matrix ~FðYÞ for a macroscopic spherical volume

of DRM populated with increasing numbers of randomly

positioned particles [68]. To define the scattering matrix,

we make a simplifying assumption that jsca ¼ 0 and

specify the scattering direction in terms of the scattering

angle Y¼ ysca (cf. Figs. 4d and 10). Then, by definition

[36,80],

~FðYÞ ¼

a1ðYÞ b1ðYÞ 0 0

b1ðYÞ a2ðYÞ 0 0

0 0 a3ðYÞ b2ðYÞ

0 0 �b2ðYÞ a4ðYÞ

2

6

6

6

6

4

3

7

7

7

7

5

¼
4p

Csca
Zðn̂

sca
,n̂

inc
Þ,

ð36Þ

where Csca is the scattering cross section of the entire

volume, and the phase function a1ðYÞ satisfies the

normalization condition (8).

As we have already mentioned, the phase function

describes the angular distribution of the scattered

intensity provided that the incident light is unpolarized.

The upper left-hand panel of Fig. 9 vividly demonstrates

two fundamental consequences of increasing N consis-

tent, at least qualitatively, with predictions of the low-

density theories of RT and CB [7,48]. First of all, increasing

N makes the phase function at scattering angles

303
rYr1703 progressively smooth and featureless,

thereby causing the ‘‘diffuse’’ intensity background clearly

identifiable in the right-hand panel of Fig. 6c. The

smoothness of the background intensity can be inter-

preted as a typical RT consequence of increasing amount

of multiple scattering with increasing N whereby light

undergoing many ‘‘scattering events’’ forgets the initial

incidence direction n̂
inc

and is likely to contribute equally

to all ‘‘exit’’ directions n̂
sca

. Second of all, the phase

functions at scattering angles Y41703 start to develop a

backscattering enhancement which becomes quite pro-

nounced for NZ160. This feature can be interpreted as a

typical manifestation of CB.

The upper left panel of Fig. 9 also reveals a far-field

optical effect which the RTT does not reproduce. Specifi-

cally, the constructive interference of light singly scat-

tered by the component particles in the exact forward

direction causes a strong forward-scattering enhance-

ment in the far-field zone of the entire volume [68]. The

origin of this feature is explained in Fig. 4f. Indeed,

the exact forward-scattering direction is unique in that

the phase of the wavelets singly forward-scattered by all

the particles in the volume is exactly the same irrespec-

tive of the specific particle positions. In the absence of

multiple scattering, the constructive interference of these

wavelets would lead to an increase of the forward-

scattering phase function a1(01) by a factor of N. This

increase does occur for N=2 and 5, but then it slows down

and eventually saturates at a value close to the Lorenz–

Mie prediction for a homogeneous k1A=40 spherical

scatterer. Interestingly enough, the extinction cross sec-

tion of the entire volume also saturates at a value close to

twice its projected area (Cext-2pA2) by the time the

constituent k1a=4 particles fill completely the volume’s

projection. This behavior of a1(01) and Cext with increasing

N can be interpreted qualitatively in terms of constituent

particles ‘‘shading’’ each other. Ultimately the far-field

forward-scattering behavior of the scattering volume

filled with densely packed, randomly positioned particles

starts to resemble that of a projection-area-equivalent

homogeneous scatterer.

The degree of linear polarization of the scattered light

for unpolarized incident light is given by the ratio

�Q sca=Isca ¼�b1=a1. The bottom left-hand panel of Fig. 9

shows that the most obvious effect of increasing N is to

smooth out the oscillations inherent in the polarization

curve for a single k1a=4 sphere and, on average, to make

polarization more neutral. The traditional RT explanation

of this behavior is that the main contribution to Qsca

comes from the first order of scattering, whereas light

‘‘scattered many times’’, as in Fig. 4h, becomes largely

unpolarized [7,48,80]. The effect of increasing N on the

ratio b2/a1 is quite similar.

The ratio a2/a1 is identically equal to unity for

scattering by a single sphere. Therefore, the rapidly

growing deviation of this ratio from 100% for NZ5 in

Fig. 9 can again be interpreted in RT terms as a direct

consequence of the strengthened depolarizing effect of

‘‘multiple scattering’’ [7]. Analogously, a3ðYÞ � a4ðYÞ and

a3ð180
3Þ=a1ð180

3Þ ¼�1 for scattering by a single spheri-

cally symmetric particle, but ‘‘multiple scattering’’ in

particle groups with NZ5 causes an increasingly sig-

nificant violation of these equalities.

Perhaps an even more convincing demonstration of the

onset of the CB effect is provided by Fig. 11a. Indeed, the

(a1+a4)/2 curve for an isolated particle shows no

backscattering enhancement at all, whereas those for

the multi-particle volumes show pronounced

backscattering peaks. The polarization curve for N=1

n̂
sca

n̂
inc

k1A = 60

2k1a = 4

�

�

Fig. 10. Far-field scattering by a macroscopic spherical volume of DRM.

The normalized Stokes scattering matrix is defined with respect to the

scattering plane (i.e., the plane through the incidence and scattering

directions) as a function of the scattering angle Y. In this case the

k1A=60 spherical volume is populated by N=800 identical spherical

particles having a size parameter k1a=2.
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reveals uniformly neutral polarization, whereas those for

the multi-particle volumes exhibit a narrow asymmetric

negative-polarization minimum at backscattering angles.

This feature is predicted by the low-density theory of CB

for Rayleigh constituent particles and is called the

polarization opposition effect (POE) [81,82]. Importantly,

the angular widths of all the backscattering peaks and the

angles of minimal polarization in Fig. 11a scale as 1/k1A

which is consistent with their interference CB origin

[cf. Eq. (31)].
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depict the respective single-particle characteristics. (b) As in panel a, but for fixed k1A=40 and N=500. The particle refractive index varies fromm=1.31 to
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Fig. 11b demonstrates that the angular widths of these

backscattering features are virtually independent of the

particle refractive index, thereby further corroborating

their CB nature. Furthermore, all four polarization curves

exhibit the POE despite the complete absence of this

feature in the respective single-particle polarization

curves (Fig. 4e).

The effect of increasing the number of particles N in a

volume of DRM can be expected to be twofold. On one

hand, it facilitates ‘‘multiple scattering’’ and thereby

enhances the classical manifestations of RT and CB. On

the other hand, it leads to increased packing density and

can eventually cause changes in the scattering patterns

not implied by the low-packing-density theories of RT and

CB [83,84]. One should, therefore, expect that the RT and

CB interpretation of numerically-exact T-matrix data

must ultimately become inadequate when the particle

packing density becomes exceedingly large. Fig. 11c

shows that this is indeed the case: the curves for N=300

and 345 develop high-frequency interference ripple

typical of a compact particle with a size parameter

k1A=20 (cf. Fig. 3 and right-hand panels of Figs. 6a and

b) which, of course, is not predicted by the RT and CB

theories. Nevertheless, the direct solutions of the MMEs

do demonstrate that the classical predictions of these

low-density theories can survive (at least in a semi-

quantitative sense) volume packing densities typical of

particle suspensions and particulate surfaces [78,79].

This result raises an interesting question [85] of

whether one can legitimately attribute to the effect of

CB certain results of photometric and polarimetric

observations of particulate planetary surfaces at small

phase angles [86–101] such as those depicted in Fig. 12. In

principle, this attribution is as unnecessary as the

introduction of the mathematical concept of CB in the

first place. What matters is whether the results of

photopolarimetric astronomical observations can be

accurately reproduced by a direct solution of the MMEs

for a realistic model of the scattering medium. However,

attempting this is still impracticable, which makes it

tempting to interpret the results of observations using

idealized concepts such as RT and CB. Fortunately, the

photometric and polarimetric data for Europa (Fig. 12)

and several other high-albedo solar system objects [85]

are quite unique in that they reveal both the photometric

opposition effect and the POE of nearly equal angular

widths and with angular profiles consistent with the exact

solutions of the MMEs (Figs. 11a and b). No other honest

theory of electromagnetic scattering has been

demonstrated to yield both effects with their very

specific traits simultaneously. Therefore, it appears to

be rather safe to conclude that both opposition effects

can be attributed, at least qualitatively, to coherent

backscattering of sunlight by planetary surfaces

composed of microscopic regolith particles [78,85].

8. Scalar approximation

The honest microphysical derivation of the theories of

RT and CB helps expose and dispel such fundamental a

misconception as the scalar approximation (SA). It is

widely believed that if one is interested only in the

intensity of the scattered light but not in its polarization

state then polarization can be ignored altogether, and the

vector theories of RT and CB can be replaced by their

‘‘scalar’’ analogues. However, the SA is a phenomenologi-

cal approach in that it does not follow directly from the

MMEs. Therefore, the numerical accuracy of the SA must

be carefully and extensively examined by comparing

‘‘scalar’’ results with those obtained using the honest

vector versions of the RT and CB theories. Obviously, the

SA should be expected to fail when the incident light is

polarized. The inherently vector nature of electromagnetic

radiation can cause significant errors in ‘‘scalar’’ computa-

tions even when the incident light is unpolarized,

especially in computations of CB (e.g., [7,102,103] and

references therein).

9. Energy conservation

Another widespread misconception is that the RTE is a

direct consequence of applying trivial energy-balance

considerations to an ‘‘elementary volume element’’ of a
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turbid medium. The fallaciousness of this belief becomes

immediately obvious as soon as one recalls that the RTE

does not describe per se specific manifestations of CB,

including the angular profile of the backscattering

intensity peak. Consider, for example, a semi-infinite

cloud layer composed of nonabsorbing particles. The

exact solution of the RTE suggests that the amount of

energy diffusely reflected by this layer is identically equal

to the amount of incident energy. However, adding the

missing energy contained in the CB intensity peak breaks

the energy conservation law: the amount of energy

exiting the nonabsorbing cloud layer exceeds the amount

of energy entering it.

In fact, it is a pure accident that summing up only the

ladder diagrams (Section 6) results in an equation that by

itself satisfies the energy conservation law. This implies

that the result of summing up the energy contributions of

all the other types of diagrams, including the cyclical

diagrams, must be equal to zero. The amount of energy

contained in the CB intensity peak is very small in the case

of a sparse scattering object with dimensions much

greater than the wavelength, e.g., a typical cloud of liquid

water droplets or ice crystals. Indeed, for such a medium

the angular width of the CB peak is inversely proportional

to the product of the wave number k1 and the so-called

transport mean free path ltr [58] and is negligibly small.

However, the application of the low-density theories of RT

and CB to densely packed scattering media may result in a

noticeable violation of the energy conservation law.

A direct numerically-exact solution of the MMEs is, of

course, free of this problem. Indeed, the single-scattering

albedo $ of any of the particulate volumes used to make

Figs. 9 and 11 was found to be precisely unity irrespective

of the particle packing density. This means that the

amount of energy entering a particulate volume is

identical to the amount of energy exiting it. Let us see,

however, what happens when one tries to solve the

scattering problem by replacing the original FLEs with

their far-field version (23) and (24). This is an instructive

exercise since the FLEs form the very basis of the

microphysical theories of RT and CB.

To do such computations, we use the same super-

position T-matrix code [49] but modify the coefficients

appearing in a certain translation–addition theorem for

vector spherical wave functions. Specifically we artificially

replace the Hankel functions of the first kind hð1Þn ðk1RijÞ,

where Rij is the distance between the origins of particles i

and j (Fig. 8), with their asymptotic far-field limits

ð�iÞnþ1 expðik1RijÞðk1RijÞ
�1. We have found that such

computations for k1A=30, k1a=2, and m=1.31 result in

$¼ 1:0035 for N=10 and $¼ 1:0900 for N=100. Similar

computations for k1A=40, k1a=4, and m=1.32 yield

$¼ 1:0004 for N=2, $¼ 1:0157 for N=5, $¼ 1:2344 for

N=10, $¼ 1:2970 for N=20, and $¼ 1:4903 for N=40.

Obviously, these numbers demonstrate a significant

violation of the energy conservation law in the form of

surplus scattered energy.

Since the modified superposition T-matrix code still

includes all types of multi-particle wave paths rather than

only the self-avoiding paths (Section 6), one may

hypothesize that the artificial replacement of near-field

with far-field interactions exaggerates the contribution of

wave paths going through a particle more than once. This

result demonstrates the importance of ignoring non-self-

avoiding paths in addition to ignoring CB in the micro-

physical derivation of the energy-conservation-compliant

RTE.

10. Particles as individual scatterers

One of the most fundamental misconceptions in the

phenomenological RTT is that each particle in a sparse

multi-particle group is an individual scatterer character-

ized by its own extinction, scattering, and absorption

cross sections, scattering matrix, and extinction matrix. In

other words, it is assumed that each particle possesses an

individual set of optical characteristics quantifying the

single-scattering transformation of the intensity (or the

Stokes parameters) rather than that of the electromag-

netic field. It is then postulated that the above individual

characteristics of particles contained in a ‘‘differential

volume element’’ of the DRMmust be added to yield those

of the volume element. Finally, the resulting cumulative

characteristics enter the RTE.

It is then admitted that two factors can ‘‘modify’’ the

individual-particle optical characteristics:

� ‘‘effects of packing density’’ in a densely packed DRM;

� non-zero absorptivity of the host medium surrounding

the particles.

Numerous publications have been devoted to extensive

discussions of how these modifications might work and

how they should be accounted for in an appropriately

modified RTE.

This approach to RT is fundamentally wrong. As we

have seen in Section 5, the basic individual scattering

characteristic of particle i in a multi-particle group is its

dyadic transition operator T̂ i. If the particles in the group

are widely separated then the role of the unique

scattering identifier of a particle is assumed by its far-

field scattering dyadic Â i. Both dyadics quantify the

transformation of the electromagnetic field rather than

that of the intensity. As a consequence of statistical

averaging required to derive the RTE from the far-field

FLEs, the individual particles forming the DRM effectively

disappear. Instead, the resulting RTE is found to contain

phase and extinction matrices ensemble-averaged over all

the particles contained in the DRM. Thus, under no

circumstances can a particle in the DRM be characterized

by individual optical cross sections and phase and

extinction matrices.

In the case of a densely-packed DRM the original FLEs

cannot be replaced by the far-field FLEs, the single-

particle dyadic transition operators T̂ i cannot be replaced

by the corresponding far-field scattering dyadics Â i, the

classical RTE cannot be derived, and individual-particle

or even ensemble-averaged extinction and phase matrices

never appear. Thus, there are no packing-density

effects allegedly modifying individual-particle optical

characteristics.
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In the case of an absorbing host medium, the focal point

of the discussions was the likely effect of absorption on the

conventional scattering cross section, single-scattering

albedo, and phase function of an isolated particle and a

differential volume element. However, the application of

the microphysical approach to the derivation of formulas

describing actual optical observables shows that these

quantities cannot even be defined in the case of electro-

magnetic scattering by an isolated particle embedded in an

absorbing medium [104–106]. Instead, one can define the

extinction and phase matrices of an isolated particle as well

as derive the generalized RTE for a sparse DRM in much the

same way as it is done in the case of a nonabsorbing host

[106–108]. In particular, Eq. (32) is replaced by

q̂ �r~Iðr,q̂Þ ¼ �2k
00

1
~Iðr,q̂Þ�n0/Kðq̂ÞSx

~Iðr,q̂Þ

þn0

Z

4p
dq̂

0
/Zðq̂,q̂

0
ÞSx

~Iðr,q̂
0
Þ, ð37Þ

where k
00

1 is the imaginary part of the complex-valued wave

number of the host medium.

11. Coherent field and effective dielectric constant

Finally, let us discuss the widespread misconception

according to which the so-called coherent field Ec(r) is a

real electromagnetic wave which propagates in a DRM

and is subject to exponential attenuation owing to a non-

zero imaginary part of the so-called dyadic propagation

constant k
2

. The source of this misinterpretation is the

following differential equation for the coherent field [7]:

dEcðrÞ

ds
¼ ik

2

ðŝÞ � EcðrÞ, ð38Þ

where the differential path-length ds is measured along

the unit vector ŝ and the dyadic propagation constant for

the propagation direction ŝ is given by

k
2

ðŝÞ ¼ k1 I
2

þ
2pn0

k1
/A

2

ðŝ,ŝÞSx: ð39Þ

An equation similar to Eq. (38) would describe, indeed,

the amplitude of a time-harmonic plane electromagnetic

wave as it propagates in a homogeneous (and generally

anisotropic) absorbing medium. Therefore, it is often

claimed, by analogy, that the coherent field in a DRM is

an exponentially attenuated plane electromagnetic wave,

k
2

ðŝÞ is given by a standard expression in terms of the

‘‘effective’’ dyadic optical constants of the DRM, and the

non-zero imaginary part of the dyadic propagation

constant is caused by the presence of the particles. Based

on this misinterpretation, it was postulated [109] that the

effective dyadic optical constants of a DRM must satisfy

the well-known Kramers–Kronig relations valid for a

homogeneous medium. From this premise, Purcell [109]

derived the sum rule for the extinction cross section

discussed earlier in Section 3.

It should be recalled, however, that the incident plane

electromagnetic wave is not attenuated exponentially

inside the DRM but rather remains unchanged, as it should

be with any incident field by definition [see Eq. (25)]. What

is attenuated exponentially according to the dyadic propa-

gation constant with a non-zero imaginary part is the time-

independent coherent field Ec(r) obtained by

� factorizing the total electric field inside the medium as

E0ðr,tÞexpð�iotÞ, where the electric field amplitude

E0ðr,tÞ is a ‘‘slowly-varying’’ function of time provided

that significant changes in particle positions occur over

time intervals much longer than the period of time-

harmonic oscillations 2p/o;

� artificially neglecting the time-harmonic factor

expð�iotÞ, because otherwise averaging over time

would give a zero net result:

1

T

Z tþT

t

dt0 expð�iot0Þ ¼
Tb2p=o

0; ð40Þ

� expressing the random amplitude E0ðr,tÞ as a sum of

the time-independent coherent (average) field Ec(r)

and a fluctuating field Ef ðr,tÞ caused by random

changes in particle positions;

� calculating Ec(r) as the average of E0ðr,tÞ over a time

interval long enough to establish full ergodcity of the

DRM.

We thus see that the coherent field is an artificial

mathematical construction rather than an actual time-

dependent electromagnetic field. In particular, it is not a

time-harmonic plane electromagnetic wave. The only

reason to consider this purely mathematical quantity in

the first place is that it turns out to be useful in the

microphysical derivation of the RTE [7].

Thus, we must conclude that the effective dyadic optical

constants of a DRM are not physical dyadic optical

constants appearing in expressions for actual time-depen-

dent physical fields in a homogeneous medium. This

conclusion shows that there is no reason whatsoever to

state that the former satisfy the Kramers–Kronig relations

and negates the derivation of the sum rule in [109].

12. Concluding remarks

The very tone of Keller’s classification and terminology

[1] suggests that it may have been introduced with an

implicit goal to eventually drive phenomenological the-

ories out of circulation. For example, in another milestone

treatise on electromagnetic scattering by random media

published six years after Keller’s paper, Frisch [110] states

that even if completely dishonest methods ‘‘have pro-

duced many interesting results in the past, they are now

obsolete, for using dishonest methods is like gambling:

one does not know in advance whether the results will be

valid or not.’’ But even now, almost 50 years after the

publication of Keller’s paper, phenomenological methods

are still widely used and are unlikely to get abandoned in

the near future. The main reasons for that are, of course,

the ever increasing complexity of electromagnetic scatter-

ing problems needing solution and the perennial

inadequacy of available computer resources.

As we have mentioned above, the analytical simplicity of

phenomenological approaches can sometimes yield useful

physical insights. Furthermore, there are encouraging cases of

phenomenological approaches paving the way to advanced
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microphysical techniques. Among the most instructive

examples is the transformation of the discrete dipole

approximation from a phenomenological substitution of a

scatterer by a set of point dipoles [111] into a rigorous

corollary of the MMEs (see [26,112] and references therein).

Still it is critically important to be aware of the need to

examine carefully the origin of any phenomenological

approach and analyze thoroughly its likely errors. Quite

often a phenomenological theory is the source of

misconceptions and misinterpretations. There are phe-

nomenological theories which appear to be enticingly

simple and attractive and suggest an easy way for an

observational astronomer or a remote-sensing scientist to

publish a paper containing both the results of observa-

tions and their ‘‘theoretical interpretation’’—an unjust but

standard requirement in some journals. However, the

customers of such populist ‘‘theories’’ (e.g., the notorious

‘‘Hapke model’’) should realize that their papers can

become casualties of a thoroughly unphysical analysis

tool (see, e.g., [3,113] and references therein).

Finally, it is important to remember that even honest

mathematical concepts such as the concepts of RT and CB

have their limitations and, in the final analysis, are

unnecessary. The range of quantitative applicability of

these concepts in situations violating the basic assump-

tions used in their derivations needs to be established by

invoking the results of controlled laboratory experiments

and/or numerically-exact computer solutions of the

MMEs. There is no doubt that the ever increasing

efficiency of computers will enable one to explore

progressively sophisticated scattering models with direct

solvers of the MMEs and will eventually provide the

ultimate theoretical tool for the interpretation of remote-

sensing observations, thereby rendering the idealized

concepts of CB and RT unnecessary.
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Appendix A. List of acronyms

CB coherent backscattering

DRM discrete random medium

FLEs Foldy–Lax equations

GOM geometrical optics method

GTD geometrical theory of diffraction

MMEs macroscopic Maxwell equations

POE polarization opposition effect

QED quantum electrodynamics

RT radiative transfer

RTE radiative transfer equation

RTT radiative transfer theory

SA scalar approximation

VIE volume integral equation
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