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Electromagnetic Scattering by. Stratified 
Inhomogeneous Anisotropic Media 

MICHAEL A. MORGAN, SENIOR MEMBER, IEEE, DEAN L. FISHER, AND EDMUND A. MILNE 

Abstract-An analytical formulation is presented for the computation 
of scattering and transmission by  general anisotropic stratified material. 
This method employs a first-order state-vector differential equation 
representation of Maxwell’s equations whose solution is given in terms of 
a 4 x 4 transition matrix  relating the tangential field components at the 
input and output planes of the anisotropic region. The complete 
diffraction problem  is solved by combining impedance boundary condi- 
tions at these interfaces with the transition matrix relationship. A 
numerical algorithm is described which solves the state-vector equation 
using finite differences. The validation of the  resultant computer program 
is discussed along with example calculations. 

INTRODUCTION 

T HE CONSIDERATION of electromagnetic interaction 
with anisotropic materials has been a topic of considerable 

interest in recent years. For the most part, this interest has 
been manifested in a diverse realm of particular research areas 
such as ionospheric and magnetospheric propagation, crystal 
and semiconductor physics, opto-electronics and composite 
material scattering, as well as many others. In addition, the 
employment  of anisotropic materials in electromagnetic engi- 
neering  applications is becoming  increasingly widespread. 
Some  notable  examples are in microstrip and active device 
substrates, novel antenna radome structures and radar absorb- 
ing materials. 

In  many  instances of practical importance the anisotropic 
material structure can be approximated as having an inhomo- 
geneity in  only one dimension. Such stratified media appear 
in  the description of optical coatings, earth strata, ferrite 
absorbing coatings, ionosphere models, etc. Early  published 
efforts by  AbelCs [I] and Jones [2] in considering stratified 
media  were  resticted to the isotropic case. An excellent review 
of propagation through isotropic stratified media  is  given by 
Born and  Wolf [3]. By extending some  of  the original concepts 
employed  in  the  works of Abelb and Jones, the case of 
stratified anisotropic material was first considered by Teitler 
and Henvis.[4] and later by Berreman [ 5 ] .  In these two efforts, 
a 4 x 4 matrix method  is  introduced  and  applied to the 
analytical treatment of propagation through a single layer of 
various special case anisotropic materials bounded on both 
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sides by free space. More recent efforts by Barkovskii et al. 
[6]-[8]  have presented several alternate analytical strafegibs 
for solving  propagation problems involving stratified aniso- 
tropic media. A three-dimensional integral equation formula- 
tion for electromagnetic fields in anisotropic materials has also 
been  given by Graglia and Uslenghi [9]. 

Our goal in  this effort was to develop a general purpose 
formulation and efficient numerical algorithm for scattering 
and  transmission calculations involving stratified anisotropic 
media, [ 101.  By combining  this algorithm with a numerical 
optimization procedure it will  become possible, in a continu- 
ing effort, to synthesize multiple layered structures to achieve 
desirable polarization  filtering characteristics for a postu- 
lated  range of incident field  wave vectors (specified  by 
incident angle and temporal frequency). Of special interest is 
the case of scattering by coated  metallic surfaces. 

The methodology described herein is  an  extension of the 
technique developed by Ruck et al. [ 1 11 for use  with isotropic 
material. Maxwell’s equations are cast into a 4 X 4 matrix 
formulation which  is equivalent, but  not identical, to  that  in 
[ 5 ] .  Solution procedures based  upon  both  eigenfunction 
expansions  and a new finite-difference approach are consid- 
ered. A computer program is described and  the various means 
of validating its performance are discussed along with  accom- 
panying sample computations. 

GENERAL FORMULATION 

The geometry  being considered is  shown in Fig. 1, wherein 
a one-dimensionally  inhomogeneous  planar anisotropic region 
is  bounded by homogeneous isotropic material half-spaces for 
z < 0 and z > d .  A monochromatic plane wave  is  obliquely 
incident from the left half-space (region 1)  with arrival angle 
0, in the x - z plane of incidence. Using  an exp ( j u t )  time 
convention, the  complex phasor fields may  be written in the 
separable product form 

C(x ,  z )  = B ( z )  exp ( -jk,x) (14  

&((x, z ) = f i ( z )  exp ( - jk ,x)  (1b) 

where k, = kl sin is the x-component of  the  incident  field 
wave vector R1. Maxwell’s source-free equations incorporate 
3 X 3 complex permittivity  and  permeability tensors, E ( Z )  and 
p(z), that  contain  the effects of dielectric and  magnetic losses, 
as well as electrical conductivity, 

- v x E = j u p  ‘ H (2a) 

v X f i = j u e  2. (2b) 
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REGION 1 field  matrices  composed of x and y components of g 'and H ,  

(6a) 

(6b) 

and  using i, s, and t superscripts to denote respective incident, 
scattered and  total fields, we define 2 x 2 complex scattering . 
and transmission matrices, S and T, by 

. .  . . E'",(O) = s * E',(O) (7) 

. .  . . . .  E',(d) = T l?i,(O). (8) . .  . . . _  

Z=O 
Note  that the total  field for z 2 d is also the transmitted  field 
into  region 3. By partitioning the 4 X 4 transition matrix into 

Fig. 1. Scattering and transmission from stratified anisotropic material. four 2 x 2 quadrant submatrice-, 

After substituting (1) into (2 ) ,  followed by cancellation of 
the  common  exponential factor, the resulting six scalar 
component equations can be further reduced to four indepen- 
dent equations through the algebraic elimination of  the z- 
components of and fi. By defining a state vector in terms of 
the transverse field components of i? and fi in (l) ,  

the resulting four coupled linear first-order ordinary differen- 
tial equations can  be expressed in matrix notation  by 

The complex elements of the 4 X 4 r-matrix  are given in the 
Appendix. 

The overall diffraction problem, including specular scatter- 
ing  and refractive transmission, can be solved by first 
undertaking  the  computation of the complex 4 X 4 transition 
matrix A. This matrix provides a linear relationship between 
the state vectors at the left  and  right  planar boundaries of the 
inhomogeneous  media. 

A =  ["I 
Q3 Q4 

there results from (5) and  (6) 

Ei,(O)+l?$(O>=Q1 * E',(d)+Q, A > ( d )  (loa) 

Ri(O)+R$(O)=Q3 . E',(d)+Q4 R>(d) .  (lob) 

We introduce wave impedance matrices for the homogeneous 
half-spaces in regions 1 and 3 which relate the transverse field 
vectors, 

E',(O) = z, * Ri,(O) (1 la) 

BS,(O)= -z1 - Ago) (1 lb) 

l?',(d)=Z3 . A',(d) (1 IC) 

where, for rn = 1 or 3, 

with characteristic impedance, 

and 

In providing this relation between the fields at the interfaces, 
the A-matrix incorporates all of the effects of the intervening 
material  composition  in  region 2. 

The computation  of  the A-matrix is obtained  via the 
numerical solution of (4), which  may  be  implemented  through 
any of a variety  of algorithms. Two of the  possible  techniques 
will be considered in the next  section for the case of  layered 
media. 

Using the hypothetical A-matrix we can solve the diffrac- 
tion  problem in a direct manner. By introducing tangential 

Snell's law, as given by ( I ~ c ) ,  is still valid for the case of 
anisotropic media  in region 2. 

The S and T matrices may  now  be  found through simple 
matrix manipulations, after substituting (11) into (lo), 
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REGION 1 t- REGION 2 i REGION 3 

Fig. 2. Anisotropic region composed of N homogeneous layers. 

where we have defined new impedance matrices, 

For the important case of a perfect  conductor in region 3 ,  
with Z3 = 0, the T-matrix becomes zero and the scattering 
matrix simplifies to 

We  will  now consider the  major  computational effort in 
solving the diffraction problem, which  is  in  obtaining  the 
transition matrix A. 

TRANSITION MATRIX COMPUTATION 

Consider the  special case of the anisotropic media  in region 
2 being  composed of N’homogeneous layers, as illustrated  in 
Fig. 2, where z1 = 0 and Z.hr+ = d. The incident  field  half- 
space (region 1) will  be  denoted as the zeroth layer while the 
left  half-space (region 3) is enumerated as the N + 1 layer. 
Our initial goal will  be to describe procedures for obtaining 
local transition matrices relating the state vectors  at adjacent 
“n” and ‘‘n - 1” interfaces, 

%(z,-I)=A, +(z,). (17) 

Since r (z )  = rn is  constant  within  the nth layer, the 
resultant state vector solutions of (4) will  have  the form of 
nonuniform  plane  waves 

+n(z)= v n  exp ( 7 , ~ )  (1 8) 

where 7, is a constant vector. Acceptable  complex z-directed 
wavenumbers 7, are found by first substituting (1 8) into (4) to 
produce the eigenvalue system 

[ r , - m ~ ~  V , = S  (19) 

with I being  the 4 X 4 identity matrix. The eigenvalue 
wavenumbers may be  found as the roots of  the quartic 
characteristic equation obtained by setting the  determinant of 
the  bracketed  matrix in (19) to zero. An alternate derivation of 
this dispersion relation is given by Damaskos  and  Ushlenghi 
[ 131. In  addition to direct numerical root solving routines, 

such as the  Newton-Raphson method, there exist several more 
efficient procedures for evaluating eigenvalues (e.g. QR- 
factorization) based  upon  matrix transformations [14]. The 
eigenvectors v; are found  as solutions of (19) for each of the 
known eigenvalues, y;, m = 1 to 4. Since the magnitude of 
each  of the eigenvectors is  not  uniquely  defined by (19), we 
may arbitrarily fix one of the components. If the last 
component of each 7; is set to unity, for instance, then there 
results a 3 x 3 linear system to invert for each unique m- 
indexed eigenvalue, 

(20) 
Once the sets of eigenvalue-eigenvector pairs have  been 

found  within the nth layer we  can represent the state-vector as 
a weighted  summation of the eigenbasis functions  which were 
postulated in (1 8) ~ 

4 

* , (Z)  = cy q cxp ( yyz ) .  (21) 
m =  I 

This expansion  can be more succinctly expressed by employ- 
ing  matrix  notation as shown below, where V, has its mth 
column  formed from the  components of 7; while U,(z) is a 4 
x 4 diagonal matrix with nonzero elements given by exp 
(7;~) and C,l is a column vector of the unknown coeffkients 
in (21), 

9,(z)=Vn U,(Z) * C n .  (22) 

We are now  in a position to find  the  local transition matrix 
A, as defined in (17). Using  the property of  the U,-matrix, 

U,(z+&)=U,(z) * U,(&) (23 ) 

it  can  be  shown through elementary matrix  manipulations  that 

A,=V, * U,l(-d,) * V i 1  (24) 

where  the  thickness  of the nth layer is d,  =. 2, - z,- 
An alternative method for obtaining the local transition 

matrix in each layer is through a finite difference algorithm. 
Such a procedure is very straightforward to  implement  and 
circumvents  the  need to solve the eigenvalueeigenvector 
problem  which  was just considered. This method also has  the 
potential for direct application to the case of continuously 
stratified anisotropic media. 

Consider partitioning the region within  the nth homogene- 
ous layer into L, sublayers, each  having equal thickness h, = 
d,/L,. A piecewise linear approximation for each of the four 
components  of the state vector may be employed, as illustrated 
in Fig. 3. Enforcing the matrix differential equation in (4) at 
the  midpoint of the  Ith sublayer, yields  the central difference 
formula 

+ , ( p + , ( ~ ) = -  rn - [~,(I)++,(I-I)] .  (25) 
h, 
2 
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f 

Fig. 3. Piecewise  linear  approximation in the nth layer. 

A simple algebraic rearrangement produces a recurrence 
relation  between state vectors at adjacent I and I - 1 
interfaces, 

P,(f-l)=D, * * , ( I )  (26) 

where the sublayer localized 4 X 4 transition matrix  is  given 
by 

D,= (I+$ F,)-' (I-; I?,) . (27) 

As a result  of the equal intervals chosen for the sublayers h, 
this transition matrix  remains  constant  throughout the nth 
homogeneous layer. Once the matrix in (27) is computed, the 
local transition matrix, as defined  in (23), can  be  found in 
terms of L, - 1 successive self-multiplications  of D,, 

(28) 

The selection  of the sublayer interval h, will  depend  upon 
the  maximum expected rate of change of the state vector fields 
therein. For the case of  the linear interpolate in (25), h, should 
be small  enough to allow accurate tracking of  the set of 
exponential basis functions in (18). A simple analysis  shows 
that h, should be made  small  compared to the reciprocal of the 
magnitude of the largest (in modulus)  complex eigenvalue, 

The power method can  be  used to form an accurate estimate 
of the magnitude  of the largest eigenvalue in  an  efficient 
manner, without the need to solve for the smaller eigenvalues 

Once  the  local transition matrices are obtained for the 
various layers, the complete transition matrix can be  computed 
as the product, 

v41. 

N 
A = n  A,. (30) 

n =  1 

This matrix is then  used to find  the scattering and  transmission 
matrices, using the procedure described in the previous 
section. 

The direct extension of the finite-difference algorithm to 

continuously stratified media  in region 2 embodies the use of 
an approximate model  composed of thin  homogeneous layers. 
The layer thicknesses can  be  made locally dependent upon the 
material properties through estimates of  maximum  wavevec- 
tors. A localized recurrence formula, as in (26), will result 
from the finite-difference method  and the' A-matrix can be 
formed by the product  of successive local transition matrices. 
Enhancements  of  this approach can be  made by implementing 
more  optimized  numerical  methods  such as that  of  Runge- 
Kutta [ 141. 

COMP~~~ATIONAL VER~;ICATION 

The algorithm was  implemented  on a microcomputer using 
the finite-difference approach, as described in the previous 
section, to 'compute the transition matrix. As input to this 
program, the user must specify the number and thickness of 
eacti' layer within  region 2 followed by the entry of the 
complex  matrix elements within each layer for the permittivity 
and  permeability tensors. The material in region 1 is  assumed 
to be free-space while  that  of region 3 can be specified as 
either free-space or a perfect electric conductor (PEC). 
Further inputs are required as to range and increments of both 
temporal frequencies and  incident  aspect  angles. Scattering 
computations are performed for two incident orthogonal linear 
polarizations, having the incident E-field either parallel or 
normal to the x - z plane of incidence. 

The computer program was  checked in three steps. First, 
simple cases were run to verify that  no obvious errors were 
present, while still exercising all of the computational  steps of 
the algorithm. Next, several test cases involving  complicated 
layered  material configurations composed  of  lossy isotropic 
media were compared to the results of a previously  developed 
computer program. This separate program, which  used  the 2 
x 2 matrix formulation for isotropic material, had  been 
extensively  checked  against  independent  results [ 111. The final 
validation  was for a metal  backed (PEC in region 3) 
homogeneous  lossy anisotropic layer whose scattering could 
be  computed by analytic means. 

An example of  the results from the initial  set of computa- 
tions  involving free space in region 2 is shown in the  pseudo- 
three-dimensional  plot of Fig. 4. In  computing the transition 
matrix, region 2 was  partitioned into multiple layers (based  on 
the criterion discussed in the previous section) and  the 
diagonal elements of  the  permittivity  and  permeability  matri- 
ces within  each layer were set to their respective free space 
values, with  other elements set to zero. The independent 
variable axes are normalized frequency, kod and  incident 
aspect angle (0" is  normal to the surface). In this  plot the case 
of a PEC in region 3 is considered which, of course, should 
yield complete reflection, I SI) I = 1 .  Identical results were 
obtained for S, while the off-diagonal elements of the 
scattering matrix were equal to zero. When  region 3 was 
considered as free space, the computed S-matrix was  found to 
be  identically zero while the resultant transmission matrix had 
unit  diagonals  and zero off-diagonal elements. 

Examples  of the computational comparisons made  between 
the  general anisotropic program and the specialized isotropic 
program are shown in Figs. 5 and 6.  The first case is that  of a 
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Fig. 5.  Magnitudes of S,, and S2? for a lossy isotropic  dielectric coating on a 
metal plane. 

single electrically thin layer of lossy dielectric bounded by a 
vacuum  on  both sides. Both SI1 and S2, are shown for a range 
of aspects and frequencies. The magnitude of SI, versus 
normalized  frequency for 0" incidence  on a lossy five-layer 
dielectric structure is shown4n Fig. 6 .  In this case, region 3 is 
free space. Differences of the various validating computations 
were in the  realm of a fraction of one percent in each case. 

To check the accuracy of the general program for aniso- 
tropic material in region 2, a comparison was  made to an 

REFLECTUYJ 
COEFFlCENT O'' 

-ANISOTROPIC 
PROGRAM ..... ISOTROPIC 
PROGRAM 

0.54 0.80 1.06 
NORMALIZED FRiQUENCY (k,d) 

Fig. 6 .  Magnitude of SI, for a lossy five-layer dielectric slab. 

analytical  solution for normal  incidence  upon a metal-backed 
layer of magnetoplasma. With a z-directed static magnetic 
field, the  permittivity tensor has the Hermitian form [12], 

0 0 E ,  

It  can be shown by  way  of an eigenvalue solution, which is 
similar to that in the general formulation, that for the  case of 
normal  incidence  the  basis  functions for g(z) are circularly 
polarized  waves propagating in the + z and - z directions, 

where 
I 

PI 2 =ko -\i'io" . 
An application of the  cogent  boundary conditions on I!? and H 
at the outer interface, z = 0, and  at  the PEC, z = d ,  provides 
four  simultaneous equations that  can  be  solved to yield  the 
scattering matrix elements, 

and 

b,, = [ 1 f exp ( -j2Pnd)] - . P n  

k0 
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Fig. 7.  S-matrix  magnitudes for a lossy anisotropic  magnetoplasma  coating 
on a  metal  plane. 

A comparison of S-matrix magnitudes is  given  in Fig. 7 for 
a particular c&e of magnetoplasma  coated  metal where the 
complex  permittivity matrix in (3 1) has nonzero elements E ,  = 
100 €0, q, = 50 EO and E ,  = E O .  Accuracy to four decimal 
places  was observed in these computations. Further compari- 
sons are pending, with  use  of experimental scattering data for 
multilayered magnetic materials. It  is unlikely, however, that 
such  results  will be available for publication in the open 
literature. 

CONCLUSION 

A  general analytic formulation and  numerical  method  has 
been described for scattering and  transmission  problems 
involving generally lossy stratified anisotropic material. The 
method  employs  a 4 X 4 transition matrix approach combined 
with  impedance  boundary conditions at the entrance and exit 
planes  of  the stratified region.  A new finite-difference 
approach is  employed for field solutions within  homogeneous 
layers of the structure. Scattering and  transmission  matrices 
are obtained  which include full polarization information for a 
range of  both  frequency  and  aspect angle.for incident  plane 
wave fields. 

Extensive  accuracy checks were performed on  the general 
numerical algorithm [IO]. Some of these results are shown 

’ here for three levels of validation. This included  comparisons 
with results from an earlier program which  was  designed to 
handle  only isotropic media, using  Ruck’s technique [ 1 11. An 
anisotropic case was considered, using  an  independent  analyti- 

cal solution for scattering by  a layer of  magnetoplasma 
covering a  planar metallic surface. 

A  continuing effort is underway for incorporating the 
algorithm described here into an optimization program for use 
in  the  design of transmission and/or reflection structures. 
Input specifications include bounds on the characteristic 
behavior of the scattering and/or transmission matrix elements 
for a range of incident aspect angles  and  time-harmonic 
frequencies. Future work  will address the analysis of electro- 
magnetic interaction with  two-  and  three-dimensionally  inho- 
mogeneous anisotropic material structures using  a finite 
element formulation. 

APPENDIX 

The elements of the r-matrix found in (4) are given by 

rll  =jk, - 
E33 

E31 

r21 = r43 = o 

r22 = jk ,  - 
P 3 3  

P I 3  

r33 = jk,  - p 3  1 

P 3 3  

= jk,  - . E13 

E33 
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