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Abstract—A simple and direct method to the problem of two-
dimensional electromagnetic scattering from a dielectric cylinder with
multiple eccentric cylindrical inclusions is proposed. The method
is based on the T-matrix approach. An aggregate T-matrix of the
external cylinder for TM-wave and TE-wave excitations is derived
in terms of the T-matrices of individual cylinders isolated in the
host medium. The backscattering and differential scattering cross-
sections of the host cylinder are easily obtained by matrix calculations
for the aggregate T-matrix. Numerical investigation is presented for
the case where all cylinders have circular cross-sections. Numerical
examples for up to three inclusions demonstrate that the scattering
characteristics are significantly influenced by the internal asymmetry
and inhomogeneity pertinent to the locations and material of the
inclusions.
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1. INTRODUCTION

Electromagnetic wave scattering from concentrically stratified or
eccentrically stratified cylinders has been considerable theoretical
interest over the years [1–5]. When cylindrical structures are embedded
into a dielectric cylinder, there occur multiple scatterings of interior
fields between the cylindrical inclusions and the outer boundary of the
host cylinder. The far-field scattering exhibits different characteristics
from those by a homogeneous dielectric cylinder. This feature has
many practical applications such as simulation of complex scattering
structures, detection of the internal inhomogeneity of cylindrical
objects, and control of the scattering cross-section of a dielectric
cylinder. Recently, Stratigaki et al. [6] have reported a rigorous
solution to the problem of two-dimensional plane-wave scattering
from a circular dielectric cylinder with N -parallel cylindrical dielectric
inclusions of circular cross-sections by using the indirect mode-
matching formulation.

In this paper, we shall present a simple and direct method for
the problem of two-dimensional scattering from a dielectric cylinder
with multiple cylindrical inclusions, using the T-matrix formulation [7]
for a single cylindrical scatterer and the recursive T-matrix algorithm
[8] for multiple cylindrical scatterers. In this approach, the T-matrix
is first defined for individual cylindrical inclusions isolated in the
host medium of infinite extent. The results are substituted into a
recursive algorithm to derive the T-matrix of each cylinder in the
presence of multiple cylinders. The T-matrix of each cylinder are
transformed into the coordinate with the origin at the center of the
host cylinder and combined. Then the scattered fields inside the host
cylinder are expressed in terms of a single T-matrix. Applying the
boundary conditions at the outer surface of the host cylinder to the
internal and external scattered fields, the aggregate T-matrix of the
composite cylindrical system is finally obtained for TM-wave and TE-
wave excitations. The approach is straightforward and quite general.
The cylindrical inclusions may be dielectric, air hole, perfect conductor,
or their mixture with different dimensions. If all cylinders have circular
cross-sections, the aggregate T-matrix is given in closed form. The
scattering characteristics of the host cylinder can be obtained by
simpler matrix calculations for the aggregate T-matrix with a suitable
truncation of matrix size.

Numerical investigation is presented for the case where all
cylinders have circular cross-sections. The result validates that the
proposed method yields concise exact solutions. If the truncation size
of the aggregate T-matrix is large enough, the solutions obtained for
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two inclusions satisfy the optical theorem and reciprocity relation with
the errors less than 10−14. The numerical examples of backscattering,
forward scattering and differential scattering cross-sections for up to
three inclusions demonstrate that the scattering characteristics have a
close link to the internal asymmetry and inhomogeneity pertinent to
the locations and material of inclusions.
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Figure 1. Cross-section of a dielectric cylinder with L parallel
cylindrical inclusions.

2. FORMULATION OF THE PROBLEM

The geometry discussed here is shown in Fig. 1. The L circular
cylinders of radius a1, a2, · · · , aL are included in a dielectric circular
cylinder of radius aL+1. The cylinders are infinitely long along z axis
and parallel to each other. The permittivity and permeability of each
cylindrical region are denoted by εi and µi (i = 1, 2, · · · , L, L + 1),
and the exterior of the host cylinder is free space with ε0 and µ0. The
origin O0 of the global coordinate xOy is attached to the center of
the host cylinder and the origin Oi of i-th cylindrical inclusions are
centered at (di, θi) where di is the distance from the global origin O0

and θi is the polar angle measured from Ox axis. The global polar
coordinate in xOy is denoted by r0 = (ρ0, φ0), whereas the local polar
coordinate attached to each cylindrical inclusion is by ri = (ρi, φi)
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(i = 1, 2, · · · , L). We consider the scattering of a plane electromagnetic
wave which is incident in the direction normal to the cylinder axis. The
problem is then reduced to a two-dimensional one and may be treated
separately for TM and TE waves relative to the z axis.

Let ψ(r) be the Ez field for TM wave and the Hz field for TE
wave. The scattered field ψscL+1(r) in the interior of the host medium
assigned the number L + 1 is expressed as follows:

ψscL+1(r) =
∞∑

n=−∞
bnJn(kL+1ρ0)einφ0+

L∑
i=1

[ ∞∑
m=−∞

ci,mH(1)
m (kL+1ρi)eimφi

]

(1)
where kL+1 = ω

√
εL+1µL+1, Jn is the n-th order Bessel function, H(1)

m

is the m-th order Hankel function of the first kind, and bn and ci,m
are unknown amplitudes of the scattered fields expressed in terms of
cylindrical harmonic expansions. The second term in Eq. (1) comprises
the diverging cylindrical waves from each of L cylindrical inclusions
assigned i = 1, 2, · · · , L, and the first term represents the field scattered
from the outer boundary ρ0 = aL+1 of the host cylinder which behaves
like an incident field on the L inclusions. To discriminate the difference
in scattering origins, we have used the index n for the expansion relative
to the global origin O0 and the index m for the expansions relative to
each local origin Oi. Equation (1) is written in a vectorial form as

ψscL+1(r) = ΦT
L+1(r0) ·B +

L∑
i=1

ΨT
L+1(ri) ·Ci (2)

with

ΦL+1(r0) = [Jn(kL+1ρ0)einφ0 ] (3)

ΨL+1(ri) = [H(1)
m (kL+1ρi)eimφi ] (4)

B = [bn], Ci = [ci,m] (5)

where the vector quantities are defined as column vectors and the
superscript T indicates the transpose of vectors.

Although B is unknown, the right hand side of Eq. (2) can be
viewed as the total field external to the L cylinders in the presence
of an incident field ΦT

L+1(r0) ·B. Using the translational formulas of
cylindrical harmonics between the global coordinate and each of local
coordinates and the T-matrix algorithm [8], the amplitude vectors Ci

can be expressed in terms of B and Eq. (2) is rewritten as follows:

ψscL+1(r0) = [ΦT
L+1(r0) + ΨT

L+1(r0) · ¯̄T L] ·B (6)
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with

¯̄T L =
L∑
i=1

¯̄β0,i · ¯̄T i(L) · ¯̄βi,0 (7)

ΨL+1(r0) = [H(1)
n (kL+1ρ0)einφ0 ] (8)

where ¯̄T L represents an aggregate T-matrix for the L cylinders viewed
from the global origin O0, ¯̄T i(L) is the T-matrix for the i-th cylinder
in the presence of L cylinders in the host medium of infinite extent,
and ¯̄βi,j is the translation matrix [8] for the regular part of cylindrical
harmonics between the i and j coordinates. The T-matrix ¯̄T i(L) is
calculated using the recursive algorithm [8] for L scatterers as follows:

¯̄T �+1(�+1) · ¯̄β�+1,0 = [¯̄I − ¯̄T �+1(1) ·
�∑
i=1

¯̄α�+1,i · ¯̄T i(�) · ¯̄βi,0 · ¯̄β0,i · ¯̄αi,�+1]−1

× ¯̄T �+1(1) · [ ¯̄β�+1,0 +
�∑
i=1

¯̄α�+1,i · ¯̄T i(�) · ¯̄βi,0] (9)

¯̄T i(�+1) · ¯̄βi,0 = ¯̄T i(�) · ¯̄βi,0+ ¯̄T i(�) · ¯̄βi,0 · ¯̄β0,i · ¯̄αi,�+1 · ¯̄T �+1(�+1) · ¯̄β�+1,0 (10)

where � = 1, 2, · · · , L− 1, i = 1, 2, · · · , �, I is the unit matrix, and ¯̄αi,j ,
is the translation matrices [8, 9] for cylindrical harmonics between the
i and j coordinate systems, and has been used the identity

¯̄βi,0 · ¯̄β0,i = ¯̄I. (11)

The recursion using Eqs. (9) and (10) starts with the individual T-
matrices ¯̄T i(1) for the isolated ith circular cylinder in the host medium
of infinite extent.

When a circular cylinder of radius ai, permittivity εi, and
permeability µi is located in a background medium with permittivity
εL+1 and permeability µL+1, the T-matrix of the cylinder is given by
the following diagonal matrix:

¯̄T i(1) = −[ηL+1
¯̄H
′
L+1,i − ηi

¯̄J
′
i,i · ¯̄J

−1

i,i · ¯̄HL+1,i]−1

× [ηL+1
¯̄J
′
L+1,i − ηi

¯̄J
′
i,i · ¯̄J

−1

i,i · ¯̄JL+1,i] for TM wave (12)
¯̄T i(1) = −[ηi ¯̄H

′
L+1,i − ηL+1

¯̄J
′
i,i · ¯̄J

−1

i,i · ¯̄HL+1,i]−1

× [ηi ¯̄J
′
L+1,i − ηL+1

¯̄J
′
i,i · ¯̄J

−1

i,i · ¯̄JL+1,i] for TE wave (13)
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with

¯̄J i,i = [Jm(kiai)δm,m′ ], ¯̄J
′
i,i = [J ′m(kiai)δm,m′ ] (i = 1, 2, 3, · · · , L) (14)

¯̄JL+1,i = [Jm(kL+1ai)δm,m′ ], ¯̄J
′
L+1,i = [J ′m(kL+1ai)δm,m′ ] (15)

¯̄HL+1,i = [H(1)
m (kL+1ai)δm,m′ ], ¯̄H

′
L+1,i = [H(1)′

m (kL+1ai)δm,m′ ] (16)
ki = ω

√
εiµi, kL+1 = ω

√
εL+1µL+1,

ηi =
√

εi/µi, ηL+1 =
√

εL+1/µL+1 (17)

where δm,m′ is the Kronecker’s delta, and the prime on the Bessel and
Hankel functions denotes their derivatives with respect to the indicated
arguments. The T-matrix for a cylinder of perfect conductor is easily
deduced by taking the limit |εi| → ∞ in Eqs. (12) and (13). Using
Eqs. (9)–(13) in Eq. (7), the solution to the scattered field ψscL+1(r0)
in the interior of the host medium is completed for both TM and TE
waves except for the unknown amplitude vector B.

When a plane wave of unit amplitude is incident on the host
cylinder with an angle φin measured from the Ox axis, the total field
in the exterior of the host cylinder is expressed in terms of the global
polar coordinate as follows:

ψ0(r0) = ψin0 (r0) + ψsc0 (r0)

= ΦT
0 (r0) ·Ain + ΨT

0 (r0) ·Asc (18)

with

Φ0(r0) = [Jn(k0ρ0)einφ0 ] (19)

Ψ0(r0) = [H(1)
n (k0ρ0)einφ0 ] (20)

Ain = [(i)ne−inφ
in

] (21)
Asc = [ascn ] (22)

where Ain is the known incident amplitude vector and Asc is the
unknown amplitude vector for the scattered field in the exterior of the
host cylinder. The tangential field components derived from Eq. (6)
in the interior region and from Eq. (18) in the exterior region must be
continuous across the outer boundary ρ0 = aL+1 of the host cylinder.
Applying the boundary conditions, the unknown amplitude vectors B
and Asc are related to the amplitude vector Ain of the incident wave.
After several manipulations, the scattered field ψsc0 (r0) in the exterior
region can be finally determined as

ψsc0 (r0) = ΨT
0 (r0) · ¯̄T L+1 ·Ain (23)
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with

¯̄T L+1 = −[η0
¯̄H
′
0,L+1 − ηL+1

¯̄F
′
L+1,L+1 · ¯̄F

−1

L+1,L+1 · ¯̄H0,L+1]−1

×[η0
¯̄J
′
0,L+1 − ηL+1

¯̄F
′
L+1,L+1 · ¯̄F

−1

L+1,L+1 · ¯̄J0,L+1]
for TM wave (24)

¯̄T L+1 = −[ηL+1
¯̄H
′
0,L+1 − η0

¯̄F
′
L+1,L+1 · ¯̄F

−1

L+1,L+1 · ¯̄H0,L+1]−1

×[ηL+1
¯̄J
′
0,L+1 − η0

¯̄F
′
L+1,L+1 · ¯̄F

−1

L+1,L+1 · ¯̄J0,L+1]
for TE wave (25)

¯̄F L+1,L+1 = ¯̄JL+1,L+1 + ¯̄HL+1,L+1 · ¯̄T L (26)
¯̄F
′
L+1,L+1 = ¯̄J

′
L+1,L+1 + ¯̄H

′
L+1,L+1 · ¯̄T L (27)

where ¯̄T L+1 denotes an aggregate T-matrix of the host cylinder with
L cylindrical inclusions, the matrix ¯̄T L is given by Eq. (7), and the
matrices ¯̄J j,i, ¯̄J

′
j,i,

¯̄Hj,i, and ¯̄H
′
j,i are defined by Eqs. (14)–(16). Note

that ¯̄T L = 0 in the absence of L cylindrical inclusions. In this case,
the aggregate T-matrix ¯̄T L+1 given by Eqs. (24) and (25) reduces
to the conventional T-matrix for a homogeneous circular cylinder of
radius aL+1 occupied by the host medium with εL+1 and µL+1. The
additional terms ¯̄HL+1,L+1 · ¯̄T L and ¯̄H

′
L+1,L+1 · ¯̄T L in Eqs. (26) and

(27) explain the influence of the multiple scattering of internal fields
under the presence of L cylindrical inclusions.

Although the vectors Φi(rj), Ψi(rj) and the matrices ¯̄αi,j , ¯̄βi,j are
of infinite dimensions, the T-matrix algorithm truncate those vectors
and matrices with finite dimension. We assume that the sum over n is
truncated by |n| ≤ N and the sum over m is truncated by |m| ≤ M .
N represents the number of cylindrical harmonics used to expand the
fields at the global origin O0, whereas M represents the number of
harmonics used to expand the fields in each local coordinate system of
cylindrical inclusions. When the above truncation is introduced, ¯̄βi,0
is a (2M +1)× (2N +1) matrix, ¯̄β0,i is a (2N +1)× (2M +1) matrix,
¯̄αi,j and ¯̄T i(�) are square matrices with (2M + 1)× (2M + 1), and ¯̄T L
and ¯̄T L+1 are square matrices with (2N + 1)× (2N + 1).

For the system of circular cylinders, the calculation of ¯̄T L+1 is
straightforward. When k0ρ0 	 1, from Eqs. (20) and (23) we have

ψsc0 (r0) =
eik0ρ0√

ρ0
f(φ0, φ

in) (28)
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with

f(φ0, φ
in) =

1− i√
πk0

N∑
n=−N

N∑
n′=−N

(−i)n(i)n′
ei(nφ0−n′φin)tL+1,nn′ (29)

where tL+1,nn′ represents the element of n-th row and n′-th column of
the aggregate T-matrix ¯̄T L+1. The differential scattering cross-section
σd(φ0, φ

in) and the back-scattering cross-section σb(φin + π, φin) per
unit length of the host cylinder is obtained as follows:

σd(φ0, φ
in) = 2π|f(φ0, φ

in)|2 (30)
σb(φin) = 2π|f(φin + π, φin)|2. (31)

If the host cylinder and L inclusions consist of isotropic and lossless
material, the scattered field must satisfy the reciprocity relation and
the optical theorem which require, respectively

σd(φ0, φ
in) = σd(φin + π, φ0 + π) (32)

σt =
4
k0

N∑
n=−N

|
N∑

n′=−N
(i)n

′
e−in

′φintL+1,nn′ |2 = − 4
k0

Re{f(φin, φin)}(33)

where σt denotes the total scattering cross-section per unit length of
the host cylinder. Equations (32) and (33) can be used to check the
accuracy of the solutions.

3. NUMERICAL EXAMPLES

The proposed method has been used to analyze the scattering of
electromagnetic plane-wave from a circular dielectric cylinder with
inclusions of circular cross-sections under various configurations. All
pertinent numerical results shown in [6] were reproduced by our
computer code using the aggregate T-matrix. Although a substantial
number of numerical examples could be generated, we shall discuss
here the results for a host cylinder with up to three inclusions. The
truncation numbers M and N in the cylindrical harmonic expansions
should be large enough to have a convergent solution [10]. The
number M is related to the cross-sectional size of each cylinder and the
number N depends on the distance from the center of each cylindrical
inclusion to the center of the host cylinder. Testing the convergence
of solutions, the numerical examples in what follow wer obtained by
choosing M = N = 12. The larger truncation numbers are requested
when the size of cylindrical inclusions and the host cylinder are further
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Figure 2. Backscattering cross-section k0σb of cylinder with two
identical inclusions as functions of the refractive index difference ∆n =
n1−n3, where k0a1 = k0a2 = 0.25, n1 = n2 = 2.0, k0d2 = 1.5, θ1 = 0◦,
θ2 = 180◦, k0a3 = 3.0, and φin = 0◦. TE wave: (1) k0d1 = 1.5, (2)
k0d1 = 2.25. TM wave: (3) k0d1 = 1.5, (4) k0d1 = 2.25.

increased. The permeability is assumed to be µ0 over all regions and
the refractive index of i-th cylindrical region is denoted by ni =

√
εi/ε0.

We first tested the reciprocity relation and the optical theorem
for our solutions. When the number of the inclusions is two, we have
seen that both the reciprocity theorem and the optical theorem are
rigrously satisfied with the error less than 10−14. The parameters used
in those tests are k0a1 = 0.1, k0a2 = 0.2, n1 = 1.5, n2 = 1.8, k0d1 =
1.0, k0d2 = 0.8, θ1 = 0◦, k0a3 = 2.0, and n3 = 2.0. The normalized
backscattering cross-section k0σb for a host cylinder with two inclusions
are plotted in Fig. 2 for TM-wave and TE-wave excitations as functions
of the refractive index difference ∆n = n1−n3. Two identical dielectric
inclusions with k0a1 = k0a2 = 0.25 and n1 = n2 = 2.0 are placed
symmetrically or asymmetrically relative to the center of the host
cylinder with k0a3 = 3.0 and n3. The direction of incidence of plane
wave is φin = 0◦ along the line through the centers of two inclusions.
The extreme ∆n = 0 corresponds to a homogeneous cylinder with
k0a3 = 3.0 and n3 = 2.0, whereas the extreme ∆n = 1.0 corresponds
to two identical free-standing cylinders. It is seen that the effect of
a radial asymmetry is more pronounced for the TM wave excitation.
Figure 3 shows the normalized backscattering cross-section k0σb of a
host cylinder with three inclusions for TM-wave excitation as functions
of the position of cylinder 1. Three identical dielectric cylinders with
k0a1 = k0a2 = k0a3 = 0.25 and n1 = n2 = n3 = 2.0 are placed in the
host cylinder with k0a4 = 3.0 and n4 = 1.5. The cylinders 2 and 3
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Figure 3. Backscattering cross-section k0σb of cylinder with three
identical inclusions for TM-wave excitation as functions of the radial
position k0d1 of cylinder 1, where k0a1 = k0a2 = k0a3 = 0.25,
n1 = n2 = n3 = 2.0, k0d2 = k0d3 = 1.5, θ1 = 90◦, θ2 = 210◦,
θ3 = 330◦, k0a4 = 3.0, and n4 = 1.5. (1) φin = 0◦, (2) φin = 90◦, and
(3) φin = 270◦.

are maintained at fixed positions k0d2 = k0d3 = 1.5, θ2 = 210◦, and
θ3 = 330◦, whereas the cylinder 1 is assumed to change the position
k0d1 in the radial direction at θ1 = 90◦. When k0d1 = 1.5, three
inclusions are placed symmetrically relative to the center of the host
cylinder. Three different directions of incidence at φin = 0◦, 90◦,
and 270◦ are considered. We can see that the backscattering for the
incidence at φin = 90◦ is most sensitive to the internal asymmetries.
The same cylindrical configurations as shown in Figs. 2 and 3 have
been treated in [6] by using the indirect mode-matching method. Our
present numerical results are practically identical to those given in
Figs. 4 and 8 of [6].

The effect of internally asymmetric scatterers is more pronounced,
in general, as the refractive index difference between inclusions and
host medium is increased or the size of inclusions relative to the
host cylinder is increased. In Fig. 4, the normalized backscattering
cross-section k0σb and forward scattering cross-section k0σf of a host
cylinder with a single inclusion and two inclusions are plotted for TM-
wave excitation as functions of the incident angle φin. Two identical
dielectric cylinders with k0a1 = k0a2 = 0.5 and n1 = n2 = 4.0 are
placed asymmetrically relative to the center of the host cylinder with
k0a3 = 2.5 and n3 = 2.0, where the centers of two cylinders are
located at θ1 = 0◦, θ2 = 180◦, k0d1 = 1.5, and k0d2 = 1.0. The
results obtained with n2 = 2.0 or n1 = n2 = 2.0 corresponds to the
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Figure 4. Backscattering cross-section k0σb and forward scattering
cross-section k0σf of cylinder with a single dielectric inclusion or two
dielectric inclusions for TM-wave excitation as functions of incident
angle φin, where k0a1 = k0a2 = 0.5, k0d1 = 1.5, k0d2 = 1.0, θ1 = 0◦,
θ2 = 180◦, k0a3 = 2.5, and n3 = 2.0. (1) a single inclusion: n1 = 4.0
and n2 = 2.0, (2) two inclusions: n1 = n2 = 4.0, and (3) without
inclusions: n1 = n2 = 2.0.

host cylinder with the single inclusion 1 or a homogeneous cylinder
of radius a3, respectively. The similar plots for TE-wave excitation
are shown in Fig. 5. The TM-wave excitation is very sensitive to
the internal scatterers. The backscattering cross-section for the host
cylinder with two inclusions are greatly enhanced around the incident
angle φin = 180◦, whereas the forward scattering cross-section is
strongly suppressed around the same incident angle, compared with
the case of homogeneous host cylinder. The TE-wave excitation is
less sensitive to the internal scatterers, though the backscattering and
forward scattering cross-sections change with the incident angle in the
presence of geometrical asymmetries. A host cylinder with inclusions
of perfect conductor may be regarded as an extreme in the refractive
index difference between the host medium and internal scatterers. The
normalized backscattering cross-sections k0σb and forward scattering
cross-section k0σf for such a case are treated in Figs. 6 and 7 for
TM-wave excitation and TE-wave excitation, respectively. The values
of geometrical parameters are same as those given in Figs. 4 and
5 except that the internal cylinders 1 and 2 are perfect conductor
with |n1| = |n2| → ∞. In this case both TM-wave and TE-
wave excitations become very sensitive to the internal asymmetries of
scatterers. The backscattering and forward scattering cross-sections of
the host cylinder with the single inclusion or two inclusions noticeably
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Figure 6. Backscattering cross-section k0σb and forward scattering
cross-section k0σf of cylinder with a single inclusion or two inclusions
of perfect conductor for TM-wave excitation as functions of incident
angle φin, where k0a1 = k0a2 = 0.5, k0d1 = 1.5, k0d2 = 1.0, θ1 = 0◦,
θ2 = 180◦, k0a3 = 2.5, and n3 = 2.0. (1) a single inclusion: |n1| → ∞
and n2 = 2.0, (2) two inclusions: |n1| = |n2| → ∞, and (3) without
inclusions: n1 = n2 = 2.0.
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of perfect conductor for TE-wave excitation as functions of incident
angle φin. The values of parameters are same as those given in Fig. 6.
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Figure 8. Differential scattering cross-section k0σd of a dielectric
cylinder as functions of observation angle φ0, where k0a1 = 2.5,
n1 = 2.0, and φin = 270◦.

change from those of a homogeneous host cylinder and take prominent
maximums and minima at particular incident angles. These features
may be used to sense the positions of internal conducting cylinders or
to control the backscattering cross-section of a dielectric cylinder by
embedding conducting cylinders into its inside.

We finally discuss the differential scattering cross-section k0σd
of a host cylinder with three inclusions through Figs. 8 and 12 for
the TM-wave and TE wave excitations. The angle of incidence



126 Toyama, Yasumoto, and Iwasaki

0

20

40

60

80

100

120

140

0 90 180 270 360

TM
TE

φ0

φ0

D
iff

er
en

tia
l s

ca
tte

rin
g 

cr
os

s-
se

ct
io

n
( 

k 
   

   
)

0
σ d

Figure 9. Differential scattering cross-section k0σd of cylinder with
three inclusions of air holes as functions of observation angle φ0, where
k0a1 = k0a2 = k0a3 = 0.3, n1 = n2 = n3 = 1.0, k0d1 = 0.35,
k0d2 = 1.0, k0d3 = 1.65, θ1 = 90◦, θ2 = 210◦, θ3 = 330◦, k0a4 = 2.5,
n4 = 2.0, and φin = 270◦.
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Figure 10. Differential scattering cross-section k0σd of cylinder with
three dielectric inclusions as functions of observation angle φ0, where
n1 = n2 = n3 = 4.0 and the values of other parameters are same as
those given in Fig. 9.

is assumed to be φin = 270◦. The three identical cylinders with
k0a1 = k0a2 = k0a3 = 0.3 are placed at the positions k0d1 = 0.35,
k0d2 = 1.0, k0d3 = 1.65, θ1 = 90◦, θ2 = 210◦, and θ3 = 330◦,
respectively, in the host cylinder with k0a4 = 2.5 and n4 = 2.0. The
cylindrical inclusions are air holes with n1 = n2 = n3 = 1.0 in Fig. 9,
dielectric with n1 = n2 = n3 = 4.0 in Fig. 10, perfect conductor with
|n1| = |n2| = |n3| → ∞ in Fig. 11, and a combination of air hole
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Figure 11. Differential scattering cross-section k0σd of cylinder with
three inclusions of perfect conductor as functions of observation angle
φ0, where |n1| = |n2| = |n3| → ∞ and the values of other parameters
are same as those given in Fig. 9.
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Figure 12. Differential scattering cross-section k0σd of cylinder with
three inclusions of air hole, dielectric, and perfect conductor as function
of angle φ0, where n1 = 1.0, n2 = 4.0, and |n3| → ∞ and the values of
other parameters are same as those given in Fig. 9.

with n1 = 1.0, dielectric with n2 = 4.0, and perfect conductor with
|n3| → ∞ in Fig. 12, respectively. For the sake of comparison, the
results for a homogeneous host cylinder without inclusions are shown
in Fig. 8. The main scattering is observed in the forward direction
around φ0 = 270◦, though its intensity is different for TM-wave and
TE-wave excitations. Regardless of polarizations, the effect of three
inclusions on the differential scattering cross-section is pronounced in
the forward direction. When the three inclusions are air holes (Fig. 9),
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the forward scattering is enhanced with keeping the scattering in other
directions mostly same as those for the homogeneous host cylinder.
On the contrary, when the three inclusions are dielectric (Fig. 10), the
forward scattering is strongly suppressed for both excitations and an
additional scattering-lobe appears in the direction around φ0 = 200◦
for TM-wave excitation. If the three inclusions are perfect conductor
(Fig. 11), the forward scattering is suppressed as in the case of dielectric
inclusions and the scattering cross-sections for both excitations exhibit
a similar profile over whole observation angle. When the three-
inclusions is a combination of an air hole, a dielectric cylinder, and
a conducting cylinder (Fig. 12), the forward scattering for TM-wave
excitation is further suppressed and the main scattering lobe shifts
in the direction around φ0 = 170◦, whereas the forward scattering
for TE-wave excitation slightly increases compared with the case of
three inclusions of dielectric (Fig. 10) and perfect conductor (Fig. 11).
The comparison through Figs. 10 to 12 suggests that the TE-wave
excitation is less sensitive to the inhomogeneity of internal scatterers.

4. CONCLUSIONS

A simple and direct method to analyze the two-dimensional scattering
of electromagnetic plane waves from a dielectric cylinder with multiple
eccentric cylindrical inclusions was presented by making use of the
T-matrix approach. An aggregate T-matrix of the external cylinder
with inclusions was derived for TM-wave and TE-wave excitations in
terms of the T-matrices of individual cylinders isolated in the host
medium. The scattered fields are easily obtained from simpler matrix
calculations for the aggregate T-matrix. If the host cylinder and the
inclusions have circular cross-sections, the present method is quite
rigorous in the sense that the aggregate T-matrix is obtained in closed
form. The only approximation involved in the analysis is a truncation
of the T-matrix for numerical computations. The cylindrical inclusions
may be of dielectric, air hole, perfect conductor, or their mixture.

Numerical results of the backscattering, the forward scattering
and differential scattering cross-sections were presented for a circular
cylinder with a single inclusion, two inclusions, and three inclusions of
circular cross-sections. It was shown that the scattering characteristics
have a close link to the internal asymmetry and inhomogeneity
pertinent to the locations and material of cylindrical inclusions.
Various numerical examples suggest that the locations of inclusions
may be sensed through the backscattering cross-section and the
scattering pattern of a dielectric cylinder can be effectively controlled
by embedding cylindrical scatterers into its inside.
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