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Electromagnetic scattering by magnetic spheres
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A number of unusual electromagnetic scattering effects for magnetic spheres are described. When e = It, the back-
scatter gain is zero; the scattered radiation is polarized in the same sense as the incident radiation. In the small-
particle (or long-wavelength) limit, conditions are described for zero forward scatter, for complete polarization of
scattered radiation in other directions, and for asymmetry of forward scatter to backscatter. The special case in
the small-particle limit of m = 1, i.e., ,u = 1/e, provides interesting special instances of complete polarization and
forward-scatter-to-backscatter asymmetry.

1. INTRODUCTION

Some unusual properties have recently been noted' of the
Fresnel equations governing reflection of plane electromag-
netic waves at a plane interface whenever the real refractive
indices of the two media are equal, ml = Mi2 , but the magnetic
permeabilities are unequal, i.e., since m = AIMhE, l/12 = e2/el.
In such a case the reflected ray is independent of the incident
polarization and of the angle of incidence. This condition,
although unattainable in the visible spectrum, is possible for
infrared and millimeter waves. Although A1 and e are usually
complex, nearly lossless materials do exist, so that there is the
possibility of compounding materials approximating the
conditions discussed below.

This has stimulated us to explore for unusual electromag-
netic scattering effects by spheres composed of magnetic
materials, and we have encountered a number of such effects,
not only for unit refractive index of the particle relative to that
of the medium, m = 1 but for some other conditions as well.
These are described as follows. In Section 2 a sphere with
equal values of the relative dielectric constant and relative
magnetic permeability, e = g, is shown to exhibit zero back-
scatter and no depolarization. Sections 3 and 4 deal with the
small-particle (or long-wavelength) limit. Conditions for zero
scatter, no depolarization, and asymmetric forward-scatter-
to-backscatter ratio by small magnetic spheres are treated in
Section 3. Finally, in Section 4, the condition treated earlier,1

m = 1, is discussed.

2. SCATTERING BY SPHERES OF ARBITRARY SIZE
WITH e = «l
When a plane wave of unit irradiance and wavelength in the
medium X is incident upon an isotropic homogeneous sphere
of radius a and refractive index m, the scattered radiant in-
tensity is composed of two polarized components 2

'1 = (X2/4wr2 r2) IS, 2 sin2 4>, (1)

I2 = (X2 /47r2 r2 ) IS2 1
2 cos2 b, (2)

where r is the distance to the observer, 0 is the angle between
the electric vector of the incident wave and the scattering
plane, and Ii and I2 are the polarized components with electric
vectors perpendicular and parallel to the scattering plane.
The amplitude functions are

Sl = E [an7rn(COS 0) + bnTn(COS 0)],
n=l n(n + 1)

= 2n+1I
S2 = E [anTn(COS 0) + bn 7rn(cos 0)],n1l n(n + 1)

where the angular functions

7rn(cos 0) = PnI(cos 0)/sin 0

(3)

(4)

(5)

and

rn(cos 0) = d/d0[Pn (cOs 0)] (6)

are defined in terms of the associated Legendre functions of
the first degree. The angle 0 is between the forward and
scattering directions.

The physical parameters that describe the particle, namely,
m, a, and X, are embedded within the scattering coefficients
an and bn. The magnetic permeability of the particle relative
to the medium is usually suppressed since it is unity at optical
wavelengths. However, we now retain it in the following form,
which differs somewhat from that of Stratton,3

_ L4n(a)4'n'(fl) - MnW'a
Un- i4~n(a)4in'(f3) - MnO~'a

b M On (aff) ~n'(-) -An (f) On'(a)
m- n ((a)On (3) - Pn (3) 7n'(a)

(7)

(8)

where the radial functions 4n (x) and n (x) are the Ricatti
Bessel and Hankel functions of arguments a = 27ra/X and f
= ma. It will be recalled that an and bn can be considered the
electric and magnetic moments of multipole sources located
at the origin.

Whenever c = u, it follows that an = bn, so the backscatter
gain given by2

G (1800 ) = (4/a 2)1 | (n + 1/2) (-1) n (bn - an) 12 (9)
n=l

equals zero. This is a general result, valid for spheres of any
size; indeed, the same would be true for any axially symmetric
body illuminated along the axis of symmetry.

Since S1 = S 2 whenever e = ,, it follows from Eqs. (1) and
(2) for linearly polarized incident radiation that the scattered
radiation will be similarly polarized for all scattering angles,
i.e.,

0030-3941/83/060765-03$01.00 © 1983 Optical Society of America

Kerker et al.



766 J. Opt. Soc. Am./Vol. 73, No. 6/June 1983

I2/11 = cot 2 (1). (10)

Indeed, the state of polarization of the scattered and incident
radiation will be the same even when the incident radiation
is elliptically polarized since Si = S2, so the scattering process
does not impose an additional phase shift between the two
components Si and S2.

3. SMALL-PARTICLE LIMIT FOR M # 1
The small-particle limit is obtained by inserting expansions
of the radial functions in powers of a and a into the scattering
coefficients a, and b,, and then expanding these in powers of
a. For small values of a, the leading terms dominate, viz.,

al=2i h3(C- 1f11
3 + 2)/

bi = 2i c3 ( I ) (12)
3 ~+2J

These correspond to electric and magnetic dipole sources.
[We call attention to an error in Stratton's (Ref. 3, p. 571)
expression for the magnetic dipole that, in our notation, he
gives as -(i/3)ae3(, - 11A + 2).]

This result is already unusual since, for nonmagnetic ma-
terials, the leading term in the expansion of b1 is the a5 term,
so the magnetic dipole does not make a significant contribu-
tion in the small-particle limit. The radiation that is scattered
by a small nonmagnetic sphere resembles that which is due
only to an electric dipole and is described by

Ii = (X2/47r2r2 )a6  sin2E+ (13)

I2 ( 2 /47r2 r2 "a 6 I -2) cos2 0 cos 24. (14)

However, for magnetic materials there is a contribution
from both the electric and magnetic dipoles, so

J, = (X2/4w2r2)a 6 [ i+ (IL Cosl2esin2 2 +,
LVe+ 2) \gl+ 2J

I2 = (X2/47 2r2)a6  cos 0 + - 21 o.

(16)

This results in a number of interesting effects in addition
to the general ones discussed in Section 2 for e = ju. For ex-
ample, when e = (4 - j)/(2A + 1), it follows that al = -bI, so
the forward scatter is zero, i.e., I1(0°) = I2(0°) = 0. Also for
this condition, just as for e = tt, the polarization of the scat-
tered radiation is the same as that of the incident radiation
(including elliptically polarized incident radiation), i.e., as
before

I2/1I cot2 0. (10)

For small nonmagnetic spheres there is the well-known
condition of complete polarization at 0 = 900 since I2 is zero
at this angle provided that e is not too large. In the case of
small magnetic spheres it follows from Eqs. (15) and (16) that
there are two conditions for complete polarization of the
scattered radiation. I, = 0 for

cos0i = -(a 1 l/b&) = - 1-) )

and I2 = 0 for

COS02 = -(bi/la) = - (- )/(E-+!)

(17)

(18)

Obviously it is not possible for I land I2 each to be equal to
zero for the same set E, g since this would require that cos 01
and cos 02 be reciprocals.

Still another way in which the scattering by small magnetic
spheres differs from nonmagnetic spheres is that, whereas in
the latter case the radiant intensity is symmetric about 900,
in the magnetic case there may be either preferential back-
scatter or preferential forward scatter. For example, from
Eqs. (15) and (16) the ratio of forward scatter to backscatter
is given by

i(O°)/I(180°)9 -)( + 21 - l 1fc+ 2 ,+ 2J +\+2 \42}
(19)

These effects are somewhat reminiscent of what occurs for
small nonmagnetic spheres with large values of e. For ex-
ample, in the limit that e = w, the magnetic dipole makes a
contribution to the scattering2 in the small-particle limit so
that the scattered radiant intensity is no longer symmetrical
about 90°. In this case the forward-scatter-to-backscatter
ratio Ii(00)/Ii(1800 ) is 1/9, and the scattered radiation is
completely polarized at 0 = 600 when 12 = 0. The range of
applicability of the dielectric dipole limit for large but finite
values of e was explored in detail earlier.4

4. SMALL-PARTICLE LIMIT FOR m = 1
We now consider the special case that m = 14Y= 1; i.e., e =
lI/p. There are two interesting facets, namely, the conditions
for complete polarization and the forward-scatter-to-back-
scatter symmetry. It will be convenient, at the outset, to
express the scattered radiant intensities in terms of only one
of the two parameters (t, y), and we have selected y:

Ii = (X2 /47r2 r2 )( 1)2 [COS 2 - 2 2±11  sin2 ,

(20)

12 = (X 2 /4ir 2 r2 )(g - 1)2 -+2 s + COS1 2

(21)

The conditions for complete polarization now become, for
J'I = 0,

and, for I2 = 0,

cos 0 = (g + 2)/(2p + 1),

COS 02 = (2g + 1)/(g + 2).

(22)

(23)

These conditions of course are special cases of Eqs. (17) and
(18) under the constraint that E = lip. The ranges of scat-
tering angles for which there is complete polarization are
shown in Table 1 for all values of A. Of course, real materials
would be limited to a small part of the total range.
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Table 1. Ranges of Magnetic Permeability A and
Scattering Angle 01,2 for Which I, or 12 = Oa

Permeability Scattering Angle

l<j .o< 01o < 600
O<g< 1 600 022 00

-0.5 .< t < 0 90 02 > 600
-1 < Au < -0.5 00 < 02 < 900
-c- < A <- 60° > 01 > 00

a (m = l;,u = l/E).

Another interesting aspect of the condition m = 1 is that
this leads, for all positive values of At, to extremely strong
preferential backscattering. It follows from either Eq. (22)
or Eq. (23) that

I1(00)/12(1800) = 1/9(A - 1/hg + 1)2. (24)

For large values of y (with correspondingly small values of E)
the forward-to-back asymmetry is 1/9, which is precisely the
result obtained for nonmagnetic spheres with E -a . How-
ever, as A becomes smaller the asymmetry increases without
limit as A approaches unity. Of course, the scattering be-
comes small in that limit (m = 1, A - 1, C - 1). Yet, for val-
ues as appreciable as pt = 1.2, I1(0°)/I2(180) is only 9.2 X
10-3.

This preferential backscatter may lead to multiple-scat-
tering effects that are different from those encountered for
nonmagnetic media for which the scattering either is sym-
metric about 0 = 900 or else is more intense in the forward
direction. For the simplest approach the ratio of scattering
into the forward hemisphere to that into the back hemisphere
is a parameter of interest. This is given as follows:

7/2
(Ii + I2)sin OdO

Rfb = I

J:; (IU + I 2)sin OdO

(25)

which, on insertion of Eq. (20) and Eq. (21) and then carrying
out of the indicated operations, leads to

= 4A2 + it + 4
Rfb - 16A2 + 31A + 16

As an example, the ratio for ,u = 1.2 is 0.14. Unlike
Ii(0°)/Ii(180o), the integrated ratio Rfb varies over a much
narrower range, from 1/7 for A = 1 to 1/4 for bt =
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