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Abstract—The asymptotic strip boundary condition (ASBC) is
applied to analyze the solution of the electromagnetic scattering from
a conducting cylinder coated with a homogeneous linear material layer
and loaded with conducting helical strips. Such homogeneous material
layer can be implemented by a conventional dielectric material, a
single negative (SNG) or double negative (DNG) meta-material layer.
A study of different materials’ constitutive parameters is presented
with accordance to Drude and Lorentz material modeling. The
boundary condition assumes that the strips are rounded around the
coated cylinder in a helical form and both the strip’s period and the
spacing between the helix turns are very small and mathematically
approaching the zero. Scattering due to normal and oblique incident
plane waves (θi, φi) of arbitrary polarization using the series solution
is also computed. A number of parametric studies were investigated
to illustrate the advantages of using metamaterials compared with
conventional coating materials in terms of strip’s rounding pitch angle
and coating layer electrical thickness variations. It is also shown
that for SNG materials, modified Bessel functions are used to accept
negative arguments. Coating with metamaterials proves to achieve
higher forward scattering compared with conventional materials for
the same electrical coating thickness.

1. INTRODUCTION

Strip periodic surfaces, polarization selective reflecting or transmitting
surfaces [1, 2], exhibit superior and attractive properties to be used in
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antenna applications such as in circular waveguide and horn antenna
designs to improve their radiation characteristics [3, 4]. It has been
reported in the literature that metal-conducting strips can replace
the corrugations on the waveguide walls to realize both hard and
soft surfaces [5, 6]. Such advantage helps in having an alternative
inexpensive process and in reducing the forward scattering from the
struts in the design of the reflector antenna struts [7, 8].

The asymptotic strip boundary condition (ASBC) was applied
to analyze scattering from planar [6], arbitrarily shaped cylindrical
structures loaded with conducting strips [9–11] based on expanding
the scattered field on both sides of the grating in the Floquet modes
then applying an approximation directly to the boundary conditions
such that the tangential E-field is zero at the surface of each strip and
continuous between the strips. As an alternative solution, the ASBC
does not suffer from any geometrical limitations compared with the
Floquet mode solution. It is applicable and easier to be implemented
in computer programs for scattering or radiation calculations based
on any numerical technique. This boundary condition becomes more
accurate the smaller the period between the strips is in terms of the
wavelength and is expected to be asymptotically exact when the strip
period approaches to zero.

The concept of double negative (DNG) metamaterials [12–17],
artificial materials, has increasingly received considerable attention
and intensive interest due to the attractive theoretical predicted
properties of these materials such as the reversal of the Snell’s law,
Doppler Effect and the backward Cherenkov radiation [18–22]. It
was first postulated by Veslago in the 1967 [23] when he theoretically
examined the propagation of plane waves in hypothetical medium with
simultaneously negative real permittivity and real permeability and
remarkably demonstrated that having media with both constitutive
parameters are negative would lead to opposite directions of the
Poynting vector; at the direction of energy propagation and group
velocity; and phase velocity due to the existence of backward waves
propagating. They are also known as left-handed (LH) materials
due to the left-handed dyad formed by the electric, magnetic and
wave vector components. Theoretical studies and experimental
demonstrations have been successfully developed by research groups
worldwide for the use of metamaterials in RF circuit design and
antenna size reduction [23–27]. Special attention has been paid to
metamaterials with single negative (SNG) material parameter such
as the epsilon-negative (ENG) and mu-negative (MNG) materials to
overcome microwave and optical applications’ physical limitations. It
was found that SNG media support evanescent waves within certain
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frequency range and possess advantageous characteristics than the
DNG materials in scattering and guiding when they are paired in
suitable conjugate manner for future applications [12, 28–29].

Significant theoretical and experimental efforts have focused on
studying the dispersive nature of metamaterials after Veslago. It
was found that both Drude and Lorentz models could reasonably
describe the dispersive behavior of both permeability and permittivity
of DNG materials in a narrow frequency band where metamaterials’
constitutive parameters are inherently frequency dependent [28–30].
For this reason, such behavior must be taken into consideration in
choosing the suitable constitutive parameters for such materials at the
designed frequency.

In this paper, we will present a simple concept to analyze strip
periodic surfaces. The solution may be valid for low frequency
applications or when the number of periods per wavelength is very
large and on the limit of the periods approaching to zero. This concept
can be applied in any coordinate system, i.e., it is not restricted to any
geometry while it can also be mixed with other boundary conditions
to analyze composite structures where periodic strips are parts of the
object. Here we are applying this concept to circular structures in
order to obtain analytic series solution, while in other cases it will not
be possible to analyze without numerical solutions for surface integral
equations. Tremendous work was done to study the electromagnetic
scattering from conducting cylinders with coating materials and can
be found in literature [31–40]. The objective of this paper is to study
the scattering from a conducting cylinder coated with a metamaterials
layer and loaded with conducting helical strips by using the ASBC.
The constitutive parameters of such SNG or DNG material layer are
chosen to satisfy the frequency dependence equations stated in both
Drude and Lorentz models at the given frequency. The present work is
proved to be valid implementation of the ASBC with other numerical
techniques. The boundary condition is expected to be asymptotically
correct when we have zero spacing between the helix turns while the
strips are rounded around the coated cylinder in a helical form with
very small strip’s period. Excellent agreement and further validation
are done when both longitudinal (z-directed) and circumferential (φ-
directed) strip loading are used as special cases. These results are
removed for brevity.

2. FORMULATION

Consider a perfectly conducting circular cylinder of a radius b coated
with a uniform homogenous isotropic material layer of radius a as
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Figure 1. Geometry of Conducting Cylinder coated with a
homogenous linear material and loaded with conducting helical strips.

shown in Fig. 1. The material coating can be implemented as a
conventional dielectric material, a single negative (SNG) or double
negative (DNG) metamaterials layer with a general permittivity ε1
and permeability µ1. A helical periodic conducting strip of a very
small spacing between the turns compared with the wavelength loads
the surface of the coated layer at a pitch angle γ with the xy plane.
Variations between γ = 0◦ and γ = 90◦ will be included in the
forthcoming analysis as special cases for further verifications as when
γ = 0◦, the strips will be φ-directed and when γ = 90◦, the strips will
be z-directed. The excitation is assumed to be a plane wave obliquely
incident on the object with an angle of incidence θi measured from the
z-axis and φi measured from the x-axis in the xy plane. The incident
fields can be expressed as:

Einc = −Eo

(
cosαθ̂ + sinαφ̂

)
e−jkek̂·r (1)

H inc =
(
k̂ × Einc

)/
ηo (2)

with

θ̂ (θi, φi) = x̂ cos θi cosφi + ŷ cos θi sinφi − ẑ sin θi (3)

φ̂ (φi) = −x̂ sinφi + ŷ cosφi (4)

where the polarization angle α is the angle the incident electric field
makes with the plane of incidence. If α = 0, the plane is TMz polarized
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and if α = π/2, the plane wave is TEz polarized. The quantity Eo is
the amplitude of the incident electric field, k̂ = r̂ (θi, φi) is a unit vector
pointing in the direction of propagation, ke is the wave number in free
space and x̂, ŷ and ẑ are the unit vectors in the directions of x, y and
z, respectively and r̂ (θi, φi), θ̂ (θi, φi) and φ̂ (φi) are the unit vectors
in the directions of r, θi and φi in the spherical coordinate system. The
z-component of the incident field can be expanded in the cylindrical
coordinate system (ρ, φ, z) according to [9]:{

Ei
z

H i
z

}
=
κEo

ke
ejτz

{
cosα
sinα/ηo

} ∞∑
n=−∞

j−n Jn (κρ) ejn(φ−φi) (5)

where κ = ke sin θi, τ = ke cos θi and Jn(x) is the Bessel function
of order n. From Maxwell’s equations, the other incident field
components can be expressed as:{

Ei
φ

H i
φ

}
= j

ke

κ
Eoe

jτz ×
∞∑

n=−∞
j−n

[
j
nτ

k2
eρ

{
cosα
sinα/η

}
Jn (κρ)

+
1
ke

{
sinα
−cosα/η

}
J ′

n (κρ)
]
ejn(φ−φi) (6)

where J ′
n(x) is the derivative of the Bessel function Jn(x) with respect

to the whole argument. All the field components can be obtained from
the z-components of the electric and magnetic fields and expressed in
terms of unknown coefficients. The z-component of the scattered fields
can be expressed as:{

Es
z

Hs
z

}
= Eoe

jτz
∞∑

n=−∞

{
an

bn

}
j−nH(2)

n (κρ) ejn(φ−φi) ρ ≥ a (7)

where H(2)
n (x) is the Hankel function of the second kind and of order

n. Again from Maxwell’s equations the rest of the scattered field
components can be obtained as:{

Es
φ

Hs
φ

}
= j

ke

κ2
Eoe

jτz ×
∞∑

n=−∞
j−n

[
j
nτ

keρ

{
an

bn

}
H(2)

n (κρ)

+
{
ηbn
−an/η

}
H ′(2)

n (κρ)
]
ejn(φ−φi)

Similarly we can get the components of the diffracted fields inside the
coated layer as follows:{
Ed

φ

Hd
φ

}
= j

kd

κ2
d

Eoe
jτz×

∞∑
n=−∞

j−n
[
j
nτ

kdρ

[{
cn
dn

}
Jn (κdρ)+

{
en

fn

}
H(2)

n (κdρ)
]
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+
[{
ηddn

cn/ηd

}
J ′

n (κdρ)+
{
ηdfn

en/ηd

}
H ′(2)

n (κdρ)
]]
ejn(φ−φi) (8)

Again the prime denotes the derivative with respect to the whole
argument. For the φ-variation, the exponential function is used
because of the helix disturbs the periodic behavior of φ while a
sine/cosine form of variations is used when γ = 0◦ and γ = 90◦
to describe special strip loadings. It is important to mention that
a modified Bessel function and its derivative for complex argument
are programmed to take care of the negative sign that show up for
the SNG material analysis. In other words, for both DNG and DPS
materials, the usual Bessel function with its derivative can be used for
the complex argument. The boundary conditions will be assumed that
the tangential electric field along the conducting strips vanishes on
the surface from inside and outside the coated material layer surface.
Therefore,

cos γ
(
Ei

φ + Es
φ

)
+ sin γ

(
Ei

z + Es
z

)
= 0 at ρ = a (9)

cos γEd
φ + sin γEd

z = 0 at ρ = a (10)

On the other hand the electric field components normal to the strips
and the magnetic field along the strips are continuous across the
surface. Therefore,

cos γ
(
Ei

z + Es
z

)
− sin γ

(
Ei

φ + Es
φ

)
= cos γEd

z − sin γEd
φ (11)

cos γ
(
H i

φ +Hs
φ

)
+ sin γ

(
H i

z +Hs
z

)
= cos γHd

φ + sin γHd
z (12)

On the conducting core the tangential field components will vanish as:

Ed
z = 0 at ρ = b (13)

Ed
φ = 0 at ρ = b (14)

From the previous boundary conditions, the unknown field expansion
coefficients can be obtained as follows:

an =
1

ak2
dρkoH

(2)
n (koρa){

ko cos γ
(
nkz sin γ + k2

dρa cos γ
) [
Jn(kdρa)cn +H

(2)
n (kdρa)en

]
− jkokdρµdωa cos γ sin γ

[
J ′

n(kdρa)dn +H ′(2)
n (kdρa)fn

]
− ak3

dρ cosαJn(koρa)
}
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bn =
j

ωa2µok2
dρkoρH

′(2)
n (koρa)

{(
sin γ cos γ

(
k2

dρk
2
oρa

2 − nk2
z

)

−nakz

(
k2

dρ cos2 γ−k2
oρ sin2 γ

) )[
Jn(kdρa)cn+H(2)

n (kdρa)en

]
+ jaωµdkdρ sin γ

(
nkz cos γ − k2

oρa sin γ
)

[
J ′

n(kdρa)dn + H ′(2)
n (kdρa)fn

]
+ jk2

dρk
2
oρa

2 sinαJ ′
n(koρa)

}

cn =
−H(2)

n (kdρb)
Jn (kdρb)

en

dn = −H
′(2)
n (kdρb)
J ′

n (kdρb)
fn

en =
2ωµdkoρk

3
dρ cos γ

πD
Jn(kdρb)χ1

{ (
nkz cos γ − ak2

oρ sin γ
)

sinαH(2)
n (koρa) − jakokoρ cosα cos γH ′(2)

n (koρa)
}

fn =
−2jkoρk

2
dρ

(
nkz cos γ − ak2

dρ sin γ
)

πaD
J ′

n(kdρb)χ2{
sinα

(
nkz cos γ − ak2

oρ sin γ
)
H(2)

n (koρa)

−jakokoρ cosα cos γH ′(2)
n (koρa)

}
where:

D = ωχ2H
(2)
n (koρa)

[
µok

3
oρχ3ψ

2
dH

′(2)
n (koρa) + µdk

3
dρχ1ψ

2
oH

(2)
n (koρa)

]
+ a2k2

dρk
2
oρkdkoχ1 cos2 γH ′(2)

n (koρa)[
ηokdkoρχ4H

(2)
n (koρa) − ηdkokdρχ2H

′(2)
n (koρa)

]
χ1 = J ′

n(kdρa)H ′(2)
n (kdρb) − J ′

n(kdρb)H ′(2)
n (kdρa)

χ2 = Jn(kdρa)H(2)
n (kdρb) − Jn(kdρb)H(2)

n (kdρa)

χ3 = J ′
n(kdρb)H(2)

n (kdρa) − Jn(kdρa)H ′(2)
n (kdρb)

χ4 = J ′
n(kdρa)H(2)

n (kdρb) − Jn(kdρb)H ′(2)
n (kdρa)

ψd = nkz cos γ − ak2
dρ sin γ

ψo = nkz cos γ − ak2
oρ sin γ

Due to phase matching, the wave number components in both free
space and the coating material can be defined as kz = koz =
kdz = ko cos θin, koρ = ko sin θin and kdρ = ko

√
µdεd − cos2 θin,
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respectively. For SNG materials where either the material permittivity
or permeability has a negative real part, the wave number kdρ will be
of negative value and that mainly leads to the use of modified special
Bessel functions of first and second type to replace the Jn(x), and
Hn(x), respectively for accurate analysis of large complex arguments.

3. EFFECTIVE MATERIAL PARAMETERS AND
DISPERSION MODELS

Remarkable studies were done after Veslago in 1960s [23] concerning
the behavior of the new artificial engineered materials. In general,
DNG materials possess simultaneously negative effective permittivity
and permeability which can be obtained from a periodic array of thin
metallic wires; that creates negative permittivity medium, combined
with an array of split ring resonators (SRR) to create the negative
permeability medium [18, 28–30]. Several material models had been
proposed to describe the dispersive nature of metamaterials and their
frequency dependence [40–47]. Both Drude and Lorentz models were
reasonably used to determine the effective constitutive parameters of
SNG and DNG materials as a function of frequency [48, 49]. They are
preferred than other models because their equations stems to replace
the material’s atoms and molecules by harmonic oscillators influenced
by any frequency perturbation near the resonant frequency within a
narrow range. It is remarkably noticed that passive metamaterials
are inherently dispersive in a narrow frequency band where they have
simultaneously negative permittivity and permeability. The standard
Drude-Lorentz model equations can be stated as follows [42]:

εeff (ω) = ε∞ −
ω2

p

ω(ω − iυc)
and µeff = µ∞ +

(µs − µ∞)ω2
o

ω2
o + iωδ − ω2

(15)

The above parameters were chosen carefully to get different
material behavior at different frequency ranges with distinct effective
constitutive parameters as shown in Fig. 2 and stated in Table 1:

From the assumed material parameters, different media were
obtained at different frequencies as stated in Table 2, which will be used
later on to verify the behavior of the studied structure with different
materials.

4. NUMERICAL RESULTS

The above equations have been implemented in a FORTRAN code.
To verify the code, numerical solution using the method of moments
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Table 1. Drude-Lorentz model parameters.

Parameter Definition Value

ε∞ electric permittivity at the high frequency limit 2.2

ωp radial plasma frequency 2π(14.63×109)

υc the collision frequency 30.69 × 106

µs magnetic permittivity at low frequency limit 1.26

ωo radial resonant frequency 2π(9.5 × 109)

µ∞ magnetic permittivity at high frequency limit 1.05

δ Damping factor 1.24 × 109

Figure 2. Effective electric permittivity εeff = ε′ − jε′′ and effective
permeability µeff = µ′ − jµ′′ for the proposed Drude and Lorentz
material modeling parameters.

(MOM) code was used and both solutions proved to have excellent
agreement. The scattering from the conducting circular cylinder coated
with different material types and loaded with helical strips in the two
main polarization were also obtained where the polarization angle α
may have the value of 0◦ and 90◦ to achieve TMz and TEz polarizations
respectively. Fig. 3 shows the scattering from the structure described



198 Hady and Kishk

Table 2. Different material types with respect to frequency
dependence.

Frequency

(GHz)
εeff = ε′ − jε′′ µeff = µ′ − jµ′′ Material Type

9 −0.4424 − j0.0014 3.0261 − j0.3794 ENG

9.6 −0.1224 − j0.0012 −3.9516 − j4.9612 DNG

10.2 0.1427 − j0.001 −0.2957 − j0.1964 MNG

11 0.4311 − j0.0008 0.4367 − j0.0433 DPS
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Figure 3. Scattering from a conducting cylinder coated with different
materials of inner and outer radii b = 1.2 mm and a = 1.5 mm loaded
with helical strips under oblique incidence (θi = 45◦, φi = 0◦).

previously in Fig. 1 with oblique incidence of θi = 45◦ where the
conducting cylinder radius and the coated layer’s outer radius are
b = 1.2 mm and a = 1.5 mm, respectively. The strips in this case are
aligned with pitch angle γ = 45◦. The results in Fig. 3 were obtained
in terms of the radar cross section (RCS) as well as all the following
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Figure 4. Scattered fields from a conducting cylinder coated with
DPS and DNG material with/without 45◦ helical strips pitch angle
under oblique incidence of θi = 60◦ with polarization angle α = 45◦.

results where the later term can be expressed in terms of the scattered
and incident field components as:

σ = lim
ρ→∞

(
2πρ

|Es|2

|Ei|2

)
(16)

where
∣∣Ei

∣∣ and |Es| are the scattered and the incident electric fields,
respectively. It can be observed that the cross-polar component of the
scattered field Es

φ in the TMz case and the Es
θ in the TEz polarization

are equal. These results were expected and they agree totally with the
phenomena stated in [9].

A number of parametric studies were conducted to demonstrate
the behavior of MTM compared with normal conventional dielectric
materials. It is important to examine the effect of having the helical
strips compared with the scattering from a conducting cylinder coated
with homogenous material of the same size with the approximation
that the strip width asymptotically approaching to zero. Fig. 4
illustrates the scattering from conducting cylinder coated with both
DPS and DNG materials with and without having helical aligned
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Figure 5. Scattered fields from a PEC cylinder coated with
DPS/DNG homogenous layer with/without strips at different strips’
pitch angle under normal incident of θi = 90◦ compared with a 1.2 mm
conducting cylinder radius. The coating cylinders have inner and
outer coated layer radii of 1 mm and 1.2 mm, respectively. The coated
material layer constitutive parameters are those in Table 2 for both
polarizations (a) TM z with α = 0◦, (b) TEz with α = 90◦.
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Figure 6. Effect of the electrical thickness of different coating
materials on the forward and backward scattering waves under oblique
incidence with helical strips rounded by pitch angle γ = 45◦.

strips of pitch angle γ = 45◦ under oblique incidence of θi = 60◦
with polarization angle α = 45◦.

Another study is developed to illustrate the influence of different
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Figure 7. Scattering from a conducting cylinder coated with different
materials and loaded with φ-directed strips under oblique incidence
(θi = 45◦).

strips’ pitch angle loaded to conducting cylinder coated with
metamaterials layer compared with the scattering from a conducting
cylinder of the same size as shown in Fig. 5. The pitch angle is varying
from 0◦ to 90◦ under normal incident with θi = 90◦. The radius of the
conducting cylinder is 1.2 mm while the radii in the coating cylinder
case are b = 1 mm and a = 1.2 mm, respectively. Fig. 5(a) shows
that for TM z polarization, the scattered field from the conducting
cylinder (PEC) is identical to the scattering from the cylinder with
γ = 90◦ coated with DPS material and that agrees with results stated
in [9] while scattering from DNG coated cylinder with no strips is
identical to the scattering of DNG coated conducting cylinder with 0◦
pitch angle (φ-oriented strips). Fig. 5(b) presents similar behavior for
TEz polarization where the scattered field from a conducting cylinder
is identical to the scattering from an φ-oriented PEC strips loaded
to a conducting cylinder coated with DPS material with the same
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size. Also, the scattering from the case where no strips are loaded is
identical to that with z-oriented strips with DNG coating material.
Both analysis and simulation results discussed previously demonstrate
that scattering from the conducting cylinder coated with metamaterials
and loaded with the strips arises promising properties compared with
conventional dielectric material coating.

It is also interesting to determine the effect of the coating
material’s electrical thickness on the scattering performance for
different materials. Fig. 6 illustrates both forward and backward
scattering waves for different coating materials operating at different
frequencies under oblique incident wave of θi = 45◦, and φi = 0◦ with
polarization angle α = 45◦.

It can be concluded that coating with metamaterials achieves
enhancement in the forward scattering compared with the DPS
materials. Longitudinal (z-directed) and circumferential (φ-directed)
strip loading are examined with different coating materials as special
cases of the helical strip loading. When γ = 0◦, the strips will be φ-
directed and when γ = 90◦, the strips will be z-directed. Simulation
results for the φ-directed case are shown in Figs. 7 for both TMz and
TEz polarizations under oblique incidence with θi = 45◦.

5. CONCLUSION

The scattering from a conducting cylinder coated with a conventional
and metamaterials layer and loaded with conducting helical strips
by using the ASBC under oblique incident plane waves was studied.
The constitutive parameters of different material types were obtained
with accordance to Drude-Lorentz material modeling formulas at
different operating frequencies. The present work is proved to be
valid implementation of the ASBC with other numerical techniques.
Further code verifications were accomplished when both longitudinal
(z-directed) and circumferential (φ-directed) strip loading were used as
special cases for different polarizations and with normal and oblique
incidence. A number of investigations were accomplished to have
more knowledge about the benefits of using metamaterials a coating
layers compared with the conventional dielectric media. A remarkable
enhancement in the forward scattering was noticed with the existence
of DNG materials with certain electrical thickness. The effect of the
strip’s pitch angle variation was also discussed for both TMz and
TEz polarizations. This work presented the potential advantages of
using the ASBC in modeling practical problems with different material
configurations.
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