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Foreword

It is a long way from the old saying that every cloud has a silver lining
to the new plans, say, for a global satcllite weather prediction system.
This book by Dr. Diran Deirmendjian is a useful guide to a difficult part
of this route. In future no scientist analyzing the heat budget of the
atmosphere can afford to be sloppy about errors of 5 or 10 percent.
And no study of the planets, whether from our own distant earth or from
a nearby spacecraft, carried out with photometric, polarimetric, or
spectroscopic instruments, will be complete without a quantitative study
of the subtle interplay of radiation with the haze and clouds floating
above the planet’s surface.

The magic word for these studies is radiative transfer, a subject known
to lead to complicated mathematics even if very crude simplifying assump-
tions are made. The understandable consequence is that, until recently,
the great majority of papers on the subject have dealt with the assumption
of isotropic scattering in any single volume element. Other papers have
dealt at length with mild anisotropy assumptions, easy on the mathematics,
but contradicting our knowledge about aerosol scattering since nearly a
century. This book replaces these assumptions with reliable and complete
data for many representative examples. The formalism, involving Mie
theory and Stokes parameters, is well explained and is brought to the
point where computer programs for specific transfer problems must take
over. We trust that this book will find many attentive readers and grateful
users who will discover that one limited but essential part of their problem
has already been solved.

H. C. van DE HuULST






PREFACE

The present monograph is an outgrowth of the author’s more or less
continuous interest in atmospheric light-scattering phenomena, inspired
by the rich color of the Grecian skies and seas of his youth. The bulk of
the work was performed while working as a member of the scientific staff
of The RAND Corporation and generously supported under the pro-
visions of its Air Force Project RAND contract allowing for fundamental
research in the geophysical and planetary sciences.

Under the increasing pressures of the space age, the urge to change our
physical environment, and the massive government support of related
fields of research, the traditional scientific attitudes are rapidly changing.
It appears that the times when scientists gua scholars were free to pursue
their bent for painstaking but leisurely observation, cogitation, digestion,
analysis, and synthesis of information on the diverse aspects of our
environment are forever gone. Spectacular and often unverified pieces of
research are summarily published and uncritically used by others, merely
on the strength of their promise to modify natural processes, purportedly
to man’s immediate advantage. As it often happens, however, what
appears to be a shortcut turns out to be the longest and costliest route
toward the desired end. This is particularly true of the terrestrial atmos-
phere, still incompletely understood, and specifically, of the local and
global interactions of sunlight with the surface-atmosphere system in
influencing climate and weather. o

In such times it is important to emphasize the value of critically selected

vii



viii PREFACE

and edited compilations of data based on well-verified observation or
theory, so that they can be used in several related fields of research. This
we have attempted to do here, encouraged by a recent article by the
eminent physicist Samuel A. Goudsmit (“Is the literature worth re-
trieving 7, Physics Today, 19, No. 9, 1966), who says, with reference
to experimental results, that “tables and graphs of numerical data . . .
play an important role in the progress of physics” (p. 52). The tables
in Part II of this book are, in fact, experimental results in a certain context
and should be used as such. To our knowledge there are no existing
compilations similar to ours in scope, uniformity, and completeness of
relevant parameters. The only exception is that of A. F. Stevenson and
W. Heller (Tables of Scattering Functions for Heterodisperse Systems,
Wayne State University Press, 1961). This book is restricted to 90°
scattering angles only, to nonabsorbing dielectrics, and to a single size-
distribution function, which is equivalent to a special case of the generalized
form used here.

The significant portion of the present work is in the form of numerical
tables, which make up Part 11, designed to be used by those interested
primarily in terrestrial and other planetary atmospheric problems as well
as in astrophysical problems related to interplanetary and interstellar dust.
The introductory text, arranged in four chapters, became somewhat
longer in the process of writing than initially planned, for reasons that
will appear and despite efforts to keep it within minimum bounds. Never-
theless, we have resisted, so far as possible, the current temptation to
redefine well-known concepts and quantities or to introduce novel but
otherwise superfluous terminology, units, and symbols. Rather we have
made maximum use of the established ones where these are readily
available in other publications.

Because of various circumstances, the author has been unable to
familiarize himself fully with all the pertinent literature published in
Russian or in certain other languages, except through translation, refer-
ences, or abstracts. A priori apologies are offered to the authors of such
original papers which, though related to subjects discussed here, have not
been specifically cited. The list of references appearing at the end of Part I
should not, therefore, be regarded as an exhaustive bibliography.

Undoubtedly there will be found in the following pages errors of fact
and judgment as well as occasional statements written in a facetious vein.
For these the author assumes entire responsibility, as indeed he must.
Any expressed views, scientific or otherwise, in no way reflect those of
The RAND Corporation and its sponsors, nor of the author’s close
associates.
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The contents of the introductory text in Part I, particularly Chapter 4,
are based on the situation during the completion of the manuscript
(July, 1967). Subsequent developments and publications are not discussed
or cited.

The author acknowledges the assistance, encouragement, and moral
support freely profferred by his associates and colleagues while preparing
this work, especially during times of personal distress. He owes particular
debts of gratitude in the first place to Prof. Zdenck Sekera of the University
of California in his capacity as personal friend, advisor, and consultant,
and for his careful reading of the manuscript and helpful suggestions;
to Drs. W. W. Kellogg and S. M. Greenfield, past and present heads of the
Department of Environmental Sciences of The RAND Corporation fof
the invaluable freedom afforded to the author in the choice of a problem
area, for their faith in his ability, and for their patience, encouragement,
and personal friendship; to colleagues such as Drs. M. H. Davis, E. H.
Vestine, A. G. Wilson, and M. Warshaw for occasional assistance and
suggestions whenever requested; to Anne B. Kahle, another colleague,
for her active and valuable assistance in the final “debugging” and refine-
ment of the computer program, which was initially developed to the
author’s satisfaction by R. J. Clasen, staff member of another department
in RAND; and last but not least, to Mrs. Alice V. Jefts for undertaking
with patience and enthusiasm the tedious task of extraction, roundoff,
typing, and checking of the numerous tables comprising Part II of the
book, under the author’s guidance; and to the editorial and secretarial
staff for the performance of the many tasks invelved in the preparation
of the final manuscript.

The author further expresses his special gratitude to Prof. H. C. van de
Hulst of the Leiden Observatory, the Netherlands, for urging the publica-
tion of this monograph and for agreeing to contribute a Foreword; and
to J. W. Hovenier, of the same Observatory, for advising him of a sign
inconsistency in the definition of the ellipticity parameter (¢.0.) in time
for its correction before publication.

D. DEIRMENDJIAN

Santa Monica, California
May, 1968
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Glossary of Symbols

For convenience and economy the principal symbols appearing in the
text are listed below alphabetically. Some of these may play a dual role,
in which case the meaning should be obvious from the context. The num-
bers in parentheses refer to typical equations in which the symbols appear
or are defined. Symbols whose usage is well established in the literature
are omitted.

a constant in the size-distribution function (82,83)
a,, b, Mie series coefficients independent of angle (10,11)
A4,, A, dimensionless scattering amplitudes (1,2)
A,(y) factor in Mie series coefficients containing functions of
complex argument (10,11,20,21)
b constant in the size-distribution function (82,85)
D, .54 correction factors extending the validity of K(p, m) (26)
D(P) depolarization factor (110)
E;, E, components of electric field vector amplitude E (42)
F magnitude of incident flux in arbitrary units (70)
F, dimensionless normalized Stokes vector for the incident flux
(71)
g van de Hulst absorption parameter (25)
G factor used in radiation pressure efficiency (32)
h geometric height above the lower boundary of a scattering
atmosphere (93)
H magnetic field vector amplitude

xvii



xviii
ij(my X, 0)
I(2; u, @)
[(x\')

[(H)
]15 123 U, V
J

J

k

K(x, m)
Kex(P’ m)

K,(m, x)

m

n(r), n(x)
N

N

4

P;(0)

P(0)

GLOSSARY OF SYMBOLS

dimensionless intensity parameters for Mie scattering (39,72)

Stokes vector for diffuse component in a scattering medium
(77,93,99)

unpolarized component of intensity vector of a partially
polarized stream (60)

polarized component of the foregoing (60)

modified set of Stokes parameters (65)

subscript (j = 1, 2, 3, 4) denoting the elements in the Stokes
scattering matrix (75,76)

Stokes vector for the source function (93)

free-space propagation constant 27/A (1,2)

normalized Mie cross section or efficiency factor per particle
for extinction, scattering, or absorption, as denoted by
subscripts (5,6)

van de Hulst extinction efficiency factor for an almost trans-
parent sphere (25)

normalized backscattering cross section or efficiency per
particle (35)

complex index of refraction with respect to free space (10,11)

differential size-distribution function (79,82)

number concentration of all particles per unit volume (79)

Poynting vector for electromagnetic radiation

real part of mx (21)

elements of normalized phase function for a polydispersion
(75,76)

normalized phase matrix for a polydispersion (76)

imaginary part of mx (21)

primitive Stokes parameter for the difference I, — I, (58h)

geometrical radius of a scattering sphere

mode radius of size distribution (85)

complex amplitudes for Fresnel reflection (30)

subscripts denoting Rayleigh and Mie components, respec-
tively, in a mixed atmosphere (101)

dimensionless components of Mie scattering complex am-
plitudes (1,2)

volume occupied by particles per unit volume of space (87),
(Table 5)

recurring function used in generation of Mie coefficients
(15,16)

integrated Fresnel reflection on a sphere (31)

dimensionless Mie size parameter kr
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™ R N

Bl, n(x)]

x

T >

Hos 4

&, n

7a(6)
I

o(m, x)
a,(m, x)
o(6)
a;(0)
T(h)

71

7.(6)

@, ¢

dimensionless complex argument mx of function 4,, (10,11)

arbitrary argument, real or complex, of a function (12)

constant in the size-distribution function (82,85)

angle determining the ratio of minor to major axis of the
polarization ellipse (51,58)

volume cross section for extinction, scattering, or absorption
(indicated by subscripts) for a polydispersion (78,80)

constant in the size-distribution function (82,35)

bulk absorption coefficient per unit mass of substance (Table
6, Table 8)

scattering absorption coefficient per unit mass of particles
(Table 8)

gamma function of mathematical analysis (83)

phase difference between two harmonic oscillators (42,43)

“small finite element of a quantity (40)

scattering angle between the incident and scattered streams
(Fig. 19)

imaginary part of the complex index of refraction m (23)

free-space wavelength of electromagnetic radiation

cosine of the scattering angle (7); also, length unit equivalent
to 1075 m

cosines of the local zenith angle for incident and diffuse
radiation in a planetary atmosphere (97)

real part of the complex index of refraction m (23)

orthogonal coordinates along the major and minor axes of the
polarization ellipse (44), (Fig. 19)

angle-dependent coefficient in Mie series (7,8)

degree of partial polarization of a stream (61)

van de Hulst’s normalized size parameter 2x(v — 1) (25)

true cross section per particle for extinction, scattering, or
absorption, as denoted by subscripts (4)

true backscattering or radar cross section per particle (33,111)

scattering matrix for a single particle (41)

elements of the scattering matrix for a single particle
(41,63,72)

local optical thickness in a scattering atmosphere (96)

total optical thickness of a scattering atmosphere (99)

angle-dependent coefficient in Mie series (7,8)

angles of incidence and refraction in Fresnel reflection (30);
also azimuths in a plane-parallel planetary atmosphere
(93,97)
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x angle formed by the axes of the polarization ellipse with a
reference system of coordinates (41), (Fig. 19)
v phase angle of harmonic oscillator (42)
« angular frequency of electromagnetic oscillation (42)
dw  elementary solid angle for scattering on a volume element at a
point in space (97)
Q  solid angle 4= of all space around a point (97)
albedo of single scattering for a single particle or for a
polydispersion (95)

g
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Chapter | Introduction

I.I MOTIVATION

With the appearance in 1957 of H. C. van de Hulst’s authoritative
treatise Light Scattering by Small Particles [I], the subject of electro-
magnetic scattering on homogeneous particles was put in proper per-
spective in relation to many current problems in astrophysics, geophysics,
and radio propagation. Indeed, if one considers the properties of single
particles or aggregates of identical particles, there is very little one can add
to van de Hulst’s comprehensive and well-knit discussion of the subject,
except to check numerically some of the elegant analytical approximations
derived by that author and others before him.

Now any interested observer who has followed Minnaert’s delightful
book Light and Colour in the Open Air [2] and become aware of the diverse
and wondrous optical phenomena offered by nature to the naked eye, will
find that most of these phenomena are seldom, if ever, caused by the
presence of identical particles in the atmosphere. It they were, the day-
light sky would be replete with colored rings around the sun and the
antisolar point, of varying hues, brightness, and polarizations. Instead,
one observes gradual changes of these things over the sky, depending on
its optical condition. Only under special conditions, when, for example,
the beautiful coronas around the moon and sun make their appearance,
can one state that the responsible particles are almost identical.

When neither the shape, size, nor constitution of the scattering particles
in a medium is uniform, we speak of a polydispersed suspension as dis-
tinguished from a monodispersed one. Both these terms are accepted usage
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4 POLYDISPERSE SCATTERING AND ITS APPLICATIONS

in colloid chemistry, although etymologically they derive from the
classical concept of light dispersion by a prism. In what follows the terms
polydispersed and polydispersion will be adopted in a slightly stricter sense,
that is, to mean a suspension of scattering particles uniform in physical
constitution and shape but varying in number concentration depending on
the size.

Our motivation in compiling this monograph then is a rather modest
one: On the basis of the so-called Mie theory [3], and armed with a
modern digital computer, we shall produce a set of tables listing the
scattering parameters characteristic of polydispersions likely to be found
in the terrestrial and planetary atmospheres and perhaps also in inter-
planetary and interstellar space. We shall restrict ourselves to spherical
particles only, and to continuous size distributions. Even with these
restrictions our aim is by no means that of a complete catalogue of models.
We wish rather to provide a few well-chosen examples as guides to the
researcher in identifying the types of scattering media likely to serve his
needs. In this we are guided by aesthetic considerations as well as by the
principles of consistency and economy. The usefulness of the tables will,
we hope, become apparent in the description and commentary on the
tables in the following chapters.

A word about the uses of the Mie theory is in order. It was initially
developed on the basis of Maxwell’s electromagnetic theory as a natural
continuation of Tyndal's well-known investigations on chemical sus-
pensions. Its results have been amply used in colloid research, where the
suspensions are composed of almost identical particles with a narrow
size distribution. In atmospheric suspensions, however, the distributions
are wide, and they can seldom be reproduced in the laboratory both as to
the type of distribution function and the shape and physical and chemical
characteristics of the individual particles. As to the shape factor, so far
only the spherical and homogeneous case can be described completely by
the theory, with some limited extensions into the theory of concentric
spheres and prolate and oblate spheroids. The finite cylinder and regular
prism cases are nowhere near a complete solution.

Nevertheless, we believe that a thorough investigation into the prop-
erties of spherical particle polydispersions is well worthwhile, not only
because of the aesthetic appeal and reliability of the theory, but also because
an important class of atmospheric suspensions, namely, water-droplet fogs
and clouds, does consist of homogeneous spherical particles. Another
important class, that of ice-crystal clouds, cannot be exactly modeled, but
the spherical case may still be used as a standard, and observed deviations
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may be interpreted by comparison to and in terms of the standard case.
As for fine particles, such as upper atmospheric dusts, the shape factor is
not of great importance. After all, the analytical student of nature by
inclination has always preferred an idealized—but well understood—model
to one that reproduces every detail. Lord Rayleigh’s first insights in his
elegant interpretation of the blue color of the sky [4] did not involve the
shape of the particles but only their volume. His later refinement in term
of spherical particles [5,6] gave the same results with more work, but
somehow it is not as appealing as the first, very simple, theory.

Today, with the availability of high-speed computers, the Mie theory,
which is the analytical solution of a classical field problem, becomes in a
certain sense an idealized experimental tool. That is, it may be used to
simulate scattering aggregates with characteristics often impossible to
reproduce in the laboratory but likely to exist, say, in space particles or
those to be found on the Moon’s surface. We are almost tempted to say
“forbidden” characteristics, in imitation of the upper-atmospheric
physicist’s use of “forbidden lines” to describe transitions that cannot be
induced in the Jaboratory.

1.2 BRIEF HISTORY

Since our aim is to make available a source book rather than a treatise
on the subject, no comprehensive review of the literature or state of the art
will be given. Van de Hulst [/] in his introduction has succinctly reviewed
the development of the theory of light scattering on single particles. An
excellent review of unsolved scattering problems from the point of view of
electromagnetic theory alone, including scattering on nonspherical and
inhomogeneous particles, was given by Twersky [7].

The author, acting on a suggestion by Z. Sekera, first became interested
in problems of scattering in polydispersed media in connection with the
theory of the skylight aureole around the Sun [8,9,10]. The white,
featureless aureole cannot be explained by monodisperse scattering, as
was already recognized by other investigators. Upon attempting further
work in the scattering properties of polydispersions such as clouds and
hazes [11,12], the author found that analytical approximations and inter-
polations of even the extinction cross sections for spheres gave insufficient
accuracy for a good estimate of the volume extinction coefficient and
albedo of single scattering of the aggregate. This led to the development of
a computer program based on the complete Mie solution for spheres of
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arbitrary size and a complex index of refraction, incorporating an inte-
grating technique with respect to prescribed, continuous size-distribution
functions. Initial and encouraging results, as applied to distributions
containing particles as large as actual cloud droplets, demonstrated the
capabilities of the technique and were first presented ata 1961 international
conference on atmospheric radiation [/3]. Similar work related to the
zodiacal particles was published the same year by Giese [/4]. Some of our
results were first published in the proceedings of a conference [15,p. 171],
and some tables of angular scattering functions appeared only recently
[16].

In the meantime we have been accumulating numerical data connected
with various scattering problems as these arose in the course of our current
research interests at The RAND Corporation. The real object, of course,
was to have a set of models ready for use if and when a complete solution
of the radiative transfer problem for planetary atmospheres of arbitrary
scattering properties became available in a form suitable to numerical
solution. In that case it was planned to integrate the two programs into one,
and possibly also to attempt the solution of and to devise a program for
the corresponding inverse problems.

Because of its inherent mathematical difficulties, the complete solution
of the general problem is not yet available and it may take some time
before it can be achieved in practical form. It was therefore decided to
publish all our results on polydispersed media under one cover and in
usable form, in order to bring them to the attention of other workers in
the field who might find them useful. We have increased the initial number
of distribution models, having in mind particularly terrestrial water-
droplet clouds, hazes as well as rain (irradiated by microwaves). We have
also modified some of the indices of refraction in the light of more recent
data, and have introduced other materials, such as clays, silicates, and
iron, in order to obtain a selective yet fairly representative catalogue of
theoretical scattering functions for polydispersions likely to be found in the
terrestrial and planetary atmospheres and in space.

.3 GENERAL ORGANIZATION OF THE MONOGRAPH

This work is divided into two parts, with Part IT devoted to the main
numerical tables. Part I is intended as an introduction to the com-
putation, significance, and use of the tables. All important equations and
expressions are numbered consecutively in parentheses, regardless of
chapter or section number, for ease of reference.
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In particular, in Chapter 2, we discuss the specific form of the Mie
expressions used to compute the single-particle scattering parameters. We
describe some features of the various related functions, avoiding dupli-
cation of already published material whenever possible, and using our
own results. In discussing and comparing these with other work and in
order to conserve space, we make frequent reference to van de Hulst’s
book [/] and his adaptation of other authors’ original results, which he
meticulously cites. We beg these authors’ indulgence for not citing them
directly here. In reproducing some of the auxiliary functions in graphical
form, we admit to yielding to their aesthetic appeal quite apart from
practical considerations.

In Chapter 3 we define the phase-matrix parameters, the absorption and
scattering coefficients, and the albedo of single scattering for single
particles and for polydispersions, and illustrate their use. The general
form of the size-distribution function and the particular cases actually used
are also set forth by means of equations and graphs, and their use is
justified by comparison with available experimental data. The numerical
mtegration is explained and justified on the basis of examples of the
convergence of the integrals for the various parameters.

Finally, in Chapter 4 we give some examples of the uses of the tables
presented in Part 11 and discuss their application to problems in atmos-
pheric aerosol research; abnormal atmospheric turbid layers, such as
volcanic ashes and forest fire smokes; mother-of-pearl and noctilucent
clouds; radar cross section of precipitation and clouds; material in the
Martian surface and atmosphere; the atmosphere of Venus; inter-
planetary and interstellar dust; and so forth. Much of the discussion and
ideas are based on heretofore unpublished material by the author, which
may become the subject of future, more detailed papers or proposals for
space experiments. We hope that the reader will find a nucleus for other
interesting ideas in what follows.

One important use of the tables deserves particular attention. This has
to do with the so-called inverse problem of deducing the optical thickness
and composition of a sunlit planetary atmosphere from its phase-dependent
brightness and polarization at different wavelengths. Were a reliable and
unique mathematical solution of this problem to be found, it would yield
data essentially on the nature of the angular phase function, the particle
density, and the albedo of single scattering for a representative sample of
the medium. As we shall see in Chapter 4, this kind of information by
itself is insufficient to identify the chemical composition, size range, and
shape of the polydisperse particles it contains. With the help of other
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pertinent criteria, the present tables should then be useful at least in
choosing the most likely candidates among the innumerable possibilities.
A similar inverse problem arises in the interpretation of spectral
features observed in the sunlight reflected from planetary atmospheres, in
terms of the relative abundance of the responsible constituent. This
problem has been discussed recently by Chamberlain [/7], who also
investigated a simple case with isotropic scattering and emphasized the
importance of scattering on the formation of weak and strong bands in the
spectrum of the main gaseous medium. In the case of water droplets, for
example, our tables show the effect of weak and strong bands within the
material of the scatterers themselves on the albedo of single scattering of the
polydispersion. This information, together with the pronounced angular
anisotropy, is of prime importance in interpreting planetary spectra with
respect, say, to water content, since the centers of the water-vapor and
liquid water bands do not coincide exactly, but often overlap. With this
problem in mind, we have therefore chosen certain wavelengths in both
weak and strong absorption regions. Clearly, a more complete under-
standing of reflected spectra in this area may also lead to important
practical applications to the determination of the water content of the
cloudy terrestrial atmosphere by means of satellite-borne spectrometry.



Chapter 2 Scattering on Single
Particles

2.1 YARIOUS APPROXIMATIONS

Since the present monograph is not intended as a didactic or historical
review of the subject, we shall merely mention some of the pertinent
approximations to the single-particle scattering problem. For a more
complete exposition and discussion, the interested reader is referred to
van de Hulst’s treatise [/] and his rather complete bibliography.

2.11 Rayleigh Approximation

This well-known approximation, dating from 1871 [4], is restricted to
the case where the size* x « 1, that is, to particles that are very small
compared to the wavelength of the incident field. Although originally only
dielectric particles were considered, it has since been shown that the
Rayleigh expressions apply for arbitrary m, real or complex. In the latter
case whenever |m| is large we have the additional condition Imx| < 1
whereby the size restriction becomes more stringent.

The Rayleigh formulation is best suited to scattering by nonpolar,
idealized gas molecules, and in particular to atmospheric scattering
problems whenever these assumptions may be invoked (cf. Sekera [/8]).
We note, however, that even gas molecules are not, strictly speaking,
homogeneous and isotropic scatterers, and corrections to the Rayleigh
expressions must be introduced in this case [19].

Another use of the Rayleigh approximation is in estimating the intensity

* For reasons of economy and clarity we do not define symbols unless essential,
and the reader is referred to the Glossary of Symbols.

9
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of the radar echo from water drops in clouds and precipitation, where the
assumption of strictly homogeneous spheres is more nearly valid. However,
care must be exercised in the case of large raindrops, where, because of the
large value of [m| for water in the microwave region, deviations from the
Rayleigh cross section become appreciable.

2.12 Rayleigh-Gans Approximation

This can be used for somewhat larger spheres, provided their properties
do not differ appreciably from those of the surrounding medium. The
conditions are that both |m — 1| and 2x |m — 1| must be small. The
Rayleigh-Gans approximation has proved most useful in considering
nonspherical but otherwise symmetrical scatterers, including nonhomo-
geneous particles.

2.13 Van de Hulst’s Approximation

This represents a remarkable advance for spheres of arbitrary size but
with |m| — 1, first developed by van de Hulst in his doctoral thesis and
described in Chapter 11 of his treatise [/]. He follows the tradition of
Christian Huygens and his famous principle, clearly combining con-
ceptualized physical principles with classical mathematical analysis to
arrive at important results. It is most successful in estimating the scattering
and absorption cross sections of transparent spheres and even weakly
absorbing ones, of a size comparable to the wavelength and larger.
Comparison with numerical results derived from the exact theory have
demonstrated the power of this approach, especially when a high degree
of accuracy is not essential [/2].

Difficulties arise in the case when |[m — 1| is not small enough and the
precise directional scattering pattern and polarizing properties are desired.
Indeed, high accuracy could hardly be expected here when the interaction
of all components of the electromagnetic field disturbance produced by the
sphere must be correctly taken into account, rather than only a phase
disturbance in the interior.

2.14 Other Approximations

In the case of very large spheres (x — o) geometrical optics may be used
to estimate the scattered field, that is, one may trace rays of light by the
classical laws of refraction and reflection at the interface. Examples are the
explanation of the rainbow and halos [2]. The combination of geometrical
optics with diffraction theory (cf. Bricard [20]) increases the realm of appli-
cability, particularly in the case of forward scattering and of reflection on



SCATTERING ON SINGLE PARTICLES Il

“hard” spheres, where the rays cannot penetrate the interior. The latter
case, however, where m = oo is assumed, is an idealized one hardly to be
found in nature. As will be shown later, the scattering properties of
spheres with large but finite indices of refraction show considerable
deviation from the idealized case of a totally reflecting sphere.

2.15 The Mie Solution

This was obtained by Mie [3] by applying the Maxwellian electro-
magnetic field theory to the problem of a homogeneous sphere irradiated
by plane waves from a single direction. The method consists in expressing
the incident field in terms of spherical waves centered at the sphere,
fitting the appropriate boundary conditions, and solving the differential
equation for the vector amplitude of the resultant field both at the surface
of the sphere and at infinite distance, the so-called radiation approxi-
mation. As such, it is the analytical solution of the problem, in the strictest
sense, since it uses a formal theory and classical mathematical analysis for
an idealized sphere, in the best tradition [2/]. A natural cloud droplet, for
example, obviously is not a perfectly homogeneous sphere with a simple
discontinuity of m at the surface going from one constant value to another.
The droplet has a “skin” caused by surface tension, and at the surface
itself there must be a narrow transition region where H,O molecules are in
equilibrium between the condensed and gaseous states. Since it is prac-
tically impossible to measure accurately in the laboratory the scattered
field of a real, isolated water sphere, it is difficult to judge the accuracy of
the Mie theory in describing light scattering on natural water drops.

For the purposes of scattering research, both in colloidal suspensions
and in the atmosphere, the Mie solution has proved to be the most
successful, including as it does the simpler approximations for both very
small and very large particles. Since the modern computer has such an
enormous capacity, there is no practical reason for further improving these
approximations, which have already served their purpose. We believe that
the extensive use of automatic computers in a judicious application of the
Mie theory should not diminish its appeal as an analytical tool of research.

Derivations of the Mie solution, besides the original work [3], have been
described by others, notably by Stratton [22] and by van de Hulst [7].
One of the best derivations in terms of modern notation, completeness,
elegance, and clarity was given by D. S. Saxon in an unpublished report.*

*D. S. Saxon, Lectures on the Scattering of Light, Scientific Report No. 9,

Contract AF 19(122)-239, Department of Meteorology, University of California,
Los Angeles (1955), 100 pp.
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Among the very first extensive tables of Mie functions are the so-called
Lowan’s tables [23], which were actually prepared under the late G. N.
Lowan’s supervision following recommendations and work by V. K.
La Mer and David Sinclair. These tables, which are preceded by an
excellent foreword by J. A. Stratton sketching the history of the theory,
have stood the test of time in that they show a very high standard of
accuracy, considering the hand-computing labor that must have been
involved at the time.

For the sake of consistency with our own previously published results
[£16], we shall adopt essentially van de Hulst’s definitions and his adap-
tation of the Mie expressions, as well as his notation, with minor exceptions.
The reader can thus easily identify and compare our results, when appro-
priate, with the contents of the treatise [/]. Other authors’ results may
also be compared with ours on the basis of the explicit forms of the
expressions shown in the following. Unless otherwise specified, all
examples, graphs, and tables are based on our own numerical results.

2.2 THE BASIC MIE FUNCTIONS

The Mie problem is formulated in terms of the following basic param-
eters: a dimensionless size x = kr, where k = 2=/ is the free-space
propagation constant and r is the radius of the sphere; a generally complex
index of refraction of the substance of the sphere with respect to the
outside medium (here assumed free space), written m = v — «i; and a
scattering angle 6 determined by the forward direction of the incident
waves, the scattering point, and the direction of observation. Generally
we have set m = 1 for atmospheric air and we have assumed that the
free-space wavelength 4 is unaltered in air outside the particles. Fine
corrections for the true index and wavelength for clear air of a given
density are not necessary for our purposes, but must be allowed for by
the reader when appropriate.

Assume the incident plane-wave radiation to be unpolarized so that the
magnitude of the electric field can be represented by the sum of two
mutually perpendicular and independent sinusoidal oscillations of unit
amplitude in the xy plane, propagating in the z direction, each usually
expressed in the form

Eipe = exp[—ilkz — wi)]

where @ = ck is the circular frequency. When this field interacts with an
otherwise inactive homogeneous sphere (i.e., a sphere composed of un-
charged and unexcited matter, whose temperature is such that its Planck
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emission 1s negligible at the given frequency), it will result in a scattered
field in directions other than that of the incident field, plus the incident
field itself, whose flux is diminished by the scattered energy and by the
energy that is absorbed by the sphere but not reemitted at the same or any
other frequency, as far as we are concerned here. Under these assumptions,
and when we are interested only in the scattered radiation field, it may be
expressed in terms of the two scalar components A, and 4,, perpendicular
and parallel, respectively, to the scattering plane (in which 6 is measured)
of the electric field vector amplitude A, which has no component in its
direction of propagation. The results of Mie’s solution [3; 1, pp. 114-130]
then provide the expressions for these amplitudes in the form of complex
numbers given by a converging series, written

2 2n+1
kA, = S,(m, x, ) = —— (a7, + b,7,), 1
1 1( ) ngln(n+])( . 7’) ()
KAy = Sym, %, 0 =3 =t L o 4ar) @)
a1 i(n + 1)

where S and S, are dimensionless, complex amplitudes, and the # are
positive integers; the other coefficients will be described later.

The meaning of the amplitudes 4, and A4, becomes clear when con-
sidering the energy fluxes produced by the scattering process. If one forms
the Poynting vector N for the incident and scattering fluxes, their ratio
defines the differential cross section do of the particle per unit solid angle,
at distance R, so that

do(m, x, ) = | =

in

’N R*dw

where N = 1Re(E x H}
is the time-averaged power flow for each field and H is the magnetic field
amplitude. By using the Maxwellian thecjry and considering the R7!
dependence of the amplitude of the spherical wave, it can be shown (see
Section 3.22) that the differential cross section for wnit incident flux
reduces to

do(m, x, 0) = 1A, - Al (m, x, ) dw. (3)

Considering unpolarized incident radiation expressed as the sum of two

independent and linearly polarized components of equal flux, it can finally
be shown that [9]

Goulm, X) = f do(m,x,6) = 1 f (AT + Aol doo @
o Q
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where dw is an element of the solid angle and the integral is over the solid
angle Q = 47 of all space around the particle. The total scattering cross
section o, has the dimensions of an area. It is thus clear that the amplitudes
A, and 4, in expressions (1) and (2) are meant per unit incident flux and
they are also independent of the system of electromagnetic units used, since
these will cancel out in taking the ratio of the scattered and incident
fluxes.

The scattering cross section, when normalized by the geometrical
cross section, defines the dimensionless parameter

Kie(m, x) = Oso(m, x)[mr?,

(called the scattering efficiency factor Qg, by van de Hulst [1]), in which
case the integration (4) of the amplitudes (1) and (2) yields

Kaem, ) = % 3 @n + Dlanl® + 15,19 )

Similarly, we can define a total extinction cross section and efficiency
factor K,., which includes the absorption contribution and which,
according to the cross-section theorem of quantum mechanics, called the
extinction theorem by van de Hulst and derived by him independently
(cf. [1, pp. 30, 39)), is given by

Kol(m, x) = xiz Re{S(m, x, 0)}
(6)
% > (2n + DRe{a, + b,}.

X" n=1

Under the foregoing assumptions, the expressions (1), (2), (5), and (6)
define the basic Mie scattering parameters from which all the other
parameters needed to describe the intensity and polarization produced
by a single particle can be derived. It will be seen that they also provide the
necessary information for a representative volume of a polydispersed
medium, and hence the fundamental parameters in the formulation of the
radiative transfer problem in an extended medium composed of such
particles.

221 Adaptation of Mie Expressions to Machine Computation

The evaluation of the basic functions hinges on the accurate computation
of the Mie coefficients a,,, b,,, which arée functions of m and x only, and of
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the angular coefficients 7, and r,,, which are functions of # = cos 6 only.
The latter present no problems since they are defined in terms of Legendre
polynomials and their derivatives, that is [Z, p. 124],

d
(1) = @ P.(w),

@)
d
) = p(u) — (1 — p?) an (W), —1<p<L],
where
1 d*  ,
Puw) = — 2 (- 1"
(1) >t d” ( )

is the Legendre polynomial or coefficient of integer order # and real
argument. By using the well-known recurrence relations between these
polynomials and their derivatives it is easy to show that the coefficients (7)
can also be generated by their own recursion, without reference to the
Legendre polynomials per se. Thus we have

(@ =cos 621 o oy — L. o),
n—1 n—1 ®
Ta0) = cos O[m,(6) — 7, o)) — (2n — 1) sin® O 7, _4(0) + T,_x(0),
0<6<Lm,
with
mo(0) = 0, m(0) = 0,
m(f) =1, 7(0) = cos 0,

75(8) = 3 cos 6, 75(f) = 3 cos 26,

which can be easily programmed for machine computation. In passing,
we note that in the exact forward (6 = 0) and backward (§ = =) directions,
these coefficients reduce to

m(0) = 7,(0) = Mt 1)

2( ©)
hn+1
—m(m) = ry(m) = (—1yr MR,
For example, using the first set of values in either (1) or (2), we see that

$1(0) = S,(0) and the cross-section theorem and its explicit form in (6) are
immediately verified in the Mie formulation.
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To adapt the coefficients a, and b, to computational form, we start
with the Mie expressions adopted by van de Hulst [7, p. 123], written in
the form ,

— An(y)w”(x) _ n’upn(x) (10)
A, () (x) — mL(x)

— ’nAn(y)wn(x) —' W;L(X) (] 1)
where the Ricatti-Bessel functions v,(x) and ,(x) on the right-hand side
can be written in terms of Bessel functions of the first kind of order
(7 + %) by using the definitions of spherical Bessel functions [/, p- 123;
24, pp. 52-54] as follows:

/

Z
Wn(z) = \/172_ ‘]11-}-1/2(2)’

n

n

[
Lo(z) = ff [ j2(2) — iN (2] (12)

\/%Z [Jn+1/2(z) + (_l)ni‘]—n—l/Z(z)]'
In (10) and (11) we have further put

A(y) = 2262 , = mx,
Pa(1)

to separate the functions with argument y from those with argument x.
Whenever the index of refraction m is complex (absorbing spheres), the
function A4,(y) depends on Bessel functions of complex argument. The
primed symbols indicate differentiation with respect to the argument.

Using the recursion formulas [24, p. 45] for Bessel functions of arbitrary
order and argument, it can be shown that

, d 77_ /77
(%) = ;c [\/7)6 J‘n+1/2(x):| = \/7x |:Jn—l/2(x) - gjn-f—llz(x):l s

d [ [=x mx
E {\/—Z—x J—n—l/Z(x)J = —\/f {I—n+1/2(x) + g-]—n—lﬂ(x)] >

and _

gln(x) = \/77'?)6 [Jn—llz(x) - Z Jn+1/2(x)

_ (—1)”1'[J_n+1/2(x) + 5‘]’"’” 2(x)]} '
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Substituting these expressions into (10) and (11), collecting terms, and
simplifying, we get

a,(m, x) = {[AT(” + ﬂh@x) - Jn_1,2<x>}

o {[An(y) n E][ ToereX) + (=D, 1yo(0)] (13)
m X

— [majex) — (—1>w_n+1,z<x>]}‘1
and
b.(m, x) = { [mAnm + ﬂJW(x) - Jn_uzoc)}

) (14)
X {[mAnu) + ﬂ [ sns() + (= DT 100)]

= o) = (= 1)MT_r (O

The expressions (13) and (14) are seen to be almost identical except for
the factor attached to the function 4,(y).

The Bessel functions of real argument appearing in (13) and (14) can be
further expressed in terms of circular functions by defining the recurring

function
2n —1

Wn(x) = Wn—l(x) - Wn—?(x) (15)
with —
we(x) = sinx —icosx = \/%x [J1e(x) + i _ye(x)],

Ww_y(x) = cos x — isin x = \/ —”;f [y jo(x) — iJye(x)].

We can then verify, for example, that

() =2 )
X

-
= \/W—zx [J3/2(x) - 1J_g)2(x)],

Wa(x) = > wy(x) — Wo(x)
X

= \/%x [Tsja(x) + iJ_52(0)]
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and in general

Wa(X) = \/ %x Vorrja(x) + (= 1)™J e (0)], (16)

according to the finite-term expansion of the functions Jr172(x) and
J_n-1/2(x) [24, pp. 53, 54]. Comparing the function (16) with those in (13)
and (14), and noting that the factor (7x{2)1/% is common to the numerators
and denominators of both expressions, it is seen that the Mie coefficients
may be written in the alternative form

(An—(y) + E) Re{w,(x)} — Refw,_,(x)}
m X

a,(m, x) = , (17)
(A"—(” + 5) Wa) — War(5)
m X
(mA,xy) + E) Refw,(x)} — Re{w, 4(0)}
b, (m, x) = X (18)

(mAnm + f) Wal) = W, 4()

Except for the coefficient A,(y), these are in a form suitable for machine
computation with the help of the recursion formula (15). We note in
passing that the function i, (x) is identical with the Riccati-Bessel function
{,(2) defined in (12), the argument being real in this case.

There remains the evaluation of the Bessel functions with complex
argument involved in the factors containing 4,(y). According to the
definitions (12) of the Ricatti-Bessel functions and their derivatives, and
again using the properties of Bessel functions, we have, after simplification,

n
Jn—l/z(Y) - ; Jn+1/2(.V)

Jny12(y) (19)
_I oy Jen))
y Jn+1/2()’)

This can be transformed into a recursion formula if we note that (omitting
the argument for simplicity)

A4,(y) =

—1 I
n + 3/9
y Jn—1/2
___n—= 1 + [(2n — 1)/)’]Jn~1/2 - Jn+1,/2

Y Y

A"71 = -

s
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or
@ _n_ A,
Joyp Y
Substituting this into (19), we finally get
n n -

which is in the form of a continued fraction. As a search of the pertinent
mathematical literature reveals no practical reduction of this particular
continued fraction to a form suitable for computation in the general case,
we have had to rely on the recursion formula itself.

From the sequence (19) we note that

A(y) = J_1/2(y) = cot y.
J 1/2(_V)

Putting y = mx = p — ig, where p = »x and ¢ = «x with v and « the
real and imaginary parts of the index of refraction, respectively, this may
be expressed in terms of circular and hyperbolic functions of real argument;
after rationalization we have

sin p cos p + isinh g cosh ¢

A =
o) sin® p + sinh® ¢

2D

This is the generating function actually used in combination with (20) to
compute A,(y), n =1,2,3,..., . In passing we note from (21) that
when m is real (nonabsorbing spheres), the imaginary parts of A4,(y) and
hence of all 4,(y) vanish.

This completes the description of the computational form of the Mie
expressions for the fundamental coefficients needed to obtain all pertinent
scattering parameters.

2.22 Behavior of the Function A.(y)

The behavior of 4,(y) deserves some discussion because we have found
that in certain cases it may give rise to errors if care is not taken in its
exact computation. In fact, when using the recursion formulas of the
previous section to obtain the scattering parameters for metallic spheres
with x > 30, one gets physically impossible results such as K,j, > Ky
The trouble may be traced to the accuracy of A4,(y) when one uses the
recursion formula (20) with “single precision,” that is, with the normal
number of significant figures in the computer.
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To illustrate the difficulty let us consider iron spheres with x = 62 and
m = 1.28 — 1.37i (10.441 p) that is, a radius of about 4.3 . From the
expression (21) for 4,(y) it is easy to verify that in this case we may
put Ay(y) = i with a very high degree of accuracy. Upon using this

1.04 L e e O i P B T T
L m=1.28-1.37 i
X =82
1.03 - =—=0=— Single precision a
=-+--Double precision oy
L B i
-z 65 #ra” Y
Lozt A
£ G%L”# \‘
5 e \
i 330 i
50, o0 !
1ot #4-0" A
40 # n=70
. 20 28 h i
100 & S T S N W S NN TN SN T N N !
¢] 0.05 0.10 015

Re {A,}
Fig. l—Example of the complex function A,(y) for a large metallic sphere

showing the accuracy of single- and double-precision routines.

generating function in the recursion formula, we note that A, (y) for small
nis very near, but not quite equal to, 0 + 7, as shown in the accompanying

n Re {4} Im {4, — i}

1 7.4327 - 1075 0.460 - 10~
5 1.1148 - 10-3 0.0698 - 103
10 4.0871-10-3 0.26201 - 10-®

table. It is seen that the computer cannot perform the complex arithmetic
for the imaginary part with the same degree of accuracy as for the real
part. These errors can thus accumulate and are eventually reflected in
spurious oscillations in both parts of A, as n increases, as well as in the
values of @, and b,, resulting in significant errors in the basic Mie param-
eters. Figure 1 is a plot of 4,, on the complex plane, where the solid line
shows that oscillations begin for » > 36 in this case, when 8 decimal places
are carried. The dashed extension of the curve shows that the trouble is
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partly overcome when “double precision” is used in the program; that is,
when the number of significant figures is doubled. Even then, however,
rapidly increasing oscillations appear for n > 64. An analysis of differences
in the real and imaginary parts of 4, as a function of » shows that small
errors begin at about # = 58 and 51, respectively. Second and third
differences further indicate that the real part is a quadratic function of =
and the imaginary part a cubic.

We have not pursued the numerical analysis further for the simple
reason that double precision has proved sufficient to insure convergence
of the main series in @, and b, for spheres large enough for our purposes.
The mathematical problem itself is related to the asymptotic behavior of
the Mie coefficients for large x when n ~ X, originally investigated by
Debye and discussed by van de Hulst [/, pp. 208 ff.]. The latter discussion
is confined to real indices of refraction, however. In the metallic case, we
have the problem of the ratio of two Bessel functions of large complex
argument and large order of the form

J.»)
Jv+l(y)

where v approaches |y| from either direction. The asymptotic expansions
found in Watson’s treatise [24, p. 244] may help in describing the approxi-
mate behavior of this ratio in the critical region, but there seems to be no
practical way of making use of them in an exact machine program.

As seen in Fig. 1, 4,(y) in the metallic case is a smooth monotonic
function of n when plotted in the complex plane. In the case of moderately
absorbing and nonabsorbing spheres, however, where no difficulties are
found in the use of single precision with the recurrence formulas, this
function shows large-amplitude oscillations. This is illustrated in Fig. 2,
which shows plots of 4,(y) for x = 30 and m = 1.29 — 0.0472i on the
complex plane. It is evident that if n were assumed to increase continuously
(rather than by integers), a continuous curve could be made to pass
through the points, as shown for n > 20, in the form of spiraling loops in
the counterclockwise sense, of increasing amplitude with increasing n,
finally “opening up” after # > | y| to become a smooth curve in the positive
part of the plane.

When the argument y is real, that is, when there is no absorption,
A, (y) is real and its behavior as a function of # is similar to the foregoing,
as shown in Fig. 3. Here we have plotted 4,(y) for m = 1.29 and for
x = 30, as well as the end portions for x = 40and 50. The large oscillations
for n < y are replaced by a monotonically increasing function that tends
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Fig. 2—Same as Fig. | for a dielectric sphere with moderate absorption. A
continuous curve has been fitted through consecutive points with n > 20.
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to a constant when n > y, a behavior related to a well-known property
of Bessel functions of constant real argument and increasing order. We
note in passing that the oscillations in the # < y region are irregular and
may become rather large since, according to (20),

Afp)—> 0 as §~>An_1(y).

Such conditions may actually be approached, but the values of the Mie
coefficients themselves are apparently not affected because the factor with

10 T T
5 | —
A X =30 x=40 x=50
E orfe ¥ 2 AA j‘ »A o000 PO ] ‘ L
<Y WIVEYy vy ' \ﬂ
5} -

10 ] 1 | | 1
0 10 20 30 40 50 60

n

Fig. 3—The real function A,(y) for nonabsorbing dielectric spheres, with
straight-line segments connecting the computed points.

A, (y) enters both numerator and denominator of expressions (17) and
(18). For example, for m = 1.29 and x = 46 we find that 44,(y) = 252.68
but ag(m, x) = 0.38735 + 0.48715; and by(m, x) = 0.38539 + 0.48669i,
both of which fall exactly on the proper circle in the complex plane
(see Section 2.31, and Fig. 4).

Summarizing this section, we have found that an adequate computer
program adapted to a modern electronic data-processing system should in
principle encounter no difficulty with the Mie coefficients for nonabsorbing
spheres of unlimited size. One might infer that in this case the modern
computer eliminates Debye’s problem, as shown for example in a note by
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Querfeld [25], who obtained scattering functions for x ~ 8000 and for m
real. For large absorbing spheres, however, a problem akin to Debye’s
remains, and in our case, for example, using the IBM 7040/44 or a similar
system, whenever Im{mx} > 30, one must use either double precision or
some appropriate asymptotic formula in the critical regions of n — |mx|;
otherwise, physically unacceptable results may be obtained.

2.3 EXAMPLES OF SINGLE-PARTICLE SCATTERING
PARAMETERS

Initial results related to scattering on single particles with partial
absorption were described in an earlier paper [26] that was later amplified
and corrected in two RAND Corporation publications of open but limited
availability [27,28). For the sake of completeness, we shall briefly review
the earlier results, further amplified with the new material involved in the
present work, and compare them with limiting approximations where
appropriate.

2.3l The Mie Coefficients a, and b,

For nonabsorbing spheres of finite index of refraction, the cocfficiens
a, and b, when plotted on the complex plane must always fall on a circle
of radius 0.5 centered at the point (0.5, 0) on the real axis [/, p. 135]. This
is equivalent to the conditions

=3 =1 b, — =1, )

which may serve as a good check on the accuracy of any computer scheme.
If one plots, say, a,(x) for m = 1.29, as in Fig. 4a, it is seen that as x
increases by constant increments, an imaginary generating point moving
with variable “speed” traces the circle in the clockwise sense, as indicated
by the labeled points.

The addition of a small imaginary part to the index of refraction resuits
in a deviation from the circle spiraling inward, as indicated by the dashed
and solid curves in Fig. 4a, corresponding to a,(x) and b,(x), respectively,
when m = 1.29 — 0.0472i. Small counterclockwise loops eventually
develop in these curves in precisely those regions of x where the generating
point of the corresponding outer circle “*slows down,” so to speak, as seen
in the vicinity of x = 5, 7, and 10 for a,(x). This feature may be related to
the behavior of the corresponding function 4,(y), but we have not looked
into the matter further. A plot of g,(x)form = 2.22 — 0.022/,as in Fig. 4b,
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Im {a;, by}

Im{01}

Fig. 4—Examples of the complex coefficients a;(x) and by(x) plotted as a function

of the x values indicated along the curves. (a) Outer circle (dotted line with

radius 0.5): dielectric spheres with m = 1.29. Other curves: a,(x) (dashed line)

and b,(x) (solid line) for spheres with m = 1.29 — 0.0472i. Radius of circle of

convergence (dotted line) is & {(m — [}/(m + )] = 0.06415. (b) a,(x) for

spheres with m = 2.22 — 0.022i. Radius of circle of convergence (dotted line) =
0.1894.
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produces another interesting pattern with regularly spaced cusps that
develop into loops as x increases.

The behavior of the Mie coefficient for metallic spheres is illustrated in
Fig. 5, where we have plotted a,(x) (solid line) and b,(x) (dashed line) for
m = 1.28 — 1.37i on the complex plane. The character of these curves is
entirely different from the nonabsorbing and weakly absorbing cases. The

0.4 ]

Im{a, b}

L .O~"".----"":
- O - —
- D LU 4
b(3T
-04 | -
| J | J | | | l |
0 0.2 04 0.6 0.8 1.0
Re {ay, by}
Fig. 5—Examples of g,(x) and b,(x) for metallic spheres with m = 1.28 — 1.37i.

Radius of circle of convergence (dotted line) = 0.26285,

generating point of ¢; moves more evenly with x, forms a single loop, and
then winds counterclockwise around a circle whose radius slowly increases
toward an asymptotic value. The point for b; behaves similarly, except
that the radius diminishes towards the same asymptotic value. According
to van de Hulst [/, p. 2791, this circle of convergence should have a radius
given by one half the absolute value of the Fresnel reflection cocfficient
for the amplitude at perpendicular incidence, or (cf. expression (30) and
Table 2 in Section 2.32)

1im—1 _1 (v — D? + «¥]2
Z(m-}-l' 2[(1}+1)2+K2:I ) 23)
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The position of the circle indicated in Fig. 5, which should have a radius
of 0.26285, clearly demonstrates this tendency in the present example.
Actually the convergence toward the circle is rather slow, as may be seen by
comparing the sample values of |a;(x) — 0.5]12 and |b,(x) — 0.5]2, shown
in the accompanying table, with the exact value 0.06909 of the square
of the radius given by (23). The values for x = 50, 72 were obtained by

m = 1.28 — 1.37{

x a,(x) — 0.5 bi(x) — 0.5 l@(x) — 0.512  |b1(x) — 0.5]*
20 —0.22686 — 0.12863i 0.22864 + 0.13377i 0.06801 0.07017
30 0.23619 — 0.11484i —0.23678 4 0.11463i 0.06898 0.06920
50 ~0.06537 + 0.25451{ 0.06556 — 0.25462¢ 0.06905 0.06913
72 —0.06681 + 0.25418i 0.06690 — 0.25423i 0.06907 0.06911

double precision. It is noteworthy that the deviations from the circle of con-
vergence for a; and b, for a given x are almost equal and of opposite sign.
Another interesting feature, not pointed out before, is that as x increases
and the asymptotic circle is closely approached, a, and b, are almost
exactly at diametric points with respect to the center of the circle.

In Fig. 5 we have also indicated part of the curves for the coefficients
a,(x) and b,(x) for n = 2 and 10 to show that their loci are similar but not
identical to those for n = 1. Thus we can make the following general
statement: for metallic spheres of finite size and for sufficiently large x
but with n < x, the points a,(x) always fall within the circle of convergence
(defined in the foregoing); the points for b,(x) always fall outside this
circle for all values of x and n. In the limit, provided n/x <« 1, we also have

lim [a,(x) + b,(x)] =1,

T oo

1 (24)

lim [a,(x) — & = lim[b,(x) —

r— o0 T 2

[

m—l’
m4+ 1|

Finally it appears that in the case of nonmetallic but moderately
absorbing spheres, the a,, and b, also tend to trace a circle of convergence
as x — oo, as indicated in Fig. 4a by the points a,(x) for x = 30, 40, and
50 and the circle. The radius here is small, amounting to 0.06414, as given
by (23) for m = 1.29 — 0.0472i. The limits (24) seem to apply to this case
also, but they are approached more slowly. For example, for x = 50 we
get a; = 0.45160 + 0.03498; and b, = 0.55511 — 0.04076i. Similar
remarks apply to the case shown in Fig. 4b.
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2.32 The Extinction, Scattering, and Absorption Efficiencies

Once the principal Mie coefficients @, and b, are available, the easiest
quantities to compute are the total scattering and extinction efficiencies,
Ko and K, given respectively by the convergent series (5) and (6). The
two efficiencies become identical for nonabsorbing spheres, and most
earlier detailed computations published in the literature concern this case.

10! iIlIIIﬁ_*l_l_j_T%y_ﬁIE

[m=1.28 -1.374
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Fig. 6—The extinction efficiency Koo(m, x) for various types of spheres, shown
in the range 0 < x < |5.

Within the last decade, the number of computations of Mie efficiencies for
single particles, including absorbing spheres, has increased considerably.
It is impossible to give a complete bibliography of published and report
material. A fairly complete bibliography on various Mie parameters
computed up to about 1956 will be found in van de Hulst’s treatise
[4, pp. 167-169, 275]. For a more complete bibliography up to 1963,
organized in convenient form, the reader is referred to a technical report
by R. Penndorf [29], who is also the author of an early major computing
program [30]. As to our own results, we have made available a number of
tables of the complex amplitudes 5:(0) and $)(), and K,. for various
sizes and indices of refraction [27,28]. From these, K,, also is easily
obtained by virtue of the cross-section theorem (6).
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Figure 6 illustrates the behavior of the extinction efficiency as a function
of x, when the real part of m is kept constant and the absorption is varied.
The graphs are self-explanatory. The salient features are the considerable
increasc in the efficiency of the smaller particles as the absorption is
increascd and the damping of the maximum value occurring near x = 7.
Also note the shift of this maximum toward a smaller size, corresponding to
x = 1.75 as we pass to the metallic case m = 1.28 — 137i. A comparison
with the curve for m = oo [/, p. 161] shows clearly that totally reflecting
particles are not as cfficient as metallic ones over a large range of sizes.
Figure 6 may be compared with a similar one in a paper by Johnson and
Terrell [3/], who first pointed out these features (see also [/, p- 278).

It should be mentioned here that when |m — 1] is close to zero, the
magnitude and broad features of the extinction efficiency can be approxi-
mated without the use of the Mie series. The complete theory was de-
veloped by van de Hulst in 1946 and is summarized in his book [/,
Chapter 11]. The formulas of course are most successful for almost
transparent spheres with very weak absorption. When the real and
imaginary parts of m are finite, but still relatively small, it has been shown
elsewhere [/2] that K, may be obtained with a high degree of accuracy
with the help of an empirical correction factor and interpolation formulas
applied to van de Hulst’s expression. In particular, his original formula
[{, p. 179] for K in the form

4cosg

Kelp, m) =2 — exp(—p tan gsin(p — g)

(25)

2
+ 4(CO; g) [cos 2g — exp(—p tan g)cos(p — 2g)],
Im — 1| —0,

where p = 2x(» — 1) is van de Hulst’s normalized size parameter and
g = arctan /(v — 1) is his absorption parameter such that p tan g gives
the energy absorbed along the axial ray within the sphere. Because of the
assumptions of the theory, the approximation (25) overestimates the cross
section for small p and underestimates it in varying degrees as p approaches
and surpasses the value 4.08, which is the position for the first maximum
in K as given by (25). A correction factor (1 + D), using the following
expressions* for D in the indicated ranges of p [12], improves its accuracy

* These were obtained by this author after many trials and errors. He has no
insights to offer in explaining their remarkable success.
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considerably:
(v — 1)° 02p — v+ 1
D, = +1 4+ —, <500 —1);
= e, V@I TETES p<S6—
—1 4.08
2= fl@+1p, S0—-1D<pL——
8.16v 1 +3tang (26)
D (r = DIf(g) + 1] 4.08 4.08
2»(1 4+ 3 tan g) 14+ 3tang 1+tang
D, = 2.04(» — D[f(g) + 1]’ S 4.08 :
»f(g)p 1 +tang
where

flgy=1+4tan g 4 3 tan? g.

The approximation (25), together with the correction factors 1 + D,
where D is given by the appropriate value in (26), seems to work equally
well for nonabsorbing spheres (g = 0) and in the range 1 < » < 1.50,
0 < « £ 0.25, as can be judged in the comparisons shown in Table 1.

Table |
Comparison of approximate and exact values of Kex
Exact Mie
Eq. 25) Egs. (25) and (26) value
X P Kex(P, m) 1+ D)Kex(p, m) Kex(x, m)
m = 1.212 — 0.0601;
1.0 0.424 0.234 0.193 0.203
3.0 1.272 0.978 1.07 1.08
6.0 2.544 2.04 2.36 2.37
10.0 4.24 243 2.72 2.80
m =1.29
1.0 0.58 0.165 0.079 0.072
3.0 1.74 1.28 1.40 1.36
6.5 3.77 3.13 3.78 3.80
10.0 5.80 2.33 2.97 2.81
15.0 8.70 1.79 1.98 1.97
m =129 — 0.0472;
2.0 1.16 0.772 0.767 0.777
5.0 2.90 2.35 2.84 2.83
7.0 4.06 2.67 3.15 3.21

12.0 6.96 1.96 2.17 2.25
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Table |—continued
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Exact Mie
Eq. (25) Egs. (25) and (26} value
x p Kex(p, m) (I + D)Kex(p, m)  Kex(x, m)
m = 1.315
2.0 1.26 0.727 0.648 0.642
4.0 2.52 2.22 2.55 2.63
6.5 4,095 3.17 3.93 3.94
10.0 6.30 1.99 2.30 2.45
m = 1.308 — 0.0018;
1.0 0.616 0.190 0.096 0.087
3.0 1.848 1.41 1.56 1.54
6.0 3.696 3.09 3.76 3.78
10.0 6.160 2.08 2.41 2.55
m = 1.315 — 0.0143;
2.0 1.26 0.769 0.717 0.717
4.0 2.52 2.18 2.53 2.59
6.5 4.095 3.00 3.66 3.72
9.0 5.670 2.38 2.76 2.89
m = 1.315 — 0.1370/
2.0 1.26 1.07 1.22 1.23
4.0 2.52 1.97 2.41 2.41
6.5 4.095 2.25 2.60 2.71
9.0 5.670 2.12 2.36 2.48
1.0 1.05 0.518 0.322 0.237
2.0 2.10 1.72 1.76 1.98
4.0 4.20 3.17 423 4.09
6.0 6.30 1.99 2.43 2.52
10.0 10.5 2.39 2.71 2.87
m = 1.525 — 0.0682i
1.0 1.05 0.638 0.576 0.420
2.0 2.10 1.72 1.99 2.04
4.0 4.20 2.74 3.50 3.61
6.0 6.30 2.08 2.46 2.61
10.0  10.50 2.12 2.35 2.55
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Fig. 7—The extinction, scattering, and absorption efficiencies for small but
finite spheres composed of dielectric, weakly absorbing material.

The numerical examples in Table I show that the corrected van de
Hulst formula (1 + D)K,(p, m) is accurate within an error of about
40.05K,, for a wide range of sizes and types of index of refraction. Note
that the errors increase with v, as should be expected, for both absorbing
and nonabsorbing spheres. Moreover, for nonabsorbing spheres, the
approximate formulas cannot reproduce the secondary “ripple” in the
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extinction curve [/, pp. 265, 384 ff.]. Thus, within the limits indicated and
in the absence of fast computers, K, can be closely estimated with very
much less computing labor than for the Mie series. The accuracy is high
enough for use in integrations of the extinction with tespect to simple
size distributions [/2]. However, the approximation is not as good in
estimating the relative contributions of absorption and scattering to the
total cross section, except of course in the limit x — co.

Although van de Hulst has amply covered the subject, it is worthwhile
to illustrate again the relative magnitudes of the scattering and absorption
efficiencies for spheres of various sizes with very weak, moderate, and very
strong bulk absorption properties. Because these magnitudes change so
radically from region to region, the single-scattering properties of
polydispersions—for example, their scattering albedo and absorption
coefficient—change considerably, depending on the size range, dominant
size, and proportion of small to large particles in the distribution. In this
respect, errors of judgment are common in the literature on the part of the
uninitiated, for example, in the naive use of single-particle scattering
concepts to deduce the atmospheric parameters of planets other than our
own.

Consider, for example, dielectric particles with very weak absorption
such that m = 1.322 — 107%. The behavior of the three efficiencies when
x < 0.35 is illustrated in Fig. 7: for 0 < x < 0.025, K, ~ K, whereas
for x > 0.15, K., ~ K,, with K, = K,;, = 4K, at about x = 0.06.
This behavior can be accounted for by the series expansion of the effi-
ciency [/, p. 270]

2 _ 2 _ 2t 2
Ko (m, x) = —Imf4x m2 1 I 4 xg(m 1) m" 4+ 27m" + 38
| " m2+2 157 \m242 2m? + 3 @7
2 2
+§x4Re{(mo 1)}+___
3 m- 4 2

where the term in x gives the Rayleigh absorption efficiency and the term
in x* the corresponding scattering efficiency. For x sufficiently small, the
absorption term is the main contribution to K, ; but, depending on the
magnitude of m, the scattering contribution in turn becomes dominant
while x is still small, as shown in the example. In this case the absorption
is quite negligible over a wide range of sizes, but this is not the whole
story! As x — o0 we again approach the condition of cqual absorption and
scattering efficiencies, to wit

lmK,,, <limK, =1, «<«1, (28)

amdes) L oc
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no matter how weak the absorption properties of the substance of the
sphere. This follows the theory and asymptotic formula of van de Hulst
[Z, p. 181; 12], which in our notation takes the form

exp(—2ptan g) exp{—2ptang) — 1
ptan g 2(p tan g)* .

Kab(P> Wl) =1 + (29)

From this we see that K, begins to approach unity when 2p tan g>1,
which in the foregoing example is equivalent to x > 2.5 x 104, a large
value due to the smallness of «. The latter situation, by the way, that is, a
sphere with radius » > 40004, would approach the properties of a classical
blackbody, in terms of scattering theory, according to the definition given
by van de Hulst [/, pp. 182, 269].

Another interesting case is that of metallic spheres, where the real and
imaginary parts of m are about equal and of the order of unity. Figure 8a
shows the behavior of all three efficiency factors for small and moderate
metallic spheres with m = 1.28 — 1.37;. The efficiencies for small spheres
are similar to those of weakly absorbing spheres shown in Fig. 7, except
that the region where K, ~ K, extends to much larger values of x in the
metallic case. We note, however, that a metallic sphere with x = 0.10,
where the relative scattering efficiency is negligible, still shows a value
Kso = 2.4 x 107* compared to 1075 for the equivalent dielectric sphere!
The implication of this peculiarity for the nature of Martian hazes will be
discussed in Section 4.42.

Figure 8a further shows that in the metallic case K, ~ K,. at some
moderate size, in this case where x = 2.4, beyond which point K. always
exceeds K,;,; in other words, the albedo of single scattering w = K, [K,. >
0.5. This is better seen in Fig. 8b, where the efficiencies are plotted against
log(1/x) to show their asymptotic behavior as x — co. The efficiencies
plotted are from our own results, in this case available up to x = 72 (so
far as we know, this is the largest x value for which there is an exact Mie
series evaluation of metallic scattering). As seen in Fig. 8b, the three
efficiency curves very nicely tend toward their asymptotic values indicated
on the diagram. It is remarkable that van de Hulst, in a similar diagram
[/, p. 276], shows the correct nature of these curves by using the then
existing values for x < 4 only and asymptotic theory.

The asymptotic value of K,.(oo) for metallic Spheres is obtained [/,
pPp- 225, 279] by considering, in the geometric optics limit, the integral of
the Fresnel reflection coefficients for the intensity over the illuminated
sphere. The complex amplitudes r, and r, of Fresnel reflection at an
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interface between vacuum and a metal are given by [/, p. 204; 32, p. 289]

pogin — COS @ — mcos @’
1 - >
cos ¢ + mcos ¢’

. (30)
o gits — MCOS @ — COS @

? mcos<p+cos<p”
where @ is the angle of incidence (zero for normal incidence) and ¢’ is
generally a complex angle of refraction, defined by a generalization of
Snell’s law m = sin @/sin ¢’ for complex index. Van de Hulst then shows
that the scattering efficiency in this case is given by the diffraction term

plus the integrated reflection, or K, ,(m, 00) = 1 + W, where
1 i 2 2 2
w =) ([ral* =+ 17ol%) d(cos” @). (3D

The asymptotic values of the efficiency factors shown in Fig. 8b were
obtained by performing the integration (31), using the expressions for
|r4| and |ry| and integration technique described by Irvine [33], and by
putting K. (m, ) = 2, K, ,(m, ©) =2 — K. (m, co). In Table 2 we
show the results of the integration (31) for m = 1.28 — 1.37/ as well as.
some other values of m, which may complement those obtained by Irvine.
For completeness Table 2 also includes values of the quantity WG
defined by the integration

72
WG = %f (Irl* + Irel*)cos 2¢ d(cos® ). (32)
0

The integral (32) provides an estimate of the radiation pressure efficiency
K, (m, ©)=1— WG and the asymmetry factor cos 0 = (1 + WG)/
(1 4+ W) in the asymptotic case. For obvious reasons (no equivalent
quantities can be defined for a polydispersion) we have not carried out any
computations of these two parameters for finite spheres by means of the
Mie series [/, p. 128; 33].

We note, by the way, that Table 2 clearly shows the tendency toward the
limits (28) only when « is very small. Also, the van de Hulst reflection
criterion (31) seems to apply to weakly absorbing spheres as well. For
example, our Mie calculations for x = 150 and m = 1.29 — 0.0472i give
K, = 1.089, K,, = 0.980, which, though not quite in the geometrical
optics range, seem to be approaching their asymptotic values of 1.060 and
0.940 according to Table 2.
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Finally, the foregoing discussion of the absorption and scattering
efficiencies for very large spheres disproves an inference made by Herman
[34] to the effect that the absorption efficiency is given by 1 — R, where R
is the reflectivity of the substance at perpendicular incidence. Column 3
in Table 2 shows this quantity to differ significantly from the integrated
reflection W (see also Section 2.33).

Table 2
Fresnel reflection integrals W and WG related to the scattering
and radiation pressure efficiencies for [arge spheres

m—1[2
v '3 m+ 1 WG w
1.290 0.0472 0.01646 0.03463 0.06041
1.315 0.1370 0.02194 0.03735 0.07009
1.550 0.1550 0.05003 0.04034 0.10366
1.440 0.4000 0.05784 0.04389 0.11727
1.750 0.5800 0.11380 0.04036 0.16905
2.020 0.3650 0.12683 0.03627 0.17588
2.200 0.2200 0.14467 0.03359 0.18986
2.4066 0.4771 0.18639 0.02945 0.22578
2.7589 1.2408 0.29570 0.01874 0.31943
1.28 1.37 0.27636 0.03943 0.33273
1.51 1.63 0.32567 0.03026 0.36718
1.70 1.84 0.36303 0.02385 0.39449
4.2214 2.5259 0.49810 —0.00385 0.48939

In general, the relative magnitudes of the efficiencies for extinction,
absorption, and scattering in various ranges of the size parameter and
refractive index cannot be described in a simple manner. Plass [35] has
recently described further features of these parameters obtained through
the Mie theory.

2.33 The Backscattering or “Radar” Cross Section
and Efficiency

Because of its special interest in applications to radar and pulsed-laser
physics, a separate discussion of the backscattering properties of single
particles is in order. The accepted definition of the radar cross section or
exact backscattering cross section g, is 47 times the power scattered back
per steradian divided by the incident flux. Van de Hulst’s clear discussion
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of this parameter [/, pp. 284, 223] shows that the origin of this somewhat
awkward choice has to do with the definition of “gain” in radio technology.
At any rate, by virtue of (3) and (1) it is evident that

i, x) = ST 1S,(180) (33)
where, according to (1) and (9),

—5,(180) = S,(180) = 3 (—1)" (a, — b,) 34)

2n 41

2
is a function of the Mie coefficients only. Conceptually, by comparison of
(33) with (4) we may think of o, as the scattering cross section of a hypo-
thetical particle that scatters the incident energy isotrapically with specific
intensity |Sy(180)|*/k*. By analogy with the total scattering efficiency one
can then define a backscattering efficiency K, (sometimes referred to as the
normalized radar cross section) by putting

Kym,x) = 2 = iz|sl(1so)|2. (35)
mrt x
In Section 4.33 we shall define an equivalent quantity for a unit volume
in a polydispersion.

In Fig. 9 we show three characteristic curves of X, as a function of x
for x < 10. The top curve is for totally reflecting spheres with |m| = oo
and is based on detailed computations by J. Rheinstein [36]; the other two
curves, for a metallic and dielectric case, respectively, result from fitting
smooth curves to our own data, shown by the points. The top curve shows
clearly the regular and smoothly damped sine wave character of such
idealized reflecting spheres (hardly likely to be found in nature in the realm
of small particles illuminated by visible radiation), with K, oscillating
around its limiting value of one, in line with physical considerations
[, p. 223].

The metallic case shows the same general character (note the difference
in the periodicity), but the magnitude of K, both for finite spheres and in
the limit, is about one fourth that for totally reflecting spheres. For the
purely dielectric case (m = 1.29) our results show a similar wave structure
superposed on a longer-period oscillation with ever-increasing amplitude,
without any tendency toward a limiting value for large spheres. The back-
scatteringefficiency for weakly absorbing spheres was examined by Herman
and Battan [37]. For ice spheres illuminated by microwaves (m = 1.78 —
0.0024i), they find a maximum value of K, of about 38 near x = 60.
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However, they also report that for very large x, K, decreases mono-
tonically, eventually reaching a value of 0.296 in the extreme point of
x = 500 of their calculation. This brings up the question of the limiting
value of K, as x — 0.

Herman and Battan [37], on the basis of their own calculations and a
discussion by J. E. McDonald [38], conjecture that this limiting value is

4
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Fig. 9—The backscattering efficiency K,(m, x) for dielectric, metallic, and
totally reflecting spheres. The dashed extension of the curve for m = 1.29 is a
freehand fit to the computed points shown.

given by the Fresnel reflection coefficient for the infensity at perpendicular

incidence; that is,
2

. (36)

lim Ky (m, x) =
im K (m, x) p——

T

{m—l

This conjecture can best be verified for the metallic case, where, as
evidenced by the example in Fig. 9, K, shows regularly damped oscillations
around a limiting value that is approached for moderate values of x. In
Table 3 we show examples for three types of metallic index, taken from
our own results employing the double precision described in Section 2.22.
The agreement with the corresponding reflection coefficients, shown in the
last line, is almost perfect and the conjecture (36) must therefore be con-
sidered true. The failure of Herman and Battan’s [37] results for ice



40 POLYDISPERSE SCATTERING AND ITS APPLICATIONS

spheres to reach the limiting value of 0.0787 given by (36), even for x =
500, must be attributed to the fact that this size is not large enough. This
is understandable, since the absorption coefficient in their case is so small
that the contribution from internally reflected waves is not entirely
eliminated. '

Table 3
Backscattering efficiencies for metallic spheres
Ky(x)
x m =128 — 1.37; m = 1.51 — 1.63; m =170 — 1.84;
32 0.2763 0.3252 0.3619
40 0.2764 0.3258 0.3634
48 0.2764 0.3258 0.3633
52 0.2764 0.3257 0.3631
56 0.2764 0.3257
60 0.2764
112
m 1 0.2764 0.3257 0.3630
m+ 1

Although there must exist some physical or mathematical explanation
of the property (36), we cannot agree with that proposed by McDonald
(38]. In particular, his arguments invoking the finite size and shape of a
receiving antenna do not seem appropriate to the problem; nor can we
offer an alternative explanation. All we can say is that the property (36) is
indicated by the results of the Mie theory and that it should be verified
experimentally if possible. By comparing the limit (36) with (33) and (35),
we can suggest the following physical interpretation: The differential
cross section of a large absorbing sphere in the exact backward direction is
given by 1/4w times the reflectivity of an equivalent right cylinder of the
same cross-sectional area as the sphere, with its axis oriented parallel to the
incident radiation.

Mathematically, the property (36) reduces to the statement

=] 2
lim L | 3 (= 1"2n + Dlay() — b0 =
=1

zo o X ”

m— 1 ’2
m+ 1 ’
Im{m} 0, (37)

whose proof, even with the use of (24), does not appear to be simple.
It should be further noted that for large absorbing spheres, including
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metallic ones, the nondiffracted part of the differential scattering is
never truly isotropic, even though the backscattering is given by (36).
This explains why K, is not given by 1 + |(m — 1)/(m + 1|2, as im-
plied by Herman [34], except in the totally reflecting case m = oo.
Finally, the Mie results indicate that, for idealized nonabsorbing
dielectric spheres, a finite limit of the backscattering cross section such as
(36) may not exist, an inference that appears plausible on physical grounds.

2.34 The Amplitude Components §; and S,

In trying to get a clearer idea of the scattering process for various types
of spheres, it is instructive to examine the behavior of the individual
components of the complex amplitude for a fixed scattering angle as a
function of size, and for 4 given sphere as a function of angle.

As we have seen, the expressions for the amplitude in the exact forward
and backward directions are relatively simple and they have special
physical significance. In particular, the total extinction efficiency is
related to the forward amplitude by the cross section theorem (6). The
form of the curve traced by the function 4x 2S,(x, 0) for dielectric spheres
has been indicated by van de Hulst [/, p. 264] and others [26]. We need not
reproduce the diagrams here, but recall that they show a number of major
and minor oscillations of the amplitude, which are responsible for the
familiar shape of the extinction curve over the range of moderate-sized
spheres.

It is of some interest to look at the exact behavior of S,(x, 0) as the
spheres become large and approach the geometrical optics limit, since
the corresponding numerical values are now obtainable. Judging from the
behavior of this amplitude for absorbing spheres, and using (1) and (9),
we can make the conjecture

Jim XZ S @n + 1)a, + b,) = 2, (38)
z—w n=1
which is analogous to (37) except that in this case we are dealing with a
complex limit. Again there seems to be no mathematical proof of (38) in the
most general case, based on the behavior of the series for @, and b,. A
proof based on physical principles has been given by van de Hulst
[/, p- 107} but it is not clear that it applies to nonabsorbing spheres
[, pp. 264, 265].

Figure 10 shows a plot of the forward amplitude in the complex plane
for metallic and moderately absorbing spheres. If we consider equal
increments in x, the curves show very clearly the tendency of the sequence



42 POLYDISPERSE SCATTERING AND ITS APPLICATIONS

represented by the left side of (38) to converge toward the limit. In par-
ticular, the nonmetallic case shows some “waviness” and a peculiar
double looping before the curve smooths out and “points” toward the
limit. The metallic case shows a smooth tendency toward the limit
beginning with relatively small spheres. Both cases seem to support the
conjecture (38), but the limit must be approached for rather large spheres,
possibly with x > 10

8T 77T

o T RT 1
B m=129-0.0472i i
06 |- —
B m =1.28-1.37i 1
04 |- —
—— - ! —

g
@ 02 —
<] 5 .
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[ | L

15 20 25 30 35

Re{% s, (o)}

Fig. 10—Tendency toward the geometrical optics limit 2 (cross-section

theorem) of the complex forward-scattering amplitude obtained by the Mie

theory for dielectric and metallic spheres. Smooth curves are fitted to the

computed points. The dashed portion shows extrapolation without numerical
verification.

A diagram similar to Fig. 10 for nonabsorbing dielectric spheres in the
same size range would be difficult to reproduce. For example, for m =
1.29 an extension of the previously published curve [26, Fig. 2] up to
x = 50 shows a continuously winding shape with major and minor loops,
with values lying mostly in the quarter-plane

Re i2 S(x,0) > 2, Im —4—2 S(x,0) < 0,
X pe
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and with no clear tendency toward a limiting value. Our guess is that the
limit 2, if it exists, will be approached for extremely large values of x, of
the order of 10%, with continued fine oscillations in ever smaller intervals
Ax.

Figure 11 is a direct plot of the backward amplitude S,(x, 180°) with
continuous and hand-smoothed curves fitted to the computed points
indicated, for dielectric and metallic spheres, respectively. The x—2

T T T T [ T T T T T T I T T T
10 - -
- = _
oy H 4
@
23
E° T
-0 -
I W WO Y| | | R IO N SO N N
-20 -10 0 1.0 20
Refs (x180°)}
Fig. 11—Comparison of complex backscattering amplitude S,(180°) for dielectric

and metallic spheres. Smooth curves fitted to computed points indicated.

normalization factor has been omitted for clarity. The essentially different
character of these amplitudes for the two types of material is clearly
brought out, as already indicated in the corresponding backscattering
cfficiencies illustrated in Fig. 9. (Compare the maximum around x = 1
for the metallic case in both figures.)

Values of the forward and backward amplitudes for single spheres of
various sizes and indices of refraction calculated by the present program
have been published in report form [27,28]. In general, graphical inter-
polations of the complex amplitudes with respect to size by means of a
diagram for a fixed scattering angle are not recommended because of the
complexity of the curves [/, p. 238], as illustrated in Fig. 11.
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Fig. I2—Complex amplitudes S, ,(6) for small, opaque spheres of fixed radius

as a function of scattering angle 6, showing deviations from the Rayleigh and the

totally reflecting model (see text). The values shown have been divided by x
for convenience of display.

The same applies to interpolations with respect to 0 using plots of S
and S; as a function of ¢ for fixed values of x. The shape of the resulting
curves for dielectric and absorbing spheres of moderate size has been
illustrated elsewhere* [/, p. 235; 26,27]. The curves become progressively
more complicated as the spheres become large, especially in the dielectric
and weakly absorbing cases.

An interesting case is that of water spheres illuminated by microwaves,

* In [27] certain errors in the diagrams of [26] have been corrected.
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called “type 4” by van de Hulst in his classification of absorbing materials
[Z, p. 268]. When such spheres are small, they act like totally reflecting
spheres with the backward amplitude considerably larger than the forward.
This is clear in the plots of Fig. 12, showing the quantities S;/x and Sy/x
for m = 8.5898 — 1.7049i (10°C water at A5 cm) and x = 0.3, 0.4, 0.5,
0.7, and 1.0. The backward asymmetry |S;(180°) > |S1(0°)| starts here
somewhere between x = 0.3 and x = 0.4 and disappears around x = 1,
after which the usual forward asymmetry takes over. Note that the
Rayleigh-like approximation for totally reflecting spheres [7, p. 159],
given by

Sy(x, 0) = ix3(1 — % cos 6),

Sa(x, 8) = ix¥cos 6 — 1)

would be quite inadequate in this case: the amplitudes in Fig. 12 lie
considerably off the imaginary axis, they are not proportional to x3, and
the ratio [.5;(180°)| - |S4(0°)|~* does not quite reach 3, as in the foregoing
expressions. This illustrates the transition region between “soft” and
totally reflecting spheres mentioned by van de Hulst [/, p. 158] and once
more demonstrates the inadequacy of idealized models (m = o) to
describe the scattering by real particles.

We conclude this section by reproducing in Fig. 13 the elegant curves
traced by the amplitudes for a larger water sphere with x = 4, illuminated

4 T ‘ T T T T T
m=5,1553-2.8341i
I~ x=4.0 !

Re{S »(8)}

Fig. 13—Complex amplitudes S,(§) (solid line) and S,(0) (dashed line) for a
single, opaque sphere of moderate size as a function of 6, with smooth curves
fitted to the computed points shown.
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by A1 cm radiation. This may be compared with previously published
curves for more transparent spheres [26,27, Fig. 6a,b,c]. The usual forward
asymmetry is apparent in Fig. 13, with {5,(0°)| exceeding |5;(180°)| by a
factor of almost ten. A singularity in the form of a cusp or loop in S;(6)
near § = 90° is clearly evident. This feature cannot be easily explained in
terms of geometrical and physical optics. For example, the Fresnel
reflection amplitudes (30), besides being difficult to evaluate in complex
form [32, p. 294], have an ambiguous meaning ncar grazing incidence
[/, p. 223], where one must consider the little-understood effects of a
““creeping wave” and “spray’ at the appropriate scattering angles [/, pp.
365 ff.]. We are satisfied that the numerical results based on the Mie
formulas result in continuous functions for the amplitude near this critical
angle.

2.35 The Dimensionless Intensity Parameters i;(6) and ix6)

Finally, we may look at some examples of the intensity parameters
iy(m, x, 0) and i,(m, x, 6), which are related to the differential cross section
(3) and are defined as follows:

i(x, m, 0) = k%4, 47 = 5,87;

39
iy(x, m, 0) = k24,45 = S,S;. 39

These are the quantities often tabulated in the literature to show the pattern
of intensity and linear polarization (if any) produced by Mie-type
scattering. In fact, when the particle is illuminated by a unit flux of
unpolarized radiation, the intensity per unit solid angle scattered in any
direction is given by (i, + i;)/2k?, and when only linear polarization is
produced, as in Rayleigh scattering, the degree of polarizati.on is simply
(i, — iy)/(iy + i,). These symbols and definitions are thus identical with
those of Lowan [23] and van de Hulst [/, p. 129]. We note further that
the intensity parameters (39) are directly proportional to the scattered
power, independently of the energy absorbed by the particle whenever the
index of refraction has an imaginary component.

In general, very small dielectric and nonabsorbing particles show a
scattering pattern that approaches the Rayleigh limit: the intensity
I, + iy is almost symmetrical with respect to a plane through the center of
the particle and perpendicular to the incident direction and #,(90°) =~ 0.
As the size of the particle is increased and x approaches 1, a moderate
forward asymmetry develops, although the maximum positive polarization
is retained near 6 = 90°, as shown in the lower pair of curves (m = 1.315)
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in Fig. 14. When a strongly absorbing sphere of the same size is con-
sidered, the amount scattered in all directions is doubled, even though this
represents only 0.164 of the flux incident on the particle, the rest being
absorbed (upper curves in Fig. 14). The forward asymmetry is also some-
what increased. The brightness of an optically very thin layer of such
absorbing particles would be about twice that of the transparent ones when
viewed from any direction with respect to the illuminating parallel

015 T T T T .

040
i)

0.05
m=1.315-0.4298,
w=0.164
m=1.315
@=1.0

o
¢} 30 60 90 120 150 180

8, (deg)

Fig. 14—Examples of dimensionless intensities iy o(6) for a dielectric and
absorbing sphere of the same small size, showing how an absorbing sphere may
scatter twice as much energy in all directions as a transparent sphere.

radiation. (See Table 6, Section 3.5, for the nature of physical particles
and wavelength of radiation corresponding to the indices of refraction.
mentioned.)

For “hard” particles, in which the real and imaginary parts are both
large, as in the case of microwaves illuminating water spheres, the
scattering behavior is different. In Fig. 15 we compare the situation for
various small spheres with m = 5.8 — 3/ (softer) and 8.6 — 1.7 (harder),
respectively. In Fig. 15a for x = 0.4, the softer sphere is shown to act like
a Rayleigh particle, whereas the harder one shows considerable backward
asymmetry, i(180°) being almost three times as intense as i(0°). Figure 15b
shows backward asymmetry for both spheres when the relative size is
doubled, the overall intensity is increased fiftyfold, and the albedo of
single scattering = = K,,/(K,. + K,y,) is increased fivefold. Furthermore,
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in the case of the harder sphere, the maximum polarization near § = 90°
has a higher value for the larger sphere than for the smaller; that is, we
observe the reverse of the situation for nonabsorbing spheres.

In Fig. 15¢ we see that the forward-to-backward symmetry and the
polarization of the softer sphere are again almost like those of a Rayleigh
particle, even though the size, x = 1, is not small compared to the wave-
length; furthermore, the harder sphere in this case still shows some
backward asymmetry but a smaller scattering efficiency than the softer
sphere, a situation that is the reverse of that in Fig. 15a. Finally, in Fig.
15d for x = 1.5, a pronounced forward asymmetry develops in the softer
sphere, and there is a reversal in the sign of polarization near § = 90°,
instead of a maximum there. In an even softer sphere, with m = 3.1 —
1.71, the pattern is similar but more asymmetrical, although the scattered
radiation represents a smaller percentage of the incident flux in this case
(compare the values of = indicated on the diagram).

Thus the examples in Figs. 14 and 15 again (cf. Section 2.34) illustrate
the fact that, for particles that are small but finite (in this case with
diameters one sixth to one half the wavelength), the angular scattering
pattern and polarization are rather sensitive to the relative size and to both
the real and imaginary parts of the index of refraction.

The intensity distribution for single particles of larger diameter is of
interest mainly to show the position and intensity of the maxima and
minima responsible for the diverse corona, rainbow, and glory phenom-
ena observed in nature. In considering these features, the reader should
bear in mind that the pure monodisperse phenomenon practically never
occurs in the atmosphere.

Figure 16 shows plots of the quantity (i, 4 i,)/2 on a logarithmic scale
versus the scattering angle in the range 0° < 6 < 15°, representing the
scattered intensity when the particle is illuminated by unit flux of un-
polarized light at the wavelengths indicated. Figure 16a is for a water
droplet of radius 2 u scattering blue and red light, and Fig. 16b for an
iron sphere of radius 2.1 x4 (the correct x value for 10.668 u should be
19.8 instead of 20). The points show the actual computed values, to which
smooth curves have been fitted. The vertical arrows show the position of
the diffraction minima for an opaque disk of the same relative diameter
that would be obtained by putting x sin 6 = 3.832, 7.016, 10.173 for the
first-, second-, and third-order minima, respectively [/, p. 99, Table 6].
An inspection of these diagrams reveals the following.

An optically thin layer of such monodisperse spheres illuminated by
sunlight would produce a bright red corona of radius 6° to 8°, gradually
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changing to an even brighter blue aureole extending to the limb of the
Sun. A weaker outer blue corona with a radius of about 10° would also be
observed. The radius of most common coronas produced by water clouds
is smaller than this, whereas that of Bishop’s rings is larger (see Section
4.31). Note that, should such a bright corona be observed (say through a
volcanic dust cloud), it would be difficult to decide whether the re-
sponsible particles are transparent water drops or metallic spheres, since
the absolute brightness and position of the coronas (and the deduced size
of the particles) would be almost identical in both cases. However, the
size of the particles, assuming a monodisperse layer, could be closely
estimated on the basis of diffraction theory alone.

Figure 17a shows the effect of a small change in the refractive index
keeping the relative size of the sphere constant (the true radii would be
about 5.6 u for red light and 3.6 x for blue light, respectively). The first-
order minima and maxima coincide but their intensities differ, the less
refrangible sphere (m = 1.33) showing a brighter corona between 5° and
6° than the other. From this it is clear that the colored coronas are mainly
a result of the relative size of the droplets in different parts of the spectrum,
rather than of changes in the refrangibility of water.

Figure 17b shows the system of blue and red coronas produced re-
spectively by two droplets of almost identical size (about 6.5 4 in radius).
A thin cloud composed only of such droplets would display fivo equally
bright and narrow, bluish-white rings with radii of about 5° and 3°,
respectively, with reddish inner borders and a much brighter blue aureole
of about 2° radius around the luminary. Natural coronas around the Sun
and Moon are commonly of this size and smaller, but they seldom display
this degree of purity and definition because the cloud is not strictly mono-
disperse. Still, as we shall see later (Section 4.32), the drop sizes must be
distributed in a rather narrow range around the modal size; otherwise, the
corena phenomenon would be entirely washed out. We note in passing
that the diffraction minima in this case coincide much better with the true
scattering minima than those in Fig. 16a because of the larger spheres
considered.

Figure 18 is a plot, on an expanded logarithmic scale, of the intensity
(i1 + 1,)/2 in the cloudbow and glory regions, for the same water drop asin
Fig. 17b. We have fitted smooth, continuous curves to the computed
points at 0°.25 intervals shown on the diagram. It is clear that an angular
resolution of 1° would prove quite inadequate to reveal the detailed
character of the intensity variations for a single such sphere, particularly
in the glory region. The hypothetical thin monodisperse cloud mentioned
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earlier would produce a pronounced blue glory of radius 2° and a red one
of radius about 3°.5, as well as a bright blue cloudbow with radius of about
37°.5. In Fig. 18 we have also shown some values of the linear polarization
(i — 5)/(i; + ip), resulting from unpolarized incident light. Note the
typically high values at the glories, where the electric vibration is mainly
parallel to the plane of scattering, in contrast to the coronas, which show
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Fig. 18—Scattered intensity (i; + i,)/2 in the backward-hemisphere cloudbow

and glory region for a 6.5 y« water sphere at the two wavelengths 10.45 x and

10.70 . Typical values of polarization produced by unpolarized incident
radiation are indicated at the scattering angles shown by arrows.

practically no polarization. The Mie results, of course, corroborate that
cloudbows and glories cannot be accurately described by means of geo-
metrical optics alone, and that the relative size of the sphere is very
critical in determining the position and intensity of the maxima and
minima. Only very large drops of the order of 1 mm in diameter display
the classical rainbow picture [cf. 25].

As a research tool, the glories seem to us to be the more important
phenomenon in determining the nature of unknown particles, as for
example in the atmosphere of Venus (see Section 4.41) and in Saturn’s
rings (Section 4.43), since they are not easily washed out by a size distri-
bution. Note also in Fig. 18 that in this case the exact backscattering point
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is an absolute maximum in red light but not in blue. This relation could
be interchanged for spheres of other sizes. Thus, size-distribution effects
have to be determined by means of the exact theory, since physical and
geometrical optics methods seem to be unable to predict the glory
phenomenon with sufficient accuracy [I, pp. 249-258].



Chapter 3 Single Scattering on Many
Particles

3.1 CHOICE OF CHARACTERISTIC PARAMETERS

In considering the quantitative description of a stream of electro-
magnetic energy of arbitrary characteristics, one may choose from several
existing schemes, depending on the nature of the problem. Some of these
have clearly historical origins or are related to human vision, whereas
others are dictated by the mathematical formalism required by a particular
theory, or by the requirements of experimental techniques. Classical
nomenclature and symbolism have changed and continue to change as
attempts are made to achieve the most general description, often at the
expense of physical understanding of the particular problem at hand.

We do not attempt to present here a comprehensive review and com-
parison of the several existing schemes. A brief description of some of
these is given by Shurcliff [39]. With a minor modification we adopt the
Stokes vector representation and the corresponding matrix operator,
following such authors as Chandrasekhar [40], van de Hulst [/], SeKera
[41,42], and others, whose main interest has been in atmospheric scattering
and optical phenomena. This choice, besides avoiding the lamentable and
often unnecessary introduction of innovation in concepts, units, and
symbols, is a good compromise in that it is best suited to the theoretical
and experimental description of the incoherent, partially polarized light
resulting from the interaction of sunlight with a scattering planetary
atmosphere.

The close relation between the Stokes parameters and observable
quantities, on the one hand, and those given by the theory of primary and

56
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multiple scattering on the other, is clear and unambiguous. The scheme
has the added advantage that all the Stokes parameters or their equivalents
have the same physical dimensions and the parameters for coincident
streams are usually simply additive. Naturally, the Stokes system has
some disadvantages; for example, the wave amplitude and phase are not
explicit, as they are in the so-called Jones vector and matrix representation
[39, p. 25; 1, p. 49]. So far, however, in scattering experiments it has been
impossible to determine amplitudes and phases, but only energies. In
atmospheric problems, even if this were possible with the use of laser light
as a source, it is doubtful whether the amplitude and phase of the light
waves scattered by a volume element of the order of cubic meters can be
usefully interpreted.

3.2 THE STOKES PARAMETERS FOR A SINGLE PARTICLE

The particular forms of the Stokes vector and the scattering matrix
adopted here were used earlier by this author [9], and they represent a
modification based on the analysis of Perrin [43] and Perrin and Abragam
[44]. They are eminently suited to a well-known model of atmospheric
scattering, namely, a mixture of idealized Rayleigh particles and larger
particles composed of optically homogeneous and isotropic material with
perfect spherical symmetry. Under these conditions an elementary
scattering process can be described by an almost diagonal matrix operating
on the vector representing the incident radiation, itself in an arbitrary
state of polarization. Symbolically, we write

16) do = 6(8) - I, dw, Aw (40)

where I, and I(f) are column vectors of the form {I;, I,, U, V} corre-
sponding to the incident and emergent streams of radiation, respectively,
and ¢(f) is a 4 by 4 matrix operator of the form

a,(0) 0 0 0
0 ] 0 0
() = a(8) . (1)
0 0 a3(0) a,(0)
0 0 —a4(6)  o,(6)
The dimensions of Iy and I are those of energy flux and scattering intensity,

tespectively, per unit area and per unit solid angle in whatever physical
units one chooses. In Eq. (40) Aw, is the (small) solid angle occupied by
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the illuminating source, assumed to be far enough so that the illuminatin g
energy is practically in the form of “parallel rays” or plane waves from a
fixed direction, and A is the small solid angle in which the scattering is
considered (see Fig. 19a). It is further assumed that we are dealing with
quasi-monochromatic radiation in the wavelength interval Ai. The
dimensions of the elements o;(6) of the matrix (41) are those of a differential
cross section for scattering in a unit solid angle in the manner defined by
Eqg. (3).

The scattering element considered here, situated at the point O in the
schematic diagram of Fig. 19a, may be a single spherical homogeneous
particle endowed with the idealized optical properties mentioned earlier.
It may also be a small spherical volume element of space occupied by a
number of such patticles, of various sizes and optical properties, whose
positions are not fixed but must be in random motion within the time
interval in which an observation is to be made.* Indeed, to be quite
rigorous one must endow this element with somewhat inconsistent
properties: The volume of space must be large enough so that a perfect
sample of all the particles of the larger medium it represents are included;
it must be small enough so that the source radiation entering from one
hemisphere illuminates the particles in the other hemisphere with essen-
tially unaltered intensity and state of polarization; the particles should be
not only in random motion but also sufficiently sparse in the volume so that
there is no self-illumination after a primary scattering process; finally,
there should be absolutely no inhomogeneities with respect to size or type
of particle anywhere within the sphere, so that the scattering process is
invariant with respect to the directions of incidence and emergence
provided the angle between them remains fixed.

As mentioned in the introduction, we eliminate one of the degrees of
freedom in the element by restricting ourselves to scattering particles
composed of the same material, that is, having fixed optical constants at
the given wavelength but of variable size, with the particle concentration
depending on the size. The foregoing considerations therefore will apply
only to this characteristic. Despite these highly idealized requirements for
the elementary scattering volume and, as in the mathematical analysis of
other linear processes, for purposes of integration, the abstraction from
the physical to a mathematical element for differential scattering is known
to lead to meaningful results. This is eminently true in atmospheric
scattering, for example, where the assumption of a linear process in the

* Otherwise the scattering process would have to be defined in terms of the
interaction between the complex amplitudes rather than the intensities.
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form of independent or incoherent scattering is almost always realized.
Naturally the magnitude of the geometrical volume of the element consid-
ered may be varied according to the particle sizes and concentrations
involved. In the case of well-mixed “clear” air near the earth’s surface,
containing micron-sized aerosol particles, the volume may be taken to be
of the order of a few cubic centimeters. The same applies to moderately
dense but stable stratiform clouds. However, in the case of dense cumulus
clouds, the size-distribution law may change within distances of the order
of meters, in which case a volume element of 1 cm?® must be assigned a size
distribution and concentration that is typical within a volume of several
cubic meters. In the case of raindrops illuminated by microwave radiation,
the volume element is usually of the order of cubic meters. In the case
of the interplanetary dust particles responsible for the zodiacal light, one
may have to consider a volume of several hundred cubic kilometers as a
representative element; and so on for interstellar and intergalactic particles.

3.21 Derivation and Properties of the Stokes Parameters

Since a complete derivation of the Stokes parameters is not readily
available in one place in the recent literature, it may be useful to outline
the major steps leading to the relations between these parameters and the
state of polarization of a stream of radiation. Consider an elementary
scattering process on a single particle at the point O in Fig. 192 and
assume that this results in a fully polarized pencil of monochromatic
radiation such that the polarization ellipse has an arbitrary orientation,
propagating in the direction 3 (our of the page in Fig. 19b). This direction,
together with that of propagation of the source radiation I, and the
point O, define the scarrering plane. The other two directions 1 and 2,
which together with 3 form a right-handed orthogonal coordinate system
centered at the observation point O’, are always chosen so that they are
perpendicular and parallel, respectively, to the scattering plane.

In order to find the relation between the Stokes elements of I; and I
connected by the scattering matrix (41), and the complex amplitudes .S;
and S, given by the theory, we first make two quite valid assumptions:
(i) on the experimental side, that we can determine (e.g., by means of
analyzers and retardation plates) time-average intensities and phase
differences related to the electric field vibration along the directions 1 and
2 [cf. 45, p. 688]; and (ii) on the theoretical side, that we can express the
values of the complex amplitudes along the same directions in terms of the
amplitudes of the source radiation, which is in fact what the Mie theory
does. Considering the field along a fixed plane through the point O’
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(sufficiently removed from O so that the radiation conditions are fulfilled)
as in Fig. 19b, and assuming the usual harmonic time oscillation of the
electric field E, of angular frequency w, we can write

E, = a; sin(wt — @) = a, sin p,

E, = a, sin(wt — @,) = a, sin(y + 9), (42)
where .
Y=ol — @ =g — @
for its components along 1 and 2, respectively; a; and a, are the maximum
amplitude components along these axes; and ¢, and ¢, are phase angles
related in such a way that ¢, — @, = d 5% 0 is a constant. By the fore-
going assumption ¢, and a, must have fixed magnitudes. The second form
on the right-hand side of expression (42) is the parametric representation
of the resultant of two coupled harmonic motions along 1 and 2 describing
an ellipse. To see this, one can eliminate y by using trigonometric identities,
and after algebraic simplification one gets from (42)

2 2
(51) + (E) 25 o5 = sints (43)
a, [+23 143

This is the general equation of an ellipse traced by the end point of the
electric field vector, whose major and minor axes along & and 7, re-
spectively, do not necessarily coincide with those of the coordinate system
1, 2, but make an angle y with them. To find y, we perform the standard
rotation of axes, represented by the operation

(Eé) _ ( cos y sin x)(El)
E, —sin y cos y/ \E,
which yields the field components along & and 7, namely, from (42),
E; = a,sin ycos y + a, sin(y + ) sin g,
E, = —a, sin p sin y + a, sin(yp + 0) cos y.
After expanding sin(y + 8), these may be written in the form
E. = A, siny 4+ A, cos y,

. (44)
E,= A;siny + A, cos
with Ay = ay cos x + a, sin y cos J,
A, = a, sin 6 sin y,
2 2 X (45)

Az = —ay sin y + a, cos x cos 4,
Ay = a, 8in d cos y.
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Eliminating y from the system (44) and simplifying, we get

AL+ Afpe AT+ AL Ads + Aud
2 n AZ
where, by virtue of (45) and after simplification, we have put
A* = (4,4, — Ap4;)?

= (aya, sin 6)? £ 0.

2 EE, =1 (46)

We note first that (46) has no meaning if 42 = 0, that is, when sin 6 =
0 or & = nw, where n is any integer or zero. (Actually this latter case
represents a degenerate ellipse, where the minor axis vanishes.) Next we
note that by definition of the foregoing rotation. of axes, (46) must be in
the so-called normal form of the equation of an ellipse,

5 2 17 2
2+ (=1
&)+ 6)
centered at the origin with the semimajor axis a along & and the semiminor
axis b along #. By comparison with (46) we note that the third term on the

left must vanish, or
A1A3 + A2A4 == 0,

which, from (45), after rearrangement and simplification, reduces to

a;a,cos 2y cos 8 = Y(a] — al)sin 2y
or
2a,a,cos

2

tan 2y = >
a; — Qg

(47)
The relation (47) may be assumed to hold even when a, = +a, or
cos 2y = 0, in which case y = (2n 4+ 1)=/4, and there is an ambiguity
regarding the quadrant of 1, 2 plane in which the major axis lies. This
ambiguity is resolved by a knowledge of the phase difference 6.

We obtain further relations by identifying the semimajor and minor
axes of the ellipse from (46). With (47) remaining valid, we have

a2=i b2=i‘
A2 4 4% A2+ 42

or

L, 1 _ A+ A+ 45+ 4
a® B A? '
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But from the definitions (45) we note that the numerator on the right-
hand side in the preceding equation reduces to a2 + a3 Hence, using also
the value of 42 already noted, we have

a@+b  al+aj
a’h® (a,a, sin 6)?

(48)

Now it can be shown analytically (and neither the statement nor the
derivation of this theorem is to be found in modern college texts on
analytical geometry) that for a given ellipse, the length of the diagonal D
(corresponding to 2(O’R) in Fig. 19b) of any circumscribed rectangle is an
invariant given by

D? = (2a)* + (2b)?

Jor all angles y. From this it follows that for all y

ai+ ati=a*+ b* (49)
and hence, by comparison with (48),

ab = taya, sin 6. (50)

The important relations (47), (49), and (50) are derived in a somewhat
different way by Born and Wolf [45, pp. 26, 27] and Chandrasekhar
{40, pp. 25-29], who is generally credited with reviving the use of Stokes
parameters in radiative transfer problems.

Before arriving at the expressions for the Stokes parameters proper,
we need a few additional relations. Define an angle 8 such that

b 7r 7
- =tanp, - - S S D)
a B 4 P 4
whence, by the usual properties of ratios and trigonometric identities, we

obtain

2 _ g2
fibbg =sin2p; G = cos 28 1)
a

a2
Similarly, introduction of another auxiliary angle « such that

+

2 _ tan «, 0<a< s
a, 2
yields

2a,a . —a
— 2 = sin 2u; . 2 = cos 20, (52
ai + a; a; + a;
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which, when replaced in (47), results in
tan 2y = tan 2« cos 4. (53)
Finally, division of (50) by (49) yields

2ab 2a1a,
= né 54
a+ b a4+ ad (>4
or, by (51) and (52),
sin 28 = sin 2« sin 4. (55)

In order to obtain the relations among the four Stokes parameters
I, Q, U, V, jor a fully polarized stream and the polarization parameters
represented by the angles y and f, we first identify the former as follows*:

I =af+ al,
Q = af — a3, (56)
¢ U = 2a,a, cos d,

—V = 2a,a, sin 4,
where an appropriate conversion factor between the energy fluxes on the
left-hand sides and the squared amplitudes of the electric field on the
right-hand sides, respectively, has been omitted for simplicity. Squaring
and adding all four parameters in (56), we note that

IP= Q% 4 U2+ V2 (57)

which is valid only when no unpolarized radiation is present in the stream
considered.
Next, from (47), (51), and (54) we have

U= Q tan 2y,
) V = Isin 28,
which, when substituted into (57), yield
Q%(1 + tan® 2y) = I2(1 — sin? 2f)
or
Q% = (I cos 23 cos 2y)%

* We are indebted to J. W. Hovenier and H. C. van de Hulst (private com-
munication) for the negative sign of V here [43, p- 418; 41, p. 48; 1, p. 41]
for consistency with our representation of the phase angles and their difference
as in (42).
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Thus we can write down the expressions for the four Stokes parameters in
two convenient forms that fully describe the state of polarization, namely,

I=1+1I, (58a)

Q=1 — I, =1cos2ycos2p, (58b)

U = Q tan 2y = I sin 2y cos 28, (58¢)

y =082 nog (58d)
cos 2y

There remains the question of the sense of rotation of the end point of
the electric vector describing the ellipse. From the expressions (42) for the
components E; and E;, we note that if 0 < § < =, the end point of the
resultant electric field vector will trace the ellipse in the clockwise sense in
the fixed plane through O’, as jndicated by the arrows on the ellipse of
Fig. 19b. Shurcliff [39, p. 3] justifies the nomenclature right-handed
polarization for this situation, by pointing out that at a fixed tigge instant
the end points of the vectors in a continuous wave train would trace a
right-handed helix or screw thread without ambiguity. The polarization
would be left-handed (counterclockwise in the plane of Fig. 19b) if
—mr <<

Through (55) and (58d), since sin 2« > 0 by definition, it is clear that
the sign of the Stokes parameter ¥ determines the sense of rotation, the
polarization being right-handed in the sense explained in the preceding
paragraph whenever ¥ > 0 or sin 25 > 0 and 0 < # < =/2. However,
since we have defined 8 such that [tan ] < 0 is always the ratio of the
minor to the major axis of the ellipse, these conditions become

0<o<m, 0L iz, right-handed polarization;

—7<8<0, — ;—T <B<0, left-handed polarization.

From symmetry considerations, we can also eliminate the ambiguity
regarding y mentioned after Eq. (47) by restricting this angle to values
—72 < x < 7/2

Thus the state of polarization of a given stream is completely specified
by the four Stokes parameters, obtained either experimentally by measuring
the two amplitude components a; and @, and their phase difference J,
according to (56), or theoretically by determining the elements of the
transformation matrix (41), given the state of polarization of the incident
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stream. Table 4 is a convenient listing of selected types of complete
polarization with typical values of the three polarization parameters Q,
U, V and the corresponding values of the auxiliary angles », 8, and 4.
This table may be compared with a similar one given by Shurcliff [39,
p- 23] and graphical examples in Born and Wolf’s text [45, p- 29], noting
the differences that arise from our particular choice of coordinates. This

Table 4
Examples of completely polarized light

Description of

Type Q/I U/I vir P4 I ) polarization
(i) 1 0 0 0 0 0 Linear, vertical
(ii) -1 0 0 g 0 0 Linear, horizontal
” Linear, Ist and 3rd
0 1 0 - 0 ’
(i) 4 0 quadrants
. Tf Linear, 2nd and 4th
() 0 ! 0 - 4 0 0 quadrants
) 0 0 1 Z g Circular, right-handed
T T .
(vi) 0 0 -1 ~3 ~3 Circular, left-handed
5 = ~ Elliptical, right-
v V3 ptical, Tig
(vii) l *3 — 7 arcsin \/‘-1 handed, 1st and 3rd
4 4 2 6 ' quadrants
Vi V3 - Elliptical, left-handed,
i) —L2 Y3 V3 _mm L n /f 2nd and 4th
4 4 2 6 6 quadrants

latter choice has been made mainly in deference to the best-known type
of scattering polarization, discovered by Lord Rayleigh [5], which with
natural sunlight always results in positive linear polarization, or Q/I>0
and y = 0, provided multiple scattering may be neglected. The same is
true of polarization produced by reflection on an ideal flat interface
between a dielectric and free space.

Two additional properties of the Stokes parameters must be mentioned,
remembering that these parameters are true operational physical concepts
in the sense of P. W. Bridgman [46]. In fact, the usefulness of the Stokes
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parameters hinges entirely on our ability to measure, by available tech-
niques of optical analysis, intensities in any two fixed and mutually per-
pendicular directions 1 and 2 and their difference, as well as an apparent
phase difference between them (over a time interval that is generally much
longer than the period of vibration). It is evident, therefore, that this.
definition introduces a certain degree of arbitrariness, depending for
example on the limitations imposed by the time constant of sensors.
In a similar fashion, “natural” or unpolarized light may be operationally
defined in terms of our inability to determine a finite intensity difference
Q and phase difference ¢ for any fixed orientation of the axes 1 and 2.
In terms of the Stokes parameters, this definition is equivalent to the ideal
condition

Q=U=V=0 (59)

However, in the preceding derivation of the Stokes parameters we have
assumed a strictly monochromatic radiation of a fixed angular frequency
o, which may always be expressed in terms of the coupled harmonic
oscillations as in (42). But this type of radiation will always display a state
of pure polarization conforming to one of the types illustrated in Table 4,
and the condition (59) is never realized. The only condition under which
unpolarized yet strictly monochromatic radiation may be visualized is by
the addition of two uncoupled and oppositely polarized streams, as exempli-
fied by the pairs (i), (ii); (i), (iv); (v), (vi); and (vii), (viii) in Table 4.
It is difficult to devise a technique to accomplish this experimentally.

Actually, since strictly monochromatic light is seldom found in nature,
the state of polarization will never be pure, in which case we speak of
partial polarization. This brings us to the second property of the parameters
first pointed out by Stokes, according to Chandrasekhar [40, pp. 31-33],
who also gives its proof. This property allows any stream of quasi-
monochromatic light to be represented as a mixture of an unpolarized
component [/ of the type (59) and a purely polarized component 7D of
the types in Table 4, in which case

am 4 1(11))2 =I>0%+ U4 V2 (60)

The degree of partial polarization I may then be defined unambiguously
by means of the positive ratio

< I(H) 7 (QZ + U+ V2)1/2 <
- [(I])'l' I(N) - I

1, (61)
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and the Stokes vector for a partially polarized stream may beseparated into
its two components by putting

IV = {1 —(Q® 4+ U* + V?2, 0,0, 0},
D= (@*+ v* + 92,0, U, V).

Summarizing this section, we have outlined the steps leading to the
expressions for the Stokes parameters by considering an idealized electro-
magnetic oscillation at a single frequency. We have described their
properties and relations, in particular the two most important ones
resulting from their operational definition: the additivity of the parameters
for two independent streams of light that have been made to coincide in
direction and sense of propagation; and the possibility of representing an
arbitrary state of partial polarization, such as is likely to be found in
nature, in terms of the parameters for two idealized component streams,
corresponding to purely unpolarized and purely polarized states, respec-
tively. Both properties are basic to the definition of Stokes parameters for
polydisperse media.

(62)

3.22 The Stokes Matrix for Mie Scattering

We are now in a position to identify the elements of the matrix (41) in
terms of the Mie parameters. The form of this matrix was first derived by
Perrin [43] in a very clear and elegant paper based on the idealized optical
properties of the Mie scatterers. In brief, his derivation is based on P.
Solleilet’s* principle that the transformation of the Stokes intensity vector
by a generally homogeneous and linear optical process may be represented
by 16 independent coefficients arranged in a 4 by 4 matrix. If the process
takes place in an isotropic medium, at any given frequency the coefficients
will be functions only of the angle 6 between the incident and emergent
radiation. The number of independent coefficients is then successively
reduced to:

10, by considering the principle of reciprocity (no fluorescence or
Raman effect);
8, by considering mirror symmetry in the medium;
6, by considering no rotatory power in the medium; and finally
4, by considering spherical symmetry in addition to the foregoing

which results in the form shown in (41).

* According to a 1929 paper cited by Perrin [43].
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In a later paper, which is more interesting for our purposes (and which
is not mentioned by van de Hulst [/, pp. 46 ff.] in his perspicuous inter-
pretation of these properties), Perrin and Abragam [44] pursue the analysis
further. They point out that in deriving his original expressions, Mie [3]
either explicitly or implicitly assumed a transformation of the incident
stream corresponding to pure scattering only, on a homogeneous sphere of
otherwise optically inactive material, characterized only by a difference in
(complex) refractive index with respect to the surrounding medium, and
possessing all the symmetries mentioned above. Since under these assump-
tions any scattering plane is also a plane of symmetry, they demonstrate
that only two complex numbers operating on the amplitudes perpendicular
and parallel to this plane are sufficient to describe the complete scattering
transformation of the Stokes vector of the incident stream. These numbers
are identified as the original Mie amplitude functions given in Section 2.2
by the expressions (1) and (2) and having the property (4), and it is shown
[44] that the elements of the matrix (41) are

0,(0) = A1A1 s
o9(0) = AzA;

05(0) = %(AIA;‘ + A,47) = Re{A, 43}, (63)

o4(0) = %(AIA;" — AA¥) = —Im{d,A}},

in which the last two relations follow from the property of complex
numbers

Re{d, A7} = Re{d,4]},

Im{A4,45} = —Im{A,A7}.

Hence an elementary scattering process on a single particle of this sort
(or per particle in a small collection of identical particles under conditions
of independent scattering as in Section 3.2), according to (40), (41), and
(63), is described by the matrix equation

I A A, 0 0 0 Iy
I 0 A, A7 0 0 I
*] = # ) A B i (D
U 0 0 Re{Ad, A} —Im{4,45} U,
14 0 0 Im{4,4;} Re{A, A5} V,

or, carrying out the multiplication and using the symbols in (63) for
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simplicity, we have
I = o0y,

Iy = oylps, (65)
U = o3U, + oV,
V = —0Uy + a5V,

Note, in passing, that in (41) and (64) we have replaced the two first
Stokes parameters I and Q by the set [, and 7,, which simplifies the form
of the scattering matrix and operations. The two sets are entirely equivalent
by virtue of the expressions (58a) and (58b), whereby I, = (I + Q) and
I, = L(I = Q). For the sake of uniformity, we shall henceforth use the
modified set of Stokes parameters and matrix, represented by (15, I, U, V)
and (41), respectively, rather than the primitive set favored by the authors
quoted in this section. (This convention is also followed in the tabulations.)
It is easy to verify that in this system the criteria for full or partial polar-
ization respectively reduce to

but the degree of partial polarization is always defined by the ratio (61).

In the above-mentioned paper, Perrin and Abragam [44] derived a
relation between the clements o,(6) that has a consequence for poly-
disperse scattering not pointed out in the literature, so far as we know.
This relation in the present notation reduces to

0,03

2 2
o3 + o}

=1 (67)

and is valid only for a single Mie scatterer or for a collection of scatterers
identical in size and optical properties. Forming the ratio (66) using (65)
and simplifying, we get

4L1, Hplpy, 010,

2 2 T2 2 .2 2" (68)

U+ V? U2+ VEok+ o

It is then clear from (66), (67), and (68) that if the incident radiation is
Jully polarized, the process of primary scattering on a single Mie particle
will yield fully polarized light in all directions. 1t is also evident, however,
that unpolarized incident light does not necessarily yield unpolarized
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scattered light, except in the forward and backward directions, since
generally o, # o, for single spheres. Furthermore, if the incident light is
either unpolarized or linearly polarized, as in examples (1) and (ii) of
Table 4, the scattering will produce partial or full /inear polarization.
Moreover, from the relations (65) it is seen that elliptically polarized light
can result only by scattering of fully or partially polarized incident light,
as in the examples (iii) through (viii) in Table 4.

The corollary to the property (67), also derived by the same authors
[44], is even more interesting for our purposes. According to this, for a
collection of scatterers that is heterogeneous, by virtue of variations in
either their size or optical properties, or both, the ratio (67) always exceeds
unity; or, borrowing the notation to be introduced later (cf. Section 3.32),

_Py(6)Py(0)

P3(6) + Pi(6)
where the P;(0) are the scattering elements for a polydispersion equivalent
to the o,(6) for single particles. It then follows immediately from the relation
(68) that, in this case, the resultant stream will be only partially polarized
even if the incident light is fully polarized. In other words, a single act of
scattering of fully polarized light on a polydispersion of Mie-type particles
results in some depolarization at all scattering angles except the exact
Jorward and backward directions. This does not apply to particle poly-
dispersions that are all in the Rayleigh range, however, in which case the
ratio (69) will be very close to unity.

This important property is verified by our numerical results as presented
in the tables. Some examples were shown in the appendix of a report on
microwave scattering [47, pp. 36, 37]. For single spheres the relation (67)
should of course always hold, and this would provide a good check on the
numerical accuracy of Mie amplitudes obtained by the present or other
computational schemes.

The foregoing polarization properties also suggest an experimental
application: Assuming that very nearly monochromatic and fully polarized
light can be produced (e.g., laser light) and the polarization of the scattered
light can be exactly determined experimentally, the observed degree of
depolarization could be a measure of the heterogeneity of a collection of
scatterers otherwise assumed to be identical or monodisperse. This
technique could be especially valuable when the scatterers cannot be
isolated and examined as to size and composition, but are available only
as colloidal suspensions, hydrosols, or aerosols.

> 1, (69)
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3.3 THE STOKES MATRIX ELEMENTS
FOR A POLYDISPERSION

In most problems of atmospheric scattering we have to deal with a
collection of particles within the illuminated volume. Since the incident
energy may be of arbitrary magnitude, expressed in a particular system of
physical units governed by experimental conditions and the preferences of
the researcher, it is convenient to normalize the incident flux to unity. On
the other hand, since the number concentration and size distribution of the
scatterers per unit volume is arbitrary, it is also useful to separate these
parameters in the elements of the scattering matrix from those describing
theangular distribution and the polarization. Furthermore, the directionally
scattered intensity can itself be normalized with respect to the total flux
scattcred in all directions.

These three normalizations are necessary not only in understanding the
elementary scattering process, but also in the mathematical formulation
of the transfer problem in extended media.

3.31 Normalization and Separation in Monodisperse Systems

The first normalization mentioned above is readily performed, for a
quasi point source like the Sun, by setting in (40)
lim Iy Awy = F (70)
Awg—0
where I is a Dirac delta function in the direction of the Sun and F is the
flux or incident power per unit area expressed in some appropriate physical
units. The single scattering process (40) may then be expressed in the form

1(6) = Fo(6) - F, (71)

where F, is the dimensionless Stokes vector {Fo> Fos, U,, ¥V} such that
Fo, + Fy, = 1 always, and any one of the types of radiation illustrated
in Table 4, or pairs thereof corresponding to unpolarized light, may be
substituted for Fy, provided we set 7 = 1 in that table.

To accomplish the second type of normalization we proceed as follows.
For a single particle and in analogy with (39) we first extend the defi-
nitions of the Mie intensity functions by setting

c1(0) = AlAik = k—2i1(6):

oy(0) = AzA: = k‘2i2(0),

0(6) = Re{d, 43} = k~%iy(0),
0i(6) = —Im{4,45} = k2i,(6).

(72)
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Using these expressions in the integral (4) and dividing both sides by
72K (x) = 04,(x), we obtain the normalization condition,

=L (AlAf 4 AZA:) Jo
27 Jo\r'K,, rK,,

1 [ [2006)  2iy0)
=L |20 26007,
47 Jn[szsc + szsc:l ®

where the integration is with respect to solid angle over all directions
around the point occupied by the particle. The expression

(73)

2 [4(0) + )] = HP(O) + Po(O) (74
X Kso(X)
has been called the normalized phase function for scattering because its
integral over all directions gives the number 4, that is, the solid angle
corresponding to all space around a point. Our choice of symbols on the
right-hand side of (74) has been dictated by considerations of continuity
and uniformity with our own previous work [9,10,15,28,47], which
conforms to the notation introduced by Chandrasekhar [40] and adopted
by Sekera [4/]. (The quantity (74) is entirely equivalent to the “indicatrix
of scattering,” a term preferred by Soviet authors such as Ambartsumyan
[48] and Sobolev [49], who use the symbols x(cos ) and x(y), respectively.)
At any rate, if we define four dimensionless quantities P;(8) by putting

4,0) 49,0
XK (X)) K (x)

PJ(B) = j = 17 27 3: 47 (75)

according to (72) and (74) the scattering matrix (41) may be rewritten in
the form

PO O 0 0
o (6) = 2K 5 (%) 0 Py(0) 0 0 (76)
T 4n 0 0 P PO |

0 0 —P,0) PyO)

which completes the separation and the two normalizations mentioned
above for the case of a single particle. For N identical particles per unit
volume, which are such that the principle of additivity mentioned in
Section 3.22 can be invoked, the elementary scattering process (40), with
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the use of (71) and (76), takes the form

106) = Fnr2 Keel pigy g,
4 (77
P(6) - Fo

ks

= Ffs(N, x)

where P(0) is the part within brackets of the matrix in (76), and where
we have defined a scattering cross section per unit volume of space con-
taining N particles of relative size x = 27r/2 by setting

ﬂsc(Na x) = N'”'rszc(-x)- (78)

Note that by virtue of the definition of F, in (71), the sum of the first two
elements of the Stokes vector I - F, automatically satisfies the normali-
zation condition (73).

As we shall see, in the case of a polydispersion, the foregoing separation
of the scattering cross section from the angular scattering and polarization
properties of the medium is useful even in problems involving optically
thin media. In media of finite optical thickness, where higher-order
scattering must be considered, the separation is essential, even in the
homogeneous and monodisperse case, for the mathematical treatment of
the problem of diffuse reflection and transmission.

3.32 Extension to Polydisperse Systems

The extension to polydisperse systems in the sense used here, that is, to
spheres of identical optical constants but differing in size only, follows
easily from the previous discussion. When the volume contains particles
distributed in discrete sizes, the quantities N, P,(0), f., will be replaced
by the corresponding summations, with the latter two properly weighted by
the number of particles in each size range. However, as suggested by
Sekera [/8], it is both more elegant and more practical to replace the
summations by integrals, since particle counts in most atmospheric sus-
pensions do indicate a continuous size distribution, Actually, this question
is not a simple one, being related to difficulties in the reliable collection and
analysis of particle counts, especially in the free and undisturbed atmos-
phere and in clouds. We shall prefer the integral representation here,
assuming that the distribution may indeed be represented by a continuous
function of the radius within any given range of interest r, < r < r,. The
total number of particles per unit volume will thus be given by the
integral

N =f 2n(r) dr,
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where n(r) is a continuous and integrable function defined within the
range, representing the partial concentration per unit volume and per unit
increment of the radius r. .

It is more convenient to redefine the distribution function n(r) in terms
of the Mie size parameter x = kr = 2mr/1, thus introducing the wave-
length 1 as an independent parameter. This is necessary since for most
materials the refractive index m depends on the wavelength. If, further,
we can find a distribution function that takes into account all sizes within
the volume, then the foregoing integral may be written in the form

N = k‘lfwn(x) dx (79
0

where n(x) has the same form as n(r) after the change of variable. Sub-
stituting (79) into (78), we immediately obtain the expression

Bl n(x)] = mk™? f "X K so(x) dx (80)

for the volume scattering cross section.
Similarly, by muitiplying numerator and denominator of the right-hand
side of (75) by wk—®n(x) and integrating them separately, we get

dar
ksﬂsc 0

for the corresponding elements of the normalized scattering matrix for
the polydispersion. The functions (80) and (81) must be used to obtain
the Stokes parameters for the elementary scattering process represented
by (77) in the case of a polydispersion.

1t remains to specify the arbitrary distribution functions n(r), which so
far we have only required to be continuous and integrable in the range of
interest.

P,(6) = Cai©) dx,  j=1,2,3,4, (81)

34 FORM AND PROPERTIES OF THE DISTRIBUTION
FUNCTION

As in our preliminary results [/5], we choose a family of distribution
functions of the general form

n(r) = ar® exp(—br?), 0<r < o0, (82)

which vanishes at r = 0, o0, and which we shall call a modified gamma
distribution in analogy with the so-called gamma distribution, to which it
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reduces when y = 1. The four constants g, o, &, and y are positive and real,
and o is an integer. They are not independent of each other, and are
related to quantities in the frequency distribution, which can be deter-
mined by measurements. For example, upon integration over the entire
range of radii, we get

N = afwr“ exp(—br?) dr
° (33)
= ay =T (a——+ 1),
Y

which shows that the constant a is essentially given by N, the total number
of particles per unit volume. Furthermore, differentiation of (82) with
respect to r yields

;d— n(r) = ar* o — ybrt)exp(—br’), (84)

r

which has three zeros, two of which are at r = 0 (provided o > 1) and
atr = oo, respectively. If o = 1, the derivative at the origin is equal to a.
The third zero is found by putting the last factor in (84) equal to zero,
which determines the absolute maximum of the function (82), whence

=2 (85)
vr
with
n(r,) = ar? exp (— E)’ (86)
Y

where r, is the mode radius or size of maximum frequency in the distri-
bution, obtainable from the particle counts. Thus the constant b is
determined by r,, provided « and y are fixed or otherwise obtained from
the shape of the experimental distribution curve.

One can enumerate other properties of the modified gamma distribution,
such as the mean, variance, skewness, and so on, commonly used to
describe statistical distribution functions, but these are not of particular
interest here. A quantity of some interest is the total volume ¥, occupied
by the particles per unit volume of space, whence the mass of the particles
may be obtained. This is also given by a definite integral, obtained after
multiplying n(r) by (4/3)mr® and integrating:

v, = %awf prt8 exp(—br?) dr
¢ (87)

= $amy b=+ (—"‘ + 4).
Ve
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For the case y = 1, using the functional equation for gamma functions
and by virtue of (83), (87) reduces to

v, = 4?” BN + Do+ Do+ 3, y=1. (88)

Another quantity of interest is the logarithmic derivative of n(r), which
allows comparison with power law distributions, where n(#) is assumed to
vary as somie negative power of the radius. Differentiating the logarithm
of (82) with respect to In r, we get, by using (85),

r 4 [In n(r)] = o« — byr?
dr

I

which represents the slope of the curve log n(r) versus log . This also
shows that for « > 0, such logarithmic plots of n(r) for all functions (82)
arc convex curves with no inflection points, having a slope given by « at
¥ = 0 and approaching — oo as r — 0.

3.41 Actual Distribution Functions Used

One may construct a great variety of specific distributions based on the
general form (82). Since our intention here is to present detailed tables of
all Stokes matrix elements for each of these, the problem is one of judicious
choice, so that the number of tables is kept within reasonable bounds while
covering a sufficient range of distribution models likely to be most useful
in problems of atmospheric and space particle scattering. After careful
consideration of experimental data on distributions, we have chosen six
basic models, which are described in Table 5 and presented graphically in
Figs. 20 and 21.

Table 5 lists the numerical parameters used in constructing the models
on the basis of Eq. (82). Column 1 shows the name or designation of the
distribution, which also appears in the title of the main tables in Part II.
Column 2 lists the total number of particles N assigned to the unit volume
indicated. Column 3 shows the corresponding constant a determined by
means of (83) and the other constants of the model. Columns 4 to 7 list
the specific values of the parameters in (82), and column 8 includes the
specific concentration, per unit volume and radius increment, at the mode
radius 7, as given by (86). In the last column of this table, we have shown
the relative volume ¥/, occupied by the totality of the particles in the
distribution, according to (87) and (88). This quantity, when multiplied
by any unit volume of space and by the density of the substance of the
particles, should yield the actual mass of the particles in the unit volume
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Fig. 20—Haze-type distribution functions used. The units for the radius r
and for the unit volume in n(r) depend on the particular model (see Table 5).

chosen. For example, for the cloud model C.1, we obtain a liquid water
content of 0.063 g m—2.

Finally, in column 9 we have indicated the values of the radius for which
the negative logarithmic slope of the distribution equals or exceeds 4.
From (89) this condition becomes

Ny
> rc(l + —) ) (90)
o
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Fig. 21—Cloud-type distribution functions. The scale for the radius r is linear
here, rather than logarithmic as in Fig. 20.

The corresponding point on the distribution curve is interesting for two
reasomns. In the case of aerosol or haze models, it indicates the region where
the distribution may be approximated by a “model C” power law of the
form n(r) oc r=4, supposed to be characteristic of continental aerosols.
Second, for any of the models in Table 3, it shows the point in the distri-
bution beyond which the integrals (81) for 6 = 0 begin to converge. This
behavior, which has been pointed out before [9,10,26], has to do with the
fact that at and near zero scattering angles the intensity parameter i,(x, 6)
varies as x* Therefore, when a power distribution law is assumed, with a
negative exponent not exceeding 4, the matrix elements P,(0) near the
forward directions are not uniquely determined by the shape of the distri-
bution alone, but are also functions of the upper limit in size in the
integrations (80) and (81). In our own carly work we introduced dis-
continuous distributions based on power laws in various regions of the size
spectrum, including what we called a model C haze [10,11,12,16], which
later was adopted by others. We have since abandoned these awkward
distributions in favor of the continuous ones, which are more appealing
analytically as well as more practical, since they do not depend on the
meaningless extra parameters needed in the former to fit actual distributions.
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A brief word to justify the choice of models. Haze M was first introduced
to reproduce marine or coastal types of distributions [15,/6]. By changing
the size and wavelength unit from microns to millimeters and by reducing
N as shown in Table 5, we were able to fit the model to certain natural
raindrop distributions, and hence it was also found useful in computing
microwave scattering parameters [47]. (For economy, the Stokes matrix
elements corresponding to rain model M are not included in the present
tabulation since they arc presented in detail for various microwave
frequencies in a published report [47].)

Haze L has been adopted to represent the continental-type aerosol
distributions, replacing the model C power law mentioned earlier. As
can be seen in Fig. 20, the number of particles for r > 1.0 4 is much
smaller than in model M, and the correct logarithmic slope lies in the
important region around 7 = 0.63 u. (We have plotted the three haze
distributions on log-log coordinates in Fig. 20 for a better appreciation of
the logarithmic slopes.) Applying the same transformation as above, we
also adopt a rain model L, which approximates the drop size distribution in
light and mederate rain, in better agreement with raindrop counts than the
original model M. Our choice of raindrop size distributions is not as
fortuitous as it may appear, for we have carefully considered existing
field measurements. A survey of the extensive literature on the subject
shows, in fact, that there is little agreement among various authors, and
that there is no distribution that might be considered standard for any
given rainfall rate. This situation is not surprising in view of the diverse
natural rain-producing mechanisms and situations, levels and methods of
observation, and interpretations. We have therefore limited ourselves to
two models that may approximate conditions in moderate and light rain
aloft [cf. 47], and leave it to the reader to decide on their validity by
comparing them with observations or with other models, on the basis of
the parameters in Table 5 and the curves in Fig. 20.

The haze H model also serves a double purpose. With a proper choice
of units, it may be used to represent high-level or stratospheric aerosol
or “dust” layers composed of submicron particles. A comparison with the
average of several size spectra deduced by Junge, Chagnon, and Manson
[50, Fig. 23], for example, shows that our model is in close agreement with
the upper size limit of particles considered by these authors to be of strato-
spheric origin. Here again, actual measurements are scarce and standard
distributions can hardly be postulated. Changing the size and wavelength
unit to centimeters converts this model to a hailstone distribution, called
here hail H. The situation regarding actual hailstone size distributions
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seems to be worse than that of raindrops. In our choice we have been
somewhat guided by the recent work of Battan and Theiss [57,52], which
suggests that hailstones aloft may contain a larger proportion of smaller
stones than indicated by ground collectors.

As to cloud droplet distributions, model C.[ is identical with our
original one [/3,15,16], developed to represent cumulus clouds of moderate
thickness. This model contains the widest distribution among all our
models. Although actual counts show that distributions in thicker cumulus
and in stratiform clouds and fog may be wider, with a larger mode radius,
it is impractical to include such models in the present work. The general
trend in the variation of scattering properties as the size distribution
becomes wider is sufficiently illustrated by the models considered here.
Incidentally, model C.1 has the highest liquid water content among the
four cloud models considered and is the most skewed toward large drops,
as can be appreciated from Fig. 21. (The cloud distributions are plotted
on semilog coordinates for better display.)

What we have called corona cloud, or model C.2, has the same mode
radius of 4 ¢ as in C.1, but the distribution is much narrower and almost
symmetrical. To our knowledge there are no observations of cloud
drop size indicating that such a distribution actually exists in nature. As
the name indicates, we have chosen this distribution in our attempt to
find a model whose integrated angular scattering properties will indicate
colored coronas of the right radius. The question of coronas will be
discussed further later, in Section 4.32.

The mother-of-pearl, or model C.3 cloud, we devised in an attempt to
reproduce the color phenomena observed when these high-altitude clouds
arc present at twilight. To our knowledge, the actual capture and the
analysis of the nature and size of such cloud particles have never been
reported. This model may also be used to investigate the phenomenon of
the Bishop’s ring (see Section 4.31), since the model’s mode radius of
2 wis close to the characteristic sizes attributed to the responsible particles.
The distribution here is extremely narrow and practically symmetrical,
with almost all the particles contained within the range 1 < r <3y, but
1t is not strictly monodisperse with respect to scattering effects.

Finally, the double corona or model C.4 cloud distribution (not shown
on Fig. 21) is identical to that in C.3 and is obtained by a translation of
the origin of the sizes to the left by two units. The actual distribution
function used is given by

n(r) = 5.5556(r — 2 exp [—1(r — 2)*] w7 lem™® (€1
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where the constant a is the same as for model C.3, as determined from (83)
on the basis of N = 100 cm™%. We have put model C.4 to a very limited
use (see Tables T.70 and T.71 in Part II), mainly to reproduce the rare
phenomenon of a clearly defined double or triple corona around the sun.
We have not computed the exact volume ¥, for this model, but it should
be about eight times that shown for model C.3.

In general, although we have had to limit the number of models used in
the tables of Part II, our manner of presentation and tabulation affords
the reader considerable latitude and flexibility. First of all, the standard
concentration N can of course be adjusted by a factor to fit any desired
value, in which case 8, (and f,.) will change by the same factor, while the
P; and = values will remain unaltered. More important, additional
composite size-distribution models can be generated by addition and
subtraction, in any desired proportion, of those listed in Table 5. By
virtue of the additivity of the Stokes parameters, the corresponding
scattering parameters can be easily evaluated from the tabulated ones,
provided they are properly weighted (see Section 4.31).

3.5 CHOICE OF REFRACTIVE INDICES
(OPTICAL CONSTANTS)

In Chapter 2 we described the sensitivity of all the Mie scattering param-
eters to variations in both the real and imaginary parts of the index of
refraction, as well as in the relative size of the scattering sphere. As we
shall see, the corresponding integrated parameters are also sensitive not
only to the shape of the distribution function and to the relative size of all
the contributing particles, but also to variations in either or both optical
constants of the substance of the particles, for any given distribution and
wavelength. Therefore it is dangerous to make generalizations about these
parameters on the basis of a limited number of models.

In trying to arrive at a judicious choice of specific values of the re-
fractive index to be used in the model distributions, one is faced with a
dilemma. Most known substances likely to form atmospheric suspensions
vary in their optical constants, not only with chemical composition,
but also with the wavelength. Moreover, there is often little agreement in
the values of these constants obtained independently by various authors,
especially in the case of absorbing diclectrics and metals. Even for that
most important and common substance, liquid water, there are significant
discrepancies in the absorption data, particularly in the infrared region
beyond 26 u. As for “dust” particles in interplanetary and interstellar
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space, not only is their nature unknown (this being precisely what is
sought by analysis of their scattering and absorption properties; see
Section 4.5), but the relevant conjectures put forth by different authors
vary widely. Thus it would be pointless to consider more than one or two
examples representing each of the types of substance suggested in the
literature, such as pure and absorbing dielectrics, opaque earths, ices, and
metals. From the corresponding scattering and absorption properties of
polydisperse—or monodisperse—populations, one may then hope to
reduce the number of choices and to pursue the research by more refined
analysis of the astronomical data.

~ Our choice for the final tables presented here has been guided by
various considerations. First of all, for obvious reasons we have tried
to cover liquid water in most detail from the visible into the middle
infrared, as well as the microwave region in the millimeter and centimeter
range. The ice phase is not so well covered because common ice clouds
are not composed of spherical particles, and the optical constants of ice
in the infrared are not well known. As for other solid or liquid particles,
we have limited our choice to certain materials only, such as silicates,
certain clays (limonites) assumed by various authors to be present on the
surface of Mars, and metals (iron). Space does not permit the inclusion
of all likely materials. We have preferred instead to offer complete tables
of all the scattering parameters for specific cases, letting the reader draw
his own conclusions for other materials by considering the trends as one
varies the optical constants that determine the real and imaginary parts
of the index of refraction.

Table 6 lists the real and imaginary parts of the complex index of re-
fraction, m = v — ix, actually adopted in this work, together with the
wavelength and the corresponding bulk absorption coefficient y, = darecfA.
Except for liquid water in the visible and near infrared, where there is
general experimental agreement, the substances indicated for other
wavelengths and indices should not be taken too literally. Some remarks
on our criteria for the choices follow. -

For liguid water in the visible and near infrared, we have been mainly
guided by Centeno’s [53] compilation, especially for the real part of m,
and have used graphical interpolation to get the values at the particular
wavelengths shown in Table 6. The latter were chosen to ‘coincide with
regions of maxima and minima in the absorption spectrum. The values
of y at 11.19, 1.45, 1.94, and 2.25 4 have been adapted from those given
by Curcio and Petty [54] for triply distilled water at 20°C. These seemed
more suitable for our purposes than the more recent determination of
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Bayly, Kartha, and Stevens [55] at 25°C, in which the degree of purity
of the water sample is not clearly stated. At A2.25 u we show two indices,
with and without a weak absorption, respectively, to examine the effect
of its neglect on the scattering and albedo of a polydispersion. In the
remaining part of the infrared spectrum the values are mostly adapted from
Centeno [53], except at 23.0 u. At 18.15 u we also adopt two values for «,
the second of which (i.e., x = 0.0236) is used to show the effect of halving
the absorption in this region, as suggested by McDonald [56] (see Section
4.31).

After having computed and prepared tables for all additional cases with
liquid water in the infrared, based on Centeno’s data as previously 6],
we discovered a very recent set of consistent values for m in the range
1.0 < 1 <40 u, published by Pontier and Dechambenoy [57]. These are
based on new infrared oblique reflection measurements, and the complex
index is deduced, in part, following the method proposed by Queney [58].
A comparison with the older set revealed no significant departures in the
real and imaginary parts of m except around A3.0 1, where the new value
shows an absorption some five times the old. Since this is in agreement with
other measurements [55], we had to revise all our tables corresponding to
water at A3.0 4 on the basis of the new data, leaving other wavelengths
unchanged. Incidentally, the newer measurements [57] mear A8.15 u show
an absorption that is in better agreement with Centeno’s [53] rather than
with McDonald’s [56] preference.

The temperature dependence of the liquid water absorption coefficient
in the infrared is often not explicitly stated in the literature. Hence we show
no temperatures in this case in Table 6, where most values may be assumed
to apply to room temperature or 20°C [53,54], and to 35°C at 13.0 u [57].

The values for liquid water at 0°C and 10°C in the millimeter and centi-
meter regions were computed on the basis of the Debye formula, as given
by Saxton and Lane and used in our previous work [47]. According to a
recent note by Lane [59], it appears that the original formula closely
reproduces experimental values in the far infrared region as well. Therefore
the values listed in Table 6 may be considered as reliable in the whole
range 0.10 < 4 < 8 cm. For ice at 0°C we have adopted a constant index
of refraction for the same range, following an earlier work [47], since no
new determinations have come to our attention.

For iron in the visible we have adopted two sets of values for the three
wavelengths shown in Table 6. The first set, with the lower values for »
and «, is identical with that used in our previous work [26,27,28] and
follows closely the values mentioned by van de Hulst [/, p. 273]. The
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Table 6
Indices of refraction used in the tables

Substance Y v K ¥ (cm™1) Source and comments
Liquid water 045 1.3400 0. 0. Centeno [53]
0.70 .« 1.3300 O. 0. Centeno [53]
1.19 4 1.3220 0.00001 1.056  Curcio & Petty [54], near
max. absorption
145 1.3180 0.00030 26.000 Curcio & Petty [54], near
max. absorption
1614 13150 0. 0. Centeno [53], no absorp-
tion
194 4 13080 0.00180 1166 Curcio & Petty [54], near
max. absorption
2254 1.2900 0. 0, Centeno [53], no absorp-
tion
2.25 1 1.2900 0.00035 19.55 Curcio & Petty [54], near
min, absorption
3.00 4 1.3640 0.30600 12820.0 Pontier & Dechambenoy
[57], max. absorption
3901 1.3530 0.00590  150.1 Centeno [53], near min.
absorption
5304  1.3150 0.01430 339.1 Centeno [53), near min.
absorption
6.05u 1.3150 0.13700 2846. Centeno [53], near max.
absorption
8154 1.2900 0.04720 727.8 Centeno [53], near min.
absorption
8154 1.2900 0.02360  363.9 McDonald [56], reduced
absorption
10.00 o 1.2120 0.06010  755.2 Centeno [53]
11.50 . 1.1110 0.18310 2001. Centeno [53]
16.60 1 1.4400 0.40000 3028. Centeno [53]
0°C liquid 0.1cm 24066 0.4771 59.95 Saxton & Lane formula (as
water used in [47])
0.2cm 2.5604 0.8947 56.22 Saxton & Lane formula (as
used in [47])
0.3cm 2.7589 1.2408 51.97 Saxton & Lane formula (as
used in [47])
0.5cm 3.1918 1.7657 44.38 Saxton & Lane formula (as
used in [47])
1.0ecm 4.2214 2,5259 31.74 Saxton & Lane formula (as

used in [47])
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Table 6 (continued)
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Substance A v K v, (em™1) Source and comments
0°C liquid 2.0cm 5.8368 3.0046 18.88 Saxton & Lane formula (as
water used in [¢7])
33cm  7.1755 2.8642 10.91 Saxton & Lane formula (as
used in [47])
50cm 8.1084 24102 6.058  Saxton & Lane formula (as
used in [47])
80cm 8.7889 1.7531 2.754 Saxton & Lane formula (as
used in [47])
10°C liquid 0.1cm 2.4806 0.7050 88.59 Saxton & Lane formula (as
water used in [47])
03cm 3.1060 1.6626 69.64 Saxton & Lane formula (as
used in [47])
1.0cm 5.1553 2.8341 35.61 Saxton & Lane formula (as
used in [47])
3.3cm  8.0253 2.2727 8.654  Saxton & Lane formula (as
used in [47])
80cm 89218 1.1423 1.794  Saxton & Lane formula (as
used in'[¢7])
0°C ice 0.2cm 1.7800 0.0024 0.1508 Previously used value [47]
0.5cm 1.7800 0.0024 0.06032 Previously used value [47]
1.0cm 1.7800 0.0024 0.03016 Previously used value [47]
33cm 1.7800 0.0024 0.00914 Previously used value [¢47]
8.0cm 1.7800 0.0024 0.00377 Previously used value [47]
Iron 0.441 y¢ 1.2800 1.3700 3.904 - 10° Van de Hulst [/]; Hand-
book [62]
0.589 4 1.5100 1.6300 3.478-10° Van de Hulst [/]; Hand-
book [62]
0.668 ¢ 1.7000 1.8400 3.461 - 10° Van de Hulst [/]; Hand-
book [62]
0.441 1 2.6600 3.8400 1.094-10° Yolken & Kruger [60]
0.559 4 3.4600 3.8800 8.278 - 10> Yolken & Kruger [60]
0.668 4 3.5700 4.0300 7.581-10° Yolken & Kruger [60]
Silicate 0.450 4« 1.5600 0. 0. Handbook
0.589 ;« 1.5500 0. 0. Handbook
0.700 s+ 1.5400 0. 0. Handbook
0.589 1 1.5500 0.0155 3.307 - 10® Handbook
0.589 4« 1.5500 0.1550 3.307 - 10* Handbook
Limonite 0.589 1+ 2.2000 O. 0. Handbook
0.589 1 2.2000 0.0220 4.694 - 10° Handbook
0.589 u 2.2000 0.2200 4.694 - 10* Handbook
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second set, in which the optical constants are about double those of the
first, was adapted (by graphical interpolation) from recent determinations
by Yolken and Kruger [60]. However, the latter do not seem to quite
agree with another, independent set of recent determinations by Lenham
and Treherne [67]. According to private communications from the authors
of both papers, it appears that the values of the optical constants are in
this case quite senstive to the method of preparation and purity of the
sample, as well as to other experimental constraints. As the scattering
properties of iron or other metallic particles are of interest mainly in
research on interplanetary and interstellar matter, where the conditions of
condensation are unknown, it is doubtful whether the use of exact
laboratory-derived values is crucial. We have prepared scattering tables
for a few polydispersions on the basis of only the two sets of optical
constants mentioned, hoping they will be of some use in this type of
research.

As for silicates, our criterion in choosing an appropriate index of
refraction has been to include some sort of glasslike material. In view of
the numerous values for quartz and other optical materials quoted in the
literature [62], we have adopted a hypothetical dielectric material with a
likely refrangibility in the visible that approximates the optical properties
of quartz at 20.589 u. We have also included “dirty” silicates to
examine the effects of including some absorption equivalent to «/» equals
0.01 and 0.10, respectively.

Finally, we have used a refractive index m = 2.2 to represent /imonite
[62], with and without absorption, to simulate Martian dust. Again, this
value should not be taken literally as characteristic of this substance, but
only as an example of the scattering. properties of earthlike opaque
minerals.

Combining the fifty indices of refraction listed in Table 6 with the seven
distribution models of Table 5 » we have produced over one hundred tables
of complete scattering parameters. These should be adequate to cover a
wide range of problems connected with scatterin g, absorption, and radiative
transfer in polydisperse media. In the following chapter we shall illustrate
some of the applications and suggest methods to generate composite
models on the basis of the tabulated data.

3.6 PREPARATION OF THE TABLES

The generation of the Mie functions used in the integrals (80) and (81) is
essentially as described previously [27], except that it is now written in



SINGLE SCATTERING ON MANY PARTICLES 89

FORTRAN for the current IBM 7040/7044 system in use at The RAND
Corporation. Whenever kx > 30, it automatically incorporates the double-
precision subroutine mentioned in Section 2.22. It has been checked
repeatedly and has been found adequate for our purposes.

The present program is set up so that for each case one has to specify
the following sets of parameters: v, k, 2, #(x); x;, Ax, X5; 6, A6, 6,, where
x; and x, are the integration limits and Ax is the integration interval,
which may be changed three times for any particular run. Note that 4
is the only dimensional parameter, and the choice of its units determines
also the true size r of the particles in the distribution n(x). The trapezoidal
rule is used with a sufficiently small summation interval Ax in each case to
ensure a continuous integral as a function of x, taking into account all the
contributing particles in the distribution. Also 6, and 8, are the initial
and final scattering angles, usually set equal to 0° and 180°, respectively,
and 40 (which can also be varied three times for cach case), the angular
interval for which data are required. The memory capacity of the system
imposes a limitation for each case, so that the number of angles 0 to be
displayed times the number of terms to be summed in the series for
a,(xp) and b,(x,) must not exceed 10%. Otherwise there is no limitation on
the size x, except in the case of large absorbing spheres, where the double-
precision routine itself fails, as mentioned in Section 2.22.

[t is understood that for each x + Ax specified, the computer correctly
evaluates all the scattering parameters for the individual sphere on the basis
of the proper Mie series, as described in Section 2.2, Only at specified
intervals, which are multiples of Ax, are the results displayed on two
separate pages: on the first page the computer prints the individual values
of $1(8), Sz(6) (as complex numbers), K.y, K., K,,, and i;(0), (j =1, 2,
3, 4) as defined in (39) and (72), for the sphere of the particular x, m and
the angles specified. On a second page are printed the values of the
integrals with respect to n(x) of the type

Blm, n(x), 4, x1, x] = 7Tk_3f x®*n(x)K(m, x) dx (92)
where § may be the volume scattering, absorption, or extinction cross
section, according as K., K,,, or K. is used in the integrand on the
right-hand side; and the values of P;(8)/4w given by the integral (81) over
the same limits as in (92) and for the same angles as on the first page. The
convergence of these integrals can thus be easily checked to verify the
choice of the upper limit of integration x,.

As for machine time, the longest case with x, = 160, which had to be
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split into two runs because of the above-mentioned memory limitation
(see Table T.35), took just under 36 minutes for all operations including
printout.

Due to the sensitivity of the Mie functions to size, one has to choose
Ax so that the integral takes into account all their major and minor
oscillations. We have no uniform scheme to offer for the best choice of Ax,
except for a “feel” developed after trying various values and comparing
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Fig. 22—Examples of the convergence of the integrals (80) and (81) toward a

definite value for finite limits x, of integration. For convenience of display the
actual values for § = 0° were multiplied by 10-2 before plotting, and those for

Bse by 10.

the smoothness and convergence of the integral curves toward the asymp-
totes representing the definite integrals (80) and (81). Figure 22 illustrates
the manner of convergence with a partial plot of some of the integrals that
make up the values shown in Table T.2 for a haze M distribution. The
curves marked 0 = 0°, 110°, and 180° correspond to the function
P(0, x)/47 for these angles as a function of upper limit x. For 0 = 0°, the
intensity function (reduced by a factor of 10 for display) rises smoothly
from its Rayleigh value near the origin, with just the indication of a
relative minimum around x = 12, reflecting the strong minimum in the
function i;(x, 0°) that exists in this region [cf. 9, Fig. 2]. The curve is still
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rising at x = 30, and the integration in this case was actually carricd up to
x = 50, ensuring full convergence in the value shown in Table T.2. The
curve for 6 = 110° seems to attain its asymptotic value very quickly near
x = 10, whereas that for § = 180° shows a minimum in this region and
then rises again, in opposite phase to the tendency in the curve for 6 = 0°.
Note that both curves for 6 = 110° and 180° show that the normalized
intensity functions here first drop from their Rayleigh value near the origin,
showing the effects of increased forward anisotropy as progressively larger

Table 7
Comparison of integration with fine and gross intervals
for water cloud model C.| at 20.70 u

Py(5°, x)[4m P,(180°, x)/4=~

X Gross Fine Gross Fine

10 3.731 3.730 0.01087 0.00665

20 7.331 7.445 0.07028 0.06845

30 6.124 6.143 0.03914 0.05007

40 3.247 3.233 0.04776 0.04724

80 2.212 2.209 0.04786 0.05008
110 2.155 2.152 0.04851 0.05055

particles are taken into account. The volume scattering cross section
B.o(x) is also shown (value in km~ increased by a factor of 10 for display)
to rise steeply and smoothly from its zero value at the origin, without any
indication of the well-known, numerous major and minor oscillations in
the curve K., (x) for water droplets.

In Fig. 22 we have fitted smooth curves to the printout points only at x:
0.25(0.25)2(0.5)10(2)30, indicated by dots, in the case of §,. and 6 = 0°,
but for 6 = 110° and 180° we have joined the points with straight line
segments without curve fitting. Had we used a finer printout interval,
approaching the integration interval indicated in Table T.2, thesc latter
curves would show smoother oscillations, reflecting more faithfully the
behavior of dielectric spheres indicated in Fig. 9. Because of the nature
of the distribution function n(x), it is clear that these oscillations are
damped out upon integration to a large limiting size x,.

Finally, in Table 7 we show the effect of a change in integration interval
on the partial and final integrals for the two intensity functions for the
cloud distribution C.1 (see Table T.36). The columns marked *gross”
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were obtained by using the intervals x: 1(1)40(0.5)110 and the column
marked “fine” with x: 0.25(0.25)110. Clearly, there is very little improve-
ment in the forward area (6 = 5°) if the integration interval is quartered,
whereas in the backward area (§ = 180°) the gross interval of Ax =1 is
not adequate, especially for a small range of integration. For the complete
integral with x, = 110, the backscattering intensity is underestimated by
about 4 percent. We have uscd the fine interval in preparing Table T.36.

The main tables, numbered consecutively from T.1 to T.125 (to dis-
tinguish them from tables appearing in Part I) and reproduced in Part 11,
are arranged according to increasing wavelength and grouped by substance
and distribution model. They contain all the information needed by the
reader on the complete volume scattering parameters of the poly-
dispersion. In the heading of each table we have indicated: the complex
index of refraction 7 and wavelength 1, also appearing in Table 6; the
size-distribution model, identified in Table 5; the lower and upper limits
of integration, as well as the various intervals used within the range;
and the volume extinction cross section Bex and albedo w. These are given
with sufficient accuracy to allow the reader to obtain the scattering and
absorption cross sections separately to at least three significant figures.

In the final tabulation of the angle-dependent scattering matrix elements,
we have tried to choose in each case a sufficient number of angles between
0° and 180° to cover in detail the oscillations primarily of the main intensity
functions, P,(8)/4m and P,(6)/4w, so that when plotted as in Fig. 28, the
computed points can be fitted with smooth curves by the reader for
further graphical interpolation. Thus the adopted angular interval A6
(not necessarily the same as in the original computation) is often variable
within each table, depending on the nature of the angular dependence in
cach region. For example, in Table T.51 for the corona cloud C.2 at
20.45 u, we have tabulated values every 0.5° in the range 4° to 10° and
every 1% in 170° to 180°, to display the coronas and glories that are
produced within very narrow angles by this model. For the same cloud
illuminated by infrared at A16.6 u (Table T.58), a tabulation every
46 = 10° is more than adequate to show the smoothly varying character
- of the intensity functions.

Derived quantities, such as the asymmetry factor cos 6, which accordin g
to van de Hulst’s definition [Z, p. 128] and Eq. (74) is given by the integral

cos fl = %f [P1(0) + Py(6)]cos 0 sin 6 dé
0

for a polydispersion, can be casily obtained from the tabulations by
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graphical or numerical integration. The same applies to integrations of
the intensities over a range of scattering angles, as in the problem of the
zodiacal light (see Section 4.51).

All the tabulated values of these functions have been carefully edited and
rounded off to four significant figures from the original machine tabulation
in six figures. To save space, we have further limited the individual
tabulations to six decimal places in the case of zeros and of relatively
small quantities. The intensities P,(0)/4r and P,(6)/4m are of course
positive by definition, but the remaining two matrix elements may have
either sign. Where applicable, we have indicated only the negative sign
determined by the definitions adopted here according to (72) and (81).



Chapter 4 Discussion and Applications
of the Results

4. GENERAL REMARKS

As noted in the Introduction, the prime purpose of this monograph is to
investigate the clementary scattering and absorption properties of poly-
dispersions of Mie particles. The principal results are presented in the form
of numerical tables, extracted and reproduced in Part II. Most of the
original results have not been previously published by the author, either in
the form of RAND reports for limited circulation, or in the open scientific
literature. We believe that the numerical tables constitute a versatile and
powerful experimental tool for the further investigation of aggregates of
particles illuminated by electromagnetic radiatjion of various frequencies.
At the same time, considerable new information on the scattering
behavior of polydispersions is contained in the tables, either explicitly or
implicitly. We do not intend to analyze and describe all of it in detail here,
hoping to expand on particular features in future studies as the occasion
may arise.

In this chapter we wish merely to discuss some of the salient features of
our results and to illustrate by means of examples a few of their more
immediate applications. By proper analysis of the results, the reader may
discover other features and uses, whose omission here does not necessarily
mean that they have been overlooked by the author.

42 EQUATION OF RADIATIVE TRANSFER

One important use of the numerical results in the form presented in
Part 11 is as input parameters in solving the equation of radiative transfer

94
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in extended scattering media. To illustrate this use, we shall briefly recall
one particular form of this equation, since we are not concerned here with
its solution and discussion. This form is often used when a planetary
atmosphere is modeled as a locally plane-parallel, horizontally homo-
geneous medium, which scatters the externally incident radiation without
change of wavelength or resonant effects, and contains no internal emitters
of radiation, of thermal or other origin. Denoting by / the height or distance
normal to the planes of stratification, measured from the boundary that
receives no direct incident radiation (e.g., the Earth’s surface in the ter-
restrial case), we have, for a small volume element embedded in the
medium,

dith; 4, @)
B T

for quasi-monochromatic radiation of central wavelength 1 (not shown
explicitly in the symbols but implied). In this equation, which applies to the
diffuse or scattercd field only, u is a direction cosine referred to the local
zenith, @ is an azimuth, and J is the Stokes vector corresponding to the
so-called source function in this type of formulation. The physical inter-
pretation and explanation of this formulation is available in various
papers, as for example in recent publications by Sekera {63,64,65]. If the
height is a single-valued, continuous function of the normal optical
thickness 7, so that

= Bex(DICh; g @) + B W)ICh; 1, ) 93)

_ dr(h)

= 94)
Bex(h)
and the local albedo of single scattering o is defined as
m_(q_) . ﬂsc(T) (95)

Box(T)
then (93) may be rewritten in terms of the dimensionless independent
parameter 7, in the simpler form

u d% 5, @) = X3 o, @) — w(0)I(r; 1, ), 96)

where the source function has the explicit form

)+i f P(y) - Xr; i, ) doo (97)
4u Ja

P(6
35 por e @) = DD, eXP(— =
4 Ho
which is valid for unit incident flux F = 1. Here y, is the absolute value

of the direction cosine for the incident radiation, u’, ¢’ denote the direction
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of incident diffuse radiation (self-illumination); and w is the scattering
angle between the directions u’, ¢’ and u, @. The remaining symbols are
as before. Note that for an isolated volume element, (97) and (93) reduce
to (77) since = — 0 and there is no diffuse field.

The complete solution of the integrodifferential equation (96), with the
source function (97) for homogeneous atmospheres of arbitrary optical
thickness but with a Rayleigh-type scattering only, has recently been the
subject of considerable study. For example, the method first proposed by
Chandrasekhar {40] has been further developed by Mullikin [66] and Sekera
[65], and complete numerical tables and their analyses have been published
by Sekera and Kahle [67,68].

Equation (96) can also be solved in a first approximation under con-
ditions where multiple scattcring (self-illumination) may be neglected.
This amounts to neglecting the second term on the right-hand side of
Eq. (97), and we have the first-order linear differential equation

A 9) _ ¢ _ =@ peg _z
7 T =1 - P(6) - F, exp( )

In an arbitrarily mixed atmosphere, particularly if, due to the presence of
some absorbing molecular layer, =(7) is not a single-valued function of %,
(98) may not have an analytical solution. If, however, the albedo is
constant throughout the medjum, then we have the well-known solutions

M= £ 02 e )]
0 0

(98)

(]

003 o ) = 22 PO ¥y 0 [1— oxp =, ot L)
4m Mo+ 4 ol

for the transmitted and reflected diffuse field, respectively, where 7,
denotes the total normal optical thickness. Under the conditions mentioned
above, since independent scattering is assumed and there are no higher-
order scattering effects, solutions of the type (99) may be obtained separately
for each component of the medium and the results added to obtain the
total field. It is evident that these solutions, which are fairly good approxi-
mations for media whose total optical thickness (absorption plus scattering
attenuation) is small, say + < 0.10, depend on the directions of incidence
and emergence as well as the albedo of single scattering.

Finally, if + K 1 and the arguments of the exponentials in (99) are
sufficiently small (i.e., barring near-grazing incidence and emergence),
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the two solutions reduce to a single one, given by

W(rye p) = f—M P(0) - F,
i (100)
P(H)

se dar FD

where 7 is the scattering optical thickness. This solution says in effect
that the diffuse field, both transmitted and reflected, depends only on the
total scattering cross section, the scattering angle 0, and the direction of
emergence of the radiation, but it is independent of the albedo of single
scattering. This property in turn shows that the true nature of the particles
in an optically thin scattering medium cannot be deduced from photo-
polarimetric data on the diffuse field alone. The total extinction or the true
absorption cross section must be determined independently in order to
deduce the complex index of refraction of the particles.

In general, in media that admit the solution (99) or (100), it is clear from
their form that the nature of the diffuse field will be mainly governed by the
scattering matrix P(6) as well as by the volume scattering and absorption
cross sections. All three in turn depend critically on the size distribution
and nature of the particles. As we shall see, there are a number of out-
standing geophysical and astronomical problems that may be included in
this category.

Thanks to the separation and normalizations discussed in Sections 3.31
and 3.32, the tabulated material compiled in Part II can be used directly
in the equation of transfer by choosing the appropriate model or com-
bination of models to simulate a given atmosphere. Conversely, provided
all observable parameters are available for an unknown atmosphere, it
should be possible in principle to derive the form of the phase matrix and
volume scattering and absorption cross sections, whence the tables will
provide some indication of the nature and size distribution of the individual
scatterers.

4.3 APPLICATIONS TO THE TERRESTRIAL ATMOSPHERE

The terrestrial atmosphere obviously is the best medium for a direct
application of our results. Its diverse optical phenomena and their vari-
ations during daylight, twilight, and night conditions must have been
subject to observation and interpretation from the beginning of human
life. Whereas their systematic study during historical times was confined
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to the analysis of observations made from the surface, the atmosphere has
been subject to observation from outside only within the last decade.
Despite the impressive recent advances in refined instrumentation and in
mobility of the platforms on which they may be mounted, much remains
to be done before we are able to completely understand the interactions of
solar energy with the earth-atmosphere system. In particular, the initial
drastic simplifications introduced by the great pioneers of the nineteenth
century, to interpret the gross features of the atmosphere as a scattering
medium, are no longer sufficient to make full use of the very detailed
observational data now available and potentially available in the near
future. These must include the information obtainable from artificial
satellites and by means of artificial sources of optical, infrared, and
microwave coherent radiation of high intensity confined in a narrow beam.

The particular aspects of the terrestrial problem in which polydisperse
scattering is involved include the cloudless sunlit atmosphere; the particu-
late layers in the stratosphere and mesosphere; water-droplet and ice
clouds; and disturbed conditions produced by major volcanic eruptions,
forest fires, and man-made pollution. The appropriate forms of the equation
of transfer for each of these varies from problem to problem, some being
amenable to immediate solution and interpretation while others are as
yet practically intractable. In the following sections we illustrate the use
of the tables for some of the simpler cases.

431 Aerosol, Haze, and Dust Layers

On cloudless days the skylight distribution may be explained in a first
approximation in terms of an optically homogeneous, sunlit medium with a
single type of scattering characteristic of nonpolar molecules (Rayleigh
scattering). A careful examination of the diffuse skylight, however,
reveals considerable departures from this model, especially in the increased
brightness within a wide circle around the sun, called the aureole. These
departures are mainly due to the presence of several other types of large
scattering particles whose concentration and nature, for any given location,
vary both vertically and horizontally, and of course with time.

It would be impossible to incorporate all these variations in a theoretical
model to obtain the diffuse field, and various simplifications have been
tried. One such simplification assumes a mixture of two types of scattering
only, corresponding to a Rayleigh and a Mie component. Using the
subscripts R and M for these components, respectively, and none for the
mixture, and using the source function for primary scattering only, we
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may rewrite Eq. (93) in the form

ar
B = =Bd = (BuaPi + PPy - Fo exp(— 1) (101)
dh Mo
where
30}{ h = CcX. h’ + CX h 3
Box(h) = Bexn(h) + Boxulh) (102)
ﬁsc(h) - ﬁsc]{(h) + ﬂsc;\[(h%
and
(h) = fwﬂpx(h) dh. (103)
R
To solve (101) it should be written in the form (98); that is,
dl w(h) ﬂsvl{ ﬂso;\[ T
—— = I 4+ —|==P 22 Py) o F - — 104
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where
Beolh)
w(h) = (105)
Bo(h)

We then note from (104) that the analytical solutions in (99) cannot be
obtained in this case unless both the albedo of single scattering = and the
scatrering mixing ratios per unit volume f..p/fu. and f./Bs. are inde-
pendent of the total optical thickness of the mixture. Even if we assume a
constant size distribution for the Mie particles, this is equivalent to the
condition that their number concentration vary with height as the density
of molecular air. It is well known that this condition is not satisfied in our
atmosphere.

However, provided we can neglect multiple scattering effects, and we
are not interested in the variation of the diffuse field within such an
atmosphere, but only in what emerges from the boundaries, the actual
Mie component can always be replaced by an equivalent one having the
same total concentration per unit column and a scale height equal to that
of the molecular atmosphere. The whole atmosphere then becomes an
optically homogeneous one, and we revert to the solutions (99) in terms
of the total optical thickness 7, remembering that the scattering matrix
must be properly weighted; that is,

/))\'(‘J{PR + ﬂs(-Z\IP)T
ﬂsv .

The foregoing separation can of course be extended to any number of
different types of scatterers and size distributions. It can be easily shown

P(0) = (106)
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that the first two elements of the weighted scattering matrix (106) for any
mixture fulfill the normalization condition (73), which, from (74) and
(81), takes the form

| = 8L7T fﬂ[pl(e) + P(6)] do, (107)

In an earlier attempt to estimate the role of aerosols in the formation of
the aureole around the sun [8,9,/0], we had used a slightly different but
equivalent technique, originally suggested by Sekera [4/]. This procedure
consisted in treating the aerosol effect as a perturbation on the known
Rayleigh diffuse field. 1f only primary scattering of sunlight is considered,
it can be shown that Eq. (104) takes the alternate form

dl —1+ih)(

ﬁsc]{ + ﬂscM o

where
Pp=Py—Px (109)

Here again the scattering matrix in parentheses on the right-hand side of
Eq. (108) is the same as (106) and fulfills the normalization condition (107),
whereas the integral of the components (P;j, + Pyp) of the deviation
matrix (109) over all space is by definition equal to zero. When the aerosol
component is small, the form (108) has certain advantages, especially in
directions other than those in the vicinity of incoming sunlight. There is a
single mixing ratio Byey/(Bser + Bscnr)» Which may be considered as a
turbidity coefficient and which is a function of 4 or = in the lower atmos-
phere. When only primary scattering is considered, as in the above-
mentioned study [/0], this coefficient may be kept constant in an
equivalent homogeneous atmosphere.

In the more general case, when the optical thickness of the aerosols is of
the same order as that of the air molecules, and when multiple-scattering
effects are to be included, the separation of P(8) as in (108) offers little
advantage. Furthermore, the introduction of negative intensities, which
the latter method entails, is not physically attractive.

At any rate, in the case of the aureole, it is evident that the Mie com-
ponent will dominate the Rayleigh component of the scattering matrix for
scaftering angles O < 6 < 40°. This is illustrated in Fig. 23, where we have
plotted the scattering matrix components P;(0) and P,(0) for sea-level air
containing 100 water particles distributed as in the haze I. model (see
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Tables 5, T.16, and T.17). For the mixing ratios in (106), we used values
of Byer of 0.0252 and 0.0040 km= [69] for 10.450 x and 0.700 u, respec-
tively, and f .y from the corresponding tables. In blue light, Fig. 23a
shows the aureole effect in the forward area, but in the region around
60° < 0 < 160° a Rayleigh-type scattering and polarization result
because of its high mixing ratio. In red light (Fig. 23b), the Rayleigh effect
is much weaker. (In both these figures we also show the pure Rayleigh
functions Py and Py, for comparison.)

These two examples give an indication of the aureole brightness gradients
to be expected with this type of aerosol. As already pointed out elsewhere
[{6], our original attempt using a diffraction approximation for the
forward scattering [/0] was in error because a factor of 47 was omitted
in P,y and P,y and the brightness gradient near § = 0° was overestimated
by the diffraction approximation. A recomputation of the aureole using
the same method but with the more exact curves of Fig. 23 would give a
more realistic picture, with a flatter gradient near the Sun’s limb and a
broader aureole region around the Sun, in better agreement with photo-
metric observations.

Figure 24 shows what could be a typical phase function for strato-
spheric air at 20 km. The Rayleigh components of f. at this level are
1.87-107% and 0.295- 1073 km™! at 10.450 4 and 10.700 u, respectively
[69], and the Mie component has been taken as 1/10 of that given by a
model H distribution of silicate particles (Tables T.102 and T.103).
{Actually the concentration of 10 particles per cubic centimeter is rather
high for normal stratospheric conditions, and may be more typical of vol-
canic dust layers producing anomalous twilights.) It is seen that even with
this size distribution, containing practically no particles with radii greater
than 0.5 u, there is a considerable aureole effect. The variations of the
natural aureole with height in the stratosphere have been demonstrated by
the excellent balloon measurements of Newkirk and Eddy [70].

In general, Figs. 23 and 24 indicate the inhomogeneity in scattering
properties to be expected in the natural, cloudless atmosphere on the
clearest days, far from intense sources of pollution. Thus in solving
the direct problem there seems to be no alternative but to introduce the
complete scattering matrix of the mixed atmosphere characteristic of
cach layer and to integrate step by step. In this respect the techniques
proposed by van de Hulst [7/] seem to offer the best hope. On the other
hand, the solution of inverse problems is made more difficult by the
number of independent variables sought, such as the mixing ratio, size
distribution, and optical constants of the aerosol components, and their



103

DISCUSSION AND APPLICATIONS OF THE RESULTS

*ased siyl ul [apow y3is|Aey
ay3 wouy uoneziiejod pub A1sUIUI UL UOIIRIASP PdJBW BY3 d30u 7 L0 IV (9) 7 G0y 3V (8) "H |3pows o3 Buipaode
ps3NGLIISIp (wd Jad s3|3134ed 23ed1)1s ¢ BujulEIUOD WY QT IB J1e Joy €7 “Bly Ul Se sIuUBWS|3 dwes Y3 jo sojdwex3—pg *Sig

{bap) ‘g (69p) ‘g
08F 09 Ovl 02 OOt 08 09 O O O 08l 091 Obl O2) OOb 08 09 OF 02 O o
I i 2-
T I T +l.fz f I T T i L.I._. T [ !

,_O}
3
3]~
o
| WH 9£2000= ¢/ || W) 8,4000= "¢ F 4 L =
b=/ 0LOYX b=@ SHO X L/ —o— ~
I [ .IA OO—
- 7] = H 920y 94p211s % yum o wy 02 |
_ L1 I S NN NN MO N SN 0l
(a) (®)



104 POLYDISPERSE SCATTERING AND ITS APPLICATIONS

stratification. Tt is necessary to rely on all variables amenable to obser-
vation, both in diffuse reflection and transmission, to obtain anything
like a unique solution. Sekera [72] has discussed some of these problems in
connection with satellite observations of reflected sunlight. It is clear that
a number of models of the scattering function, such as those produced in
this monograph, representing likely aerosol distributions, will be of great
help in making judicious choices in both the direct and the inverse problem.

A few comments about polarization effects are in order. In this country,
Sekera and his collaborators [/8,4],73] have for several years conducted
detailed measurements of the polarization of the cloudless skylight.
Soviet scientists, notably G. V. Rozenberg [74], have undertaken similar
studies. These observations, when compared with the Rayleigh theoretical
model as to degree of polarization, positions of the maximum polarization
and of the neutral points, and the wavelength dependence of these and
other details, reveal significant discrepancies. The polarization of the
light diffusely reflected from the top of our atmosphere has not been
observed, but because of the important ground reflection effects it should
reveal even greater departures from the Rayleigh model, as shown, for
example, by Fraser [75].

It is cvident from an inspection of the curves in Figs. 23 and 24 that the
presence of aerosols must contribute significantly to the general polari-
zation field. Outside the aureole region an analysis of their effect on various
polarization features is not straightforward, as these are mainly the result
of higher-order scattering and surface reflection. A detailed discussion
cannot be undertaken here, but it is clear that a proper analysis of these
effects requires a set of complete scattering elements for each aerosol
model. For example, the data presented here suggest that some ellipticity
may be present in the turbid atmosphere. However, this should be a rather
weak effect because (a) no ellipticity is produced by primary scattering of
the unpolarized incident sunlight -on Mie particles, and (b) even with
multiple scattering, the ellipticity parameters Py(8) and P(0) for air are
considerably diluted by the Rayleigh components when properly weighted
as in (106). These and other considerations indicate that the elliptical
polarization of the cloudless sky should be greatest in red light and during
late twilight in certain directions.

Since the discovery of the laser effect allows the use of almost mono-
chromatic and fully polarized light beams, a study of the ellipticity
parameters is most useful in the analysis of Mie polydispersions in the
laboratory. An interesting feature, already mentioned in Section 3.22, is
the depolarizing effect of the inhomogeneity in the size of the particles.



DISCUSSION AND APPLICATIONS OF THE RESULTS 105

We may introduce a depolarization factor, 0 < D(P) < 1, by forming the
ratio PP, — (P2 + P?)
PPy + (P2 + PY)
on the basis of inequality (69). In the ideal case of purely polarized mono-
chromatic incident light, the quantity D(P) as here defined indicates the
degradation of the degree of polarization, in the strict sense of the defi-
nitions (61) and (62) of partial polarization. In this sense, the depolarization
factor D(P) also indicates the degree of incoherence introduced by the
polydispersion, in which the particles are assumed to be randomly distri-
buted in time and space, when illuminated by a continuous monochromatic
and coherent stream of radiation. The factor (110) therefore has an
operational significance in connection with laser experiments.

It is evident that D(P) will be a function of the nature and size distri-
bution of the particles as well as of the scattering angle 6. Figure 25
illustrates this for two models and for two types of particles represented in
Tables T.1, T.112, T.27, and T.120, as indicated along the curves. The
water particles (curves 1 and 27) show maximum depolarization in the
backward area, and there seems to be no correlation of the curves with
the polarizing property of the particles when illuminated by unpolarized
light. Curves 112 and 120 for metallic spheres show maximum depolari-
zation in the forward area, preciscly where the partial linear polarization
(P; — P,)[(Py + Py) is at a maximum. It is interesting that in this case the
greater depolarization occurs for the narrower distribution H (curve 120),
contrary to what might be expected.

These features also suggest that the assumption of a Lambert-type
reflection for the Earth’s or other planets’ surfaces is of questionable value,
especially in a discussion of its effects on the polarization of the diffuse
radiation of the overlying atmosphere. In fact, the concept of Lambert
reflection, as introduced by Chandrasekhar [40], assumes that all incident
radiation is completely depolarized (ie., D(P)=1) at all angles of
incidence and reflection, regardless of its initial state of polarization. This
assumption is necessary to simplify the solution of the corresponding
equation of transfer for thin and moderately thick atmospheres, and it has
meaning only as a rough approximation for a reflecting surface of chaotic
structure and composition. If the surface is fairly homogencous and com-
posed of fine grains of solid particles or a dense layer of cloud droplets,
for example, the assumption may result in misleading interpretations of
the polarization of the diffusely reflected radiation in terms of the mass of
an overlying molecular atmosphere.

D(P) = (110)
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Fig. 25—Examples of the depolarization factor D(P) at various angles for two

distributions of dielectric and metallic particles. Labels along the curves refer
to the tables in Part i1

Another important area where complete models of aerosol scattering
are necessary is in the twilight method of atmospheric probing. As
Rozenberg [74] points out in his excellent monograph, twilight conditions
are eminently suited to the study of high atmospheric layers by means of
ground, balloon, and satellite photometric observations. In the analysis of
such data, since primary scattering is the main component, all the elements
of the models are directly usable. Noctilucent clouds, which have recently
become the subject of systematic observations [76], must be included in
this category.

Finally, we should mention disturbed or abnormal optical conditions



DISCUSSION AND APPLICATIONS OF THE RESULTS 107

produced by great volcanic explosions or extensive forest fires on other-
wise cloudless days. The classical example of the former is the Krakatoa
event of 1883, whose very widespread effects are so admirably described in
the Royal Society’s report [77] prepared five years later. A remarkable
example of extensive fire smoke occurred in September, 1950, during the
widespread forest fires in Alberta, Canada, which produced such phe-
nomena as the “blue” or “violet” sun observed as far downwind as
England and Western Europe [78,79].

In addition to anomalous twilight displays, the Krakatoa phenomenon
also produced the so-called Bishop’s rings and “blue” and “green” suns.
We have devised the models represented by Tables T.104, T.105, T.110,
T.111, T.124, and T.125 in an attempt to reproduce some of these
phenomena. Figure 26 shows the intensity element (P, + P,)/87 for
unpolarized light taken from Tables T.104 and T.105 for silicate spheres
at 10.45 4 and 10.70 u, respectively. It is seen that a Bishop’s ring effect
does exist, as indicated by the intensity curves in the aureole region. The
anomalies in gradient should result in color differentiation within the
well-defined aureole region, and the overall effect may well account for
the “reddish-brown™ Bishop’s ring of 10° to 12° radius mentioned by

1
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Fig. 26—Detail of the normalized scattering intensity for a cloudlike poly-

dispersion of silicate spheres, illuminated by unpolarized radiation at two

wavelengths.in the visible. Note change of both scales in the two parts of the
diagram. Smooth curves are fitted.
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Humphries [80]. In the backward hemisphere, Fig. 26 shows a weaker
ring of about 10° radius around the antisolar point, which also agrees
with the Krakatoa observations.

The curves for Tables T.110 and T.111 for more opaque material
(m = 2.2) show very similar effects in the forward and backward scattering
areas, whereas those for Tables T.124 and T.125 for “metallic” spheres
show no maximum around the antisolar point. From this, one might
conclude that the Krakatoa dust was mainly composed of dielectric
particles with radii between 1 and 3 y distributed around a mode radius
of 2 u according to our model. However, this subject needs a thorough
analysis before more definite conclusions can be drawn. For example, the
model must also explain the green sun phenomenon and the reported
anomalous polarization effects, and it is possible that absorbing particles
may have to be included. The effects of nonspherical or irregular particles
must also be considered, although there is evidence that these may not be
important, at least in the forward area 0° < 6 < 90° [Hodkinson in 15,
p. 87; 81]. We cannot go into these matters here, but it is evident that the
use of polydisperse models of spherical particles should give better
results than the monodisperse, opaque-disk diffraction theory considered
in the original interpretations [77,80].

Similar remarks apply to the case of forest fire smoke and other
disturbed conditions in the optical state of the cloudless atmosphere. In
all cases one must bear in mind that conditions are seldom duplicated.
Each case shows quite individual characteristics that depend on the nature
of the source of the turbidity, local meteorological conditions, geo-
graphical position, and so on.

432 Natural Water Clouds

Because natural clouds are, in general, dense aggregates of rather large
water droplets and ice crystals, a cloud depth of a few hundred meters
suffices to give a large optical thickness This means considerable multiple-
scattering effects, which will tend to suppress the single-scattering features,
such as coronas, cloudbows, and glories with their variable polarization,
as pointed out elsewhere [Deirmendjian in 15, p. 171; I6]. Hence the
single-scattering matrix elements in our models will be most useful in the
direct interpretation of phenomena produced by optically thin cloud
elements illuminated by sunlight or other sources.

A good example of the latter is mother-of-pearl or nacreous clouds.
Hesstvedt [82,83] has published a thorough description of their numerous
occurrences in Norway, with emphasis on the mechanism of their
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formation. A thorough analysis of the related optical phenomena with
respect to scattering theory is still lacking. Although we do not intend to
undertake this here, some ideas can be advanced on the basis of the present
work. We have adopted the distribution C.3 (Table 5 and Fig. 21) to
simulate mother-of-pear] clouds with a mode radius of 2 u, in accordance
with estimates in the literature [82]. Water droplets with this distribution
(Tables T.59 and T.60) yield intensity functions very similar to those
reproduced in Fig. 26. Tt is seen that there is only one tenuous corona
formed at each wavelength between 0 = 8° and 14°. It would seem that
even this narrow distribution does not explain the vivid and alternating
colors reported in the literature [2,82]. As pointed out in Section 2.35 and
demonstrated in Fig. 17, multiple coronas are possible only with strictly
monodisperse particles. In fact, this may be the case in mother-of-pearl
clouds, indicating a remarkably uniform mechanism of formation for the
particles, with the size depending on position within the cloud, as pointed
out by Hesstvedt [83]. This would also explain why the color bands
often follow the contour of the cloud rather than arcs of equal scattering
anglc. In any case, one may assert that the responsible particles must be
spherical, whether composed of vitreous ice or supercooled liquid water.

The very common phenomenon of irridescent clouds must be akin to
that of nacreous clouds, although the former occur much lower in the
atmosphere than the latter. However, the characteristic droplet radii may
be larger in the case of irridescent clouds.

Another phenomenon associated with optically thin clouds is the
colored coronas commonly observed around the sun and moon. As so
aptly described by Minnaert [2], the coronas are highly variable in inten-
sity, number of rings, color, and radius. The most clearly defined are those
around the full moon seen through so-called alfocumulus stratiformis
perlucidus [84,85], when these clouds are so optically thin that bright stars
are visible through them. Because of the weak illumination and dark
background, the colors are then easily discernible. Since in most cases the
radius of these rings does not exceed 4° to 6°, the responsible droplets
cannot be very small. The cloud models C.2 and C.4 were carefully
chosen with this type of cloud in mind.

In Fig. 27 we reproduce the intensity for a water cloud with a C.2
distribution (Tables T.51 and T.52) illuminated by unpolarized radiation.
The effect of the change in intensity gradient within the aureole region,
seen around 6 = 4° to 5° in blue and 6 = 6° to 7° in red, would result in a
visual impression of colored rings around the luminary, surrounding less
defined rings of red and bluish light. The graphs imply, of course, that
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Fig. 27—Detail of the scattering intensity for water droplets with a narrow

distribution around r =4 u showing coronas, cloudbows, and glories. The

dotted fragment of curve marked 21.61 u is drawn to the same scale and refers
to the same cloud as do the other curves.

there will be a gradual transition through a green ring between these.
Comparing Fig. 27 with Fig. 26, we note that the rings have wider radii in
the latter because the predominant particle size of 2 u is one half that for
Fig. 27, with an almost inverse variation between these two parameters.
The whole region of steepest intensity gradient in both sets of curves is
really the aureole, giving the visual impression of a bright bluish-white
inner ring surrounded by a fainter reddish ring [2, p. 214].

True maxima in intensity, corresponding to sharply defined coronas,
appear only with the much narrower distribution C.4, as indicated in
Fig. 28 (see Tables T.70 and T.71). These peaks are centered around
6 = 5° and 7.5°, respectively, for the blue and red rings, and the latter
1s superposed on a secondary maximum in blue. There is an indication of
a fainter system between 11° and 13°, which, together with the bright red
ring between 2.5° and 4°, coinciding with a deep minimum in blue,
should result in a triple system of colored coronas in this case. Such
occurrences are not very common. The author witnessed a brilliant
display at Santa Monica, California, one spring afternoon (April 14,
1963) after a rain shower. Within a few minutes, in rapid succession, there
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was brilliant irridescence on high clouds near the sun; then, as a homo-
geneous veil of altostratus approached the sun, first there were two
systems of colored bands paraliel to the contour of the cloud, which then
evolved into a system of three perfectly defined colored corona systems as
the cloud covered the Sun. [ estimated the radius of the outer red corona
at 5° to 6°. The visual impression was that each red ring had a beautiful
inner greenish ring, and I noted that the limb of the Sun was clearly
defined through the cloud rather than washed out by the aureoling effect.
In this case the predominant droplets must have had a radius of from 6 to
8 p, judging from the radii of the coronas. The whole phenomenon lasted
less than 15 minutes. It would be inferesting to speculate on the mechanism
of cloud formation during this display. Perhaps a vertical wave was present
in the wind field, as in the case of mother-of-pearl clouds, producing large,
almost uniform droplets in a very shallow layer. A strictly monodisperse
cloud, however, would be ruled out, as pointed out previously (see
Section 2.35).

Turning to features in the backward-scattering hemisphere, we have the
cloudbows and glories already mentioned in regard to single-particle
scattering (Section 2.35 and Fig. 18). Both are regions of maxima in the
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Fig. 28—Same as Fig. 27, but for a narrower distribution of droplets, showing

‘the appearance of clearly defined double coronas and glories at each wavelength.

The polarizations in this as well as in Figs. 26 and 27 may be evaluated from the
corresponding tables in Part [l.
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scattering intensity in the backward hemisphere, which appear at various
angles, depending on the refractive index and the relative size of the di-
electric sphere, but can be distinguished by their polarization: In the
cloudbows the electric vector is predominantly perpendicular to the
scattering plane (positive polarization with P, > P, in the sense defined
in Section 3.21), whereas in the glories, which appear closer to the back-
ward direction, the predominant vibration is parallel to the scattering
plane (negative polarization with 2, > P;). In polydispersions there are,
of course, many superpositions of both these features, but the net result
is that some of them are enhanced to produce a single cloudbow or glory
effect in the integrated intensities. This was first pointed out by this author
[13; 15, p. 171] on the basis of the Mie theory and cloud model C.1; but
experimental verification, especially observations of the polarization in
the cloudbow and glory of natural water clouds, seems to be lacking.

Such features become more pronounced as the cloud-drop distribution
is made narrower, as shown in Figs. 27 and 28, corresponding to cloud
models C.3 and C.4, respectively. In both cases there is a broad cloudbow
between 140° and 150° where there is no separation of colors (in agreement
with visual observations), but there is considerable positive polarization,
as can be seen from the corresponding Tables T.51, T.52, T.70, and T.71.
These tables also show that the relatively flat region in the intensity curves
of Figs. 27 and 28, roughly between 150° and 170°, is actually one in which
the individual polarized components vary considerably. For example, if
a thin cloud conforming to the model of Fig. 28 were observed through a
properly oriented polarizing filter, it would display a colored bow with
the blue maximum at about 158° and a red maximum at 164°, whereas the
principal “white” cloudbow would persist at 145°. After the axis of the
polarizer is turned by 90°, the principal cloudbow would disappear and a
blue bow would form at about 153° and a red bow at 158°.

Figures 27 and 28 also show well-defined, true glories with considerable
dispersion between 5° and 3° from the backward direction. (The high
degree of negative polarization in these regions may be appreciated from
the corresponding tables.) Figure 28 in addition shows a second glory
system with a larger radius. On the other hand, a very similar feature
seen in Fig. 26 for silicate spheres is not a true glory but a cloudbow,
according to the polarization criterion mentioned earlier. The reason for
this is the higher refractive index for silicates, which results in a migration
of the cloudbows toward Jarger scattering angles. Water clouds with the
same distribution as in Fig. 26 do show a true colored glory with a radius
between 9° and 5° in addition to a pronounced cloudbow at § = 150°
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(see Tables T.59 and T.60) Here we have a beautiful example, by the way,
of how the classical Maxwellian theory of light, properly applied, provides
a pood explanation of a natural phenomenon that eludes a simpler
analysis [cf. 7, pp. 249-258].

The wider cloud distribution C.1, whose matrix elements are given here
(see Tables T.35 through T.50) in greater detail than in the earlier
publication [/6], shows no indication of a corona, but the cloudbows and
glories do appear. A plot of the intensity elements P; and P, would show
two distinct cloudbows in blue, centered respectively at 6 = 122° and 143°
and a single glory of radius 2° in blue and 4° in red. This corresponds to
the colored glory commonly observed around the shadowpoint of aircraft
overflying altocumulus clouds.

The very steep and narrow aureole region displayed by the cumulus
model C.1 in the visible (see T.35 and T.36) needs some comment. This
phenomenon would be rather difficult to observe instrumentally because
of the small scattering angle (6 < 3°) and the problem of eliminating the
direct sunlight. The only possibility would be the use of a coronagraph-
type instrument, at the moment when the thin border of a cumulus cloud
approaches the Sun to form the proverbial “silver lining.”” At any rate it is
certain that this extremely intense aureole exists, judging from the almost
perfect matching in the range 2° < 6 < 170° of our theoretical model
with detailed nephelometer observations in fog performed by Pritchard
and Elliott [86]. In this connection an interesting phenomenon, which we
shall call ke filtered-sun effect, must also be mentioned. This is a rather
common occurrence along the California coast when the Sun is obscured
by a uniform layer of low stratus cloud. When the cloud has the proper
thickness, one is able to see the Sun’s disk perfectly defined, with no
aureoling effect at the limb, surrounded by a uniform field of cloud light
of low brightness. When a thinner part of the cloud passes in front of the
sun, the effect disappears and the limb is washed out by the appearance
of an aureole. At other moments the Sun becomes invisible, but its position
can still be estimated by the sensation of infrared radiation on one’s face.
The filtered-sun phenomenon has been noted by Ambartsumyan [48,
p. 5711

The phenomenon may be explained gualitatively if one considers the
high intensity of the source, that is, the Sun. The fact that we seek a
coherent image of the disk (it would be interesting to photograph the Sun
under such conditions to see if sunspots are also discernible) indicates that
we are looking at directly transmitted sunlight of greatly reduced flux,
which only slightly exceeds the diffuse cloud-light background. Now the
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sky brightness on a clear day with high Sun is of the order of 10-6 of the
apparent surface brightness of the Sun. Let us assume that under overcast
conditions the diffuse cloud brightness is about 10~ that of the Sun, and
the barely visible disk of the filtered Sun is of this same order of brightness.
This provides a rough estimate of the slant optical thickness of the
responsible cloud, or —In(10~7) ~ 16. From Table T.35 we note that a
homogeneous cloud of that type with a geometrical thickness of 1 km or
107 droplets per square centimeter column yields just this optical thickness.
The geometrical depth seems too great for California stratus. However,
considering that stratus droplets are larger than those in our cumulus
model, and that their number density may exceed 100 cm=3, a corre-
spondingly shallower layer cloud may provide the required optical
thickness.

At any rate, the foregoing line of reasoning brings out an important
characteristic of highly asymmetrical scattering in deep media. That is,
the medium must have a rather large optical thickness, of the order of 16
or more in the case-of a model C.1 type of cloud, before the intense for-
ward lobe is completely suppressed in diffuse transmission by the multiple
scattering. This critical thickness may be more precisely determined from
the actual cloud density and thickness when the filtered Sun is seen. Its
value, of course, will depend on the size distribution of the droplets in the
cloud, as well as on the intensity of the illuminating source,

Most of the features observed in diffuse transmission and reflection of
sunlight on thin clouds may be treated quantitatively by solving the first-
order approximation for a mixed medium, as in (104), using our models
for the scattering matrix. For clouds of finite optical thickness, smaller
than some critical value such as suggested by the foregoing criterion, the
complete equation must be solved rigorously, including the polarization
effects. A priori assumptions and simplifications may lead to serious errors
owing to the complex nature of the scattering mechanism. For the radiation
emerging from deeper media, it may be possible to introduce simpli-
fications on the basis of semi-infinite models, provided the effects of the
albedo of single scattering are well understood.

In this connection, we should mention another area of research in
which our models, particularly those for water clouds in the infrared
region, must have important applications. This area has to do with the
effect of cloud and other absorbing particulate layers on the radiation
balance and thermal structure of the atmosphere. Closely related to this is
the effect of scattering on the absorption bands of H,0, CO,, and other
molecular bands, as well as the bands in liquid water and ice. In both cases
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it is essential to have exact values of the albedo of single scattering for the
polydispersion in the region of the water and ice bands.

As we have pointed out clsewhere [12], the absorption through a given
mass of a solid or liquid substance in the polydispersed state is not equal
to the absorption through the same mass in the condensed or bulk state.
This is related to the behavior of the single-particle absorption efficiencies
discussed in Section 2.32. The examples in Table 8 clearly demonstrate

Table 8
Comparison of bulk and scattering mass absorption coefficients for water
clouds
Cloud C.1 Cloud C.3 Haze M Haze 1.
A Yo Vse Vsc Vse Vse
(10) emM) [1l—m|m) [l —w|m)|l — = (cm™) |1 — w (cm™)
1.45 26.00| 0.0151 42.69 0.0026 | 40.08
1.94 116.6 | 0.0605| 174.6 0.0151| 168.6 |0.0196 150.5
6.05 2846. 0.4567 | 1450. 0.5454| 2657 | 0.7028| 626.9 | 0.8687 2658.
16.6 3028. 0.6051 | 1641. 0.8456| 2643 | 0.9253|2514. 0.9985 2440.

this inequality. To determine the scattering mass absorption coefficient
Yses We simply multiply the volume absorption coefficient 4, from the
corresponding table in Part 11, by 1/¥, from the last column in Table 5,
that is, the volume of space needed to get unit volume of condensed
particles. The value of y,. thus obtained is entirely equivalent to the bulk
absorption coefficient y,, shown in Table 6 and repeated in column 2 of
Table 8 for comparison. For each model we also show the parameter
(I — @) = f.,,/B in Table 8. In the examples it is seen that y,, > y, at
the shorter wavelengths and in the weak water absorption bands at
A1.45 p and 1.94 u, whereas y,. < y, in the stronger absorption region
farther in the infrared spectrum. A knowledge of the so-called liquid water
content of a given cloud would be of little help in estimating the absorption
of infrared radiation by a cloud element. The important criteria here are
the relative size, size distribution, and concentration, as well as the
strength of the band at the particular wavelength. When multiple scattering
is taken into account, these effects become more complex and generaliza-
tions more dangerous. The intensification or weakening of a given water
(or ice) band must also depend on the scattering angle, since, for example,
absorption has little effect on forward scattering at small angles, whereas
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it suppresses the cloudbows and glories in the backward area. (The effects
on water vapor and other molecular bands are excluded from the foregoing
discussion.)

Some of these problems have been mentioned in a survey article by
E. M. Feigelson [87], who arrives at similar “negative” conclusions. From
her own references to the Soviet literature * it is evident that her remarks on
the problems of cloud scattering are based on considerable experimental
and theoretical research. As mentioned in our prefatory remarks to the
present monograph, language barriers have unfortunately prevented us
from adequately discussing this work and comparing it with ours.

For the cloud and haze models used here, the graphs in Fig. 29 are
intended to show the wavelength dependence of the extinction coefficient
over the cntirc range 0.45 < A < 16.6 . All the curves correspond to a
single substance, liquid water. These have been fit “by eye” to the com-
puted points shown, and they may be used for a fairly good interpolation
at other wavelengths. Figure 29 may be compared with a similar diagram
in an earlier work [/2], which was based on the modified van de Hulst
approximation described in Section 2.32, The differences are due to the
different distribution functions used in each case, rather than to failures
in the approximation.

For a given number concentration of water particles (i.e., N = 100
cm®) the family of curves in Fig. 29 demonstrates the wide range of
variation in the extinction—over several orders of magnitude—resulting
from changes in the particle size and size distribution only. The lowest
straight line, labeled $,(0), corresponds to nonabsorbing air molecules at
sea level, with the well-known A~* dependence. As we pass to the unmixed-
haze models, the absolute slope with respect to 4 decreases as the pro-
portion of larger particles increases, as indicated by the next three curves
above the Rayleigh line. In all three curves there is a minimum at about
A2.4 p, followed by a maximum at about A3.0 g, roughly following the
variations in the imaginary part « of the index. These features are clearly
absent in the cloud extinction curves.

The three cloud curves in the upper part of the diagram are first of all
separated from the haze curves by a large gap on the diagram, equivalent
to several orders of magnitude and reflecting the abrupt change in the
size and mode radius of the particles in the two types of distribution. The

* E. M. Feigelson, Radiation Processes in Stratified Clouds, Moscow, 1964;
G. V. Rozenberg, in Spectroscopy of Scattering Media, Minsk, 1963 (see also
W. M. Irvine, dstron. Papers Transl. from Russian No. 9, Smiths. Inst. Astroph.
Obs., 1966).
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Fig. 29—Wavelength dependence of the volume extinction coefficient (solid
line) and, in some cases, of the scattering coefficient (dashed line) for various
distributions of water spheres equivalent to 100 particles per ¢cm3 in each case,

slope of all three curves in the visible and near infrared is small but
positive and the maximum extinction occurs in cloud C.1 near 15.0 . In
some of the cases we have added the dashed curve to indicate the form of
the scattering coefficient .. It is clear that the relative value of the
difference, fox — fi. = Bab, depends critically on the distribution model.
Furthermore, in the region 8.0 < 4 < 12 u there is a relative minjmum in
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the extinction for all cases, but this could hardly be called a “window,”
even without the inclusion of water-vapor wing absorption, except in the
case of very tenuous clouds and haze layers. When the total concentration
N is changed by some factor for any given model, the corresponding curve
in Fig. 29 will be shifted vertically without change of shape.

Yamamoto er al. [88] have recently published an interesting dis-
cussion of the radiation to be expected from a cloud in this so-called
window region, taking into consideration the temperature of the under-
lying surface. As pointed out by these authors, the albedo of single
scattering @ is an essential parameter in the problem, and we have shown
that its value depends on the drop-size distribution function as well as on
the imaginary part « of the index of refraction. For this reason in certain
cascs we have used two alternative values for water at 18.15 u (see Table
6), which differ by a factor of two. The effect on the extinction and albedo
in two of our models, other things remaining equal, is shown in the
accompanying table. It is clear from this comparison that the value of

Haze L Cloud C.1

” Pex (km™1) @ fex (km™1) @
0.0472  9.424 - 10~* 0.156 18.75 0.746
0.0236  5.465-107* 0.269 19.30 0.854

strongly affects the extinction and albedo in the haze model, where the
droplets are small, whereas in the cloud model, the effect is much smaller:
halving the value of « increases the albedo of single scattering by only
15 percent and the extinction also increases, contrary to the case in the
haze model.

In the 43.0 u region, the changeover from the old value of m = 1.525 —
0.0682i to the new one of m = 1.364 — 0.306; (see Section 3.5) hardly
affected the extinction coefficient and the albedo in the cloud C.1 model,
reducing them by a mere 3 percent and 7 percent, respectively (compare
old values [/6] with new in Table T.42). The aureole in the region
0° < 6 < 20° was unaffected by this change; however, the linear polari-
zation increased from the maximum of 0.28 at § = 50° to one of 0.85 at
6 = 80°, the broad glory around = 160° disappeared, and the intensity
at § = 180° was reduced by 72 percent. These features have important
implications in the search for water clouds on Venus (see Section 4.41).
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These examples also indicate that layers of small, absorbing haze
particles may have a stronger effect on the local air temperature than thin
layers of cloud droplets of an equivalent optical thickness.

The cloud models bring out a number of other interesting points that
are inherent in the numerical results compiled in Part I, such as the effect
of various amounts of absorption on the coronas, cloudbows, and glories.
These visible features also exist in the near infrared, in regions of minimum
absorption, as seen for example in model C.1 at 11.61 and 2.25 u (Tables
T.39 and T.41). We shall not describe these and other features in detail
here, since most of them can easily be found by the reader from appro-
priate plots of our results.

In general, the foregoing discussion provides an idea of the difficulties
involved in so-called inverse problems, where one wishes to obtain all the
physical data on otherwise inaccessible atmospheric particles from spectro-
photometric and polarimetric parameters alone. To do this it is evident
that one must have a complete set of scattering and absorption measure-
ments, even if multiple scattering may be neglected. This is tantamount to
requiring that the air sample be available in the laboratory, which is
self-defeating. It follows that the optical method of atmospheric probing,
either with sunlight or with an artificial source of illumination, is a limited
tool of research in this respect, but useful in complementing other sources
of information. A mathematical analysis of some of these inverse problems
has been developed by K. S. Shifrin and his collaborators in a series of
papers, a résumé of which has been given recently by Shifrin and Perelman
[89].

4.33 Microwave Scattering Properties of Natural
Precipitation

As mentioned in an earlier study [47], in the field of radio meteorology,
the radar reflectivity of precipitation particles represents a particular
case of scattering on polydispersions. In Section 2.33 we defined the so-
called radar cross section of a single particle in terms of the backscattering
intensity in the present context. To find the equivalent cross section per
unit volume in a polydispersion, we rewrite the expression (33) for ¢, in the
form

oy(x) = 47” iy(x, 180°)

4i,(x, 180°)

2
= KSC -
K sdl) 1PrK. (%)
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Fig. 30—Wavelength dependence of the backscattering intensity function for

1000 particles per m3in the microwave region for the four precipitation models

indicated. The dashed portion of the curve marked “‘hail H” indicates graphical

extrapolation. The curve marked “rain M’ is adapted from previous work
[47] not included in the present volume.
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For N identical particles in a unit volume, a comparison of the last
expression above with (75) and (78) yields

Noy(x) = ﬂsc(Na x)Pl(x’ 1800):

which is expressed in terms of the volume scattering cross section and the
first element of the normalized scattering matrix. According to (77),
the preceding expression represents 4 times the intensity scattered in the
exact backward direction, just as in the case of o,. The extension to a
polydispersion follows immediately from Section 3.32, and we have

f " n(R)oy(x) dr = Bo.Py(180) (111)

71
where the quantities on the right-hand side are obtainable directly from
our tables for a particular wavelength and distribution #(r). The expression
(111) is then the radar cross section per unit volume for N particles following
the distribution n(r), and is equivalent to the single-particle radar cross
section o, customarily used in radio meteorology.

Primary scattering theory is eminently applicable here, and the radar
echo intensity is given directly by Eq. (100) with 6 = 180° and |u]| =1,
provided the two-way path attenuations are properly accounted for.

In Fig. 30 we have plotted the true intensity function for backscattering,
Bs.P1(180)/47, on logarithmic scales as a function of the wavelength. The
units for the ordinate are square centimeters per 10° cm?® per steradian,
The curve marked “rain M” is taken from the previous model [47], which
is not included here, whereas the other curves are taken directly from the
corresponding tables in Part IT. Provided no other effects are taken into
account, it is seen that, for equal incident energies, the radar cross section
has a maximum at about 20.35 cm for model L (light rain) and at 20.60
for the heavier rain, model M that is, both maxima are in the millimeter
region. Presumably this peak will migrate toward still longer wavelengths
for heavier rain containing a greater proportion of larger drops. Otherwise
the two curves are quite similar in slope. There is more than an order of
magnitude difference between the two when 1 > 1 cm, which means that
meteorological radar systems in existence are well adapted to discriminate
between rain intensities.

The hail model H shows a different wavelength dependence, and there
is no absolute maximum in radar reflectivity within the range displayed.
There is a change of curvature and a weak relative minimum near A1 cm
in the radar cross section, which reflects the pronounced minimum 'in
K,(x) for single dielectric particles near x = 1.8 displayed in Fig. 9. This
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Fig. 31—Wavelength dependence of the volume extinction coefficients
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behaviour is due to the narrow size distribution adopted for the hail model,
whose mode radius almost coincides with the x value for minimum K, near
Al em. A comparison of the hail curve with those for the two rain models
shows that, other things being equal, a multiwavelength meteorological
radar system could discriminate between hail and rain in a given cloud.

In Fig. 30 we also show a curve marked “wet hail H” fitted to three
points only. This was obtained by considering water spheres with the
same distribution as for hail (see Tables T.96 and T.97). Although free-
falling water spheres with diameters near 1 cm may not be stable, their
reflectivity may give a good indication of that of ice spheres coated with
water. The comparison of the wet-hail with the dry-hail curve shows that
the radar cross section of the former is larger by an order of magnitude,
with a maximum near A2 cm. (Note the backward asymmetry in angular
scattering displayed in Tables T.96 and T.97.) A hail model with size
distribution has never been used before, so far as we know, and the corre-
sponding integrated scattering and absorption properties, on the basis
of the exact Mie theory as given here, are new.

Finally, in Fig. 31, we have plotted a set of curves displaying the
wavelength dependence of the extinction coefficient for all our models in
the centimeter and millimeter region. These curves also include the previous
determinations for a water and ice cloud in the same region [47]. The
extinction curves in Fig. 31 may be compared with those in Fig. 29 for
haze and cloud in the infrared, the ratio of particle size to wavelength being
analogous in both cases. The marked differences in the shape and slope of
the curves in the two sets are due mainly to the wavelength dependence of
the index of refraction in each case.

On the basis of our results one may, of course, set up radiative transfer
equations for precipitating clouds illuminated by microwaves, using a
properly weighted scattering function and mixing ratio, just as in the case
of visible radiation and haze discussed earlier (Section 4.31). The angular
dependence of the scattered radiation and the polarization parameters,
including the ellipticity, become especially important in interpretations of
data obtained with so-called bistatic radar systems, when the distance
between emitter and receiver is comparable to that of the “target” and the
scattering angle is less than 180°. In such situations the path attenuation of
the transmitted and reflected pulse by different cloud formations and
precipitation areas also becomes important. Similar remarks apply to the
problem of the radar cross section and microwave emission spectrum of
Venus, whose atmosphere might contain precipitating water clouds (see
Section 4.41).
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Further interesting features of the microwave scattering parameters,
inherent in our present results, may be found by the reader, for example by
comparing the new models with our own previous results [¢7] and related
work by other authors.

4.34 Laser Applications

A new technique for remote atmospheric probing was introduced with
the detection of high-level scattering layers by means of pulsed-laser light,
first announced by Fiocco and Smullin [90]. This expected application of
the newly discovered optical maser has great potentialities for future
atmospheric research, especially when multiwavelength systems and their
adaptation to space vehicles are perfected. However, as we shall see, the
present technique cannot by itself provide all the data on atmospheric
scattering layers unless it is used in conjunction with other information
and independent criteria.

The detection of aerosol or other scattering layers embedded in the
molecular atmosphere by means of pulsed monochromatic visible radiation
(optical radar) is entirely analogous to the detection of precipitation by
means of microwaves, and the corresponding theory follows immediately
from the discussion of the previous section. An important difference is that,
under normal conditions, the air molecules themselves present a strong
backscattering cross section, and the aerosol component in general
represents only a small increase over the background signal. In radar, on
the other hand, the echo from precipitation particles is so strong, com-
pared to that from air and even cloud particles, that the latter may be
neglected.

Since the pulse duration in the laser system is of the order of 1078 sec,
the probed layer is of the order of tens of meters thick and its optical
thickness is infinitesimal. Hence, for the intensity reflected at the mixed
layer itself, we may use Eq. (100) directly; that is,

I(7ge, ) = % P{80) p (112)

4qr
where F'is the flux in the laser beam incident on the layer after attenuation
through the atmosphere below, and the other quantitics apply to the layer
only. Separating the latter into two components, as in expressions (102)
and (106), we can get the ratio I/Iy, which after simplification becomes
L1 4 BeanPull80) (113)

IR ﬂscRPR(lgoo) -
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Here, I is the actual reflected intensity received and Iy is the equivalent
value for molecular air of the same thickness in the absence of aerosols.
The latter quantity is presumably known from theory and from standard
data on the air density at the level in question. Hence it should be possible
in principle to obtain the value of the product f,.,P»(180°) from the
measurements and Eq. (113).

In actual fact, even if this product could be determined, it is impossible
to obtain the value of the individual factors, as we have pointed out
elsewhere [9/]. It follows from the discussion of our results that, in the
case of a polydispersed layer, the product f,.,;P11(180°) cannot determine
a unique size distribution and index of refraction. If a monodisperse aerosol
can be assumed, the situation is not much better because there are still four
unknown quantities inherent in this product, namely, the number of
particles N per unit volume, the size r of the particles, and the real and
imaginary parts of the complex index of refraction. The latter two quan-
tities cannot be determined because, as shown in Eq. (100), the theory of
very thin scattering layers does not involve the albedo of single scatter-
ing (w). A determination of = < 1 is important becausc it implics a value
of « # 0, which in turn affects the backscattering cross section. Thus it is
clear that the optical radar method has several limitations in determining
the nature of an unknown scattering layer, but its usefulness for derection
and range mapping, especially at night, cannot be denied.

A bistatic system might provide additional parameters by monitoring
changes in the polarization of the source laser. In that case an equation
similar to (113), written for the polarized components, may be used in the
analysis of the data. However, difficulties similar to those in the case of
bistatic radar (Section 4.33) will have to be faced. Of course, a multi-
wavelength and bistatic system, if feasible, should offer the best possi-
bilities.

Another possible future use of the laser is in communications. For
visible wavelengths and in atmospheric transmission, this application is
beset with difficulties such as the loss of power due to atmospheric attenu-
ation, divergence of the beam, and loss of coherence. Consortini er al.
[92], for example, have pointed out that the monochromaticity of the laser
beam will deteriorate on account of the scattering on the air molecules in
thermal motion, without even mentioning aerosol effects. It is evident
that the latter will further deteriorate the quality of the beam, mainly as a
result of forward scattering. The conservation of coherence and polari-
zation is of course crucial here. We have shown that in polydispersions, at
least of spherical particles, these properties are conserved in exact forward
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scattering. However, it may be possible in the future to consider also
scatter-propagation techniques at small angles, as in conventional radio
propagation [93]. In that case the depolarization factors, as shown in
Fig. 25 for hazes, must be considered.

Our results suggest that scatter propagation by reflection from water-
droplet clouds might conceivably be used for laser communications, for
example at scattering angles where the intensity is maximized. These occur
in the aureole, corona, cloudbow, and glory regions, and the corre-
sponding depolarization D(P) may be evaluated by means of Eq. (110) and

Table 9 ,
Selected values of depolarization D(P) for the water cloud models C.1, 2, 3,4at
the scattering angles shown in parentheses

0.70 u 1.61
Feature  C.1 c2 C3 C4 C.1 c.2 c3
Aureole 6  (6°5) (13 (1) (10°) (107 (259
and 0.005  0.005 0.014 0.002 0014 0019 0011
coronas
Cloudbow  (145%) (144°) (150°) (144°) (147°5) (150°) (160°)
(max.) 0.491  0.247 0320 0.185  0.416 0202 0.104
Glory (A77°)  Q76%)  (A71°)  (175%)  (172°5)  (170°%)

(max.) 0.431 0.287 0.638  0.254 04.51 0.312

our tables. All the cloud models show near-zero depolarization in the
steepest and brightest part of the aurcole region. We show samples of the
depolarization in this and other regions in Table 9 for the cloud models
indicated, at two wavelengths: 20.70 u, near that of the ruby laser, and
A1.61 p, where absorption is at a minimum. It is clear from the table that
the aureole and corona regions show negligible depolarizations, and since
the corresponding scattering intensity is near maximum, it is quite possible
that water clouds might be used in scatter propagation in a laser link. On
the other hand, both the cloudbow and glory areas show rather high
depolarization, which limits their usefulness. At any rate, since new laser
sources are rapidly being developed, it should be possible to select a
particular wavelength in the infrared region that gives maximum trans-
mission, freedom from noise, and potential for scatter propagation by
means of clouds.

We note, by the way, that Rozenberg and Gorchakov have recently
reported [94] very careful experimental determinations of the Stokes
parameters for scattered light on small volumes of atmospheric air. From
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these they have determined a quantity they call “‘the degree of uniformity,”
which appears to be equivalent to the reciprocal of the depolarization
factor D(P) defined here. Comparison of their experimental results [94,
Fig. 7] with our theoretical curve 1 in Fig. 25 for water haze M shows
excellent agreement, all things considered, particularly in the relative
minimum of depolarization in the region 130° < 6 < 150°. It follows that
experiments on natural water clouds should show an equally good agree-
ment with the predicted values of Table 9. This means that in this case,
although the cloudbow is a region of low depolarization, it may not be
suitable for scatter propagation, except possibly in clouds of the type C.4
and with the use of infrared lasers. Similar remarks apply to the depolari-
zation in the glory region.

Since laser light is highly monochromatic and coherent, it was initially
thought that scattering with the use of this source may show characteristics
different from those observed when an incoherent source is used. As a
matter of fact, we have shown in Section 3.2 that the nature of scattering
on the type of polydispersions considered here does not depend on the
degree of coherence of the source (the Mie theory does in fact assume
coherent initial illumination), but on the random distribution of the
scatterers. Experiments conducted with both types of sources have indeed
shown no significant differences in either transmission or angular scattering
[95,96]. 1t is possible, however, that some differences may indeed be
detected when such sources are used to illuminate highly concentrated,
strictly monodisperse particle samples, especially if coherent multiple-
scattering effects are present.

44 OTHER PLANETARY ATMOSPHERES

While models for the complete scattering properties of Mie poly-
dispersions are useful in refining our understanding of the physics of the
well-known terrestrial atmosphere, such models are indispensable”in
advancing reasonable conjectures on the basic characteristics of other
planetary atmospheres that have not yet been directly probed. Those of
the terrestrial planets Venus and Mars have naturally received most
attention in the literature because of the possibility of future spacecraft
landings. The composition and mass of the Martian atmosphere is now
essentially known, but the main features of the bulk of the Venusian
atmosphere remain a mystery. Among the other solar planets, Saturn’s
rings are also of particular interest since they are related to scattering
phenomena.
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441 Venus

We shall devote some space to this atmosphere because it presents by
far the most fascinating problem from the point of view of electro-
magnetic scattering phenomena, where practically all of our results are
applicable to some degree. There is evidence that its mass exceeds that of
our own atmosphere, and there are quantities of large scattering particles
in suspension. As to composition, CO, and traces of H,0O have been
definitely identified spectroscopically in the upper layers, but their relative
abundance in the entire atmosphere with respect to other constituents
remains unknown. Other than these items, and the apparent high tem-
perature close to some unspecified solid or liquid surface of the planet,
thare are no reliable data on the atmosphere of Venus. Despite con-
siderable research efforts to devise models based on available data, and
despite one successful flyby space probe (the United States’ Mariner 2),
there is little agreement among scientists on the main characteristics of this
atmosphere, as evidenced by the proceedings of two recent specialized
conferences on the subject [97,98]. (In yet another specialized conference
held in Tucson, Arizona (March, 1968) after the manuscript of this book
had been completed, results obtained by two recent Venus probes, the
United States’ Mariner 5 and the Soviet Union’s Venera 4, were discussed
and compared, reducing some of the aforementioned uncertainties.)

One reason for this state of affairs is a curious attitude prevalent among
scientists in regard to Venus, which may be partly attributed to the pressures
of the so-called space age. This attitude, which is hardly in harmony with
the precepts of the scientific method, induces the use of all manner of
ad hoc simplifying assumptions Jeading to hasty inferences (alas, often
published and later cited uncritically) on the origin of the visible, infrared,
and microwave radiations emanating from Venus, despite the many
known difficulties in the use of such data to obtain useful information
about our own atmosphere. Interestingly enough, the scientists most
concerned with radiative transfer in sunlit planetary atmospheres have so
far refrained from setting up theoretical models for that of Venus. Further-
more, one finds some rather careless and misleading statements in the
recent literature as to the possible local scattering properties and their
implications for the transfer of solar radiation. For example, in an effort
to justify a so-called greenhouse explanation of the apparent high surface
temperature, the forward anisotropy of large-particle scattering has been
proposed as a mechanism that allows a considerable amount of diffuse
solar energy to reach the surface, despite the presence of a very thick
atmosphere. Ilowever, experience shows that an optical thickness of 16
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is sufficient to eliminate the most extreme anisotropy from the diffuse field
(cf. the filtered-sun effect mentioned in Section 4.32).

Similar remarks apply to interpretations of the observed microwave
radiation of Venus in the range 4 mm < 4 < 10 cm, which has been the
subject of numerous papers. We need not review these here, since they also
are extensively discussed in the above-mentioned conference proceedings
[97,98] and in the references cited therein. In essence, the problem reduces
to the following; the millimeter and centimeter emissions conform to the
tail end of the curve for a 600° to 700°K blackbody surface at the longer
wavelengths, and to that for a 400° to 500°K surface at the shorter wave-
lengths. The wavelength dependence is smooth and efforts to detect
discrete emission or absorption lines or bands have failed so far. Aside
from the problem of the source of this apparent high temperature, the
question of the differential temperature of emission within the range
mentioned needs explanation.

As long ago as 1963 [99], we pointed out that if the atmosphere con-
tained water in amounts not much in excess of those in our own, a
continuous cloud layer on Venus was quite plausible, and consequently,
given the proper cloud thickness, a continuous layer of raindrop-size
condensation products, which never reach the surface, could also be
postulated. The optical thickness of this mixed medium in the microwave
region could be of the same magnitude as that of our own cloudless
atmosphere in the visible. One may then formulate a problem in radiative
transfer analogous to that of the sunlit terrestrial atmosphere, with the
important difference that the external parallel illumination and the plane-
atmosphere model must be replaced by one with an internal source
surrounded by a spherical atmospheric shell. Clearly the latter problem—
especially if radial inhomogeneities in the shell and thermal radiation
effects are considered in addition to scattering—is by no means trivial, but
rather more complex than the first problem. In our original papers
[99,100] we demonstrated that in the very first approximation, con-
sidering only extinction but no diffuse transmission, such a model was
capable of faithfully reproducing the microwave emission of Venus through
differential attenuation of the radiation emitted at a uniform blackbody
temperature at some lower surface of the planet. The assumption of large
raindrops was crucial in this model, since together with the much smaller
cloud droplets, and taking into account the exact wavelength dependence
of the complex dielectric constant of water at the wavelengths in question,
it yielded just the right magnitude and variation in microwave optical
thickness to fit the data without the assumption of a massive atmosphere.
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We felt at that time that this agreement could not be dismissed as mere
coincidence, especially since the additional assumption of high-level
water-and-ice clouds, similar to terrestrial mother-of-pearl and noctilucent
clouds, could also provide an explanation of the brightness, broad
spectrum, and polarization of the planet in the visible and near-infrared
range. As we pointed out [J00], the existence of considerable amounts of
water in the lower “invisible” part of the atmosphere cannot be excluded,
notwithstanding the negative spectroscopic evidence in the near infrared
and the absence of the A1.35 water-vapor resonance feature in the micro-
wave data. Since our deep-cloud hypothesis resulted in an atmosphere
practically opaque to solar visible and infrared radiation, we also advanced
the conjecture that the high surface temperature must be attributed to an
internal heat source rather than a greenhouse effect [99,100].

Our increasing capabilities to detect and analyze radar echos from
Venus will no doubt provide further information on her atmosphere.
Recently, Evans et al. [/0/] obtained echos at the short wavelength of
3.8 cm. Although these may be interpreted mainly in terms of reflection
from a compact spherical planetary surface, an atmospheric component
may have been present, as the authors themselves point out. Their inter-
pretation of the data, based on a simple absorbing layer, resulis in a
minimum normal optical thickness of 7 = 0.46 for this wavelength. Con-
sidering the difficulties of deducing such a parameter from radar echos
alone, this value is in good agreement with that of 0.10 given by our own
models in this region. In general, the 13.8 cm results lend further support
to the existence of microwave scatterers in the form of large hydrometeors
[700).

Without elaborating on the foregoing ideas, it is clear that a knowledge
of the microwave scattering parameters for large polydisperse hydro-
meteors is essential in the analysis of this and related problems. For example,
the models for Venus’s atmosphere may be further refined by a proper
combination of extinction curves, as in Fig, 31, to obtain even better
agreement with existing observational data than that achieved earlier
[/00]. The presence of hail-like particles cannot be excluded, given the
possibility of intense vertical convective cells implied by the deep-cloud
model. Also, considerations of atmospheric scattering effects may suggest
explanations other than that proposed by Clark and Kuz’min [/02,703]
for the weak differential polarization observed at 110.6 cm by inter-
ferometry, simply by assuming an asymmetrical distribution of large
hydrometeors over the planet at the time of observation. Similar remarks
apply to the apparent variations of surface temperature deduced by
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various authors on the basis of differential microwave emissions as a
function of planetary phase. For the proposed Venus radio occulation
experiment (see opening paragraph, Section 4.41) similar to the Mariner 4
Mars experiment [/04,/05], our microwave scattering models should be
particularly useful in the analysis of the data once they become available.

Returning to the planetary brightness and polarization data in the visible
and infrared, the possibility of obtaining complete information on the
deeper layers of the Venusian atmosphere by means of their analysis is
rather small. Even if a set of complete solutions for the problem of diffuse
reflection on highly inhomogeneous, deep atmospheres with asymmetrical
scattering were available, there is little likelihood that a single model
would fit the observations. Once we know more about the basic param-
eters of the atmosphere, however, such solutions are essential in under-
standing the energy budget and hence the dynamics of the atmosphere.

In any event, although the question of the composition of the upper and
lower cloud particles remains unsolved, the single-scattering models can
still be used to obtain some insights here. This could be accomplished, for
example, by means of photometric and polarimetric observations around
the subsolar point from a close fiyby or an orbiting space platform [/06].
The purpose would be to detect the glory phenomenon, which, as we have
seen, is present even against the background produced by multiple.
scattering in diffuse reflection. If a glory is detected, either in the visible
or near infrared with the help of polarizing filters (cf. the glory at 11.61 u
indicated in Fig. 27) it would imply the existence of spherical dielectric
particles of the right size, which would in turn be a strong argument in
favor of water or other material condensed in this form in the Venusian
environment. As we have pointed out [/06], this type of observation cannot
be carried out by terrestrial telescopy because of the small angular size of
the planet.

The possible existence of a halo effect in diffuse reflection, suggested
recently by O’Leary [107] as an indication of the presence of ice-crystal
clouds, is physically and theoretically untenable. Any halolike brightness
enhancement observed on the whole planet at the proper phase angle
should be related to the form of the scattering function in a layer of con-
siderable optical depth, rather than to the properties of a thin upper layer
of ice crystals, as suggested by O’Leary.

The presence of ice crystals was recently inferred by J. Strong on the
basis of low-resolution, infrared reflection spectra obtained by balloon
[97, pp. 147, 151]. It follows from our discussion in Section 4.32 of the
mass absorption coefficient for water droplets that the analysis of such
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data is by no means simple. A band such as 13.0 u should be most intense
near low planetary phase angles.

Somewhat similar remarks apply to the planet’s polarization as a
function of phase angle: The variation cannot be related directly to single
scattering and thence to the nature of the responsible particles. In
attempting to match Lyot’s famous observations discussed by van de Hulst
[/08], we found the closest agreement in the sign of polarization with that
for cloud model C.1 at A3.9 u (Table T.43). The scattering properties of the
model are not altered if both wavelength and particle size are multiplied,
say, by 0.25. Hence, if Lyot’s hypothesis were strictly valid (which we
doubt), that is, if multiple scattering merely reduces the degree of polari-
zation in all directions by a constant positive factor [108], one could
interpret his visual observations in terms of a cloud of spherical particles
with predominant radii around 0.5 z and complex index of refraction
m = 1,353 — 0.0059;. Because of its very tentative nature, this result,
presented at a meeting of the American Geophysical Union in December,
1961 [109], was never formally published. Gehrels and Samuelson [110]
have since published preliminary results of photometric polarimetry with
various filters covering the ultraviolet through the near infrared, which
show considerable dispersion in the polarization versus phase curves of
Venus. The interpretation of these interesting observations is not straight-
forward since they refer to the whole illuminated planet. Again, data on
the distribution of the polarization (and brightness) field over the planet,
obtained from a close-in space platform, would be very helpful here.

442 Mars

Although our present knowledge of the constitution and mass of the
tenuous Martian atmosphere is practically complete, it appears that a few
questions still remain [98]. For example, the nature and size of the
particles making up the colored and opaque hazes, long observed by
astronomers, are still undetermined.

Chamberlain and Hunten in a recent review [1] 1] have discussed the
comparative merits of various techniques used in investigations of the
Martian atmosphere, suggesting that photopolarimetric methods are less
reliable than spectroscopic ones in estimating the mass (a conclusion that
we had indicated in an unpublished note* in 1961). Nevertheless, as these
authors have pointed out [/77], the photopolarimetric method cannot be

* Quarterly Technical Progress Report(3), RM-2769-JPL, The RAND Cor-
poration, Santa Monica, April 28, 1961, p. 74.
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rejected outright, particularly if the molecular and atomic components are
separated from the aerosol component and the effects of surface reflection.
This separation should not present major problems, since the atmosphere
is optically thin (no multiple scattering) and the effects of primary
scattering and ground reflection are simply additive. However, for Earth-
based observations, the planet does not present the most favorable phase
angles (close to 180°) at which the aerosol component can best be detected
by forward scattering. Near superior conjunction, on the other hand,
when observing conditions are optimized, we have backscattering con-
ditions (plus maximum surface reflection), which are least favorable in
separating the Rayleigh and aerosol contributions, as noted in our dis-
cussion of the pulsed laser technique (see Section 4.34). Thus, here too,
relatively simple photometric experiments carried on a space probe to
obtain the proper conditions of illumination would provide much
meaningful information.

The question of the nature of the Martian surface material and its
relation to atmospheric dusts has received much attention recently.
Attempts to resolve these questions by polarimetric and photometric
methods have been carried out, notably by A. Dollfus [/12,113]. Nor is
the problem solved by the spectacular technological feat of the trans-
mission of television photos aboard the Mariner 4 space probe [I14],
which was not designed as an experiment for this purpose. Barring an
actual instrument landing on the surface for sampling purposes, photo-
metric studies of the atmospheric dusts, presumably blown up from the
surface by Martian winds, still offer a good means of learning about their
size and nature. 1t is of course conceivable that some of the Martian hazes
are of interplanetary origin, and their formation is akin to that of terres-
trial noctilucent clouds, as suggested by Vestine and Deirmendjian [//5];
or they may be local condensations of some atmospheric constituent. In
either case their characteristics may not be directly related to the surface
material, but can best be determined by light-scattering methods, just as
in the case of terrestrial stratospheric acrosols.

For this purpose, in addition to our silicate and iron models, we have
included some models (see Tables T.106 and T.111) corresponding to the
limonite particles proposed by Dollfus as a possible surface and airborne
material. These should help in the interpretation of future, more detailed,
photopolarimetric data. Regarding the often reported obscuration of
Martian surface features by dust storms, the discussion in Section 2.32
and Figs. 7 and 8a should provide some insight into the question of
absorbing particles, discussed for example by Opik [/6]. In particular,
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the steep rise with relative size in the albedo of single scattering for weakly
absorbing particles indicated in these figures has some interesting impli-
cations for the possibility of condensation in the rarefied Martian
atmosphere and the maintenance of alow particle temperature in a radiation
field.

4.43 Saturn’s Rings

These rings represent another fascinating problem that bears re-
examination in the light of the present results. From a recent compre-
hensive review, by Alexander [717], of all available observations of the
planet, its rings, and its satellites, it appears that there has been little
progress in our knowledge and understanding of the rings in the past
fifty years. The two main difficulties here arc connccted with observational
problems on account of the distance of the planet from Earth and the
small range in phase angle, about 0° to 6°, available to us. The first factor
results in insufficient accuracy and resolution in the photometry of stars
during their occultation by the rings, and the second in a severe limitation
on scattering angles needed to reconstruct the phasc function of the particles
in the rings.

In view of this situation it is not surprising that there is little agreement
in the literature on the density, size, shape, and concentration of the
particles in the various rings of Saturn. Ever since Laplace’s classical
work, the most serious theoretical studies are still concerned with the
dynamic stability of the rings, as illustrated by a recent reexamination of
the problem [/18]. Even such a fundamental quantity as the transverse
and axial optical thickness of the various rings has not been determined
with sufficient accuracy. Cook and Franklin [/79] have attempted to make
a better estimate by re-analyzing older reports of star occulations and the
eclipse of the satellite Tapetus by the shadow of the ring. The latter method
is not straightforward, since it depends on ad hoc assumptions about the
reflectivity of the satellite as well as on the unknown optical thickness of
the ring itself and the nature of the shadow it produces. The refinements
introduced by Cook and Franklin by considering the effects of the finite
size and light curve of Iapetus and of a limb-darkened Sun do not go to
the heart of the problem.

Quite apart from the aforementioned observational difficulties it seems
to us that the quite logical assumption of polydisperse ring particles and
the variety of scattering properties for various types of particles and
distributions have not, in general, been seriously considered in existing
interpretations of the data. Alexander’s account [/77, pp. 338 fT.] of the
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earlier attempts makes interesting reading here, and it reveals that, even
in the more recent ones, there is a singular attachment to traditional
notions [/20]. In fact, the earlier gross assumptions regarding the nature
of the ring material (either boulders or fine dust) could be refined by
considering just primary scattering, as in Eq. (99), but including the
important effects of size, size distribution, concentration, and complex
index of refraction on the scattering matrix for polydispersions. These
parameters may also vary with radial distance from the planet along the
axis of the rings, as in the case of the zodiacal particles. The apparent
secondary gaps within rings A and B, variously reported for example by
Lyot [/13, pp. 567 f.] and others [/I7], rather than being devoid of
particles, may then be explained by the existence of locally larger particles
for a given ring mass, resulting in a relative minimum in backscattered light
compared to the brighter parts of the ring. Similarly, the radial striations
sometimes reported along a given ring might be due to higher local
concentrations of particles (other things remaining equal) produced by a
convergence-divergence wave traveling around the ring.

The actual composition of the particles cannot be guessed at without
a knowledge of their index of refraction, and hence of the albedo of
single scattering w. This, in turn, is difficult todetermine from observations
of the brightness of the sunlit ring, especially for the outer and thinner
ring A, since this is essentially governed by 7, as in Eq. (100), where =
is implicit only. Nor is it possible to obtain the total extinction 7,
separately by monitoring the passage of a star behind the ring, particularly
if the particle sizes are of the order of terrestrial cloud droplets or larger.
In this case, due to the observing conditions, the whole phenomenon will
be within the most intense part of the diffraction aureole, with P,(0)/4r ~
300 (cf. Table T.35). The unresolved image of the star must include both
its directly attenuated light and the forward-scattered component, with
the result that the image may appear hardly diminished when passing
behind the rings. As a matter of fact, the whole system of rings (subtending
at most 47 seconds of arc) should appear uniformly brighter when
“oceulting” a bright star, although this has never been reported. In this
respect, Ainslic and Knight’s report of a visual observation of the passage
of a star behind ring A [//7, p. 340] is rather interesting. The apparent
momentary brightenings of the star (which itself remained visible through-
out the event) could indicate the existence of local rings of larger particles
that may be the same as Enke’s and other “divisions,” normally appearing
as darker bands within ring A in reflected sunlight.

As to the middle ring B, its superior brightness may be attributablc to a
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greater optical thickness than ring A, a higher albedo, finer particles per
unit mass and volume, or a combination of all three. Here again it is
difficult to separate these effects by observation. For example, the
extinction optical thickness cannot easily be evaluated from-star occulta-
tions, for reasons similar to those just given; namely, the formation of
an intense diffraction aureole even by absorbing or opaque particles. The
solutions (99) of the transfer equation, which would probably be more
applicable to the ring B situation, in combination with some of our models,
maysuggest some of the likely alternatives and help narrowdown the choice
of models on the basis of all available criteria. There is no doubt that the
whole ring complex, seen edgewise, must present a considerable extinction
in order to account for the well-observed shadow on the body of the planet.
This may very well indicate the presence of considerable absorption within
the particles.

The shape of the ring particles is even more problematical than their
size and nature. One meager piece of information is provided by Lyot’s
and Dollfus’s polarization data [/73, p. 395] indicating a glory effect,
in which case spherical dielectric particles may have to be postulated (see
Section 4.32).

Of course, if Saturn could be observed at large phase angles in the
direction of the Sun, or from a flyby space probe, the nature of the ring
material could be discussed with much more confidence. The relative
brightness of the rings would then be enhanced, probably by an order of
magnitude or more and by a different factor for each ring, revealing the
characteristic sizes of the constituent particles. Such an experiment seems
to be conceivable as a technological possibility within the next decade or
two [121]. In the meantime, we believe that our present uncertainties in the
subject may be further reduced by more careful analyses of existing and
future observations in terms of polydisperse scattering theory in con-
junction with improved resolution and photometry from Earth or its
vicinity.,

45 INTERPLANETARY AND INTERSTELLAR DUST

Lastly, we must comment on the relevance of our results to the problem
of interplanetary and interstellar dust, whose existence in very low con-
centrations in circumsolar and galactic space is revealed only by the
cumulative extinction, brightness, and polarization effects observed over
vast spaces. Multiple scattering is out of the question here, but there are
other important difficulties. Aside from the problem of separating these
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effects from the background produced by other sources, the observing
conditions also impose a limitation on the number of scattering param-
eters needed in each case to deduce the nature of the particle cloud without
ambiguity. In the case of interplanetary particles, we can detect their
tenuous brightness (and polarization) over a wide angular range in the
form of the zodiacal light and gegenschein. The existence of interstellar
grains is mainly surmised through their differential attenuation of starlight,
but their angular scattering properties cannot be measured directly.

These problems and our state of knowledge just prior to the advent of the
space age were reviewed in the 1954 Li¢ge Colloquium “Les particules
solides dans les astres” [122] with wide participation of international
authorities on the subject. The proceedings of this important conference
reveal, among other things, that a knowledge of the nature of interstellar
and interplanetary condensations is of fundamental importance in the
theory of star and planet formation.

451 Zodiacal Light

Interest in this phenomenon of the deep twilight sky at low latitudes,
already known to observers in antiquity, has recently revived. The earlier
controversy on the question whether the zodiacal light originates in the
scattering of sunlight by electrons or by dust seems to have been settled
in favor of the latter after the notable work of the Cambridge Observatories
Chacaltaya expedition in 1958. In particular, Blackwell and Ingham [/23],
after a careful reduction of their own spectra of the zodiacal light, showed
conclusively that the solar Fraunhofer lines were reproduced quite
faithfully, and hence the contribution of electron scattering to the bright-
ness and polarization should be minor. Thus the zodiacal light may be
interpreted mainly on the basis of the theory of primary scattering of
sunlight on a cloud of large particles concentrated in the ecliptic plane,
of unknown shape, size, size spectrum, and concentration, and the variation
of these parameters with radial distance from the sun.

Although the mathematical formulation of the problem should be
simple, there are numerous difficulties related to both the observational
uncertainties and the choice of models. The lack of agreement in both areas
was patent during a recent international symposium on the subject [/24].
We cannot undertake a detailed discussion of all the pertinent problems
here, but merely wish to point out the relevance of our numerical experi-
ments.

The main interest in the zodiacal light is of course in deducing the nature,
amount, and distribution of the responsible particles. Here the problem is
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somewhat akin to that of Saturn’s rings, except that the observing
situation is vastly different. Whereas in the case of Saturn the totality of
the ring particles is observed through backscattering of sunlight at a
constant scattering angle along the rings, the zodiacal light is seen from a
platform (the Earth) imbedded within the originating cloud of particles
in orbit around the illuminating source. Hence, as pointed out by Giese
[14,125], the contribution to the brightness and polarization of the
phenomenon in any particular direction must come from scattering over a
wide range of angles, since it depends on the intersection of the “line of
sight” with various parts of the zodiacal cloud. It is thus evident that the
number of differential parameters needed to construct models of the latter
exceed the number of observable integral quantities. It is therefore essential
to have as many models as possible in order to approach a solution by
trial and error and by checking for consistency and agreement with other
theoretical criteria. In particular, we believe that the definite distribution
models and substances presented here, even though limited to spherical
particles, should help broaden the likely choices over and above the
limited cases considered in the literature (e.g., power-law distributions).

Again, it is clear that space platforms could be very helpful here,
particularly if photopolarimetric scans of the zodiacal light could be
obtained at distances from the Sun greater than the Earth’s. The analysis
of such data should narrow down the choice of models. As a matter of
fact, the single “multiple outer-planet swingby” mentioned by Hunter
[121, p. 626] could serve as an excellent platform for critical observations
of both the zodiacal light and Saturn’s rings, as well as of other outer-
planet atmospheres, at phase angles unavailable from Earth’s vicinity.

In the meantime, recent systematic terrestrial observing programs,
such as from the Haleakala site [Weinberg in 124], and special expeditions
[123; Wolstencroft and Brandt in /24], as well as rocket data [126], are
providing a set of more reliable and detailed data than was available, say,
ten years ago. The detection by the rocket and the newer Chacaltaya
expedition of a slight ellipticity in the polarization of the zodiacal light, if
corroborated, supplies an additional parameter related to the nature of the
zodiacal particles. As mentioned in Section 4.31, although no ellipticity
can be produced by primary scattering of sunlight on spherical particles,
the observed ellipticity might, at least in one case [Wolstencroft and
Brandt in 124], be attributed to rescattering of the polarized terrestrial
light on high stratospheric particles within the solid angle subtended by
the photometer.

At any rate, the observed linear polarization curve of the zodiacal light,
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which seems fairly well established over a wide range of elongations
[123,126], cannot be explained in terms of a single substance and distri-
bution model. In particular, the considerable positive polarization at small
elongations with a maximum at about 75° requires a considerable pro-
portion of metallic (iron) particles [125,126] in addition to the dielectric
ones considered initially. As a matter of fact, our iron haze M models
(see Tables T.112 to T.114) do show a hi gh maximum polarization of about
0.5 at scattering angles 60° < 0 < 80°, supporting the suggestion [/26]
that a greater proportion of fine metallic particles should be included in the
original models.

In any discussion of the zodiacal light, the existence of the gegenschein
cannot be overlooked. If this well-known phenomenon is related to the
zodiacal cloud particles—rather than to a “tail” of other material in the
close vicinity of Earth—then dielectric spherical particles must be in-
cluded to explain the enhanced brightness around the antisolar point
(see, e.g., our water-cloud models). Strong arguments in favor of the
latter may be advanced also on the basis of the maximum negative
polarizations obtained by the rocket photometer [/26] near 170° in the
region of the glory (see Section 4.32). If the elliptical polarization reported
in the latter is not further verified, it may just be possible to explain all the
known major features of the outer corona, zodiacal light, and gegenschein
on the basis of a single (not necessarily unique) model of spherical particles,
consisting of a properly weighted mixture of our dielectric and metallic
distribution models in combination with a reasonable radial distribution
law.

4.52 Interstellar Particles

An excellent introduction to this subject is provided by the late Jean
Dufay’s lucid monograph [/27], Parts 2 and 3 of which are of particular
relevance here. The author presents a fascinating account of the step-by-
step and painstaking astronomical detective work which, during the past
two or three decades, established the existence of small interstellar grains
of matter, quite apart from atoms and molecules, covering a remarkably
narrow range of sizes rather than a continuous population up to asteroidal
chunks of matter. The main evidence in our own local galaxy (Milky Way)
comes from the differential extinction (reddening) of starlight in certain
regions of the sky, as well as its polarization. The responsible material is
spread within spaces measured in parsecs (~3 - 10'® km) rather than astro-
nomical units (~1.5 - 10° km) as in the zodiacal cloud. These interstellar
grains appear to be mainly concentrated in the denser cloud regions, in the
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form of diffuse and dark nebulosities, but are thought to exist also in
much smaller concentrations in the space between these.

When the differential extinction, deduced by an indirect but consistent
line of reasoning and expressed in terms of magnitude differences between
unattenuated and attenuated stars of the same type at a normalized distance,
is plotted linearly as a function of the inverse of the wavelength, a charac-
teristic S-shaped curve is obtained [/, p. 448]. This has become the
standard representation on which practically all discussions of the problem
are based. The invariable adherence to this rather awkward method and
terminology (the reddening of stars by extincrion is called “color excess”
despite the implied contradiction!) must be attributed to the tradition-
mindedness of astronomers rather than to a devotion to scientific clarity.
A more cogent justification may be the following: Provided the size and
refractive index are assumed constant, this method of plotting allows at
once both the determination of a characteristic size for the grains and a
matching of the wavelength dependence by comparing with theoretical
extinction efficiency curves plotted against the size parameter x. Van de
Hulst was among the first to examine carefully the implications of scattering
theory in this problem and has since given excellent reviews of his own and
other authors’ work [/, pp. 446-452; 7128]. In particular he believes that
homogencous spherical particles are incapable of providing a coherent
explanation of all the observations, especially the polarization.

It would indeed be surprising if, from the interstellar extinction and
polarization so far observed over only a rather narrow spectrum, one
should be able to deduce uniquely the size, shape, and constitution of the
responsible particles, formed at astronomical distances under unknown
conditions. The possibility of ever sampling these particles for laboratory
analysis is quite remote, and the difficulties in solving an inverse problem
are even greater than for atmospheric particles (cf. Section 4.32). Neverthe-
less, it is fitting to conclude the discussion of our results with the problem
of interstellar grains, since their discovery is a triumph of light-scattering
theory.

Although we are inclined to agree with van de Hulst that “the Mie
theory ... can better tell us the size of fat globules in real milk than the
size of solid particles in the Milky Way” [/28], we still believe that its
usefulness, particularly in combinations of various types of size distri-
bution and complex index of refraction, has not been exhausted. We have
not included in Part 1I any specific models with this problem in mind, but
intend to discuss it separately in the future. Some of our models, using both
the old and new optical constants for pure iron (see Table 6) with



DISCUSSION AND APPLICATIONS OF THE RESULTS 141

characteristic sizes within the range attributed to interstellar particles
(cf. Tables T.115 to T.123), do show that the extinction is almost inde-
pendent of wavelength. This is mainly due to the variation of both parts
of m with A. Our calculations further show that this result is unaltered if one
stops the integration at a smaller limiting radius r, for each wavelength
than indicated by x, in the tables. For example, by graphical interpolation
(extrapolation) in curves such as shown in Fig. 22, we obtain, for model
haze L and iron particles, the values for f.(r;) shown in the accompanying
table, the last line of which corresponds to the values shown in Tables

Fo 0441 20.589 20.668
0lpx  (0.145) (0.140) 0.137) - 10-2
02 p 0.760 0.750 (0.748) - 10-3
0.3 u 1.65 1.64 1.62-10°3
>2.5 4 4.78 4.79 481 10-3

T.117 to T.119. This example lends support to van de Hulst’s original
deduction that the interstellar grains are dielectric rather than metallic
in nature. Our own results, for instance, corroborate that waterlike
particles with the same size distribution (see curves for haze H and L in
Fig. 29) do show the right type of wavelength dependence in the ex-
tinction.

Our aforementioned metallic models further show that, although the
extinction is virtually unaffected by changes in the real and imaginary parts
of m (compare Tables T.115 and T.116 with Tables T.117 and T.119), they
do alter significantly the albedo, asymmetry, and polarization of the
scattered light. Hence any deductions about the specific chemical com-
position of the interstellar grains (iron, graphite, etc.) on the basis of
extinction alone must be considered extremely tentative. Also, more recent
observations reveal that neither the wavelength dependénce of the ex-
tinction [/29] nor that of the degree of polarization [/30] are really
uniform for all regions of the sky. This implies, among other things, that
there may be variations in the characteristic size and size distribution of
the grains in different regions of the Milky Way. At any rate, the question
of plausible values for m and »(r) in general is still very much an open one.

One interesting property of the type of distribution function used in our
models has to do with the total mass of particles producing the desired
type of extinction for a particular distribution law. This is given by the
integral (87), Section 3.4, and is shown in Table 5 for each model. 1t is
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evident from the discussion of our results and the nature of this integral
that, whereas particles larger than a limiting size r, will not contribute
to the extinction coefficient or optical thickness, they will contribute
materially to the mass integral up to a larger size than r, because of the
factor r3in (87). This means that, should the interstellar grains follow such
distribution laws, the resulting extinction does not allow an accurate
determination of their mass and the possible existence of larger than
typical particles cannot be precluded. This applies equally to the intensity
and polarization of the scattered light and hence bears on the existence of
a certain number of large “chunks” of otherwise undetected matter in the
zodiacal cloud. The relative mass and number of these additional particles
may be easily assessed in our models. The possible mass-size distribution
of interstellar grains corresponding to a given extinction has been used in
the formulation of theories on their mode of formation, stability, and
lifetime [127, pp. 222 and 248 fI.].

The fairly well-established existence of starlight polarization presents
yet another puzzling problem that has brought forth various more or less
sophisticated hypotheses regarding the possible shape and optical prop-
erties of the responsible particles, and the nature of possible interstellar
magnetic and kinematic fields [122,127,128]. Reliable criteria for a choice
among these are not readily available, nor are we in a position to discuss
the various theories. We wonder, however, whether simpler explanations
may not still be available. For example, barring some esoteric reason not
explicitly mentioned in the literature, we do not see why nonspherical
distributions of spherical grains, concentrated, say, in a disklike region
around stars—similar to the zodiacal dust cloud around the ecliptic
plane—cannot be considered. Would not such concentrations, including
invisible systems of planets with their own atmospheres, produce the
observed polarization effects without recourse to particle alignment? A
recent paper on the intrinsic polarization of the eclipsing binary 8 Lyrae
[131] contains some interesting suggestions along these lines. .

We believe that these and other interesting problems still offer a fruitful
ficld of research that has not yet been fully exploited by means of the theory
of polydisperse Mie scattering. Hence our present laborious—but other-
wise modest—efforts,
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Table T.I
m = 1.24 Model: Water haze M Bex = 0.1056 km™?
A =045 4 x: 0.1(0.1)12.0(0.2)68 =z = 1.0
6 P, /Am Py/4m P[4 P4
0.0 10.31 10.31 10.31 0
2.5 7.386 7.409 7.397 -0.05662
5.0 4.027 4.063 4.039 -0.08973
1.5 2,324 2.349 2.327 . ~0.07824
10.0 1.484 1.501 1.482 -0.05634
12,5 1.029 1.046 1.029 <0.04014
15.0 0.7612 0.7769 0.7621 +0.02902
17.5 0.5881 0.6028 0.5891 -0.02059
20.0 0.4665 0.4817 0.4683 -0.01421
30.0 0.2108 0.2259 0.2139 ~0.002744
40.0 0.1044 0.1168 0.1068 0.000838
50.0 0.05445 0.06353 0.05562 0.001983
60.0 0.02999 0.03620 0.03000 0.002198
70.0 0.01758 0.02169 0.01675 0.002141
80.0 0.01115 0.01383 0.009759 0.002042
90.0 0.007968 0.009528 0.006013 0.002039
100.0 0.006599 0.007211 0.003930 0.002243
110.0 0.006286 0.006197 0.002693 0.002727
120.0 0.006752 0.006307 0.001949 0.003715
130.0 0.008783 0.007764 0.001701 0-005906
132:5 0.009838 0.008350 0.001726 0.006784
135.0 0.01123 0.008974 0.001789 0.007802
137.5 0.01299 0.009586 0.001901 0.008929
140.0 0.01510 0.01010 0.002079 0.01007
142.5 0.01745 0.01040 0-002336 0.01105
145.0 0.01980 0.01042 0.002700 0.01167
147.5 0.02179 0.01019 0.003178 0.01174
150.0 0.02314 0.009882 0.003791 0.01127
152.5 0.02375 0.009747 - 0.004517 0.01042
155.0 0.02379 0.009980 0.005397 0.009418
157.5 0.02351 0.01086 04006472 0.008524
160.0 0.02322 0.01260 0-007732 0.007898
162.5 0,02317 0.01531 0.009201 0.007637
165.0 0.02355 0.01925 0.01087 0.007496
167.5 0.02353 0.02382 0.01219 0.0066437
170.0 0.02194 0.02602 0.01146 0.002993
172.5 0.01927 0.02278 0.006826 -0.003082
175.0 0.01927 0.01921 -0.004026 -0.006738
177.5 0.02587 0.02369 -0.02176 ~0.004213
180.0 0.03261 0.03261 -0.03261 0
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Table T.2
m=1.33 Model: Water haze M Bex = 0.1055 km—1
A=070p x: 0.1(0.1)10.0(0.2)50 w = 1.0
[’} P4 Pyldm Pyfdn P,fdx
0.0 5,176 5.176 5.176 0
2.5 4.478 4,484 4.480 «0.02026
5.0 3.238 3.252 3.243 ~0.04563
7.5 2.267 2.288 2.273 -0.05258
10.0 1.620 1.644 1.627 ~0.04891L
12.5 1.196 1.218 1,202 ~0.04218
15.0 0.9068 0.9284 0.9130 ~0.03461
17.5 0.7023 0.7235 0.7084 <0.02770
20.0 0.5528 0.5732 0.5587 -0.02206
30.0 0.2341 0.2494 0.2381 -0.007954
40.0 0.1093 0.1194 0.1112 -0.002190
50.0 0.05528 0.06148 0.05566 0.000165
60.0 0.03030 0.03388 0.02962 0.001129
70.0 0.01806 0.02003 0.01672 0.001531
80.0 0.01177 0.01277 0.01000 0:001727
90.0 0.008553 0.008878 0.006400 0.001912
100.0 0.007013 0.006824 0.004367 0.002217
110.0 0.006508 0.005916 0.003179 0.002741
120.0 0.006859 0.005921 0.002482 0.003685
130.0 0.008524 0.006738 0.002160 0.005381
132.5 0.009263 0.007036 0.002129 0.005956
135.0 .01016 0.007339 0.002121 0.006580
137.5 0.01123 0.007617 0.002137 0.007225
140.0 0.01244 0.007830 0.002185 0.007841
142.5 0.01374 0.007941 0.002277 0.008361
145.0 0.01506 0.007942 0.002425 0.008718
147.5 0.01631 0.007849 0.002639 0.008852
150.0 0.01737 0.007715 0.002944 0.008715
152.5 0.01815 0.007686 0.003361 0.008331
155.0 0.01863 0.007925 0.003874 0.007808
157.5 0.01890 0.008563 0.006490 0.007234
160.0 0.01901 0.009835 0.005254 0.006663
162.5 0.01888 0.01190 0.006085 0.006164
165.0 0.01842 0.01442 0.006715 0.005613
167.5 0.01744 0.01665 0.006723 0.004350
170.0 0.01534 0.01715 0.005214 0.001470
172.5 0.01269 0.014764 0.000910 -0.002529
175.0 0.01254 0.01268 -0.006657 -0.004315
177.5 0.01627 0.01560 ~0.01524 -0.002131
180.0 0.01922 0.01922 -0.01922 0
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Table T.3
m = 1.322 — 0.0000!i Model: Water haze M Bex = 0.08823 km—1
A=1.19u x: 0.01(0.01)1(0.1)5(0.2)29 o = 0.9999
7 P l4m Pyl4m Pyl Pylam
0.0 2.862 2,862 2.862 0
2.5 2.719 2.721 2.720 -0.005714
5.0 2.367 2.375 2.371 -0.01780
7.5 1.956 1.968 1.961 -0.02817
10.0 1.578 1.593 1.584 +0.03385
12.5 1,262 1.278 1.268 -0.03554
15.0 1.006 1.022 1.011 -0.03457
17.5 0.8016 0.8172 0.8068 -0.03205
20.0 0.6402 0.6544 0.6445 -0.02872
30.0 0.2700 0.2769 0.2705 -0.01559
40.0 0.1233 0.1250 0.1215 +0.007309
50.0 0.06182 0.06088 0.05888 -0.002936
60.0 0.03410 0.03203 0.03075 -0.000707
70.0 0.02063 0.01822 0.01719 0.000441
80.0 0.01367 0.01126 0.01022 0.001081
90.0 0.00995L 0.007650 0.006437 0.001518
100.0 0.007994 0.005777 0.004284 0.001923
110.0 0.007113 0.004908 0.002994 0.002407
115.0 0.006982 0.004739 0.002544 0.002713
120.0 0.007049 0.004711 0.00218L 0.003082
125.0 0.007331 0.004807 0.001879 0.003527
130.0 0.007854 0.004998 0.001617 0.004050
135.0 0.008643 0.005249 0.001382 0.004628
140.0 0.009683 0.005508 0.001168 0.005186"
145.0 0.01088 0.005744 0.000993 0.005597
150.0 0.01203 0.006026 0.000896 0.005700
152.5 0.01249 0.006262 0.000884 0.00%610
155.0 0.01284 0.006629 0.000898 0.005422
157.5 0.01301 0.007197 0.000926 0.005245
160.0 0.01296 0.007985 0.000918 0.004787
162.5 0.01264 0.008951 0.000805 0.004307
165.0 0.01198 0.009931 0.000439 0.003576
167.5 0.01088 0.01050 ~0.000456 0.002403
170.0 0.009502 0.01027 -0.002088 0.000758
172.5 0.008429 0.009406 -0.004487 -0.000846
175.0 0.008566 0.009051 -0.007382 -0.001384
177.5 0.009993 0.01007 -0.009907 -0.000622

180.0 0.01092 0.01092 ~0.01092 0
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m = 1.318 — 0.0003i

Table T.4

Model: Water haze M

NUMERICAL TABLES

Pex = 0.07633 km—2

A=145 x: 0.04(0.04)5(0.16)25 o = 0.9974
0 P,j4x Poldnm P,l4x P,ldr
0.0 2.423 2.423 2.423 0
2.5 2.335 2.336 2.335 -0.003792
5.0 2.105 2.110 2.107 -0.01264
7.5 1.809 1.817 1.813 -0.02174
10.0 1.511 1.521 1.515 -0.02822
12.5 1.241 1.252 1.245 -0.03164
15.0 1.010 1.020 1.013 -0.03252
17.5 0.8176 0.8272 0.8204 -0.03157
20.0 0.6608 0.6689 0.6626 -0.02946
30.0 0.2861 0.2870 0.2838 -0.01803
40.0 0.1324 0.1289 0.1280 -0.009302
50.0 0.06703 0.06193 0.06194 -0.004265
60.0 0.03728 0.03199 0.03219 -0.001545
70.0 0.02271 0.01781 0.01783 -0.000075
80.0 0.01510 0.01076 0.01045 0.000764
90.0 0.01097 0.007150 0.006432 0.001315
100.0 0.008714 0.005307 0.004126 0.00L766
105.0 0.008041 0.004786 0.003343 0.001993
110.0 0.007596 0.004455 0.002723 0.002235
115.0 0.007352 0.004279 0.002220 0.002507
120.0 0.007296 0.004233 0.001802 0.002816
125.0 0.007428 0.004296 0.001439 0.003170
130.0 0.007753 0.004449 0.001109 0.003566
135.0 0.008274 0.004669 0.000793 0.003983
140.0 0.008972 0.004938 0.000480 0.004371
145.0 0.009772 0.005255 9.000170 0.004650
150.0 0.01054 0.005683 -0.000126 0.004724
155.0 0.01104 0.006388 -0.000421 0.004518
160.0 0.01102 0.007551 -0.000822 0.003976
165.0 0.01011 0.008905 -0.001751 0.002853
170.0 0.008369 0.009105 -0.004037 0.000714
175.0 0.008050 0.008555 -0.007570 -0.000686
180.0 0.009517 0.009517 -0.009517 0
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Table T.5
m = [.315 Model: Water haze M Bex = 0.06909 km—1
A=16lu x: 0.05(0.05)4.0(0.2)20 = = 1.0
0 P[4 P4 Pyldar P.fan
0.0 2.224 2.224 2.224 0
2.5 2.156 2.157 2.156 -0.003009
5.0 1.974 1.978 1.976 -0.01042
7.5 1.727 1.733 1.730 -0.01877
10.0 1.465 1.472 1.468 -0.02535
12.5 1.219 1.227 1.222 -0.02929
15.0 1.003 1.011 1.006 -0.03087
17.5 0.8202 0.8262 0.8215 ~0.03067
20.0 0.6679 0.6722 0.6681 -0.02922
30.0 0.2952 0.2922 0.2911 -0.01895
40.0 0.1383 0.1315 0.1323 -0.01L024
50.0 0.07062 0.06290 0.06415 -0.004956
60.0 0.03949 0.03217 0.03326 -0.002002
70.0 0.02414 0.01768 0.01832 «0.000351
80.0 0.01610 0.01052 0.01064 0.000608
90.0 0.01170 0.006884 0.006447 0.001219
100.0 0.009247 0.005054 0.004030 0.001689
110.0 0.007966 0.004230 0.002546 0.002154
120.0 0.007521 0.004023 0.001550 0.002703
130.0 0.007809 0.004238 0.000775 0.003368
140.0 0.008768 0.004750 0.000042 0.004037
145.0 0.009407 0.005114 -0.000340 0.004259
150.0 0.01001 0.005607 -0.000733 0.004305
155.0 0.01039 0.006343 ~0.001164 0.004109
160.0 0.01030 0.007436 -0.001735 0.003592
162.5 0.009998 0.008042 -0.002173 0.003148
165.0 0.009485 0.008584 -0.002806 0.002526
167.5 0.008808 0.008890 -0.003708 0.001690
170.0 0.008112 0.008807 -0.004925 0.000693
172.5 0.007734 0.008525 -0.006373 -0.000156
175.0 0.008020 0.008526 -0.007783 -0.000444
177.5 0.008763 0.008915 -0.008801 ~0.000203
180.0 0.009169 0.009169 ~0.009169 0
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Table T.6
m = 1,308 — 0.0018i Model: Water haze M Bex = 0.05546 km—1
A=19%4yu x: 0.025(0.025)6(0.10) 18 = = 0.9849
[?] Pyf4n Pofdm Psldn P,lar
0.0 1.939 1.939 1.939 0
2.5 1.893 1.893 1.893 -0.002156
5.0 1.764 1.765 1.764 -0.007720
7.5 1.580 1.582 1.581 -0.01461
10.0 1.374 1.376 1.374 -0.02083
12.5 1.169 1.170 1.169 -0.02531
15.0 0.9810 0.9809 0.9800 -0.02786
17.5 0.8157 0.8137 0.8134 -0.02873
20.0 0.6745 0.6703 0.6708 -0.02830
30.0 0.3117 0.3004 0.3037 -0.02040
40.0 0.1506 0.1365 0.1408 -0.01195
50.0 0.07864 0.06495 0.06895 -0.006288
60.0 0.04471 0.03265 0.03574 -0.002926
70.0 0.02763 0.01743 0.01948 ~0.000971
80.0 0.01849 0.009996 0.01103 0.000194
90.0 0.01338 0.006300 0.00639 0.000936
100.0 0.01045 0.004498 0.003698 0.001473
105.0 0.009502 0.004016 0.002769 0.001707
110.0 0.008813 0.003724 0.002021 0.001934
115.0 0.008337 0.003582 0.001401 0.002161
120.0 0.008046 0.003561 0.000870 0.002394
125.0 0.007919 0.003642 0.000395 0.002632
130.0 0.007944 0.003815 -0.000051 0.002874
135.0 0.008094 0.004068 -0.000491 0.003100
140.0 0.008353 0.004410 -0.000945 0.003292
145.0 0.008659 0.004848 -0.001429 0.003402
150.0 0.008946 0.005425 ~0.001960 0.003393
155.0 0.009080 0.006185 -0.002574 0.003198
160.0 0.008931 0.007115 -0.003361 0.002745
165.0 0.008383 0.007992 -0.004507 0.001896
170.0 0.007706 0.008274 -0.006175 0.000637
175.0 0.007933 0.008314 -0.007904 -0.000103

180.0 0.008604 0.008604 -0.008604 o]
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Table T.7
m = 1.29 — 0.000035; Model: Water haze M Bex = 0.04238 km—!
A =225u x: 0.25(0.25)4.0(0.10)16 w = 0.9968
[/} P[4 P,ldm P;lAn P,/Ax
0.0 1.776 1.776 1.776 0
2.5 1.740 1.740 1.740 -0.001629
5.0 1.637 1.637 1.637 -0.005955
7.5 1.487 1.486 1.486 -0.01162
10.0 1.312 1.310 1.311 ~0.91715
12.5 1.133 1.129 1.131 -0.02154
15.0 0.9636 0.9571 0.9596 -0.02441
17.5 0.8106 0.8014 0.8050 -0.02581
20.0 0.6772 0.6653 0.6700 -0.02598
30.0 0.3238 0.3040 0.3117 ~0.02003
40.0 0.1603 0.1387 0.1468 -0.01232
50.0 0.08528 0.06539% 0.07234 ~0.006786
60.0 0.04915 0.03214 0.03739 ~0.003342
70.0 0.03066 0.01656 0.02011 -0.001273
80.0 0.02064 0.909070 0.01108 -0.000017
90.0 0.01494 0.005451 0.006102 0.000781
100.0 0.01161 0.003776 0.003189 0.001335
110.0 0.009682 0.003134 0.001359 0.201771
120.0 0.008663 0.003088 0.00008L 0.002157
130.0 0.008292 0.003436 ~0.000961 0.002500
140.0 0.008369 0.004117 -0.001979 0.002725
145.0 0.008495 0.004601 -0.002525 0.002745
150.0 0.008587 0.005206 -0.003124 0.002656
155.0 0.008603 0.005961 ~0.003794 0.002442
160.0 0.008432 0.006825 ~0.004607 2.202040
165.0 0.008086 0.007654 -0.00%625 0.001401
170.0 0.007753 0.008088 -7.006917 0.000533
175.0 0.008048 0.008494 -0.008072 0.000021
180.0 0.008494 0.008494 -0.008494 0
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Table T.8
m = 1.364 — 0.3060i Model: Water haze M Bex = 0.05932 km™1
A =3.00pu x: 0.025(0.025)2(0.1)10 @ = 0.3466
0 Py l4n Pyfdar Pyf4n PofArn

0.0 1.103 1.103 1.103 0

5.0 1.053 1.045 1.049 -0.005210
10.0 0.9229 0.8972 0.9097 -0.01743
15.0 0.7574 0.7112 0.7331 ~-0.02975
20.0 0.5972 0.5349 0.5632 -0.03749
25.0 0.4628 0.3905 0.4219 -0.04019
30.0 0.3574 0.2805 0.3123 "-0.03941
40.0 0.2155 0.1407 0.1680 ~0.03279
50.0 0.1346 0.06909 0.08930 -0.02462
60.0 0.08795 0.03347 0.04642 -0.01765
70.0 0.06016 0.01620 0.02275 -0.01235
80.0 0.04302 0.008201 0.009391 -0.008518
90.0 0.03209 0.004912 0.001703 -0.005794
100.0 0.02489 0.004004 -0.002818 -0.003867
110.0 0.02002 0.004276 -0.005536 -0.002503
120.0 0.01666 0.005112 -0.007220 -0.001538
130.0 0.01432 0.006182 -0.008309 -0.000863
140.0 0.01268 0.007313 -0.009058 -0.000411
150.0 0.01156 0.008396 -0.009602 -0.000141
160.0 0.01084 0.009344 -0.009993 -0.000020
170.0 0.01044 0.01004 -0.01023 0.000004
180.0 0.01031 0.01031 -0.01031 o



TABLE T.9

m = |.353 — 0.0059i

Table T.9

Model: Water haze M

159

Bex = 0.02355 km—?!

=39u x: 0.0125(0.0125)1.0(0.1)9 o = 0.9477
0 Pil4n Pyldn P,/4r P,/4n

0.0 0.9216 0.9216 0.9216 0

5.0 0.8882 0.8864 0.8873 -0.002139
10.0 0.7986 0.7919 0.7952 ~0.007387
15.0 0.6779 0.6642 0.6708 -0.01318
20.0 0.5524 0.5310 0.5410 =0.01740
25.0 0.4392 0.4108 0.4237 -0.01933
30.0 0.3449 0.3110 0.3260 ~-0.01935
40.0 0.2108 0.1711 0.1876 ~0.01616
50.0 0.1312 0.09140 0.1066 -0.01157
60.0 0.08466 0.04813 0.06045 ~0.007490
70.0 0.05706 0.02520 0.03403 -0.004317
80.0 0.04030 0.01339 0.01863 -0.002017
90.0 0.02981 0.007645 0.009406 -0.000366
100.0 0.02310 0.005234 0.003688 0.000813
110.0 0.01874 0.004714 -0.000050 0.001672
120.0 0.01590 0.005310 -0.002683 0.002297
130.0 0.01410 0.006637 -0.004775 0.002726
140.0 0.01303 0.008465 -0.006716 0.002904
145.0 0.01271 0.009507 -0.007726 0.002859
150.0 0.01252 0.01059 ~0.008789 0.002693
155.0 0.01243 0.01164 -0.009932 0.002350
160.0 0.,01245 0.01254 -0.01115 0.001806
165.0 0.01269 0.01323 -0.01233 0.001146
170.0 0.01322 0.01372 -0.01331 0.000540
175.0 0.01384 0.01402 «0.01392 0.000137
180.0 0.01412 0.01412 ~0.01412 0
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Table T.10
m = 1.315 — 0.0143i Model: Water haze M Bex = 0.01123 km—1
A=0530u x: 0.0125(0.0125)1.0(0.10)7 w = 0.8263
[i} Pifdm Pyjdm P,l4w P.farm

0.0 0.6851 0.6851 0.6851 0

5.0 0.6689 0.6663 0.6676 -0.001062
10.0 0.6233 0.6138 0.6185 -0.003859
15.0 0.5572 0.5379 0.5474 ~0.007423
20.0 0.4814 0.4515 0.4659 ~0.01069
25.0 0.4058 0.3657 0.3847 -0.01293
30.0 0.3368 0.2883 0.3108 -0.01393
40.0 0.2281 0.1691 0.1950 -0.01311
50.0 0.1550 0.09343 0.1183 -0.01051
60.0 0.1074 0.04877 0.06972 -0.007530
70.0 0.07659 0.02395 0.03947 -0.004846
80.0 0.05646 0.01108 0.02058 -0.00270%
390.0 0.04309 0.005219 0.008637 ~0.00108L
100.0 0.03408 0.003392 0.000930 0.000107
110.0 0.02793 0.003856 -0.004206 0.000932
120.0 0.02371 0.005600 -0.007797 0.001463
130.0 0.02084 0.008011 -0.01049 0.001731
140.0 0.01899 0.01072 -0.01268 0.001737
145.0 0.01836 0.01209 -0.01366 0.001632
150.0 0.01790 0.01341 -0.01460 0.001451
155.0 0.01761 0.01464 -0.01548 0.001199
160.0 0.01749 0.01573 -0.01628 0.000893
165.0 0.01754 0.01664 -0.01697 0.000569
170.0 0.01769 0.01733 -0.01748 0.000278
175.0 0.01784 0.01776 -0.01780 0.000073
180.0 0.01791 0.01791 -0.01791 0



TABLE T.II-

m = 1.315 — 0.1370i
A

Table T.!I

Model: Water haze M

l6l

fex = 0.01893 km—1

=6.054u x: 0.01(0.01)1.0(0.10)5 o = 0.2972
0 P4 Py/4n Py/4m Py/4nm
0.0 0.5279 0.5279 0.5279 0
5.0 0.5198 0.5169 0.5184 -0.000819
10.0 0.4967 0.4856 0.4911 -0.003088
15.0 0.4613 0.4383 0.4495 -0.006300
20.0 0.4175 0.3809 0.3986 -0.009790
25.0 0.3697 0.3197 0.3434 -0.01292
30.0 0.3218 0.2601 0.2886 ~0.01523
40.0 0.2363 0.1593 0.1925 -0.01684
50.0 0.1716 0.08960 0.1217 -0.01537
60.0 0.1261 0.04642 0.07347 -0.01267
70.0 0.09453 0.02169 0.04136 =0.009845
80.0 0.07241 0.008928 0.02012 -0.007271
90.0 0.05689 0.003598 0.006145 -0.005073
100.0 0.04595 0.002666 -0.003088 -0.003322
110.0 0.03814 0.004220 -0.009262 ~0.002007
120.0 0.03253 0.007073 ~0.01346. -0.001062
130.0 0.02851 0.01046 ~0.01637 ~0.000422
140.0 0.02566 0.01389 -0.01844 ~0.000043
145.0 0.02460 0.01550 -0.01924 0.000060
150.0 0.02374 0.01699 -0.01991 0.000114
155.0 0.02305 0.01833 ~0.02046 0.000126
160.0 0.02253 0.01948 -0.02091 0.000109
165.0 0.02215 0.02042 -0.02125 0.000075
170.0 0.02189 0.02112 -0.02150 0.000038
175.0 0.02174 0.02155 ~-0.02164 0.000010
180.0 0.02169 0.02169 - =0.02169 0
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Table T.12
m = 1.29 — 0.0472i Model: Water haze M Bex = 0.006244 km™1
A=8.154 x: 0.01(0.01)1.0(0.1)5 o = 0.4103
0 P.ldx Pyldn P,ldxw P,/4r

0.0 0.4154 0.4154 0.4154 0

10.0 0.3968 0.3881 ©0.3924 -0.001318
20.0 0.3483 0.3181 0.3328 -0.004315
30.0 0.2861 0.2316 0.2571 -0.007055
40.0 0.2258 0.1520 0.1847 -0.008266
50.0 0.1756 0.09074 0.1251 -0.007942
60.0 0.1367 0.04881 0.08010 -0.006729
70.0 0.1076 0.02287 0.04731 -0.005209
80.0 0.08597 0.008745 0.02390 -0.003700
90.0 0.07003 0.002788 0.007357 -0.002357
100.0 0.05829 0.002148 -0.004308 -0.001264
110.0 0.04965 0.004750 -0.01257 0.000453
120.0 0.04331 0.009137 -0.01847 0.000088
130.0 0.03869 0.01428 -0.02273 0.000389
140.0 0.03540 0.01944 -0.02585 0.000483
150.0 0.03318 0.02406 ~0.02810 0.000411
160.0 0.03181 0.02772 -0.02966 0.000241
170.0 0.03110 0.03007 -0.03058 0.000071

180.0 0.03088 0.03088 -0,03088 0
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Table T.13

m = 1,212 — 0.0601{ Model: Water haze M Bex = 0.004487 km~1
A=100u x: 0.005(0.005)1.0(0.05)4 - = 0.1786

7} P jdn P,j4m Pyl4+ Pfdn

0.0 0.3256 0.3256 0.3256 0

10.0 0.3160 0.3079 0.3119 -0.000567
20.0 0.2899 0.2606 0.2749 -0.001972
30.0 0.2535 0.198L 0.2240 -0.003530
40.0 0.2141 0.1353 0.1700 -0.004606
50.0 0.1772 0.08269 9.1206 -0.004924
60.0 0.1457 0.04424 0.07962 -0.004583
70.0 0.1203 0.01951 0.04743 -0.003857
80.0 0.1003 0.0906063 0.02294 -0.003007
90.0 0.08483 0.001006 0.004630 -0.002194
100.0 0.07283 0.001741 ~0.008931 -0.001493
110.0 0.06360 0.006133 -0.01891 -0.000930
120.0 0.05650 0.01252 -0.02621 -0.000511
130.0 0.05122 0.01963 -0.03152 -0.000228
140.0 0.04728 0.02656 -0.03536 -0.000064
150.0 0.044648 0.03260 -0.03805 0.000006
160.0 0.04261 0.03726 -0.03984 . 0.000018
170.0 0.04155 0.04020 ~0.04087 0.000007

180.0 0.04120 0.041290 -0.94120 0
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Table T.14

m= 1111 —0.1831i Model: Water haze M fex = 0.009734 km—>

A=1l5u x: 0.005(0.005)0.5(0.05)3.5 w = 0.04417
G Pj4m P4 Pyf4n P,j4n

0.0 0.2667 0.2667 0.2667 e
10.0 0.2612 0.2535 0.2573 -0.000478
20.0 0.2459 0.2177 0.2314 -0.001716
30.0 0.2236 0.1688 0.1942 -0.003237
40.0 0.1980 0.1177 0.1525 -0.004537
50.0 0.1722 0.07281 0.1117 -0.005300.
60.0 0.1485 0.03869 0.07537 -0.005465
70.0 0.1280 0.01624 0.04488 -0.005149
80.0 0.1108 0.004213 0.02030 ~0.004534
90.0 0.09674 0.000443 0.000961 -0.003785
100.0 0.08540 0.002637 ~0.01400 ~0.003016
110.0 0.07632 0.008713 -0.02542 -0.002295
120.0 0.06914 0.01692 ~0.03404 -0.001659
130.0 0.06354 0.02585 -0.04046 -0.001127
140.0 0.05927 0.03444 -0.04515 -0.000704
150.0 0.05613 0.04187 -0.04847 -0.000386
160.0 0.05399 0.04756 -0.05067 -0.000168
170.0 0.05275 0.05112 =0.05183 -0.000042

180.0 0.05234 0.05234 -0.05234 0
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Table T.IS
m = .44 — 0.4000i Model: Water haze M fex = 0.01345 km™?!
A=166u x: 0.005(0.005)0.5(0.05)2.5 w = 0.07473
6 Pjar Pyfar Pyj4w Pyjan
0.0 0.1986 0.1986 0.1986 0
10.0 0.1964 0.1910 0.1937 ~0.000488
20.0 0.1901 0.1700 0.1798 -0.001817
30.0 0.1806 0.1394 0.1585 -0.003635
40.0 0.1687 0.1045 0.1325 -0.005498
50.0 0.1557 0.07056 0.1042 -0.007011
60.0 0.1425 0.04165 0.07598 -0.007926
70.0 0.1298 0.02019 0.04935 -0.008168
80.0 0.1182 0.007005 0.02533 ~-0.007808
90.0 0.1080 0.001714 0.00439% -0.007000
100.0 0.09913 0.003143 -0.01340 -0.005922
110.0 0.09164 0.009710 -0.02821 -0.004736
120.0 0.08544 0.01969 -0.04029 ~0.003569
130.0 0.08040 0.03141 -0.04992 -0.002510
140.0 0.07644 0.04330 -0.05740 -0.001613
150.0 © 0.07346 0.05402 -0.06296 -0.000906
160.0 0.07139 0.06249 -0.06678 ~0.000402
170.0 0.07016 0.06790 -0.06902 -0.000100

L80.0 0.06976 0.06976 -0.06976 0
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Table T.16
m = [.34 Model: Water haze L fex = 0.04797 km™1

A =045pu x:0.10(0.10)12(0.2)36 @ = 1.0
0 P fdx Pyl Pyldm P,l4m

0.0 3.725 3.725 3.725 0
2.5 3.438 3.443 3.440 -0.0110%
5.0 2.798 2.811 2.804 -0.03099
7.5 2.149 2.167 2.155 -0.04298
10.0 1.627 1.649 1.634 -0.04542
12.5 1.238 1.262 1.246 -0.04267
15.0 0.9526 0.9767 9.9605 ~0.03775
17.5 0.7422 0.7655 0.7497 -0.03205
20.0 0.5845 0.6068 0.5915 ~0.02647
30.0 0.2444 0.2606 0.2488 ~0.01091
40.0 0.1130 0.1232 0.1150 -0.003766
50.0 0.05706 0.06306 0.05738 -0.000638
60.0 0.03140 0.03475 0.03065 0.000722
70.0 0.01885 0.02061 0.01745 0.001338
-80.0 6.01261 0.01322 0.01058 0.001663
90.0 0.009068 0.009233 0.006843 0.001923
100.0 0.007386 0.007113 0.004704 0.002252
110.0 0.006711 0:006148 0.003441 0.002758
120.0 0.006880 0.006046 0.002712 0.003618
130.0 0.0081 82 0.006690 0.002325 0.005089
135.0 0.009463 0.007215 0.002224 0.006110
140.0 0.01126 0.007748 0.002192 0.007245
145.0 0.01349 0:008151 0.002288 0.008270
150.0 0.01582 0.008391 0.002627 0.008866
155.0 0.01774 0.008865 0.003371 0.008735
157.5 0.01835 0.009498 0.003922 0.008431
160.0 0.01862 0.01057 0.004536 0.008000
162.5 0.01849 0.01206 0.005076 0.007381
165.0 0.01774 0.01369 0.005251 0.006293
167.5 0.01602 0.01468 0.004506 0.004250
170.0 0.01338 0.01401 0.002151 0.001098
1725 0.01103 0.01195 -0.002128 -0.002090
175.0 0.01103 0.01120 -0.007929 -0.003108
177.5 0.01390 0.01375 -0.01353 -0.001394

180.0 0.01592 0.01592 -0.01592 0
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Table T.17
m = 133 Model: Water haze L Bex = 0.03953 km—!
A =0.70 p x: 0.05(0.05)6(0.2)26 o = 1.0
6 P1/4‘” P:I’“‘"’ Pa/47T P4/4‘n'
0.0 2.415 2.415 2.415. 0
2.5 2,331 2,332 2.332 -0.003833
5.0 2.110 2.114 2.112 -0.01290
7.5 1.819 1.828 1.823 -0.02250
10.0 1.521 1.533 1.526 -0.02957
12.5 1.249 1.262 1.254 -0.03338
15.0 1.014 1.028 1.019 -0.03435
17.5 0.R189 0.8323 0.8234 -0.03327
20.0 9.6596 0.6719 0.6632 -0.03092
30.0 0.2816 0.2872 0.2814 -0.01829
40.0 0.1286 0.1293 0.1262 -0.009006
50.0 0.06442 0.06273 0.06103 -0.003878
60.0 0.03550 0.03292 0.03185 -0.001225
70.0 0.02147 0.01870 0.01781 0.000173
80.0 0.01425 0.01155 0.01062 0.000956
90.0 0.01037 0.007825 0.006711 0.001459
100.0 0.008275 0.005882 0.004467 0.001888
110.0 0.007271 0.004962 0.003113 0.002373
120.0 0.007076 0.004698 0.002241 -0.003009
130.0 0.007671L 0.004924 0.001616 0.003871
133.0 0.008289 0.005184 0.001343 0.004382
140.0 0.009115 0.005517 0.001079 0.004902
145.0 0.01909 0.005922 0.000825 0.005353
150.0 0.01109 0.006452 0.000593 0.005620
155.0 0.01182 0.007261 0.000369 0.005575
157.5 0.01198 0.007827 0.000222 0.005387
160.0 0.01190 0.008499 -0.000006 0.005040
162.5 0.01151 9.009199 -0.000408 0.004471
165.0 0.01076 0.009742 -0.001115 0.003591
167.5 0.009716 0.009894 -0.002255 0.002343
170.0 0.008617 0.009556 -0.00388L 0.000867
172.5 0.007999 0.009024 -0.005883 -0.000346
175.0 0.008362 0.908969 -0.007913 ~0.000719
177.5 0.009428 0.90959L -0.009450 -0.000319
180.0 0.01002 0.01002 ~0.01002 o
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Table T.I8
m = 1.322 — 0.00001i Model: Water haze L fex = 0.02218 km—!
A=1.19u x: 0.05(0.05)5(0.2) 17 w = 0.9999
0 Pil4n P,ldn Psldn P.j4=
0.0 1.520 1.520 1.520 0
2.5 1.495 1.495 1.495 -0.001327
5.0 1.422 1.422 1.422 -0.004929
7.5 1.314 1.313 1.313 ~0.009869
10.0 1.183 1.18L 1.182 -0.01503
12.5 1.044 1.040 1.042 -0.01957
15.0 0.907L 0.9009 0.9033 -0.02299
17.5 0.7786 0.7702 0.7734 -0.02514
20.0 0.6626 0.6518 0.6560 =-0.02610
30.0 0.3345 0.31667 0.3233 -0.02213
40.0 0.1704 0.15%4 0.1574 -0.01446
50.0 0.09167 0.07300 0.07998 -0.008299
60.0 0.05297 0.03688 0.04145 ~-0.004259
70.0 0.03297 0.01958 0.02261 ~0.001770
80.0 0.02208 0.01109 0.01271 -0.000235
90.0 0.01589 0.006882 0.007233 0.000758
100.0 0.01228 0.004857 0.00403L 0.001457
110.0 0.01019 0.004017 0.002023 9.002008
120.0 0.009059 0.003907 0.000628 0.002506
125.0 0.008764 0.004058 0.000043 0.002751
130.0 0.008617 0.004332 -0.000513 0.002992
135.0 0.008595 0.004726 -0.001074 0.003220
140.0 0.798672 0.005245 -0.001669 0.003414
145.0 0.008807 0.005897 -0.00233L 0.003538
150.0 0.008939 0.006683 -0.003100 0.003535
155.0 0.008986 0.007583 -0.004029 0.003324
160.0 0.008876 0.008488 -0.005190 0.002793
165.0 0.008659 0.009185 ~0.006624 0.001876
170.0 0.008680 0.009496 -0.008191 0.000772
175.0 0.009329 0.009695 -0.009421 0.0001C4
180.0 0.009864 0.009864 -0.009864 0
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Table T.19
m = 1.308 — 0.0018i Model: Water haze L Bex = 0.008947 km—1
A= 194, x: 0.025(0.025)6(0.1)10 = = 0.9804
0 Py f4m Pyl4n Pyjdn P4
0.0 0.9252 0.9252 0.9252 0
5.0 0.8930 0.8905 0.8918 -0.001820
10.0 0.8063 0.7972 0.8017 ~0.006316
15.0 0.6887 -0.6706 0.679 -0.01138
20.0 0.5648 0.5373 0.5505 -0.01522
25.0 0.4513 0.4155 0.4322 -0.01717
3080 0.3552 0.3133 0.3325 -0.01740
40.9 0.2169 0.1695 0.1899 -0.01466
50.0 0.1342 0.08813 0.1064 -0.01050
60.0 0.08583 0.04466 0.05916 ~0.906715
70.0 0.05732 0.02222 0.03247 -0.003790
80.0 0.04010 0.01104 0.01716 ~0.001681
90.0 0.02943 0.005836 0.008142 -0.000200
100.0 0.02265 0.003829 0.002640 0.000834
110.0 0.01827 0.003558 -0.000900 0.001554
120.0 0.01544 0.004278 ~0.003372 0.002047
130.0 0.01364 0.005610 ~0.005320 0.002338
140.0 0.01258 0.007360 ~0.00709 0.002400
145.0 0.01225 0.008341 -0.007996 0.002314
150.0 0.01206 0.009356 -0.008928 0.002132
155.0 0.01198 0.01036 -0.009891 0.001835
160.0 0.01204 0.01129 -0.01087 0.001418
165.0 0.01224 0.91207 -0.01179 0.000923
170.0 0.01261 0.01267 -0.01254 0.000452
175.0 0.01300 0.01305 -0.01302 0.000119
180.0 0.01318 0.01318 T 0.01318 0
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m = 1.364 — 0.3060i

Table T.20

Model: Water haze L

NUMERICAL TABLES

Bex = 0.01571 km™?!

A =3.00pu x: 0.025(0.025)2(0.1)4 o = 0.2359
6 Pyf4n P;l4x Pgfdm P[4
0.0 0.4411 0.4411 0.4411 0
5.0 0.4362 0.4333 0.4347 -0.000796
10.0 0.4219 0.4110 0.4164 -0.003047
15.0 0.3995 0.3767 0.3879 -0.006380
20.0 0.3709 0.3338 0.3516 -0.01027
25.0 0.3382 0.2863 0.3107 -0.01414
30.0 0.,3037 0.2383 0.268L -0.01750
40.0 0.2365 0.1517 0.1874 -0.02150
50.0 0.1796 ‘0.08740 0.1218 -0.02163
60.0 0.1362 0.04590 0.07407 -0.01918
70.0 0.1046 0.02185 0.04117 -0.01577
80.0 0.08192 0.009520 0.0189 -0.01238
90.0 0.06549 0.004604 0.003998 ~0.009372
100.0 0.05352 0.004158 -0.006018 -0.006808
110.0 0.04478 0.006215 -0.01272 -0.004708
120.0 0.03841 0.009515 -0.01722 -0.003068
130.0 0.03377 0.01328 -0.02027 -0.001857
140.0 0.03044 0.01702 ~0.02237 -0.001018
150.0 0.02810 0.02038 -0.02380 ~0.000484
160.0 0.02657 0.02307 -0.02473 -0.000182
170.0 0.02570 0.02481 ~-0.02525 -0.000040
180.0 0.02542 0.02542 -0.02542 0
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Table T.21
m = 1.353 — 0.0059i Model: Water haze L fex = 0.002219 km—1
A =390 u x: 0.025(0.025)3 w = 0.08931
0 PyJ4m P4 P,j4n Pjbm

0.0 0.3458 0.3458 0.3458 0

10.0 0.3361 0.3289 0.3325 ~0.000628
20.0 0.3090 0.2832 0.2958 -0.002245
30.0 0.2700 0.2207 0.2440 -0.004187
40.0 0.2257 0.1557 0.1871 ~0.005713
50.0 0.1825 0.09913 0.1337 -0.006327
60.0 0.1446 0.05654 0.08884 -0.005921
70.0 0.1138 0.02840 0.05418 ~-0.004722
80.0 0.09018 0.01229 0.02878 ~0.003122
90.0 0.07269 0.004920 0.01069 -0.001499
100.0 0.05997 0.003368 -0.002115 -0.000125
110.0 0.05077 0.005446 -0.01128 0.000855
120.0 0.04418 0.009622 -0.0179% 0.001397
130.0 0.03956 0.01481 -0.02289 0.001526
140.0 0.03643 0.02020 -0.02655 0.001327
150.0 0.034464 0.02514 -0.02923 0.000925
160.0 0.03328 0.02909 -0.03107 0.000475
170.0 0.03270 0.03164 -0.03216 0.000129

180.0 0.03252 0.03252 -0.03252 0
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Table T.22
m = 1.315 — 0.0143; Model: Water haze L Bex = 0.001088 km—1
A =530u x: 0.0125(0.0125)4 @ = 0.6345
8 Pyifdm Pyl Pyl P4+

0.0 0.2891 0.2891 0.2891 0

10.0 0.2820 0.2754 0.2787 -0.000396
20.0 0.2625 0.2381 0.2500 -0.001383
30.0 0.2346 0.1871 0.2094 ~0.002490
40.9 0.2034 0.1335 0.1645 -0.003258
50.0 0.1730 0.08595 0.1214 ~0.003460
60.0 0.1459 0.04894 0.08333 -0.003136
70.0 0.1230 0.02353 0.25219 -0.002473
80.0 0.1042 0.008634 0.02719 -0.001682
90.0 0.08923 0.002242 0.007720 -0.000920
100.0 0.07739 0.002156 -0.007210 ~-0.000279
110.0 0.06814 0.006336 -0.01855 0.00019
120.0 0.06103 0.01305 -0.02711 0.000483
130.0 0.05566 0.02088 -0.03353 0.000593
140.0 0.05173 0.02873 -0.03830 0.000549
150.0 0.04898 0.03572 -0.04174 0.000399
160.0 0.04719 0.04120 -0.04407 0.000211
170.0 0.04619 0.04468 -0.04543 0.000058

180.0 0.04587 0.04587 -0.04587 0
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Table T.23
m = [.315 — 0.1370i Model: Water haze L Bex = 0.003571 km~?
Ai=605u x: 0.01(0.01)3 w = 0.1313
[’} P j4xn Pyldw Psldn Pilan

0.0 0.2430 0.2430 0.2430 0

10.0 0.2390 0.2327 0.2358 ~0.)00410
20.0 0.2274 0.2042 0.2155 -0.001496
30.0 0.2102 0.1638 0.1855 -0.002896
40.0 0.1897 0.1195 D.1504 -0.004186
50.0 9.1682 0.07828 0.1144 -0.005044
60.0 0.1476 0.04479 0.08059 -0.005335
70.0 0.1289 0.02105 7.75089 -0.005101
80.0 0.1128 0.907009 0.02592 -0.)04492,
90.0 0.09922 0.001333 0.005584 -0.003685
100.0 0.08810 0.002172 -0.01063 -0.002835
116.9 0.07911 0.007589 -0.02335 -0.002047
120.0 0.0719 0.01580 -0.03319 -0.001383
130.0 0.06632 0.02525 -0.04069 -0.000865
140.0 0.06203 0.03466 -0.04628 ~3.00049%2
150.0 0.03888 0.04302 ~0.05030 -0.090245
160.0 0.03674 0.04954 =0.0530L -0.000098
170.0 0.03549 0.05367 -0.05457 -0.000023
180.0 0.05598 0.93508 -0.05508 0
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Table T.24
m = 1.29 — 0.0472i Model: Water haze L Bex = 0.0009424 km—1
A=8I15u x: 0.01(0.01)3 w = 0.1560
] P,l4n P,l4w Pyjdn P4
0.0 0.1971 0.1971 0.1971 0
10.0 0.1950 0.1897 0.1923 -0.009094
20.0 .1889 0.1688 0.1786 ~-0.000347
30.0 0.179 0.1384 0.1576 -0-000678
40.0 0.1681 0.1037 0.1319 ~0.099993
50.0 0.15% 0.06972 0.1040 -0.901211
60.0 0.1426 0.04067 7.07591 -0.001292
70.0 0.1302 0.01934 0.04936 -0.001237
80.0 0.1189 0.005762 0.02530 ~0.201079
90.0 0.1089 0.000546 0.004227 -0.000861
100.0 0.1001 0.002236 -0.01376 -0.000630
110.9 0.09272 0.009205 ~0.02877 -0.000420
120.0 0.08657 0.01965 -0.04104 -0.000250
130.0 0.08157 0.03180 -0.05084 -0.000129
140.0 0.07764 0.04405 -0.05845 -0.000055
150.0 0.07469 0.05303 -0.06410 ~-0.000017
i60.0 0.07264 0.06366 -0.06800 -0-000003
170.0 0.07143 0.06915 ~-0.07028 0.000000
189.0 0.07103 0.07103 -0.97103 0
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Table T.25

m = .29 — 0.0236i Model: Water haze L Bex = 0.0005465 km—!
A=8.15u x: 0.01(0.01)3 = = 0.2688

0 Pj4n Pyl4n Pol4x Pyjan

0.0 0.1977 0.1977 0.1977 0

10.0 0:1956 0.1902 0.1929 -0.000970

20.9 0.1894 3.1693 0.1791 -0.000255

30.0 0.1800 0.1388 0.1581 ~0.000493

40.0 0.1683 0.1040 0.1323 -0.000709

50:0 0.1555 0.06997 2.1042 -=0.000842

60.0 0.1426 0.04085 0.07608 -0.000864

70.0 0.1302 0.01915 0.04948 -0.000782

80.0 0.1188 0.005829 0.02541 -0.000626

90.0 0.1087 0.000574 0.904332 ~0.000437
100.9 0.0999%0 0.002229 -0.01365 -0.000254
110.0 0.09248 0.009167 -0.02864 -0.000103
120.0 0.08633 0.01958 ~0:04090 0.000000
130.0 0.08134 0.03171 -0.05068 0.000055
140.0 0.07743 0.04393 -0.05828 0.000069
150.0 0.07449 0.05488 -0.06392 0.000955
160.0 0.07244 0.06349 -0.,06782 0.000030
170.0 0.07124 0.06897 ~0.07010 0.000008

180.0 0:07085 0.07085 -0.07085 o]



176

NUMERICAL TABLES

Table T.26
m = |.44 — 0.4000i Model: Water haze L Pex = 0.002889 km—!
A=166pu x: 0.005(0.005)0.5(0.05)1.5 @ = 0.001468
0 P /4n Pyjan Pyf4m Pyjdm
0.0 0.1393 0.1393 0.1393 0
19.0 0.1389 0.1348 0.1369 -0.000070
20.0 0.1378 0.1222 0.1298 -0.000270
30.0 0.1361 0.1039 0.1184 -0.000567
40.0 0.1339 0.07985 0.1034 ~0.000917
50.0 0.1311 0.05571 0.08545 -0.001267
60.0 0.1281 0.03352 0.96547 ~0.001568
70.0 0.1249 0.01581 0.04432 -0.001784
80.0 0.1216 0.904376 0.02281 -0.001888
90.0 0.1183 0.000123 0.001682 ~0.001875
100.0 0.1152 0.003042 -0.01844 -0.001752
110.0 0.1123 0.01229 -0.03703 -0.001539
120.0 0.1097 0.02636 -0.05371 -0.001264
130.0 0.1074 0.04331 -0.06818 -0.000960
140.0 0.1055 0.06102 -0.08022 -0.000658
150.0 0.1040 0.07739 -0.08970 -~0.000390
160.0 0.1029 0.99055 -0.09652 -0.000180
170.0 0.1022 0.09906 -0.1006 -0.000046
180.9 0.1020 0.1020 -0.1020 0
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Table T.27
m = 1.340 Model: Water haze H Bex = 0.02014 km—?
4 =045, x: 0.05(0.05)2(0. 10)18 @ = 1.0
6 P,j4m Pyf4m Pyl P4
0.0 1.666 1.666 1.666 0
2.5 1.641 1.641 1.641 ~0.001436
5.0 1.568 1.568 1.568 -0.005441
7.5 1.456 1.456 1.456 -0.01120
10.0 1.317 1.316 1.316 -0.01762
12.5 1.162 1.161 1.161 -0.02365
15.0 1.004 1.003 1.003 -0.02848
17.5 0.8531 0.8513 0.8511 ~-0.03L65
20.0 0.7143 0.7120 0.7116 -0.03308
30.0 0.3246 0.3206 0.3199 ~0.02647
40.0 0.1462 0.1414 0.1408 -0.01490
50.0 0.07121 0.06640 0.06603 -0.007041
60.0 0.03852 0.03398 0.03374 -0.002795
70.0 0.02314 0.01898 0.01872 -0.000612
80.0 0.01532 0.01155 0.01114 0.000550
90.0 0.01111 0.007688 0.007030 0.001239
100.0 0.008790 0.005633 0.004655 0.001735
110.0 0.007585 0.004588 0.003189 0.002190
120.0 0.007129 0.004193 0.002201 0.002696
130.0 0.007242 0.004339 0.001433 0.003310
140.0 0.007725 0.005130 0.000649 0.004018
150.0 0.008001 0.006748 -0.000626 0.004503
160.0 0.007208 0.008594 -0.003448 0.003622
162.5 0.006967 0.008881 -0.004462 0.003053
165.0 0.006862 0009064 -0,005534 0.002389
167.5 0.006982 0.009162 ~0.006590 0.001701
170.0 0.007368 0.009215 -0.007549 0.001074
172.5 0.007971 0.009257 -0.008337 0.000577
175.0 0.008640 0.009305 -0.008911 0.000241
177.5 0.009167 0.009349 -0.009254 0.000057
180.0 0.009367 0.009367 -0.009367 0
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Table T.28
m = 1.33 Model: Water haze H Bex = 0.009888 km—1
A=070pu x: 0.05(0.05)2(0.10) 14 @ = 1.0
[ Py Poldm P4 P,l4n
0.0 0.9544 0.9544 0.9544 0
5.0 0.9267 0.9241 0.9254 -0.001804
10.0 0.8495 0.8400 0.8447 -0.006517
15.0 0.7385 0.7199 0.7290 -0.01243
20.0 0.6129 0.5855 0.5986 -0.01768
30.0 0.3801 0.3418 0.3591 -0.02211
40.0 0.2176 0.1789 0.1951 -0.01903
50.0 0.1225 0.08934 0.1018 -0.01316
60.0 0.07092 0.04452 0.05313 -0.007822
70.0 0.04340 0.02285 0.02828 -0.003975
80.0 0.02842 0.01239 0.01538 -0.001452
90.0 0.01996 0.007329 0.008396 0.000166
100.0 0.01502 0.004960 0.004376 0.001234
110.0 0.01204 0.004039 0.001851 0.001986
120.0 0.01021 0.004017 0.000033 0.002553
130.0 0.009060 0.00467L ~0.001575 0.002965
140.0 0.008334 0.00590L ~0.003360 0.003122
150.0 0.008047 0.007535 -0.005586 0.002789
160.0 0.008582 0.009208 -0.008114 0.001805
165.0 0.009243 0.009918 -0.009267 0.001165
170.0 0.01003 0.01047 -0.01018 0.000571
175.0 0.91069 0.01083 -0.01076 0.000151

180.0 0.01095 0.01095 -0.01095 0
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m = 1,322 — 0.00001i

Table T.29

Model: Water haze H
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Bex = 0.002877 km—!

A=119u x: 0.05(0.05)8 w = 0.9999
0 P.jdmr Pyldm P[4 P,[Anr

0.0 0.4633 0.4633 0.4633 0
5.0 0.4582 0.4560 0.4571 -0.000333
10.0 0.4434 0.4348 0.4391 -0.001275
15.0 0.4202 0.4019 0.4109 -0.002672
20.0 0.3903 Q.3604 0.3750 -0.004305
25.0 0.3560 0.3139 0.3341 -0.005940
30.0 0.3194 0.2658 0.2911 -0.007367
35.0 0.2825 0.2191 0.2483 -0.008435
40.0 0.2469 0.1760 0.2078 -0.009064
45.0 0.2137 0.1379 0.1708 -0.009240
50.0 0.1836 0.1055 0.1380 -0.009002
55.0 0.1570 0.07884 0.1097 -0.008422
60.0 0.1338 0.05753 0.08584 -0.907590
65.0 0.1140 0.04098 0.06601 -0.006594
70.0 0.09716 0.02848 0.04977 -0.005514
75.0 0.08302 0.01932 0.03662 -0.004415
80.0 0.07121 0.01283 0.02605 -0.003347
85.0 0.06139 0.008440 0.01760 ~-0.002346
90.0 0.05324 0.005661 0.01086 -0.001435
95.0 0.04651 0.004106 0.005490 -0.000628
100.0 0.04094 0.003466 0.001189 0.000068
105.0 0.03634 0.003504 -0.002275 0.000651
110.0 0.03256 0.004040 -0.005094 0.001122
120.0 0.02691 0.006093 -0.009365 0.001734
130.0 0.02323 0.008875 -0.01247 0.001927
140.0 0.02100 0.01191 ~0.01488 0.001745
150.0 0.01986 0.01483 -0.01680 0.001278
160.0 0.01947 0.01728 -0.01826 0.000687
170.0 0.01946 0.01893 -0.01919 0.000193

180.0 0.01951 0.01951 ~0.01951 0
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Table T.30
m = [.308 — 0.0018i Model: Water haze H Bex = 0.0006960 km—1
A=1%pu x: 0.025(0.025)5 = = 0.9443
¢} P, /4w P[4 P;ldn P4
0.0 0.2546 0.2546 0.2546 0
10.0 0.2504 0.2441 0.2472 -0.000127
20.0 0.2385 0.2150 0.2264 -0.000458
30.0 0.2205 0.1736 0.1956 -0.000866
40.0 0.1986 0.1276 0.1591 -0.001205
50.0 0.1752 0.08429 0.1213 -0.001364
60.0 0.1522 0.04879 0.08570 -0.001300
70.0 0.1310 0.02338 0.05446 -0.001042
80.0 0.1124 0.008116 0.02850 -0.900663
90.0 0.09659 0.001580 0.007826 -0.000253
100.0 0.08359 0.001687 -0.008110 0.000109
110.0 0.07317 0.006277 -0.02009 0.000368
120.0 0.06498 0.01344 -0.02892 0.000500
130.0 0.05869 0.02163 -0.03533 0.000509
140.0 0.05400 0.02967 -0.03990 0.000424
150.0 0.05063 0.03670 -0.04307 0.000287
160.0 0.04838 0.04212 -0.04513 0.000144
170.0 0.04710 0.04552 -0.04630 0.000039

180.0 0.04668 0.04668 -0.04668 0
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Table T.31
m = 1.364 — 0.3060i Model: Water haze H Bex = 0.003897 km—1
A =3.00pu x: 0.025(0.025)3 @ = 0.08142

6 Pyfdn Pyl4m Pyldn PyAn

0.0 0.1737 0.1737 0.1737 0

10.0 0.1725 0.1676 0.1701 -0.000185
20.0 0.1691 0.1506 0.159 -0.000703
30.0 0.1638 0.1252 0.1432 -0.001450
40.0 0.1568 0.09539 0.1223 ~0.002285
50.0 0.1488 0.06534 0.09848 -0.003065
60.0 0.1400 0.03875 0.07345 -0.003665
70.0 0.1311 0.01832 0.04861 -0.004009
80.0 0.1224 0.005487 0.02509 -0.004073
90.0 . 0.1142 0.000470 0.003654 -0.003876
100.0 0.1066 0.002494 -0.01523 -0.003471
110.0 0.09991 0.01012 ~0.03139 -0.002925
1200 _ 0.09408 0.02154 -0.04483 -0.002310
130.0 0.08918 0.03489 -0.05570 -0.001693
140.0 0.08521 0.04841 -0.06419 -0.001126
150.0 0.08216 0.06055 -0.07053 -0.000651
160.0 0.08000 0.07011 ~0.07489 -0.000294
170.0 0.07872 0.07620 -0.07745 ~0.000074

180.0 0.07829 0.07829 ~0.07829 0
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Table T.32
m = 1.353 — 0.0059i Model: Water haze H Bex = 0.0001317 km~1
A=390pu x: 0.025(0.025)2 w = 0.05876
6 Pyfdn Pofdm Pyfdn Pyfdm
0.0 0.1515 0.1515 0.1515 0
10.0 0.1509 0.1466 0.1487 0.000003
20.0 0.1491 0.1324 0.1405 0.000011
30.0 0.1463 0.1111 0.1275 0.000023
40.0 0.1425 0.08556 0.1104 0.000040
50.0 0.1381 0.05926 0.09045 0.000058
60.0 0.1331 0.03541 0.06864 0.000076
70.0 0.1279 0.01664 0.04608 0.000093
80.0 0.1226 0.004635 0.02374 0.000105
90.0 0.1174 0.000088 0.002412 0.000111
100.0 0.1125 0.002697 -0.01730 0.000110
110.0 0.1080 0.01137 -0.03498 0.000102
120.0 0.1039 0.02445 -0.05038 0.000088
130.0 0.1004 0.03999 ~0.06336 0.000070
140.0 0.09753 0.05601 -0.07390 0.000050
150..0 0.09525 0.07062 -0.08202 0.000030
160.0 0.09362 0.08226 ~0.08776 0.000014
170.0 0.09264 0.08974 -0.09118 0.000004
180.0 0.09231 0.09231 ~0.09231 0
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Table T.33
m = 1.315 — 0.0143i Model: Water haze H Bex = 0.0001 142 km—1
A =530p x: 0.01(0.01)I.5 w = 0.1677
7] P4 P,ldn PslAn P,l4x
0.0 0.1363 0.1363 0.1363 0
20.0 0.1351 0.1196 0.1271 -0.000003
40.0 0.1319 0.07820 0.1016 ~0.000010
60.0 0.1272 0.03269 0.06448 -0.000017
80.0 0.1216 0.004064 0.02222 ~0.000020
100.0 0.1160 0.003152 -0.01911 -0.000017
120.0 0.1111 0.02701 -0.05477 0.000012
140.0 0.1072 0.06230 -0.08174 ~0.000006
160.0 0.1048 0.09233 -0.09837 ~0.000002
180.0 0.1040 0.1040 -0.1040 0
Table T.34
m = [.315 — 0.1370f Model: Water haze H Bex = 0.0008008 km—2
A =6.05u x: 0.01(0.01)1.5 w = 0.01680
0 P[4 Pyldn Psl4rn PjAn
0.0 0.1323 0.1323 0.1323 0
20.0 0.1314 0.1163 0.1236 -0.000050
40.0 0.1290 0.07629 0.09921 -0.000172
60.0 0.1254 0.03202 0.06338 -0.000302
80.0 0.1212 0.003950 0.02187 -0.000377
100.0 0.1169 0.003260 -0.01951 -0.000363
120.0 0.1130 0.02767 -0.05592 -0.000271
140.0 0.1100 0.06405 -0.08392 -0.000145
160.0 0.1080 0.09523 -0.1014 -0.000040
180.0 0.1074 0.1074 -0.1074 o
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Table T.35
m = 1.34 Model: Water cloud C.| Bex = 16.33 km—1
A =045u x: 0.25(0.25)60(0.50) 160 = = 1.0
0 P./An P.fdm Psldm P,j4n
0.0 313.6 313.6 313.6 0
1.0 140.8 150.9 140.9 -0.9193
2.0 21.94 21.91 21.91 -0.4747
3.0 5.369 5.315 5.330 -0.1072

4.0 2.590 2.537 2.555 ~0.03771
5.0 1.616 1.575 1.589 -0.01870
6.0 1171 1.136 1.149 -0.01197
7.0 0.9335 0.9018 0.9133 -0.007486
8.0 0.7932 0.7678 0.7767 -0.005416
9.0 0.7020 0.6778 0.6861 -0.004902
10.0 0.6313 0.6163 0.6206 -0.004102
11.0 0.5811 0.5636 0.5692 0.000598
12.0 0.5432 0.5262 0.5319 -0.003656
13.0 0.5022 0.4986 0.4975 -0.000433
14.0 0.4735 0.4650 0.4667 0.001042
15.0 0.4454 0.4420 0.4411 -0.001713
20.0 0.3298 0.3337 0.3294 0.000177
25.0 0.2429 0.2522 0.2450 0.001153
30.0 0.1756 0.1875 0.1784 0.001882
35.0 0.1252 0.1384 0.1283 0.001758
40.0 0.08809 0.1608 0.09096 0.001645
45.0 0.06152 0.07262 0.06360 0.001629
50.0 0.04213 0.05193 0.04375 0.001358
55.0 0.02924 0.03650 0.02981 0.001304
60.0 0.01974 0.02551 0.01980 0.001088
65.0 0.01259_ 0.01835 0.01268 0.000292
0.0 0.009010 0.01186 0.007978 0.000644
/5.0 0.006492 0.007668 0.004809 0.000374
0.0 0.004743 0.005057 0.002773 0.000292
85.0 0.003611 0.003358 0.001428 0.000247
90.0 0.002973 0.002407 0.000690 0.000186
95.0 0.002614 0.001817 0.000194 0.000211
100.0 0.002393 0.001639 0.000016 0.000200
105.0 0.002240 0.001604 -0.000126 0.000293
110.0 0.002262 0,001740 0.000042 0.000226
115.0 0.003598 0.002083 0.000608 0.000268
120.0 0.005559 0.001784 0.000717 0.001243

122.0 0.005750 0.001796 0.000456 0.001499
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0 Pjdm Pyldn PylAxn Pyjdn
124.0 0.005598 0.001778 0.000163 0.001618
126.0 0.005166 0.001819 -0.000191 0.001707
128.0 0.004789 0.001809 ~0.000426 0.001703
.130.0 0.004612 0.001987 ~0.000530 0.001886
132.0 0.005103 0.002396 -0.000616 0.002186
134.0 0.006797 0.002971 -0.000308 0.003205
136.0 0.01126 0.004090 0.000338 0.005368
138.0 0.01887 0.005499 0.001815 0.008378
139.0 0.02554 0.006086 0.002397 0.009854
140.0 0.03058 0.005605 0.004450 0.01065
141.0 0.03760 0.005978 0.005218 0.01118
142.0 0.04338 0.005211 0.006355 0.01006
143.0 0.04588 0.004408 0.007622 0.007422
144.0 0.04523 0.004129 0.008179 0.003547
145.0 0.04125 0.004590 0.007800 -0.000592
146.0 0.03390 0.006071 0.007191 -0.004185
147.0 0.02537 0.008230 0.006071 -0.005499
148.0 0.01822 0.01060 0.004914 ~0.005074
149.0 0.01373 0.01255 0.004072 -0.002826
150.0 0.01220 0.01326 0.003521 -0.000348
152.0 0.01300 0.01284 0.003086 0.002328
154.0 0.01373 0.01172 0.002962 0.002489
156.0 0.01291 0.01177 0.002848 0.001786
158.0 0.01178 0.01217 0.002543 0.001374
160.0 0.01085 0,01261 0.002167 0.001423
162.0 0.01022 0.01262 0.001918 0.001359
164.0 0.009510 0.01309 0.001716 0.001260
166.0 0.009168 0.01350 0.001645 0.001303
168.0 0.008951 0.01396 0.001860 0.001346
170.0 0.009386 0.01550 0.002047 0.001480
172.0 0.009436 0.01749 0.002882 0.001824
174.0 0.01089 0.02082 0.004268 0.002049
176.0 0.01482 0.03004 0.009039 0.002877
177.0 0.02156 0.04157 0.01662 0.003132
178.0 0.03577 0.05156 0.02723 0.000238
179.0 0.04157 0.02090 -0.005092 -0.005588
180.0 0.05022 0.05022 -0.05022 0
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Table T.36
m = 1.33 Mode!: Water cloud C.I Bex = 16.73 km—1
A=070u x: 0.25(0.25)110 @ = 1.0
6 P,/4xn Pyj4mr Psldn P4
0.0 133.7 133.7 133.7 0
1.0 94.25 94.30 94,27 -0.3803
2.0 35.94 36.01 35.96 -0.5669
3.0 10.54 10.56 10.53 -0.3055
4.0 3.900 3.881 1.876 -~0.1192
5.0 2.152 2.112 2.121 -0.05086
5.0 1.483 L.448 1.458 -1.02761
7.0 1.140 1.107 1.117 -0.91722
8.9 0.9335 0.9062 0.9147 -0.01071
9.0 0.8009 0.7765 5.7832 -9.006069
10.0 0.7092 0.6887 0.6945 -0.004903
15.0 0.4684 0.4624 0.4619 -0.001724
25.0 0.2440° 0.2530 0.2452 0.001089
35.0 0.1242 0.1361 0.1264 0.002622
45.0 0.06121 0.07150 0.06255 0.902202
55.0 0.02894 0.03683 0.02973 0.001548
65.0 0.91417 0.01847 7.01359 0.901145
75.0 0.007188 0.009110 0.005735 0.000596
25.0 0.004092 0.004565 0.002149 2.000404
95.0 0.002788 0.002652 0.000617 0.000355
105.0 0.002416 0.002064 9.000035 0.000337
107.5 0.002410 0.002007 7.000154 0.901332
110.0 0.002711 0.002038 0.000217 .009337
112.5 0.003195 0.002020 9.000440 0.000467
115.0 0.003854 0.002053 3700509 0.000711
117.5 0.004508 0.002046 0.000597 0.901047
120.0 0.005096 0.002064 2.990499 9.001424
122.5 9.005509 0.002131 0.000276 0.001746
125.0 0.005758 0.002335 0.000104 0.002151

127.5 0.906005 0.002638 -0.000051 0.002497
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6 Pj4n Pyf4m P,lam P4
130.0 0.007082 0.:03284 -0.900065 0.003422
132.5 2.079455 0.0243%4 72.920232 0.005057
135.2 0.01349 0.205633 0.001126 7.007141
137.5 0.92131 N.006496 0.022319 9.009672
140.0 0.03073 0.026559 0.004364 0.01116
142.5 0.03710 0.905579 0.005972 0.909067
145.0 9.03581 0.024549 0.207018 0.902524
147.5 2.92503 0.006995 0.006141 -0.003009
150.0 0.01447 0.01133 0.004450 -0.003373
152.5 0.0104} 0.01377 0.003288 0.000477
135.0 0.01088 0.01356 0.002987 0.002717
157.5 0.01161 0.01267 9.002844 0.002869
160.0 0.01117 0.01294 0.202757 0.002378
162.0 0.01074 0.01324 0.002789 0.002238
164.0 0.01042 0.01393 0.002858 0.002070
166.0 0.01005 0.01498 0-003029 0.2701987
168.0 0.01029 0.071641 $.913183 0.002035
179.0 0.01081 0.01863 2.033957 0.002594
172.0 0.01142 0.02128 0.005289 0.002599
174.0 0.01518 0.02772 0.008411 0.003600
175.0 0.01871 0.03480 0.01255 0.004286
176.0 0.02524 0.24374 0.01934 0.004252
177.0 0.03317 0.04672 0.02480 0.701034
178.0 0.03666 0.02947 3.01145 -0.005274
179.0 0.04170 0.02698 -0.02776 -0.005015

180.0 0.05055 0.05035 ~0.05055 ]
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Table T.37
m = [.322 — 0.00001i Model: Water cloud C.I Bex = 17.29 km—1
A=110%u x: 0.20(0.20)70 o = 0.9994
0 Pyfdx Pojdm Pyfdn Pyfan
0.0 48.23 48.23 48.23 0
2.0 29.38 29.43 29.40 -0.2640
4.0 8.370 8.407 8.372 -0.2729
6.0 2.360 2.350 2.339 -0.1022
8.0 1.174 1.159 1.153 -0.03017
10.0 0.8332 0.8160 0.8161 -0.01374
12.0 0.6612 0.6441 0.6464 -0.008468
14.0 0.5470 0.5373 0.5362 -0.002526
16.0 0.4666 D.4626 0.4592 -0.002022
18.0 0.4036 0.4023 0.3980 -0.001528
20.0 0.3508 0.3512 0.3461 0.000055
30.0 0.1751 0.1847 0.1757 0.002212
40.0 0.08760 0.09810 0.08879 0.002808
50.0 0.04376 0.05248 0.04439 0.902501
60.0 0.02220 0.02821 0.02191 0.001897
70.0 0.01166 0.01529 0.01058 0.001350
80.0 0.006572 0.008516 0.004931 04000957
85.0 0.005124 0.006490 0.003293 0.000818
90.0 0.004134 0.005065 0.002160 0.000728
95.0 0.003476 0.004083 0.001187 0.000671
100.0 0.003109 0.003425 0.000907 0.000641
105.0 0.003132 0.003005 0.000678 0.000677
110.0 0.003586 0.002755 0.000591 0.000878
115.0 0-004337 0.002681 0.000480 0.001294

120.0 0.005234 0.002910 0.000284 0.001968
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[7} Pjdxn P,yldn Pyl P, ldn
125.0 0.006546 0.003682 0.000143 0.003115
130.0 0.009453 0.005253 0.000338 0.005298
135.0 0.01585 0.007290 0.001226 0.008797
140.0 0.02569 0.007948 0.002988 0.01143
142.0 0.02907 0.007307 0.203865 0.01088
144.0 0.03087 0.006465 0.004687 0.009036
146.0 0.03039 0.005860 0.005238 0.006082
148.0 0.02744 0.005975 0.005439 0.002576
150.0 0.02262 0.007397 0.005406 ~0.000257
152.0 0.01718 0.009925 0.005009 ~0.001437
154.0 0.01311 0.01230 0.004440 ~0.000765
156.0 0.01090 0.01421 0.004015 0.000696
158.0 0.01058 0.01553 0.004061 0.002248
160.0 0.01039 0.01607 0.004057 0.003399
162.0 0.01127 0.01578 0.004005 0.003910
164.0 0.01183 0.01719 0.004457 0.004054
166.0 0.01230 0.01967 : 0.005344 0.004323
168.0 0.01316 0.02142 0.005554 0.005056
170.0 0.0162L 0.02610 0.007705 0:006312
172.0 0.02009 0.03301 0.01342 0.005630
174.0 0.02707 ] 0.03887 0.02091 0.003614
176.0 0.03397 0.03554 0.01677 =0.001930
178.0 0.03528 0.02326 «0.01825 =0.007242

180.0 0.04556 0.04556 ~0.04556 0
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Table T.38
m = 1.318 — 0.00003j Model: Water cloud C.I Bex = 17.63 km~1
A=145u x: 0.20(0.20)60 o = 0.9849
(] P4 Pylan Psf4mr Pfanm
0.0 33.76 33.76 33.76 0
2.0 23.97 24.01 23.99 -0.1682
4.0 9.550 9.615 9.569 ~0.2572
6.0 3.121 3.147 3.114 -0.1490
8.0 1.384 1.375 1.362 -0.05675
10.0 0.8866 0.8759 0.8698 -0.01876
12.0 0.6842 0.6750 0.6717 -0.01124
14.0 0.5658 0.5537 0.5526 -0.007050
16.0 0.4726 0.4675 0.4633 -0.001736
18.0 0.4038 0.4039 0.3980 -0.001683
20.0 0.3502 0.3499 0.3443 -0.001266
30.0 0.1723 0.1798 0.1711 0.002358
40.0 0.08681 0.09594 0.08691 0.003129
50.0 0.04482 0.05271 0.04470 0.002872
60.0 0.02363 0.02955 0.02301 0.002328
70.0 0.01281 0.01683 0.01166 0.001760
80.0 0.007276 0.00978% 0.005647 0.001283
85.0 0.005662 2.007601 0.003842 0.001102
90.0 0.004561 0.006017 0.002568 0.000974
95.0 0.003835 0.004890 0.001688 0.000893
100.0 0.003459 0.004112 0.001129 0.000871
105.0 0.003483 0.003597 0.000813 0.000962
110.0 0.003917 0.003297 0.000608 0.001223
115.0 0.004650 0.003246 0.000390 0.001688

120.0 0.005614 0.003571 0.000155 0.002428
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0 P.f4n Pyl4m Pyldm Pild=
125.0 0.007124 0.004472 0.000025 0.003685
130.0 0.01010 0.006089 0.000197 0.005891
135.0 0.01578 0.008036 0.000888 0.009127
140.0 0.02378 0.008767 0.002258 0.01160
142.0 0.02667 0.008449 0.003030 0.01153
144.0 0.02854 0.007777 0.003709 0.01052
146.0 0.02909 0.006963 0.004453 0.008376
148.0 0.02758 0.006760 0.005218 0.005655
150.0 0.02425 0.007262 0.005554 0.003055
152.0 0.02040 0.008660 0-005689 0.000974
154.0 0.01640 0.0109L 0.005651 0.000051
156.0 0.01326 0.01324 0.005450 Q.000434
158.0 0.01151 0.01579 0.005321 0.001665
160.0 0.01091 0.01695 0.004819 0.003018
162.0 0.01181 0.01805 0.004798 0.004045
164.0 0.01262 0.02065 0.005671 0.004624
166.0 0.01258 0.02186 0.005516 0.005159
168.0 0.01540 0.02620 0.007345 0.006815
170.0 0.01980 0.03454 0.0L227 0.008834
172.0 0.02307 0.03932 0.01670 0.006748
174.0 0.02813 0.03919 0.01993 0.001679
176.0 0.03158 0.02817 0.007236 -0.005158
178.0 0.04054 0.03098 -0.03010 -0.005989

180.0 0.05259 0.05259 -0.05259 0
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Table T.39
m = 1315 Model: Water cloud C.I Pex = 17.58 km—?
A=16lpu x: 0.2(0.20)32(0.10)44 @ = 1.0

0 P[4 P,/4r Pyldz Pild
0.0 26.45 26.45 26.45 0

1.25 23.86 23.87 23.86 -0.05492
2.50 17.60 17.64 17.62 -0.1632
3.75 10.85 10.91 10.87 -0.2255
5.00 5.913 5.964 5.920 -0.2072
6.25 3.158 3.192 3.152 -0.1473
7.50 1.849 1.863 1.834 -0.09046
8.75 1.242 1.239 1.222 -0.05132
10.0 0.9417 0.9312 0.9226 -0.02726
11.25 0.7765 0.7658 0.7606 -0.01449
12.50 0.6681 0.6604 . 0.6554 ~0.009393
13.75 0.5884 0.5818 0.5768 -0.007814
15.00 0.5270 0.5193 0.5152 -0.006385
16.25 0.4751 0.4676 0.4637 -0.003753
17.50 0.4282 0.4241 0.4189 -0.000989
18.75 0.3868 0.3868 0.3801 0.000047
20.0 0.3516 0.3535 0.3464 -0.000557
30.0 0.1729 0.17%4 0.1707 0.002877
40.0 0.08770 0.08675 0.08743 0.003655
50.0 0.04592 0.05401 0.04565 0.003299
60.0 0.02452 0.03079 0.02384 0.002637
70.0 0.01354 0.01788 0.01231 0.002033
80.0 0.007891 0.01069 0.006173 0.001557
85.0 0.006206 0.008417 0.004297 0.001373
90.0 0.005004 0.006766 0.002953 0.001233
95.0 0.004227 0.005582 0.002030 0,001137
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9 P,jAn Pyfdr P./4m P[4
100.0 0.003885 0.004749 0.001441 0.001126
105.0 0.003964 0.004187 0.001078 0.001266
110.0 0.004395 0.003873 0.000799 0.001581
115.0 0.005117 -0.003864 0.000511 0.002097
120.0 0.006151 0.004291 0.000243 0.002935
125.0 0.007806 0.005328 0.000115 0.004357
130.0 0.01090 0.007044 0.000286 0.006692
135.0 0.01649 0.008965 0.000904 0.009899
140.0 0.02392 0.009747 0.002112 0.01242
142.5 0.02728 0.009283 0.003117 0.01230
145.0 0.02889 0.008371 0.003964 0.01089
147.5 0.02909 0.007574 0.005030 0.008100
150.0 0.02601 0.007729 0.005775 0.004844
152.5 0.02186 0.008841 0.006198 0.002075
155.0 0.01744 0.01212 0.006489 0.000517
157.5 0.01338 0.01509 0.006036 0.001236
160.0 0.01271 0.01776 0.005847 0.002920
162.5 0.01258 0.02171 0.006135 0.004353
165.0 0.01390 0.02300 0.005433 0.005537
167.5 0.01877 0.02925 0.009394 0.008660
170.0 0.02311 0.03886 0.01421 0.01095
172.5 0.02822 0.04528 0.02122 0.005700
175.0 0.03133 0.03457 0.01557 -0.006307
177.5 0.04100 0.03203 -0.02800 -0.008685
180.0 0.06043 0.06043 -0.06043 0
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Table T.40
m = 1.308 — 0.0018i Model: Water cloud C.I Bex = 18.05 km—?!
A=194pu x: 0.10(0.10)45 @ = 0.9395
i} P, /4x Pldr PylAm P4z
0.0 20.37 20.37 20.37 0
2.0 16.77 16.79 16.78 -0.08439
4.0 9.679 9.727 9.696 -0.1908
6.0 4.413 4£.457 4.420 -0.1773
8.0 1.971 1.992 1.964 -0.1049
10.0 1.067 1.069 1.055 -0.04957
12.0 0.7294 0.7214 0.7165 -0.02260
14.0 0.5680 0.5582 0.5560 -0.01112
16.0 0.4676 0.4388 0.4568 -0.005667
18.0 0.3946 0.3879 0.3854 -0.002565
20.0 0.3374 0.3330 '0.3299 -0.000523
30.0 0.1690 0.1743 0.1674 0.003941
40.0 0.08843 0.09749 0.08913 0.004476
50.0 0.04680 0.05534 0.04748 0.003832
60.0 0.02525 0.03182 0.02522 0.003037
70.0 0.01413 0.01869 0.01336 0.002374
80.0 0.008334 0.01139 0.007012 0.001880
90.0 0.005337 0.007401 0.003666 0.001558
100.0 0.004121 0.005347 0.002038 0.001535
1050 0.004066 0.004806 0.001579 0.001709
110.0 0.004324 0.004562 0.001236 0.002056
115.0 0.004884 0.004668 0.000968 0.002641
120.0 0.005849 0.005218 0.0007% 0.003590
125.0 0.007519 0.006295 0.000778 0.005098

130.0 0.01038 0.007813 0.001013 0.007308
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0 Py/4m P.j4 Pyfdn Pyfdn
135.0 0.01479 0.009267 0.001611 0.009954
140.0 0.02013 0.009668 0.002679 0.01183
142.0 0.02203 0.009351 0.003260 0.01191
144.0 0.02344 0.008792 0.003903 0.01143
146.0 0.02419 0.008111 0.004595 0.01035
148.0 0.02406 0.007529 0.005306 0.008752
150.0 0.02300 0.007278 0.005957 0.006841
152.0 0.02117 0.007606 0.006501 0.004910
154.0 0.01887 0.008654 0.006885 0.003288
156.0 0.01647 0.01041 0.007067 0.002278
158.0 0.01440 0.01273 0.007078 0.002016
160.0 0.01299 0.01534 0.006968 0.002462
162.0 0.01248 0.01804 0.006926 0.003472
164.0 0.0131% 0.02109 0.007457 0.005067
166.0 0.01561 0.02557 0.009336 0.007585
168.0 0.02003 0.03267 0.01316 0.01079
170.0 0.02487 0.04036 0.01827 0.01179
172.0 0.02662 0.04063 0.02119 0.005943
174.0 0.02489 0.02893 0.01476 -0.005385
176.0 0.02653 0.01973 -0.006295 -0.01152
178.0 0.03682 0.03157 -0.03251 -0.005815
180.0 0.04427 0.04427 -0.04427 0
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Table T.41
m = 1.29 — 0.00035i Model: Water cloud C.I Bex = 18.36 km™1
A=225pu x: 0.10(0.10)37.5 @ = 0.9894
0 P jAxn Pyldn P;ldn P4
0.0 14.66 14.66 14.66 0
2.5 11.71 11.73 11.72 -0.07423
5.0 6.251 297 6.265 -0.1515
7.5 2.658 2.692 2.659 -0.1202
10.0 1.209 1.220 1.203 -0.05967
12.5 0.7243 0.7221 0.7152 -0.02334
15.0 0.5383 0.5326 0.5289 -0.007395
17.5 0.4359 0.4318 0.4282 -0.000389
20.0 0.3639 ’ 0.3631 - 0.3585 0.002859
30.0 0.1853 0.1960 0.1868 0.006144
40.0 0.09392 0.1064 0.09653 0.005399
50.0 0.04809 0.05796 0.04972 0.004232
60.0 0.0255¢4 0.03241 0.02594 0.003294
70.0 0.01435 0.01890 0.01383 0.002624
80.0 0.008647 0.01169% 0.007536 0.002185
90.0 0.005731 0.007904 0.004261 0.001955
100.0 0.004574 0.006145 0.002723 0.002063
105.0 0.004599 0.005808 0.002367 0.002355
110.0 0.005048 0.005810 0.002185 0.002897
115.0 0.005981 0.006186 0.002137 0.003786
120.0 0.007546 0.006972 0.002222 0.005138
125.0 0.009987 0.008119 0.002481 0.007035
130.0 0.01356 0.009330 ©0.002977 0.009353
135.0 0.01814 0.009958 0.003770 0.01146
140.0 0.02260 0.009293 0.004870 0.01206
145.0 0.02470 0.007582 0.006140 0.009866
147.5 0.02417 0.006943 0.006716 0.007796
150.0 0.02256 0.006968 0.007169 0.005499
152.5 0.02017 0.007943 0.007407 0.003484
155.0 0.01753 0.009954 0.007428 0.002249
157.5 0.01529 0.01273 0.007274 0.002072
160.0 0.0L402 0.01583 ) 0.007126 0.002937
162.5 0.01425 0:01904 0.007418 0.004636
165.0 0.01681 0.02346 . 0.009312 0.007369
167.5 0.02232 0.03137 . 0.01411 0.01134
170.0 0.02790 0.03993 0.02004 0.01220
172.5 0.02602 ) 0.03564 0.01951 0.001788
175.0 0.02249 0.02057 0.002426 -0.01176
177.5 0.03331 0.02890 -0.02848 -0.008170
180.0 0.04544 0.04544 -0.04564 0
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Table T.42
m = 1.364 — 0.3060i Model: Water cloud C.i fex = 17.98 km™2
A =3.00 x: 1.25(0.25)26 w = 0.4923
] Pildnw Py/dm Pyf4m P[4
0.0 15.74 15.74 15.74 0
2.5 13.86 13.80 13.83 ~0.08243
5.0 9.554 9.378 9.463 -0.2271
7.5 5.334 5.110 5.211 -0.2796
10.0 2.554 2.401 2.481 -0.2251
12.5 1.225 1.085 1.137 -0.1409
15.0 0.6217 0.5236 0.5565 -0.07689
17.5 0.3605 0.2879 0.3106 -0.03944
20.0 0.2379 0.1798 0.1976 -0.02051
22.5 0.1706 0.1213 0.1363 -0.01129
25.0 0.1290 0.08581 0.09886 -0.006511
27.5 0.1009 0.06235 0.07382 -0.003953
30.0 0.08076 0.04605 0.05612 -0.002377
40.0 0.03975 0.01546 0.02135 0.000165
50.0 0.02365 0.005708 0.008829 0.000758
60.0 0.01582 0.002207 0.003332 0.000834
70.0 0.01141 0.000987 0.000589 0.000747
80.0 0.008690 0.000706 -0.000889 0.000618
90.0 0.006 892 0.000829 -0.001721 0.000487
100.0 0.005650 0.001117 -0.002199 0.000369
110.0 0.004766 0.001456 -0.002474 0.000269
120.0 0.004125 0.001790 ~0.002629 0.000188
130.0 0.003658 0.002091 -0.002713 0.000124
140.0 0.003319 0.002345 -0.002755 0.000075
150.0 0.003080 0.002547 -0.002773 0.000039
160.0 0.002923 0.002691 -0.002779 0.000015
170.0 0.002833 0.002764 ~0.002791 0.000003

180.0 0.002803 0.002803 -0.002803 0
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Table T.43
m = 1.353 — 0.0059i Model: Water cloud C.| Pex = 20.64 km—!
A=39u x:0.10(0.10)18 o = 0.9140

[7} P.l4m Pyldn Psldm P, A

0.0 5.316 5,316 5.316 0

2.5 4.943 4.949 4.946 -0.01735

5.0 3.988 4.009 3.997 -0.05526

7.5 2.830 2.864 2.844 -0.08507
10.0 1.824 1.864 1.837 -0.08912
12.5 1.132 1.170 1,143 -0.07123
15.0 0.7315 0.7635 0.7390 -0.04635
17.5 0.5182 0.5446 0.5239 -0.02569
20.0 0.4000 0.4230 0.4050 -0.01213
25.0 0.2734 0.2943 0.2788 0.000522
30.0 0.1998 0.2199 0.2056 0.003723
40.0 0.1060 0.1233 0.1111 0.003956
50.0 0.05693 0.06994 0.06025 0.003424
60.0 0.03192 0.04106 0.03353 0.002992
70.0 0.01904 0.02536 0.01940 0.002682
80.0 0.01233 0.01668 0.01175 0.002505
90.0 0.008831 0.0118L 0.007481 0.002481
100.0 0.007026 0.009192 0.005016 0.002658
110.0 0.006252 0.008093 0.003616 0.003161
120.0 0006447 0.008240 0.002934 0.004253
130.0 0.008127 0.009515 0.002785 0.006366
135.0 0.0098L5 0.01043 04002881 0.007898
140.0 0.01229 0.01135 0.003067 0.009718
145.0 0.01549 0.01185 0.003489 0.01146
150.0 0.01943 0.01178 0.004315 0.01281
152.5 0.02164 0.01153 0.005137 0.01316
155.0 0.02415 0.01158 0.006507 0.01345
157.5 0.02700 0.01234 0.008583 0.01383
160.0 0.02990 0.01421 0.01143 0.01424
162.5 9.03212 0.01729 0.01473 0.01432
165.0 0.03216 0.02018 0.01729 0.01287
167.5 0.02824 0.01999 0.016% 0.008206
170.0 0.02073 0.01569 0.01194 0.000669
172.5 0.01397 0.01103 0.002726 -0.005689
175.0 0.01275 0.01123 -0.007773 -0.006433
177.5 0.01638 0.01593 -0.01583 -0.002514
180.0 0.0188L 0.0188L -0.01881 0
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m = [.315 — 0.0143i

Table T.44

Model: Water cloud C.I

199

Box = 23.87 km~1

A =530u x: 0.10(0.10)14 = = 0.8848
0 P, Axn Polanm Pyl4m P./4m
0.0 3.786 3.786 3.786 0
2.5 3.646 3.649 3.648 ~-0.006352
5.0 3.260 3.272 3.266 -0.02250
7.5 2.717 2.741 2.728 -0.04134
10.0 2,126 2.162 2.143 ~0.05543
12.5 1.583 1.626 1.602 -0.06049
15.0 1.141 1.187 1.161 -0.05669
17.5 0.8129 0.8583 0.8317 ~0.04729
20.0 0.5835 0.6257 0.6004 -0.03623
22.5 0.4270 0.4648 0.4418 -0.02622
25.0 0.3197 0.3529 0.3325 -0.01828
27.5 0.2450 0.2737 0.2558 -0.01235
30.0 0.1921 0.2164 .0.2010 ~0.008087
40.0 0.08475 0.09683 0.08856 ~-0.001421
50.0 0.06224 0.04828 0.04346 0.000327
60.0 0.02297 0.02615 0.02295 0.000907
70.0 0.01380 0.01541 0.01310 0.001128
80.0 0.009113 0.009861 0.008013 0.001300
90.0 0.006599 0.006913 0.005238 0.001435
100.0 0.005341 0.005327 0.003718 0.001611
110.0 0.004859 0.004496 0.002855 0.001929
120.0 0.004961 0.004095 0.002347 0.002370
130.0 0.005674 0.003827 0.002046 0.002915
140.0 0.007049 0.003534 0.001863 0.003433
150.0 0.009291 0.003370 0.002201 0.003735
152.5 0.009861 0.003501 0.002459 0.003752
155.0 0.01040 0.003853 0.002831 0.003803
157.5 0.01084 0.004463 0.003284 0.003886
160.0 0.01090 0.005185 0.003636 0.003856
162.5 0.01022 0.005709 0.003578 0.003477
165.0 0.008642 0.005759 0.002849 0.002616
167.5 0.006499 0.00S5314 0.001436 0.001418
170.0 0.004538 0.004658 -0.000358 0.000292
172.5 0.003472 0.004175 -0.002070 -0.000353
175.0 0.003458 0.004057 ~-0.003338 -0.000408
177.5 0.003976 0.004180 ~0.004048 =0.000151
180.0 0.004267 0.004267 ~0.004267 Q
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Table T.45

m = [.315 — 0.1370i Model: Water cloud C.1 Bex = 19.86 km™1

A=6.05u x: 0.10(0.10)14 o = 0.5433
6 Pyfan Pyjan Pyjar Py j4n

0.0 4,135 4.135 4,135 0

2.5 4.000 3.996 3.998 -0.008093

5.0 3.624 3.612 3.618 -0.02927

7.5 3.084 3.060 3.072 -0.05576
10.0 2,476 2.443 2.458 -0.07883
12.5 1.888 1.850 1.886 -0.09237
15.0 1.380 1.343 1.357 -0.09464
17.5 0.9789 0.9464 0.9567 -0.08765
20.0 0.6825 0.6558 0.6623 -0.07517
22.5 0.4741 0.4533 0.4564 -0.06087
25.0 0.3321 0.3164 0.3170 -0.04729
27.5 0.2372 0.2251 0.2242 -0.03572
30.0 0.1739 0.1643 0.1626 -0.02653
40.0 0.06599 0.05954 0.05826 -0.008409
50.0 0.03295 0.02692 0.02644 -0.003432
60.0 0.01872 0.01339 0.01299 ~-0.001670
70.0 0.01162 0.007152 0.006535 -0.000858
80.0 0.007776 0.004136 0.003220 -0.000438
90.0 0.005550 0.002644 0.001429 ~0.000209
100.0 0.004191 0.001907 0.000418 -0.000082
110.0 0.003328 0.001554 -0.000172 -0.000012
120.0 0.002769 0.001399 -0.000524 0.000025
130.0 0.002407 0.001351 -0.000736 0.000044
140.0 0.002183 0.001380 ~0.000850 0.000058
145.0 0.002105 0.001425 -0.000881 0.000073
150.0 0.002032 0.001488 -0.000911 0.000096
155.0 0.001941 0.001546 -«0.000970 0.000124
160.0 0.001814 0.001559 -0.001089 0.000138
165.0 0.001669 0.001517 -0.001259 0.000118
170.0 0.001559 0.001477 =0.001415 0.000067
175.0 0.001516 0.001490 -0.001495 0.000019

180.0 0.001512 0.001512 -0.001512 o]
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Table T.46
m = 1.29 — 0.0472i Model: Water cloud C.I Pex = 18.75 km—!
A=815u x: 0.10(0.10)10 = = 0.7465
[’} P[4 P.ldx Pyldn Pyl4xn
0.0 2,404 2.404 2.404 0
5.0 2.233 2.230 2,231 ~0.009236
10.0 1.798 1.786 1.792 ~0.02949
15.0 1.270 1.254 1.261 -0.04592
20.0 0.8082 0.7922 0.7979 -0.04965
25.0 0.4804 0.4679 0.4710 -0.04248
30.0 0.2785 0.2699 0.2706 -0.03115
35.0 0.1634 0.1577 0.1571 -0.02072
40.0 0.09969 0.09555 0.09452 -0.01295
45.0 0.06435 0.06074 0.05985 -0.007803
50.0 0.04400 0.04042 0.03986 -0.004653
55.0 0.03151 0.02788 0.02761 ~0.002780
60.0 0.02340 0.01978 0.01968 -0.001622
65.0 0.01797 0.01438 0.01437 -0.000888
70.0 0.01416 0.01067 0.01069 ~0.000427
75.0 0.01140 0.008062 0.008051 -0.000122
80.0 0.009375 0.006208 0.006128 0.000102
85.0 0.007875 0.004871 0.004714 0.000266
90.0 0.006743 0.003895 0.003652 0.000381
95.0 0.005873 0.003178 0.002838 0.000470
100.0 0.005211 0.002648 0.002210 0.000546
105.0 0.004713 0.002249 0.001719 0.000610
110.0 0.004338 0.001947 0.001327 0.000660
115.0 0.004060 0.001723 0.001010 0.000705
120.0 0.003865 0.001560 0.000750 0.000748
125.0 0.003741 0.001443 0.000533 0.000789
130.0 0.003677 0.001373 0.000352 0.000831
135.0 0.003653 0.001361 0.000203 0.000876
140.0 0.003638 0.001416 0.000067 0.000929
145.0 0.003586 0.001549 -0.000084 0.000992
150.0 0.003447 0.001762 -0.000299 0.001051
155.0 0.003171 0.002019 -0.000649 0.001057
160.0 0.002792 0.002256 -0.001177 0.000949
165.0 0.002490 0.002443 -0.001802 0.000703
170.0 0.002458 0.002594 -0.002344 0.000380
175.0 0.002646 0.002715 -0.002667 0.000107
180.0 0.002766 0.002766 -0.002766 0
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Table T.47
m = [.29 = 0.0236i Model: Water cloud C.| PBex = 19.30 km™—1
A=8.15pu x: 0.05(0.05)10 w = 0.8537
7] P j4n Pyjam Pyf4m P,ldn
0.0 2.353 2.353 2.353 0
5.0 2.186 2.184 2.185 -0.008387
10.0 1.761 1.755 1.758 -0.02675
15.0 1.247 1.239 1.262 -0.04154
20.0 0.7956 0.7891 0.7904 -0.04473
25.0 0.4752 0.4711 0.4705 -0.03803
30.0 0.2771 0.2752 0.2732 -0.02765
35.0. 0.1637 0.1628 0.1603 -0.01816
40.0 0.1004 0.09975 0.09748 -0.01112
45.0 0.06509 0.06399 0.06227 -0.006464
50.0 0.04461 0.04292 0.04179 -0.003637
55.0 0.03198 0.02983 0.02914 -0.001972
60.0 0.02376 0.02133 0.02093 -0.000949
65.0 0.01826 0.01564 0.01542 -0.000304
70.0 0.01442 0.01172 0.01160 0.000095
75.0 0.0L165 0.008957 0.008853 0.000357
80.0 0.009621 0.006984 0.006852 .0.000553
85.0 0.008137 0.005553 0.005382 0.000701
90.0 0.007027 0.004501 0.004275 0.000806
95.0 0.006188 0.003723 0.003424 0.000894
100.0 0.005567 0.003143 0.002765 0.000979
105.0 0.005119 0.002702 0.002247 0.001056
110.0 0.004802 0.002363 0.001828 0.001125
115.0 0.0045%6 0.002108 0.001486 0.001195
120.0 0.004487 0.001919 0.001198 0.001268
125.0 0.004462 0.001779 0.000949 0.001342
130.0 0.004518 0.001691 0.000737 0.001420
135.0 0.004637 0.001675 0.000560 0.001504
140.0 0004766 0.001748 0.000399 0.001594
145.0 0.004840 0.001939 0.000222 0.001693
150.0 0.004774 0.002269 -0.000031 0.001781
155.0 0.004444 0.002694 -0.000487 0.001L778
160.0 0.003850 0.003105 -0.001252 0,001575
165.0 0.003318 0.003421 -0.002236 0.001143
170.0 0.003266 0.003650 -0.003140 0.000604
175.0 0.003641 0.003816 -0.003704 0.000166
180.0 0.003882 0.003882 ~-0.003882 0
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Table T.48
m = 1.212 — 0.0601j Model: Water cloud C.1 Bex = 1118 km—2
1=1004 x: 0.10(0.10)10 @ = 0.6014
0 P, j4w Pyfdm Pifdm Pildw
0.0 1.852 1.852 1.852 0
5.0 1.759 1.751 1.755 ~0.004651
10.0 1.510 1.483 1.496 -0.01587
15.0 1.180 1.134 1.156 -0.02756
20.0 0.8491 0.7910 0.8186 =0.03452
25.0 0.5718 0.5123 0.5397 -0.03509
30.0 0.3674 0.3141 0.3376 -0.03081
35.0 0.2300 0.1863 0.2046 =0.02433
40.0 0.1433 0.1094 0.1228 -0.01780
45.0 0.09073 0.06486 0.07434 -0.01234
50.0 0.05930Q 0.03942 0.04616 ~0.008255
55.0 0.04038 0.02473 0.02962 -0.005411
60.0 0.02872 0.01602 0.01965 -0.003506
65.0 0.02128 0.01067 0.01343 ~0.002255
70.0 0.01635 0.007265 0.009379 ~-0.001438
75.0 0.01295 0.005038 0.006636 -0.000902
80.0 0.01052 0.003549 0.004714 -0.000544
85.0 0.008742 0.002543 0.003328 -0.000300
90.0 0.007403 0.001860 0.002307 -0.000132
95.0 0.006377 0.001400 0.001538 -0.000013
100.0 0.005579 0.001095 0.000949 0.000072
105.0 0.004952 0.000901 0.000490 0.000134
110.0 0.004453 0.000786 0.000126 0.000180
115.0 0.004053 0.000732 ~-0.000168 0.000215
120.0 0.003727 0.000723 -0.000409 0.000243
125.0 0.003457 0.000752 -0.000613 0.000266
130.0 0.003229 0.000813 ~0.000791 0.000289
140.0 0.002843 0.001024 =0.001111 0.000333
150.0 0.002510 0.001350 -0.001454 0.000357
160.0 0.002290 0.001767 -0.001857 0.000292
170.0 0.002289 0.002174 -0.002214 0.000113
180.0 0.002355 0.002355 ~0.002355 0
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Table T.49
m = 1.1l —0.1831i Model: Water cloud C.I fex = 10.10 km™—1
A=115u x: 0.05(0.05)8 @ = 0.2886
0 P, /4 P4 P;l4n P[4
0.0 1.469 1.469 1.469 0
5.0 1.415 1.403 1.409 -0.003207
10.0 1.266 1.224 1.245 -0.01139
15.0 1.057 0.9791 1.017 ~0.02108
20.0 0.8278 0.7214 0.7721 -0.02869
25.0 0.6137 0.4938 0.5493 -0.03215
30.0 0.4356 0.3173 0.3700 -0.03136
35.0 0.2999 0.1938 0.2388 -0.02761
40.0 0.2030 0.1140 0.1495 -0.02252
45.0 0.1368 0.06546 0.0918L -0.01736
50.0 0.09291 0.03718 0.05589 -0.01285
55.0 0.06423 0.02113 0.03398 ~0.009253
60.0 0.04553 0.01214 0.02071 -0.006555
65.0 0.03323 0.007087 0.01262 -0.004615
70.0 0.02500 0.004224 0.007589 ~0.003254
75.0 0.01935 0.002588 0.004385 ~-0.002310
80.0 0.01538 0.001659 0.002287 -0.001655
85.0 0.01251 0.001152 0.000874 -0.001200
90.0 0.01038 0.000902 -0.000100 -0.000882
95.0 0.008766 0.000815 ~0.000785 -0.000656
100.0 0.007519 0.000831 -0.001275 -0.000493
105.0 0.006537 0.000913 -0.001627 -0.000373
110.0 0.005753 0.001034 -0.001882 -0.000283
120.0 0.004606 0.001330 ~0.002200 -0.000161
130.0 0.003834 0.001639 -0.002366 -0.000083
140.0 0.003308 0.001925 -0.002455 -0.000032
150.0 0.002958 0.002177 -0.002510 0.000000
160.0 0.002742 0.002388 -0.002552 0.000009
170.0 0.002629 0.002538 -0.002583 0.000004
180.0 0.00259¢4 0.002594 ~-0.002594 0
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Table T.50
m = 1.44 — 0.4000i Model: Water cloud C.1 = 16.97 km—1
l=166pu x: 0.05(0.05)6 = 0.3949
i} P4 PyfAm Pifdm P, A
0.0 0.7885 0.7885 0.7885 0
10.0 0.7291 0.70%6 0.7192 -0.01019
20.0 0.5803 0.5206 0.5485 -0.03157
30.0 0.4060 0.3176 0.3551 -0.04722
40.0 0.2579 0.1670 0.1996 -0.04906
50.0 0.1550 0.08009 0.09971 ~0.04061
60.0 0.09210 0.03797 0.04498 -0.02900
70.0 0.05624 0.01959 0.01798 -0.01889
80.0 0.03629 0.01180 0.005441 -0.01170
90.0 0.02504 0.00835¢4 -0.0002%4 -0.007098
100.0 0.01846 0.006716 -0.002990 ~0.004285
110.0 0.01442 0.005912 -0.004352 -0.002566
120.0 0.01182 0.005542 -0.005141 ~0.001484
130.0 0.01008 0.005439% -0.005699 -0.000782
140.0 0.008893 0.005560 -0.006167 -0.000338
150.0 0.008080 0.005911 -0.006574 -0.000093
160.0 0.007553 0.006441 -0.006896 0.000000
170.0 0.007259 0.006950 ~-0.007097 0.000008
180.0 0.007165 0.007165 -0.007165 0
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Table T.51
m = .34 Model: Water cloud C.2 Bex = 11.18 km™?
A =045u x: 5.25(0.25)100 o = 1.0
0 P,[4xm Polam Pyjdar VAL
0.0 159.1 159.1 159.1 0
1.0 113.0 113.9 113.0 -0.4632
2.0 38.25 38.32 38.26 -0.7090
3.0 6.076 6.062 6.046 -0.2484
4.0 2.557 2.494 2,514 ~0.01042
4.5 2.435 2,371 2,398 -0.01161
5.0 2.066 2,017 2.035 -0.02434
5.5 1.633 1.592 1.606 ~0.02623
6.0 1.319 1.281 1.293 -0.01988
6.5 1.134 1.098 1.110 -0.01317
7.0 1.018 0.9856 0.9964 -0.009216
7.5 0.9288 0.9004 0.9096 -0.007261
8.0 0.8536 0.8282 0.8359 -0.006032
8.5 0.7912 0.7670 0.7743 -0.005080
9.0 0.7400 0.7163 0.7237 «0.004454
9.5 0.6974 0.6743 0.6818 -0.004182
10.0 0.6609 0.639L 0.6463 -0.004078
20.0 0.3312 0.3339 0.3297 0.000049
30.0 0.1755 0.1867 0.1775 0.002006
40.0 0.08855 0.1007 0.09098 0.001662
50.0 0.04260 0.05251 0.04426 0.001643
60.0 0.02059 0.02671L 0.02073 0.001201
70.0 0.009850 0.01294 0.008886 0.000753
80.0 0.005202 0.005988 0.003325 0.000391
90.0 0.003237 0.003021 0.001043 0.000241
100.0 0.002567 0.002030 0.000093 0.000447
104.0 0.002244 0.001929 -0.000090 0.000316
108.0 0.002404 0.001888 0.000118 0.900141
112.0 0.003507 0.001919 0.000546 0.000422
116.0 0.004758 0.001931 0.000692 0.000979
120.0 0.005330 0.001784 0.000392 0.001429
124.0 0.005291 0.001800 -0.000119 0.001662

128.0 0.004880 0.002010 -0.000478 0.001838
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[7} P.l4n Poldm Pyldz Pyfda
130.0 0.005266 0.002401 -0.000528 0.002322
132.0 0.005977 0.002808 ~0.000482 0.002749
134.0 0.008215 0.003682 -0.000278 0.004092
136.0 0.01236 0.004814 0.000573 0.006247
138.0 0.01907 0.005927 0.901417 0.008867
140.0 0.02693 0.806640 0.003148 0.01115
142.0 0.03679 0.005746 0.005001 0.01102
144.0 0.04247 0.004667 0.006641 0.008266
146.0 0.04043 0.203816 0.007863 0.000997
148.0 0.02971 0.006040 0.006914 -0.005950
150.0 0.01504 0.01174 0.005095 -0.007431
152.0 0.006497 0.01715 0.002791 ~0.001963
154.0 0.008503 0.01664 0.002079 0.005451
156.0 0.01488 0.01191L 0.003026 0.006720
158.0 0.01625 0.009560 0.003562 0.002160
160.0 0.01217 0.01234 0.003219 -0.000515
162.0 0.009686 0.01498 0.002488 0.001012
164.0 0.01015 0.01491 0.002544 0.902517
166.0 0.01066 0.01487 0.002858 0.002219
168.0 0.01019 0.01595 0.002904 0.001916
170.0 0.01048 0.01802 0.003662 0.002081
171.0 0.01067 0.01935 0.003563 0.002391
172.0 0.01094 0.02080 0.004626 0.002565
173.0 0.01201 0.02286 0.005834 0.002931
174.0 0.01311 0.02604 0.00687L 0.003290
175.0 0.01282 0.02568 0.006847 0.002738
176.0 0.01862 0.03992 0.01305 0.005301
177.0 0.03716 0.06846 0.03502 0.007518
178.0 0.04276 0.03786 0.02769 ~0.003838
179.0 0.04328 0.02185 -0.02325 ~0.007378

180.0 0.05134 0.05134 ~0.05134 0



208 NUMERICAL TABLES

Table T.52
m = 1.33 Model: Water cloud C.2 Bex = 11.43 km™1
A=070u x: 3.25(0.25)63 = = 1.0
] P4 Pyfdm Pyjdrr Pyfdn
0.0 67.49 67.49 67.49 0
1.0 58.51 58.54 58.52 -0.1463
2.0 37.80 37.86 37.82 -0.3977
3.0 17.73 17.79 17.75 ~0.4550
4.0 6.009 6.027 5.992 -0.2872
5.0 1.992 1.965 1.958 -0.09380
5.5 1.512 1.473 1.478 -0.03738
6.0 1.399 1.357 1.368 -0.01080
6.5 1.376 1.335 1.349 -0.005145
7.0 1.322 1.286 1.298 «0.009405
7.5 1.219 1.188 1.197 -0.01494
8.0 1.091 1.064 1.071 -0.01738
8.5 0.9697 0.9451 0.9499 -0.01615
9.0 0.8713 0.8477 0.8520 -0.01278
9.5 0.7984 0.7753 0.7798 -0.009116
10.0 0.7451 0.7227 0.7277 -0.006350
10.5 0.7038 0.6827 0.6878 -0.004798
11.0 0.6688 0.6494 0.6542 -0.004194
11.5 0.6371 0.6197 0.6237 -0.004101
12.0 0.6079 0.5924 0.5954 -0.004168
12.5 0.5810 0.5671 0.5693 -0.004202
15.0 0.4767 0-4699 0.4690 -0.001749
25.0 0.2449 0.2522 0.2447 0.001282
35.0 0.1242 0.1348 0.1256 0.002858
45.0 0.06217 0.07228 0.06326 0.002746
55.0 0.03012 0.03829 0.03085 0.001977
65.0 0.01519 0.02009 0.01463 0.001481
75.0 0.007950 0.01050 0.006636 0.000861
85.0 0.004627 0.005635 0.002811 0.000569
95.0 0.003049 J3.003312 0.000864 0.000571
105.0 0.002682 0.002512 0.000399 0.000367
115.0 0.004399 0.002213 0.000504 0.001104

120.0 0.005134 0.002271 0.000236 0.001736
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0 P j4n P[4 Psldnm P,f4
130.0 0.007862 0.004099 -0.000062 0.004163
132.0 0.009666 0.004784 0.000095 0.005439
134.0 0.01247 0.005690 0.000707 0.006821
136.0 0.01604 0.007018 0.001079 0.009017
138.0 0.02123 0.007288 0.001756 0.01045
140.0 0.02651 0.007398 0.003365 0.01164
142.0 0.03128 0.007178 0.004196 0.01177
144.0 0.03533 0.005364 0.005171 0.009369
146.0 0.03551 0.004651 0.006888 0.005388
148.0 0.03078 0.004522 0.006722 0.000543
150.0 0.02387 0.006784 0.006636 -0.004558
152.0 0.01464 0.01132 0.005576 -0.005865
154.0 0.007699 0.01590 0.003870 -0.003392
156.0 0.005872 0.01923 0.002820 0.001462
158.0 0.008636 0.01805 0.002192 0.006369
160.0 0.01282 0.01494 0.003023 0.007635
162.0 0.01493 0.01212 0.003940 0.005276
164.0 0.01402 0.01272 0.004751 0.001865
166.0 0.01174 0.01641 0.004704 0.000882
168.0 0.01063 0.02006 0.004610 0.001912
170.0 0.01241 0.02431 0.006062 0.004319
171.0 0.01312 0.02507 0.006451 0.004825
172.0 0.01266 0.02299 0.006125 0.004074
173.0 0.01335 0.02372 0.006884 0.004166
174.0 0.01998 0.03754 0.01352 0.007289
175.0 0.03195 0.05823 0.02684 0.01023
176.0 0.03951 0.05895 0.03540 0.006012
177.0 0.03741 0.03333 0.02406 -0.004485
178.0 0.03616 0.01767 -0.006515 -0.009769
179.0 0.04426 0.03473 -0.03773 -0.004644
180.0 0.05048 0.05048 -0.05048 0
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Table T.53
m = 1.315 Model: Water cloud C.2 fex = 12.56 km1
1=16lp x: 1.25(0.25)31 w = 1.0
[7} P.l4n P,jaxn Psjdr P,j4
0.0 14.62 14.62 14.62 0
2.0 13.11 13.13 13.12 -0.04935
4.0 9.434 9.481 9.452 -0.1445
6.0 5.434 5.497 5.449 -0.1897
8.0 2.565 2.616 2.565 ~0.1519
10.0 1.141 1.163 1.128 -0.07764
12.0 0.6626 0.6584 0.6459 -0.02479
14.0 0.5344 0.5180 0.5181 -0.007908
16.0 0.4546 0.4358 0.4379 -0.008341
18.0 0.3699 0.3512 0.3520 ~0.008543
20.0 0.2989 0.2826 0.2830 -0.005125
30.0 0.1561 2.1539 0.1495 0.905182
40.0 0.08868 0.09622 0.08758 0.005987
50.0 0.04900 0.05792 0.04898 0.904940
60.0 0.02727 0.03443 0.02669 0.903899
70.0 0.01555 0.92072 0.01429 0.003043
80.0 0.009134 0.01283 0.007445 0.002371
90.0 0.005840 0.008483 0.003939 0.001954
100.0 0.004789 0.006097 0.002161 0.001983
110.0 0.005121 0.005145 0.001002 0.002560
120.0 0.006417 0.006068 0.000238 0.004201
130.0 0.01078 0.009662 0.000224 9.008552
132.5 0.01321 0.01081 0.000375 0.01028
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0 P,jAxn P4 Pyldm P,/Am
135.0 0.01564 0.01179 0.000855 0.01196
137.5 0.01823 0.01263 0.001304 0.01354
140.0 0.02159 0.01304 0.001826 0.01498
142.5 0.02480 0.01287 0.002692 0.01583
145.0 0.02734 0.01216 0.003743 0.01576
147.5 0.02925 0.01192 0.004920 0.01466
150.0 0.02990 0-109767 0.006247 0.01244
152.5 0.02876 0.008976 0.007585 0.009224
155.0 0.02615 0.009659 0.008949 0.005788
157.5 0.02292 0.01295 0.01028 0.003335
160.0 0.01909 0.01753 0.01046 0.001870
162.5 0.01395 0.02058 0.008473 0.000823
165.0 0.01212 002827 0.02783% 0.004348
167.5 0.02231 0.05071 0.01550 0.01613
170.0 0.03637 0.06918 0.0289%4 0.02194
172.5 0.03450 0.05231 0.02926 0.004773
175.0 0.02926 0.02735 0.000973 -0.01554
177.5. 0.04668 0.04226 ~0.04169 ~-0.01037

180.0 0.06244 0.06244 -0.06244 0
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Table T.54
m = 1.364 — 0.3060i Model: Water cloud C.2 fex = 12.39 km—1
A =3.00u x: 2.25(0.25)14 w = 0.4809
[} P ldn Psfdr Pyjdar P, 4
0.0 8.179 8.179 8.179 0
2.5 7.766 7.743 7.754 -0.02738
5.0 64640 64561 6.600 -0.09693
7.5 5.094 4.955 5.021 -0.1720
10.0 3.484 3.310 3.388 -0.2173
12.5 2.107 1.934 2.006 -0.2152
15.0 1.119 0.9779 1.029 -0.1720
17.5 0.5286 0.4303 0.4586 -0.1102
20.0 0.2444 0.1818 0.1941 -0.05358
22.5 0.1422 0.1002 0.1062 -0.01641
25.0 0.1188 0.08403 0.09053 ~0.000091
27.5 0.1134 0.07891 0.08809 0.002240
30.0 0.1031 0.06797 0.07866 -0.000867
40.0 0.04510 0.02072 0.02578 -0.001959
50.0 0.02623 0.008328 0.01106 0.000130
60.0 0.01700 0.003460 0.004286 0.000409
70.0 0.01200 0.001639 0.001033 0.000484
80.0 0.008987 0.001064 -0.000677 0.000446
90.0 0.007048 0.001036 -0.001617 0.000373
100.0 0.005734 0.001243 ~0.002147 0.000294
110.0 0.004813 0.001536 -0.002448 0.000220
120.0 0.004154 0.001844 -0.002616 0.000156
130.0 0.003676 0.002129 ~0.002706 0.000103
140.0 0.003331 0.002373 <0.002753 0.000062
150.0 0.003089 0.002569 -0.002773 0.000030
160.0 0.002936 0.002720 ~0.002772 0.000009
170.0 0.002849 0.002770 -0.002795 0.000000
180.0 0.002818 0.002818 ~0.02818 0
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Table T.55
m = 1.353 — 0.0059i Model: Water cloud C.2 Bex = 17.76 km™1
A =390 x: 0.5(0.5)15 = = 0.9489
0 Pyldw Pyldn Pfdm Pyf4m
0.0 3.488 3.488 3.488 o
2.5 3.380 3.384 3.382 ~0.005512
5.0 3.074 3.090 3.082 -0.02014
7.5 2.623 2.655 2.639 -0.03888
10.0 2.100 2.150 2.124 -0.05553
12.5 1.577 1.644 1.608 -0.06493
15.0 1.116 1.193 1.151 ~0.06462
17.5 0.7504 0.8324 0.7864 -0.05530
20.0 0.4917 0.5707 0.5253 ~0.04022
22.5 0.3281 -0.3984 0.3570 -0.02363
25.0 0.2360 0.2943 0.2593 -0.009301
27.5 0.189% 0.2349 0.2070 0.000551
30.0 0.1657 0.1999 0.1786 0.005502
40.0 0.1001 0.1155 0.1056 0.001544
50.0 0.04800 0.05950 0.05151 0.000913
60.0 0.02644 0.03370 0.02805 0.001767
70.0 0.01632 0.02061 0.01660 0.001859
80.0 0.01063 0.01368 0.01029 0.001802
90.0 0.007773 0.009887 0.006910 0.002030
100.0 0.006384 0.007895 0.004995 0.002245
110.0 0.005720 0.006946 0.003991 0.002708
120.0 0.005925 0..0067L0 0.003450 0.003560
130.0 0.007522 0.007112 0.003314 0.004904
140.0 0.008602 0.006501 0.002562 0.00559
150.0 0.01658 0.907430 0.004636 0.008785
152.5 0.01954 0.008869 0.006246 0.91020
155.0 0.02146 0.01049 0.007773 0.01126
157.5 0.02148 0.91186 0.008693 0.01152
160.0 0.01925 0.01256 0.008568 0.01069
162.5 0.01515 0.01241 0.007225 0.008832
165.0 0.01028 0.01147 0.004846 0.006322
167.5 0.006050 0.01007 6.001905 0.003762
170.0 0.003584 0.008648 -0.00101L9 0.001717
172.5 0.003208 0.007521 ~0.00345L 0.000487
175.0 0.004330 0.006822 ~0.005150 0.000010
177.5 0.00577L 0.006493 -0.006104 ~0.000035

180.0 0.006405 0.006405 -0.006405 0
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Table T.56
m = 1315 — 0.1370i Model: Water cloud C.2 flex = 13.06 km~1
A=605u x: 0.25(0.25)7.5 w = 0.559]
0 P fan Pol4m Pyl4n Pilan
0.0 2.108 2,108 2,108 0
0.5 2.006 1.997 2.00L -0.008368
10.0 1.725 1.696 1.710 ~0.02922
15.0 1.337 1.289 1.312 ~0.05230
20.0 0.9314 0.8750 0.9000 -0.06711
25.0 0.5797 0.5304 0.5497 ~0.06822
30.0 0.3214 0.2888 0.2982 ~0.05698
35.0 0.1603 0.1453 0.1454 «0.03940
40,0 0,07615 0.07288 0.06774 ~0.02222
50.0 0.02866 0.02803 0.02427 =0.003082
60.0 0.02234 0.01613 0.01650 ~0.00072L
70.0 0.01516 0.008797 0.009224 ~0.001542
80.0 0.009308 0.005002 0.004332 ~0.001100
90.0 0.006327 0.003166 0.002034 -0.000453
100.0 0.004799 0.002183 0.000860 ~0,000168
110.0 0.003819 0.001658 0.000126 ~0.000065
120.0 0.003187 0.001420 -0.000330 ~0.000015
130.0 0.00285L 0.001379 ~0.000535 0.000006
140.0 0.002612 0.001469 -0.,000626 0.000073
145.0 0.002444 0.001503 -0.000718 0.000143
150.0 0.002234 0.001510 ~0.000874 0.000219
155.0 0.002015 0.001503 ~0.00L082 0.000273
160.0 0.001838 0.001512 =-0.001306 0.000275
165.0 0.001737 0.001559 ~0.001502 0.000217
170.0 0.001713 0.001637 -0.001641 0.000122
175.0 0.001730 0.001711 «0.001718 0.000035
180.0 0.001742 0.001742 -0.001742 0
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Table T.57
m = 1.212 — 0.0601} Model: Water cloud C.2 Box = 4.944 km1
2 =100p x: 0.20(0.20)6 @ = 0.5262
6 Pi/4nw P4 Pyldm P4
0.0 0.8217 0.8217 0.8217 0
10.0 0.7693 0.7520 0.7606 ~0.003395
20.0 0.6313 0.5759 0.6028 -0.01130
30.0 0.4536 0.3683 0.4083 -0.01871
40.0 0.2853 0.1963 0.2355 -0.02156
50.0 0.1571 0.08754 0.1153 -0.01914
60,0 0.07643 0.03372 0.04813 -0.01355
70.0 0.03423 0.01247 0.01774 -0.007639
80.0 0.01604 0.005314 0.006489 -0.003217
90.0 0.009683 0.002757 0.002720 -0.000688
100.0 0.007784 0.001580 0.001055 0.000428
110.0 0.006993 0.001089 -0.900190 0.000802
120.0 0.006278 0.001128 -0.001286 0.000892
130.0 0.205569 0.00156L -0.002224 0.000882
140.0 0.005024 0.002258 -0.003019 0.000785
150.0 0.004738 0.003097 -0.003699 0.000585
160.0 0.004679 0.003920 ~0.004253 0.000321
170.0 0.004728 0.004533 ~0.004627 0.000091

180.0 0.004761 0.004761 -0.004761 [¢]
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Table T.58
m = 1.440 — 0.4000; Model: Water cloud C.2 Bex = 9.753 km~1
A =16.60p x: 0.10(0.10)3 @ = 0.3385
0 P, /4w Pyf4m Py/dm Pyj4x

0.0 0.3965 0.3965 0.3965 0

10.0 0.3860 0.3763 0.3811 -0.002468
20.0 0.3565 0.3214 0.3384 -0.009032
30.0 0.3127 0.2466 0.277L -0.01753
40.0 0.2609 0.1693 0.2085 -0.02537
50.0 0.2079 0.1037 0.1432 -0.03049
60.0 0.1588 0.05675 0.08842 -0.03194
70.0 0.1169 0.02861 0.04748 ~0.02992
80.0 0.08366 0.01484 0.02001 ~0.02547
90.0 0.05880 0-009773 0.003570 -0.01988
100.0 0.04113 0.008710 ~0.005076 ~0.01429
110.0 0.02912 0.008806 -0.008899 ~0.009450
120.0 0.02124 0.008887 -0.01014 ~0.00572L
130.0 0.01623 0.008787 -0.01025 -0.003131
140.0 0.01312 0.008706 -0.009598 -0.001515
150.0 0.01125 0.008806 -0.009735 ~0.000623
160.0 0.01018 0.009069 -0.009563 ~0.000201
170.0 0.009624 0.009341 -0.009479 -0.000038
180.0 (.009455 0.009455 -0.009455 0
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Table T.59
m =134 Model: Water cloud C.3 Bex = 2.906 km™1
A =045y x: 6.125(0.125)56 @z = 1.0
7 Py [4m P4 Pyfdm P,/Axr
0.0 41.69 41.69 41.69 0
1.0 38.20 38.22 38.21 -0.07391
2.0 29.29 29.36 29.33 -0.2334
3.0 18.63 18.73 18.67 -0.3502
4.0 9.723 9.813 9.750 ~-0.3442
5.0 4.220 4.265 4.221 ~-0.2377
6.0 1.780 1.778 1.760 ~-0.1125
7.0 1.099 1.071 1.072 -0.03178
8.0 1.014 0.9808 0.9879 ~-0.004492
9.0 0.9604 0.9336 0.9393 -0.005591
10.0 0.8414 0.8205 0.8238 ~0.01080
11..0 0.7168 0.6988 0.7012 ~-0.01135
12.0 0.6265 0.6106 0.6124 -0.008679
13.0 0.5661 0.5532 0.5537 ~0.005656
14.0 0.5197 0.5104 0.5092° -0.0503512
15.0 0.4793 0.4728 0.4703 -~0.002360
20.0 0.3347 0.3337 0.3293 ~-0.,000666
30.0 0.1768 0.1854 0.1767 0.003167
40.0 0.09086 0.1036 0.0929L 0.002426
50.0 0.04709 0.05592 0.04763 0.001726
60.0 0.02423 0.03016 0.02386 0.001705
70.0 0.01248 0.01641 0.01156 0.001339
80.0 0.007316 0.009059 0.005508 0.001057
90.0 0.004292 0.005332 0.002221 0.000689
95.0 0.003563 0.004184 0.001451 0.000568
100.0 0.003402 0.003542 0.001092 0.000571
105.0 0.003891 0.003135 0.000972 0.000767
110.0 0.004479 0.002803 0.000718 0.001138
115.0 0.005047 0.002623 0.000268 0.001404
120.0 0.00550L 0.002665 -0.000107 0.001711
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[7} P l4n Pyldn P;ldn P4
124.0 0.005831 0.002970 -0.000128 0.002173
128.0 0.006472 0.003884 ~0.000052 0.003230
132.0 0.008987 0.005405 0.000011 0.005143
136.0 0.01393 0.007140 0.000829 0.007997
140.0 0.02202 0.008375 0.002038 0.01124
144.0 0.03133 0.007641 0.003834 0.01223
146.0 0.03466 0.006538 0.004703 0.01072
148.0 0.03603 0.005229 0.005643 0.007467
150.0 0.03360 0.004710 0.006526 0.002931
152.0 0.02863 0.005828 0.006865 -0.001609
154.0 0.02157 0.009007 0.006607 -0.005098
156.0 0.0139% ¢.01383 0.005945 ~0.005502
158.0 0.00859% 0.01868 0.005069 ~0.002898
160.0 0.007022 0.02221 0.004057 0.001803
162.0 0.009244 0.02276 0.003783 0.006815
164.0 0.01356 0.02022 0.004247 0.008971
166.0 0.016635 0.01808 0.005948 0.007839
168.0 0.01879 0.01918 0.008100 0.005460
176.0 0.0172L 0.02035 0.007297 0.002724
171.0 0.01564 0.02290 0.007360 0.002057
172.0 0.0180L 0.03194 0.01127 0.003531
173.0 0.02639 0.04761 0.02041L 0.007006
174.0 0.03684 0.06078 0.03127 0.009226
175.0 0.04175 0.05890 0.03582 0.006129
176.0 0.03839 0.04103 0.02726 -0.001986
177.0 0.03324 0.02340 0.,006140 ~-0.008974
178.0 0.03476 0.02331 ~-0.01946 ~0.008903
179.0 0.04235 0.03789 -0.03939 -0.003337
180.0 0.04677 0,04677 -0.04677 0
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Table T.60
m = 1.33 Model: Water cloud C.3 Bex = 3.02] km™1
A =070u x: 4.125(0.125)39 @ = 1.0
8 P.J4m Py Pylan P,/4n
0.0 17.86 17.86 17.86 [
1.0 17.22 17.22 17.22 -0.02023
2.0 15.41 15.43 15.42 -0.07311
3.0 12.79 12.83 12.81 -0.1386
4.0 9.834 9.885 9.850 -0.1931
5.0 6.998 7.057 7.009 -0.2185
6.0 4.622 4.680 4.625 -0.2087
7.0 2.874 2.923 2.866 ~-0.1704
8.0 1.752 1.785 1.735 -0.1179
9.0 1.137 1.154 1.115 -0.06672
10.0 0.8594 0.8641 0.8374 ~0.02806
11.0 0.7625 0.7595 0.7432 ~0.005875
12.0 0.7320 0.7265 0.7166 0.002015
13.0 0.7061 0.7018 0.6941 0.001068
14.0 0.6637 0.6624 0.6539 ~0.003108
15.0 0.6071 0.6088 0.5983 -0.006731
16.0 0.5462 0.5501 0.5377 -0.008320
17.0 0.4892 0.4941 0.4810 -0.008067
18.0 0.4401 0.4450 0.4322 -0.006862
20.0 0.3638 0.3675 0.3567 -0.004481
30.0 0.1629 0.1640 0.1569 0.000615
40.0 0.08556 0.09061 0.08258 0.003359
50.0 0.04713 0.05426 0.045374 0.003605
60.0 0.02624 0.03291 0.02504 0.003056
70.0 0.01497 0.02005 0.01334 0.002507
80.0 0.008910 0.01235 0.006734 0.001910
30.0 0.005672 0.008088 0.003402 6.001417
95.00 0.004938 0.006572 0.002400 0.001459
100.0 0.004828 0.005410 0.001559 0.001462
105.0 0.004912 0.004533 0.000945 0.001590
110.0 0.005177 0.003946 0.000243 0.001753
115.0 0.005459 0.003669 -0.000400 0.001986
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TABLE T60, continued

0 Pyldm P4 P,ldm Pyf4wr
120.0 0.005835 0.003907 ~0.000952 0.002424
124.0 0.006496 0.004546 -0.001257 0.003144
128.0 0.007857 0.005759 ~0.001474 0.004431
132.0 0.01026 0.007480 ~-0.001478 0.006477
136.0 0.01420 0.009534 -0.001290 0.009265
140.0 0.01967 0.01124 ~0.000753 0.01229
144.0 0.02579 0.01169 0.000363 0.01429
148.0 0.03045 0.01042 0.002270 0.01356
150.0 0.03133 0.009415 0.003517 0.01181
152.0 0.03083 0.008605 0.004872 0.009182
154.0 0.02881 0.008451 0.006218 0.005975
156.0 0.02546 0.009494 0.007405 0.002758
158.0 0.02141 0.01235 0.008332 0.000353
160.0 0.01755 0.01727 0.008887 ~0.000621L
162.0 0.01422 0.02283 0.008619 -0.000375
164.0 0.01105 0.02644 0.007010 0.000804
165.0 0.009936 0.62798 0.006020 0.002205
166.0 0.01000 0.0308L 0.005557 0.004672
167.0 0.01211 0.03630 0.006374 0.008443
168.0 0.01675 0.04504 0.009155 0.01323
169.0 0.02353 0.05590 0.01413 0.01802
170.0 0.03090 0.06578 0.02071 0.02116
171.0 0.03668 0.07057 0.02732 0.02099
172.0 0.03905 0.06723 0.03163 0.01665
173.0 0.03774 0.05590 0.03118 0.008754
174.0 0.03458 0.04075 0.02423 ~0.000501
175.0 0.03286 0.02853 0.01048 -0.008144
176.0 0.03554 0.02531 ~0.008552 -0.01174
177.0 0.04342 0.03295 -0.02973 -0.01064
178.0 0.05425 0.04766 ~0.04503 -0.006369
179.0 0.06365 0.06165 -0.06252 -0.001880
180.0 0.06736 0.06736 -0.06736 0
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Table T.61
m = 1.315 Model: Water cloud C.3 Bex = 4.126 km™1
A=16lpu x: 2.125(0.125)17 = = 1.0
[7} P4 Pyldrn P;ldn P4
0.0 4.479 4479 4.479 0
2.5 4.217 4.284 4.281 -0.008258
5.0 3.722 3.751 3.736 -0.02883
7.5 2.952 3.007 2.979 -0.05144
10.0 2.137 2.215 2.174 -0.06529
12.5 1.421 1.514 1.464 -0.06446
15.0 0.8901 0.9849 0.9324 -0.05015
17.5 0.5560 0.6412 0.5927 -0.02898
20.0 0.3798 0.4488 0.4085 ~0.008895
22,5 0.3013 0.3528 0.3220 0.004612
25.0 0.2663 0.3039 0.2810 0.01016
27.5 0.2407 0.2687 0:2517 0.009702
30.0 0.2110 0-2344 0.2204 0.006536
40.0 0.09390 0.1123 0.1008 0.001505
50.0 0.06662 0.05732 0.05002 0.002413
60.0 0.02515 0.03174 0-02669 0.002173
70.0 0-01487 0.01908 0.01531 0.002115
80.0 0.009794 0.01257 0.009514 0.002102
90.0 0.007282 0.009168 0.006448 0.002215
100.0 0.006193 0.007476 0.004816 0.002541
110.0 0.006095 0.006816 0.004001 0.003194
120.0 0.006979 0.006792 0.003674 0.004297
130.0 0.009079 0.006903 0.003558 0.005811
140.0 0.01288 0.006985 -0.003793 0.007592
142.5 0.01350 0.006684 0.003630 6.007676
145.0 0.01384 0.006028 0.003250 0.007417
147.5 0.01426 0.005102 0.002831 0.006923
150.0 0.01551 0.004249 0.002788 0.006509
152.5 0.01825 0.003969 0.003620 0.006552
155.0 0.02246 0.0046 26 0.005572 0.007187
157.5 0.02699 0.006125 0.008311L 0.008071
160.0 0.02979 0.007841 0.01089 0.008427
162.5 0.02893 0.008906 0.01210 0.007485
165.0 0.02395 0.008761 0.01114 0.005064
167.5 0.01641 0.007554 0.008071 0.001867
170.0 0.009225 0.006055 0.003825 ~0.000840
172.5 0.004904 0.005113 ~0.000322 -0.002027
175.0 0.004018 0.005044 ~0.003422 -0.001620
177.5 0.005034 0.005468 -0.005174 -0.000542
180.0 0.0057L7 0.005717 -0.005717 0
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Table T.62
m = 1.29 — 0.00035/ Model: Water cloud C.3 Bex = 4.549 km™1
A=225u x: 1.125(0.125)13 o = 0.9975
0 P, /4 Pafdm Pyfdn Pfam
0.9 3.078 3.078 3.078 0
2.5 3.011 3.012 3.012 -0.003065
5.0 2.820 2.823 2.822 ~0.01154
7.5 2.528 2.533 2.530 -0.02343
10.0 2.167 2.177 2.172 -0.03604
12.5 1.776 1.792 1.783 -0.04661
15.0 1.390 1.413 1.401 -0.05305
17.5 1.040 1.070 1.053 ~0.05430
20.0 0.745L 0.7803 0.7602 -0.05050
22.5 0.5132 0.5518 0.5296 ~0.04278
25.0 0.3437 0.3828 0.3601 -0.03286
27.5 0.2286 0.2654 0.2438 -0.02257
30.0 0.1560 0.1883 0.1691 ~0.01340
40.0 0.06720 0.07665 0.07043 0.001880
50.0 0.03825 0.04036 0.03830 0.000178
60.0 0.01916 0.02076 0.01891 0.000542
70.0 0.01159 0.01201 0.01079 0.001168
80.0 0.007930 0.007679 0.006792 0.001289
90.0 0.005967 0.005376 0.004584 0.001421
100.0 0.005028 0.004092 0.003331 0.001695
110.0 0.004763 0.003335 0.002575 0.001857
120.0 0.005019 0.002906 0.002114 0.002184
130.0 0.005311 0.002451 0.001445 0.002412
140.0 0.007067 0.001793 0.00089% 0.002607
145.0 0.008974 0.001823 0.001291 0.002900
150.0 0.01033 0.002292 0.001944 0.003291
1550 0.009686 0.003014 0.002092 0.003516
160.0 0.006960 0.003655 0.001131 0.003265
165.0 0.004029 0.004030 ~0.000738 0.002450
170.0 0.002951 0.004202 ~0.002664 0.001329
175.0 0.003693 0.004295 -0.003924 0.000373
180.0 0.004332 0.004332 ~0.004332 0
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m = 1.364 = 0.3060i

Table T.63

Model: Water cloud C.3
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Box = 3.245 km—1

2 =3.00p x: 1.250.25)11 @ = 0.4653
0 Py /4 Pyl Pyldn Pyldm
0.0 2.262 2.262 2.262 0
2.5 2.232 2.228 2.230 -0.003310
5.0 2.145 2,130 2,138 -0.01277
7.5 2.008 1.976 1.992 -0.02704
10.0 1.830 1.778 1.803 ~0.04415
12.5 1.622 1.551 1.585 ~0.06180
15.0 1.399 1.311 1.352 ~-0.07770
17.5 1.172 1.073 1.118 -0.08996
20.0 0.9544 0.8497 0.8948 ~0.09727
22.5 0.7541 0.6509 0.6928 -0.09907
25.0 0.5779 0.4822 0.5180 ~0.09554
27.5 0.4295 0.3456 0.3735 -0.08747
30.0 0.3098 0.2402 0.2595 ~0.07612
40.0 0.07063 0,05050 0.04607 -0.02510
50.0 0.03136 0.02150 0.01789 -0.001882
60.0 0.02581 0.01257 0.01316 ~0.000943
70.0 0.01773 0.006491 0.005859 ~-0.002084
80.0 0.01160 0.003926 0.001418 ~-0.001278
90.0 0.008434 0.002819 =-0.000420 ~0.000524
100.0 0.006645 0.062321 -0.001353 ~-0.000272
110.0 0.005431 0.002208 -0.001935 -0.000189
120.0 0.004580 0.002280 -0.002282 -0.000140
130.0 0.004003 0.002453 -0.002452 -0.000120
140.0 0.003619 0.002651L -0.002520 ~-0.000096
150.0 0.003337 0.002723 -0.002605 ~-0.000039
160.0 0,003112 0.002717 -0.002754 0.000014
170.0 0.002967 0.002822 ~0.002880 0.000015
180.0 0.002920 0.002920 ~0.002920 0
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= 1.353 — 0.0059i

3
I

Table T.64

Model: Water cloud C.3

NUMERICAL TABLES

ﬂex = 3.24]1 km—1

3.90 u x: 0.625(0.125)8 w = 0.9660

[/} P.l4mr P,/4m Pif4n P,j4m

0.0 1.206 1.206 1.206 0

5.0 1.171 1.169 1.170 -0.002612
10.0 1.073 1.063 1.068 ~0.009650
15.0 0.9258 0.9069 0.9161 -0.01901
20.0 0.7523 0.7269 0.7389 -0.02799
25.0 0.5750 0.5478 0.5600 -0.03422
30.0 0.4129 0.3892 0.3989 -0.03629
35.0 0.2785 0.2621 0.2674 -0.03408
40.0 0.1770 0.1692 0.1697 -0.02856
50.0 0.06311 0.06766 0.06198 -0.01385
60.0 0.02578 0.03107 0.02577 -0.002857
70.0 0.01733 0.01774 ¢.01551 0.001433
80.0 0.01415 0.01113 0.01083 0.001814
90.0 0.01091 0.007291 0.007203 0.001425
100.0 0.008451 0.005131 0.004680 0.001448
110.0 0.007518 0.004085 0.003427 0.0013803
120.0 0.007448 0.003927 0.003055 0.002296
130.0 0.006843 0.004471 0.002615 0.002930
140.0 0.005232 0.005418 0.001054 0.003524
145.0 0.004448 0.005%67 -0.000285 0.003626
150.0 0.004051 0.006548 -0.001918 0.003484
155.0Q 0.004253 C.007153 -0.003701 0.003057
160.0 0.005Q093 0.007762 -0.005457 0.002379
165.0 0.006390 0.008335 -0.007012 0.001560
170.0 0.007784 0.008814 -0.008223 0.000775
175.0 0.008850 0.009135 -0.008987 0.000207
180.0 0.009248 0.009248 -0.009248 0
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Table T.65

m = 1.315 — 0.0143j Model: Water cloud C.3 Bex = [.619 km=1
A =0530p x: 0.60(0.10)5.5 = = 0.8927

6 P[4 Pyldm Pslarm ALY

¢.0 0.7260 0.7260 0.7260 0
1.0 0.6832 0.6714 0.6773 -0.003196
20.0 0.5691 0.5311 0.5497 -0.01083
30.0 0.4195 0.3598 0.3879 -0.01842
40.0 0.2734 0.2096 0.2381 -0.02205
50.0 0.1577 0.1068 0.1275 ~0.02047
60.0 0.08135 0.04965 0.06054 -0.01523
70.0 0.03905 0.02317 0.02679 ~0.008945
80.0 0.01956 0.01220 0.01241 -0.003694
90.0 0.01220 0.007497 0.006813 ~0.000257
100.0 0.009760 0.005100 0.004236 0.001617
110.0 0.008619 0.003801L 0.002332 0.002547
120.0 0.007601 0.003320 0.000423 0.002998
130.0 0.006748 0.003572 -0.001597 0.003108
140.0 0.006430 0.004471 -0.003672 0.002817
150.0 0.006817 0.005834 ~0.005665 0.002103
160.0 0.007698 0.007323 -0.007364 0.001150
170.0 0.008571 0.008489 =-0.008520 0.000326
180.0 0.008931 0.008931 -0.008931 0
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Table T.66
m = 1.315 — 0.1370i Model: Water cloud C.3 Bex = 1.836 km™1
A=605pu x: 0.125(0.125)5 o = 0.4546
0 P4 Poldnm Pl Pyfdm
0.0 0.6234 0.6234 0.6234 0
10.0 0.5944 0.5812 0.5878 -0.003276
20.0 0.5154 0.4706 0.4924 -0.01142
30.0 0.4066 0-3306 0.3660 =0.02043
40.0 0.2921 0.2013 0.2409 -0.02634
50.0 0.1916 0.1066 0.1398 -0.02723
60.0 0-1152 0.05002 0.07118 ~0.02364
70.0 0.06429 0.02226 0.03162 -0.01759
80.0 0.03420 0.0108%4 0.01223 -0.01128
90.0 0.01838 0.006503 0.004130 ~0.006098
100.0 0.01095 0.004514 0.001073 -0.002523
110.0 0.007786 0.003273 ~0.000301 ~0.000387
120.0 0.006519 0.002562 ~0.001361 0.00070L
130.0 0.006013 0.002467 ~0.002456 0.001103
140.0 0.005826 0.002970 ~-0.003555 0.001073
150.0 0.005802 0.003883 ~0.004542 0.00079L
160.0 0.005865 0-004900 -0.005318 0.000421
170.0 0.005945 0.005686 -0.005811 0.000117
180.0 0.005980 0.005980 -0.005980 0
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m = .29 — 0.0472i

Table T.67

Model: Water cloud C.3
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Bex = 0.7290 km—1

A=8.15pn x: 0.30(0.05)3.25 w = 0.5713
0 P jdn Py/d Pylam P4
0.0 0.3834 0.3834 0.3834 0
10.0 0.3741 0.3633 0.3697 -0.000615
20.0 0.3475 0.3157 0.3312 -0.002263
30.0 0.3076 0.2470 0.2756 -0.004430
40.0 0.2600 0.1741 0.2126 -0.006477
50.0 0.2104 0.1097 0.1515 ~0.007861
60.0 0.1635 0.06095 0.09911 -0.008287
70.0 0.1226 0.02912 0.05853 ~0.007751
80.0 0.08921 0.01149 0.02999 -0.006486
90.0 0.06354 0.003645 0.01168 -0.004842
100.0 0.04480 0.001467 0.000937 -0.003169
110.0 0.03175 0.001992 -0.004821 ~0.001733
120.0 0.02307 0.003518 ~0.007663 -0.000682
130.0 0.01753 0.005255 -0.008994 ~-0.000049
140.0 0.01416 0.0069%906 -0.009643 0.000226
150.0 0.01221 0.008351 ~-0.01002 0.000252
160.0 0.01116 0.009496 -0.01028 0.000155
170.0 0.01065 0.01024 ~0.01044 0.000045
180.0 0.01050 0.01050 -0.01050 1]
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Table T.68
m = 1.212 — 0.0601i Model: Water cloud C.3 Bex = 0.4298 km—1
A =10.Cpu x: 0.10(0.10)3 or = 0.3118
7] Pyf4n Pyldm Pojdnw Pijdm
0.0 0.2797 0.2797 0.2797 o}
20.0 0.2628 0.2351 0.2486 ~0.000677
40.0 0.2192 0.1365 0.1730 -0.002070
60.0 0.1649 0.04909 0.08986 -0.002980
80.0 0.1151 0.006659 0.02726 -0.002837
30.0 0.09456 0.000649 0.006458 -0.002454
100.0 0.07742 0.001035 -0.008074 -0.001973
120.0 0.05271 0.01040 -0.02328 -0.001027
140.0 0.03829 0.02055 -0.02802 -0.000383
160.0 0.03103 0.02683 -0.02885 -0.000080
180.0 0.02885 0.02885 -0.02885 0
Table T.69
m = .44 — 0.4000i Model: Water cloud C.3 Bex = 1.179 km—1
A=166pu x: 0.125(0.025)1.6 = = 0.1544
[/ P[4 P,j4mr Plar Pj4m
0.0 0.1720 0.1720 0.1720 0
20.0 0:1680 0.1497 0.1586 ~0.00077L
40.0 0.1569 0.09590 0.1226 -0.002590
60.0 0.1412 0.03964 0.07465 -0.004348
80.0 0.1238 0.005823 0.02622 -0.005103
90.0 0.1154 0.000466 0.004590 -0.004994
106.0 0.1075 0.002207 -0.01446 -0.004595
120.0 0.09395 0.02082 -0.04406 -0.003215
140.0 0.08407 0.04716 -0.06293 ~-0.001630
160.0 0.07813 0.06826 -0.07303 -0.000437
180.0 0.07616 0.07616 -0.07616 ]
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Table T.70
m = 1.34 Model: Water cloud C.4 Bex = 10.86 km—
A =045y x: 30.125(0.125)55(0.25)85 = = 1.0
0 Pyfdm Pofam Pyfdr Pylam
0.0 140.2 160.2 140.2 o
1.0 105.9 105.9 105.9 -0.3891
2.0 42.33 42.44 42.37 -0.7226
3.0 6.584 6.599 6.564 -0.3379
4.0 1.528 1.457 1.480 0.02993
4.5 2.316 2.244 2.275 0.04225
5.0 2.565 2.510 2.534 -0.004542
5.5 2.101 2.062 2.076 -0.04527
6.0 1.428 1.398 1.405 -0.04994
6.5 0.9868 0.9562 0.9632 -0.02790
7.0 0.8617 0.8291 0.8389 -0.004128
7.5 0.8944 0.8628 0.8741 0.005621
8.0 0.9124 0.8848 0.8949 0.001599
8.5 0.8560 0.8324 0.8401 -0.005769
9.0 0.7615 0.7395 0.7458 -0.009010
9.5 0.6831 0.6607 0.6673 -0.007268
10.0 0.6414 0.6188 0.6261 -0.003964
20.0 0.3291 0.3319 6.3276 0.000018
30.0 0.1768 0.1879 0.1787 0.001860
40.0 0.08853 0.09979 0.09041 0.001844
50.0 0.04288 0.05284 0.04451 0.001917
60.0 0.02086 0.02694 0.02092 0.001197
70.0 0.01007 0.01313 0.009065 0.000771
80.0 0.005326 0.006088 0.003394 0.000414
90.0 0.003340 0.003160 0.001113 0.000171
100.0 0.002492 0.002039 0.000026 0.000518
110.0 0.003056 0.001957 0:000526 0.000220
120.0 0.005392 0.001781 0.000333 0.001538
130.0 0.005282 0.002406 -0.000499 0.002330
132.0 0.006197 0.002868 ~0.000571 0.003004
134.0 0.008291 0.003870 -0.000228 0.004323
136.0 0.01276 0.004998 0.000467 0.006540
138.0 0.01840 0.00608% 0.001341 0.008939
140.0 0.02666 0.006700 0.003009 0.01118
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TABLE T.70, continued
] P lAn Pyjdm Pyjdn Pyldn
142.0 0.03581 0.006083 0.004769 0.01157
144.0 0.04184 0.004789 0.006464 0.008984
146.0 0.04121 0.003708 0.007970 0.002371
148.0 0.03205 0.005140 0.007502 ~0.005450
150.0 0.01751 0.01049 0.005836 -0.008879
152.0 0.005460 0.01788 0.003119 ~0.004622
153.0 0.003560 0.01943 0.002178 -0.000080
154.0 0.004476 0.01963 0.001523 0.004734
155.0 0.008358 0.01791 0.001573 0.008875
156.0 0.01335 0.01397 0.002237 0.01036
157.0 0.01749 0.009934 0.003146 0.009058
158.0 0.02015 0.007143 0.003985 0.005762
159.0 0.01974 0.006194 0.004379 0.001043
160.0 0.01608 0.008239 0.004379 -0.003006
161.0 0.01148 0.01230 0.003934 -0.004434
162.0 0.007626 0.01640 0.002882 -0.003166
163.0 0.005722 0.01959 0.001993 0.000133
164.0 0.006739 0.01999 0.001651 0.004028
165.0 0.009412 0.01733 0.001758 0.006312
166.0 0.01206 0.01423 0.002696 0.005968
167.0 0.0138L 0.01254 0.003675 0.004000
168.0 0.01315 0.01238 0.003650 0.001348
169.0 0.01078 0.01480 0.003796 -0.000760
170.0 0.01011 0.02060 0.004634 0.000030
171.0 0.009350 0.02179 0.003375 0.001874
172.0 0.008223 0.01975 0.002323 0.002833
173.0 0.01405 0.02935 0.007672 0.005897
174.0 0.01634 0.02720 0.008717 0.005483
175.0 0.008903 0.01302 0.001550 0.000911
176.0 0.02078 0.04760 0.01551 0.006335
177.0 0.04284 0.07538 0.04156 0.008163
178.0 0.04184 0.03070 0.02449 ~0.006652
179.0 0.04465 0.02510 -0.02787 -0.008124
180.0 0.05457 0.05457 -0.05457 0
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Table T.71
m = 1.33 Model: Water cloud C.4 Bex = 1116 km™1
A =070u x: 20.125(0.125)55 @ = 1.0
7] P4 P[4z Pyf4a Pil4n
0.0 59.79 59.79 59.79 0
1.0 53.22 53.24 53.23 -0.1221
2.0 37.13 37.20 37.16 -0.3579
3.0 19.59 19.67 19.61 ~0.4644
4.0 7.277 7.328 7.277 ~0.3479
5.0 1.888 1.884 1.863 -0.1333
5.5 1.093 1.066 1.062 ~0.04765
6.0 0.9704 0.9295 0.9380 0.005040
6.5 1.131 1.084 1.101 0.02428
7.0 1.307 1.262 1.281 0.01830
7.5 1.366 1.326 1.343 -0.000390
8.0 1.286 1.251 1.265 ~0.01974
8.5 1.11L 1.081 1.090 ~0.03164
9.0 0.9086 0.8811 0.8869 -0.03328
9.5 0.7360 0:7086 0.7135 -0.02643
10.0 0.6223 0.5938 0.5998 ~0.01542
10.5 0.5689 0.5393 0.5472 ~0.004809
11.0 0.5584 0.5286 0.538L 0.002281
11.5 0.5670 0.5385 0.5486 0.004889
12.0 0.5752 0.5493 0.5587 0.003913
12.5 0.5724 0.5499 0.5574 0.001226
15.0 0.4751 0.4685 0.4671 0.001459
25.0 0.2426 0.2490 0.2421 -0.000193
35.0 0.119 0.1280 0.1200 0.003161
45.0 0.06196 0.07281 0.06367 0.003209
55.0 0.03102 0.03923 0.03168 0.002411
65.0 0.01553 0.02043 0.01496 0.001604
75.0 0.008020 0.01056 0.006684 0.000989
85.0 0.004779 0.005656 0.002937 0.000711
95.0 0.003102 0.003254 0.000864 0.000656
105.0 0.002733 0.002455 0.000480 0.000428
115.0 0.004320 0.002127 06.000505 0.001202
125.0 0.005561 0.002925 -0.000150 0.002689
130.0 0.007758 0.004479 -0.000062 0.004660
132.0 0.009753 0.005297 0.000131 0.006000



232

NUMERICAL TABLES

TABLE T.71, continued

[i} Py Pyldr P;ldn P,fdx
134.0 0.01237 0, 006453 0.000594 0.007674
136.0 0.01620 0.007402 0.001241 0.009615
138.0 0.02088 0.008142 0.002010 0.01140
140.0 0.02605 0.008235 0.003248 0.01262
142.0 0.03110 0.007590 0.004419 0.01265
144.0 0.03471L 0.006229 0.005756 0.01075
146 .0 0.03555 0.004917 0.006948 0.006964
148.0 0.03248 0.004398 0.007465 0.001697
150.0 0.02573 0.006098 0.007512 -0.003614
152.0 0.01657 0.01031 0.006365 -0.006435
154.0 0.008250 0.01593 0.004714 -0.005415
156.0 0.003945 0.02089 0.003064 -0.000258
158.0 0.005370 0.02142 0.001846 0.006543
160.0 0.01131 0.018390 0.002501 0.01098
161.0 0.01443 0.01531 0.003070 0.01121
162.0 0.01656 0.01156 0.003551 0.009674
163.0 0.01767 0.008820 0.004416 0.006821
164.0 0.01822 0.009003 0.005930 0.003785
165.0 0.01784 0.01139 0.007108 0.001263
166.0 0.01531 0.01303 0.006465 -0.001011
167.0 0.01093 0.01371 0.004453 -0.002868
168.0 0.007989% 0.01818 0.003959 -0.002559
163.0 0.009279 0.02850 0.006552 0.001038
170.0 0.01212 0.03609 0.008958 0.005337
171.0 0.01101 0.03039 0.006516 0.006387
172.0 0.007175 0.01799 0.001277 0.005299
173.0 0.01037 0.02050 0.002848 0.008061
174.0 0.02569 0.04408 0.01707 0.01566
175.0 0.04285 0.06311 0.03535 0.01896
176.0 0.04733 0.05152 0.04021 0.009922
177.0 0.04050 0.02275 0.02252 ~0.004882
178.0 0.03745 0.01460 -0.009477 -0.01075
179.0 0.054414 0.03475 ~0.0381L ~0.004872
180.0 0.04927 0.04927 ~0.,04927 0
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Table T.72
m == 2.4066 — 0.4771i Mode!: Rain L (0°C water) Bex = 0.5084 km™1
A =0, cm x; 0,025(0.025)4(0.10)20 w = 0.4972
0 Pyj4m P[4 P;l4mr P4
0.0 1.315 1.315 1.315 0
2.5 1.287 1.286 1.286 -0.005346
5.0 1.210 1.204 1.206 -0.01958
7.5 1.098 1.086 1.091 -0.03841
10.0 0.9719 0.9532 0-9600 -0.05734
12.5 0.8449 0.8201 0.8277 -0.07334
15.0 0.7263 0.6965 0.7036 -0.08507
17.5 0.6206 0.5869 0.5926 -0.09239
20.0 0.5288 0.4925 0.4961 -0.09580
30.0 0.2841 0.2457 0.2386 -0.08555
40.0 0.1645 0.1309 0.1152 -0.06355
50.0 0.1040 0.07688 0.05591 ~0.04452
60.0 0.07120 0.05003 0.02619 -0.03078
70.0 0.05210 0.03589 0.01055 -0.02137
80.0 0.04024 0.02799 0-001897 -0.01503
90.0 0.03247 0.02327 -0.003160 -0.01074
160.0 0.02716 0.02019 -0.006317 ~0.007850
110.0 0.02342 0.01790 -0.008483 -0.005930
120.0 0.02075 0.01603 -0.01017 -0.004681
130.0 0.01888 0.01456 -0.01166 -0.003830
140.0 0.01770 0.01380 -0.01311 -0.003086
150.0 0.01715 0.01406 -0.01455 -0.002220
160.0 0.01709 0.01525 -0.01591 -0.001221
170.0 0.01725 0.01669 -0.01695 -9.000352
180.0 0.01735 0.01735 -0.01735 0
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m = 25604 — 0.8947i

Table T.73

Meodel: Rain L (0°C water)

NUMERICAL TABLES

Bex = 0.4563 km—1

A=02cm X: 0.025(0.025)2(0.]0)]0 = = 0.4579
6 P f4n Pyfdm Pyldw Pyldm
0.0 0.4805 0.4805 0.4805 0
2.5 0.4778 0.4770 0.4774 -0.000986
5.0 0.4698 0.4668 0.4683 -0.003845
7.5 0.4570 0.45006 0.4537 -0.008295
10.0 0.4403 0.4295 0.4345 -0.01393
12.5 0.4204 0.4046 0.4117 -0.02027
15.0 0.3984 0.3773 0.3863 -0.02686
17.5 0.3752 0.3487 0.3594 -0.03329
20.0 0.3516 0.3199 0.3319 -0.03925
30.0 0.2628 0.2156 0.2275 -0.05540
40,0 0.1934 0.1401 0.1455 -0.05903
50.0 0.1441 0.09162 0.08784 -0.05466
60.0 0.1100 0.06215 0.04915 -0.04689
70.0 0.08650 0.04465 0.02365 -0.03850
80.0 0.07005 0.03432 0.006852 -0.03079
90.0 0.05836 0.02824 -0.004329 ~0.02422
100.0 0.0499% 0.02471 -0.01193 -0:01883
110.0 0.04382 0.02280 -0.01726 -0.01446
120.0 0.03937 0.02211 -0.02115 -~0.01090
130.0 0.03619 0.02248 -0.02413 -0.007949
140.0 0.03401 0.02385 -0.02650 -0.005431
150.0 0.03262 0.02600 -0.02844 -0.003282
160.0 0.03181 0.02848 -0.02995 -0.001556
170.0 0.03142 0.03051 ~-0.03095 ~0.000407
180.0 0.03130 0.C3130 -0.03130 0



TABLE T.74

m = 2.7589 — 1.2408ij

Table T.74

Model: Rain L (0°C water)
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Bex = 0.382] km™1

1 =03cm x: 0.025(0.025)2(0.10)8 == 0.4312
[} P4 .Py/dw Pyldw Pyl4m
0.0 0.2939 0.2939 0.2939 0
5.0 0.2908 0.2889 0.2899 -0.001643
10.0 0.2820 0.2748 0.2783 -0.006238
15.0 0.2686 0.2535 0.2604 -0.01291
20.0 0.2519 0.2276 0.2381 -0.02055
30.0 0.2147 0.1720 0.1871 -0.03480
40.0 0.1788 0.1225 0.1368 -0.04404
50.0 0.1482 0.08463 0.09327 -0.04745
60.0 0.1236 0.05846 0.05814 | .0.04632
70.0 0.1045 0.041.70 0.03094 -0.04238
80.0 0.08972 0.03180 0.01034 -0.03705
90.0 0.07844 0.02670 -0.005128 -0.03128
100.0 0.06984 0.02489 -0.01674 -0.023563
110.0 0.06332 0.02542 -0.02551 -0.02035
120.0 0.05842 0.02767 -0.03221 -0.01556
130.0 0.05483 0.03120 -0.03741 -0.01128
140.0 0.05227 0.03559 -0.04146 -0.007551
150.0 0.05055 0.04028 -0.04457 -0.004431
160.0 0.04946 0.04456 -0.04684 -0.002040
170.0 0.04888 0.04760 -0.04823 -0.000522
180.0 0.04870 0.04870 -0.04870 0
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Table T.75
m = 3.1918 — 1.7657i  Model: Rain L (0°C water) Bex = 0.2450 km—1
A=05cm x: 0.0125(0.0125)1(0.05)5 = = 0.3901
6 P /4 Pyl4r Psf4m Pyfdm

0.0 0.1832 0.1832 0.1832 0

5.0 0.1824 0.1812 0.1818 ~0.000662
10.0 0.1804 0.1756 0.1779 -0.002587
15.0 0.1770 0.1667 0.1716 -0.005596
20.0 0.1727 0.1551 0.1632 -0.009426
30.0 0.1616 ’ 0.1267 0.1413 -0.01830
40.0 0.1490 0.09658 0.1152 -0.02683
50.0 0.1364 0.06920 0.08768 -0.03338
60.0 0.1248 0.04731 0.06079 -0.03721L
70.0 0.1145 0.0319 0.03590 -0.03830
80.0 0.1057 0.02299 0.01369 -0.03706
90.0 0.09849 0.01973 -0.005603 -0.03403
100.0 0.09263 0.02120 -0.02204 ~0.02979
110.0 0.08800 0.02634 -0.03583 ~0.02484
120.0 0.08441 0.03412 -0.04725 ~0.01961
130.0 0.08172 0.04348 -0.05656 -0.016447
140.0 0.07976 0.05334 -0.06398 -0.009734
150.0 0.07841 0.06259 -0.06966 -0.005697
160.0 0.07754 0.07018 -0.07369 -0.002606
170.0 0.07706 0.07517 ~0.07610 -0.000663

180.0 0.07691 0.07591 -0.07691 0
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Table T.76
m = 42214 — 2.5259i Model: Rain L (0°C water) ex = 0.07818 km™1
A=1.0cm x: 0.005(0.005)1(0.05)3 w = 02746
o P[4 Pyldn Pyfam Pyfdar
0.0 0.1273 0.1273 0.1273 0
10.0 0.1268 0.1231 0.1249 -0.001186
20.0 0.1254 0.1111 0.1180 ~0.004528
30.0 0.1233 0.09338 0.1068 -0.009438
40.0 0.1208 0.07251 0.09199 -0.01509
50.0 0.1182 0.05149 0.07435 ~0.02062
60.0 0.1156 0.03306 0-05471 -0.02524
70.0 0.1134 0.01936 0.03393 -0.02839
80.0 0.1117 0.01172 0.01280 -0.02978
90.0 0.1104 0.01059 -0.007956 -0.02935
100.0 0.1096 0.01569 -0.02774 ~0.02727
110.0 0.1092 0.02605 -0.04605 -0.02386
120.0 0.1092 0.04026 -0.76253 -0.01956
130.0 0.1094 0.05658 -0.07688 -0.01484
140.0 0.1097 0.07319 -0.08888 -0.01018
150.0 0.1101 0.08830 -0.09838 -0.006035
160.0 0.1105 0.1003 -0.1052 -0.002783
170.0 0.1107 0.1081 -0.1094 ~0.000711
180.0 0.1108 0.1108 -0.1108 0
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m = 5.8368 — 3.0046i

Table T.77

Model: Rain L (0°C water)

NUMERICAL TABLES

Bex = 0.01754 km—1

A =20cm x: 0.005(0.005)1.6 o = 0.1089
0 Pyf4ar P.jam Pyfdm P,j4x
0.0 0.1129 0.1129 0.1129 0
10.0 0.1128 0.1093 0.1110 -0.000808
20.0 0.1124 0.09923 0.1056 -0.003122
30.0 0.1120 0.08391 0.09663 -0.006623
40.0 0.1115 0.06547 0.08452 -0.01084
50.0 0.1111 0.04636 0.06962 -0.01521
60.0 0.1109 0.02908 0.05239 -0.01917
70.0 0.1111 0.01586 0.03339 ~0.02223
80.0 0.1116 0.008336 0.01320 -0.02402
90.0 0.1126 0.007420 ~0.007523 -0.02437
100.0 0.1139 0.01319 -0.02815 -0.02325
110.0 0.1156 0.02493 -0.04806 -0.02085
120.0 0.1174 0.04124 -0.06664 ~0.01745
130.0 0.1192 0.06026 -0.08335 -0.01348
140.0 0.1210 0.07985 -0.09771 -0.009387
150.0 0.1226 0.09783 -0.1093 ~0.005630
160.0 0.1238 0.1123 -0.1178 ~0.002617
170.0 0.1245 0.1216 -0.1231 -0.000672
180.0 0.1248 0.1248 -0.1248 0
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m = 7.1755 — 2.8642i

Table T.78

Model: Rain L (0°C water)
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ﬂex = 0.005455 km—2

A=33cm x: 0.005(0.005)1.2 w = 0.04547

G} P, jdx Pyldn Pylan Pildm

0.0 0.1219 0.1219 0.1219 9
10.0 0.1216 0.1183 0.1200 -0.000638
20.0 0.1210 0.1081 0.1143 -0.002470
30.0 0.1199 0.09246 0,1051 -~0.005263
49.0 0.1187 0.07340 0.09263 -0.008659
50.0 0.1173 0.05324 0.07737 -0.01223
60.90 0.1159 0.03444 0.95981 -0.0L554
70.0 0.1147 0.01928 0.04053 -0.01817
80.0 0.1138 0.009527 0.72016 -0.01981
90.0 0.1132 0.006287 -0.009656 ~-0.02028
1060.0 0.1130 0.009856 ~0.02128 -0.01952
110.0 0.1131 0.01971 -0.04109 ~0.01765
120.0 0.1135 0.03460 -0.0595L -0.0148%
130.0 0.1141 0.05267 ~0.07602 -0.01158
140.0 0.1149 0.07176 ~0.09016 -0.008112
150.0 0.1156 0.08959 ~0.1016 -0.004888
160.0 0.1162 0.1041 -0.,1099 -0.002289
170.0 0.1166 0.1135 -0.1150 ~0.000587
180.0 0.1167 0.1167 -0.1167 [
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Table T.79
m = 8.1084 — 2.4102i Model: Rain L (0°C water) Bex = 0.001824 km—1
A=50cm x: 0.0025(0.0025)1.0 = = 0,02424
6 Pyj4n Pyj4n P,jAr Pyj4n
0.0 0.1319 0.1319 0.1319 0
20.0 0.1307 0.1175 0.1239 ~0.001543
40.0 0.1272 0.08087 0.1010 -0.005429
60.0 0.1224 0.03804 0.06684 -0.009794
80.0 0.1174 0.009579 0.02631 -0.01257
100.0 0.1130 0.005805 ~0.01514 -0.01247
120.0 0.1100 0.02740 -0.05254 ~0.209574
140.0 0.1081 0.06279 -0.08193 -0.005243
160.0 0.1072 0.09441 -0.1006 ~0.001479
180.0 0.1070 0.1070 -0.1070 0
Table T.80

m = 8.7889 — 1.7531i Model: Rain L (0°C water) Pex = 0.0005175 km—1

A=8.0cm x: 0.001(0.001)0.6 w = 0.01234
[ P[4 Pyl4x P;lAn P,ldn
0.0 0.1308 0.1309 0.1309 0
20.0 0.1300 0.1163 0.1230 -0.000479
40.0 0.1276 0.07920 0.1004 -0.001687
60,0 0.1241 0.03633 0.06661 ~0.003054
80.0 0.1200 0.006764 0.02631 ~0.003934
100.0 0.1160 0.003003 -0.01515 ~0.003918
120.0 0.1126 0-02536 ~0.05277 -0.003019
140.0 0.1100 0.06204& ~0.08249 -0.001658
160.0 0.1085 0.09488 ~0.1014 ~0.000468

180.0 0.1079 0.1079 -0.1079 0
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m = 2.4806 — 0.7050i

Table T.81

Model: Rain L (10°C water)
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Bex = 0.5047 km-1

2 =0.lcm x: 0.025(0.025)4(0.10)20 @ = 0.4923
o Pyjam Pofar Pyjar P,fdn
0.0 .. 1.325 1.325 1.325 0
2.5 1.297 1.294 1.295 -0.005732
5.0 1.219 1.210 1.214 ~0.02098
7.5 1.107 1.089 1.097 -0.04113
10.0 0.9801 0.9522 0.9632 -0.06134
12.5 0.8525 0.8160 0.8286 -0.07837
15.0 0.7334 0,6899 0.7026 ~-0.09080
17.5 0.6272 0.5784 0.5899 ~0.09850
20.0 0.5350 ) 0.4829 0.492] -0.1020
30.0 0.2887 0.2355 0.2318 -0.09064
40.0 . 0.1680 0.1226 0.1079 -0.0670L
50.0 0.1069 0.07055 0.04899 ~0.04673
60.0 0.07370 0.04533 0.01990 ~0.03217
70.0 0.05436 0.03241 0.004899 ~0.02226
80.0 0.04235 0.02542 ~-0.003199 ~0.01560
90.0 0.03449 0.02142 -0.007783 -0.01112
100.0 0.02913 0.01896 -0.01053 -0.008069
110.0 0.02537 0.01730 -0.01231 -0.005989
120.0 0.02270 0.01613 -0.01360 =0.004542
130.0 0.02085 J.01541 ~0.01467 ~0.003471
140.0 0.01964 0.01526 ~0.01567 ~0.002567
150.0. 0.01895 0.01578 -0.01665 -0.001703
160.0 0.01866 0.01687 -0.01759 -0.00088L
170.0 0.01861 0.01807 -0.01832 =0.000245
180.0 0.01861 0.01861 ~-0.01861 0
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Table T.82
m = 3.1060 — 1.6626i Model: Rain L (10°C water) Bex = 0.3923 km1
A =0.3cm x: 0.025(0.025)2(0.10)8 w = 0.4581
0 Pif4n Psfan Pifdn P,j4w
0.0 0.2674 0.2674 0.2674 0
5.0 0.2647 0.2628 0.2638 ~0.001685
10.0 0.2571 0.2498 0.2533 ~0.006402
15.0 0.2455 0.2301 0.2371 -0.01326
20.0 0.2312 0.2063 0.2168 ~0.02114
30.0 0.1991 0.1555 0.1702 -0.0359%
40.0 0.1682 0.1108 0.1237 -0,04572
50.0 0.1420 0.07709 0.08293 -0.04956
60.0 0.1208 0.03427 0.04967 -0.04871
70.0 0.1044 0.04013 0.92360 -0.04488
80.0 0.09168 0.03225 0.003612 -0.03952
90.0 0.08198 0.02875 ~0.01159 -0.03358
100.0 0.07460 0.02825 -0.02317 -0.02765
110.0 0.06905 0.02990Q -0.03208 -0.02203
120.0 0.06493 0.03311 -0.03904 ;0.01686
130.0 0.06197 0.03750 -0.04456 -0.01221
140.0 0.05992 0.04262 -0.04898 -0.008L47
150.0 0.05857 0.04793 -0.05247 -0.004762
160.0 0.05776 0.05267 -0.05505 -0.002183
170.0 0.05734 0.05600 -0.05666 -0.000557

180.0 0.05721 0.05721 ~0.05721 0
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Table T.83

m = 5.1553 — 2.8341i Model: Rain L (10°C water) Bex = 0.07781 km™1

A=1.0cm x: 0.005(0.005)1(0.05)3 w= = 0.2836

6 P,jdm P,l4n Pylan Pjdm

0.0 0.1158. 0.1158 0.1158 0
10.0 0.1155 0.1119 0.1137 ~-0.001269
20.0 0.1146 0.1008 0.1073 ~0.004849
30.0 0.1133 0.08433 0.09708 -0.01011
40.0 0.1118 0.06509 0.08336 ~0.01619
50.0 0.1104 0.045%4 0.06682 ~-0.02213
60.0 0.1094 0.02959 0.048L5 -0.02710
70.0 0.1088 0.01779 0.02810 -~0.03051
80.0 0.1088 0.01205 0.007432 -0.03201
90.0 0.1094 0.01270 -0.01317 -0.03155
100.0 0.1104 0.01939 -0.03309 -0.02931
110.0 0.1117 0.03114 -0.05179 -0.02564
120.0 0.1133 0.04651 ~0.06883 ~0.02101
130.0 0.1150 0.06379 -0.08384 -0.01592
140.0 0.1166 0.08L14 ~0.09651 -0.01092
150.0 0.1180 0.09680 ~-0.1066 ~0.006470
160.0 0.1190 0.1092 -0.1140 -0.002982
170.0 0.1197 0.1172 -0.1184 -0.000762

180.0 0.1199 0.1199 ~0.1199 0
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Table T.84

m = 8.0253 — 2.2727i  Model: Rain L (10°C water) Bex = 0.005071 km—1

A =33cm x: 0.005(0.005)1.2 w = 0.05084

6 P.f4rn P,[4r Pyj4ar P j4n

0.0 0.1236 0.1236 0.1236 0
10.0 0.1232 0.1202 0.1217 -0.000758
20.0 0.1221 0.1102 0.1160 -0.002936
30.0 0.1204 0.09507 0.1066 -0.006255
40.0 0.1182 0.07652 0.09404 -0.01029
50.0 0.1159 0.05688 0.07863 -0.01454
60.0 0.1136 0.03852 0.06093 -0.01847
70.9 0.1116 0.02362 0.04154 -0.02161
80.0 0.1100 0.01391 0.02110 -0.02356
90.0 0.1090 0.01047 0.000256 -0.02412
100.0 0.1086 0.01358 -0.02034 ~0.02322
110.0 0.1088 0.02276 -0.04008 -0.02100
120.0 0.1095 0.03681 ~0.05839 -0.01772
130.0 0.1106 0.05395 ~0.07476 -0.01378
140.0 0.1118 0.07211 -0.08876 ~0.009654
150.0 0.1131 0.08909 -0.1000 -0.005818
160.0 0.1141 0.1029 ~0.1083 -0.002714
170.0 0.1148 0.1119 -0.1133 ~0.000698

180.0 0.1150 0.1150 -0.1150 0



TABLE T.85

m = 8.9218 — [.1423i

Table T.85

245

Model: Rain L (10°C water) fex = 0.0003432 km—1

A =80cm x: 0.001(0.001)0.6 = = 0.01866

[7} P[4 P4 P,/4rn P,l4n

0.0 0.1326 0.1326 0.1326 0

20.0 0.1316 0.1180 0.1246 -0.000394
40.0 0.1287 0.08079 0.1018 ~0.001388
60.0 0.1245 0.03765 0.06770 -0.002511
80.0 0.1197 0.007644 0.02721 -0.003234
100.0 0.1152 0.003278 -0.01425 -0.003220
120.0 0.1113 0.02494 ~0.05168 -0.002479
140.0 0.1085 0.06096 -0.08112 ~-0.001361
160.0 0.1068 0.09333 ~0.0998L -0.000385
180.0 0.1062 0.1062 ~-0.1062 0
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Table T.86
m = [.7800 — 0.0024i Model: Rain L (ice) Pex = 0.3225 km—1
A =0.20 cm x: 0.025(0.025)2(0.10)10 w = 0.9890
0 P, ldn P,l4m Pyldmr Pyf4m
0.0 0.5131 0.5131 0.5131 0
2.5 0.5102 0.5102 0.5102 -0.000451
5.0 0.5016 0.5016 0.5016 -0.001757
7.5 0.4878 0.4879 0.4877 -0.003785
10.0 0.4696 0.4697 0.4694 ~0.006340
12.5 0.4480 0.4481 0.4476 -0.009197
15.0 0.4239 0.4239 0.4231 -0.01214
17.5 0.3983 0.3981 0.3970 -0.01496
20.0 0.3721 0.3716 0.3700 -0.0L753
30.0 0.2714 0.2688 0.2657 -0.02378
40.0 0.1906 0.1857 0.1816 -0.02384
50.0 0.1326 0.1264 0.1213 -0.02040
60.0 0.09302 © 0.08657 0.08040 -0.91530
70.0 0.06652 0.06078 0.05328 -0.01128
80.0 0.04880 0.04446 0.03545 -0.007357
90.0 0.03688 0.03446 0.02368 -0.004182
100.0 0.02868 0.02869 0.01576 ~-0.001753
110.0 0.62292 0.02582 0.01020 ~0..000051
120.0 0.01867 0.02484 0.005876 0.000774
130.0 0.01542 0.02480 0.001807 0.000389
140.0 0.01328 0.02470 -0.003041 -0.001578
150.0 0.01373 0.02445 -0.009899 -0.004476
160.0 0.01978 0.02664 ~0.02005 ~0.005448
165.0 0.02527 0.02965 -0.02620 ~0.004347
170.0 0.03137 0.03350 -0.03214 ~0.002484
175.0 0.03630 0.03686 -0.03656 -0.000723

180.0 0.03821 0.03821 -0.03821 0
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Table T.87

m = 1.7800 — 0.0024i Model: Rain L (ice) Bex = 0.005072 km™1!

A=1.0cm x: 0.005(0.005)1(0.05)3 @ = 0.9493
0 Pyl4=m Pyldn Pyldm Pyjdw

0.0 0.1873 0.1873 0.1873 a
10.0 0.1855 0.1813 0.1834 -0.000104
20.0 0.1802 0.1643 0.1720 -0.000376
30.0 0.1720 0.1389 0.1545 ~0,000708
40.0 0.1618 0.1090 N0.1324 -0.000972
50.0 0.1504 0.07834 0.1077 -0.001065
60.0 0.1386 0.05063 0.08206 -0.000946
70.0 0.1271 0.02843 0.05696 -0.000634
80.0 0.1164 0.01321 0.03340 ~0.000202
90.0 0.1067 0.005392 0.01204 0.000258
100.0 0.09818 0.004485 ~0.006774 0.000653
110.0 0.09096 0.009347 ~0.02294 0.000916
120.0 0.08499 0.01843 -0.03649 0.001013
130.0 0.08024 0.02999 -0.04754 0.000947
140.0 0.07661L 0.04230 ~0.05627 0.000756
150.0 0.07399 0.05373 -0.06283 0.000500
160.0 0.07225 0.06294 -0.06739 0.000248
170.0 0.07126 0.06889 -0.07006 0.000066

180.0 0.07095 0.07095 -0.07095 0
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Table T.88
m = [.7800 — 0.0024; Model: Rain L (ice) Bex = 0.0001070 km—1
A =33cm x: 0.005(0.005)1.2 w = 0.3855
6 P f4n P4z Pyj4nm P, j4x
0.0 0.1258 0.1258 0.1258 0

10.0 0.1257 0.1220 0.1238 0.000000
20.0 0.1254 0.1110 0.1180 0.000003
30.0 0.1249 0.09414 0.1084 0.000007
40.0 0.1242 0.07358 0,09560 0.000012
50.0 0.1234 0.05179 0.07994 0.000017
60.0 0.1225 0.03141 0.06201 0.000022
70.0 0.1214 0.01484 0.04244 0.000025
80.0 0.1203 0.003990 0.02188 0.000028
90.0 0.1192 0.000020 0.001003 0.000028
100.0 0.1181 0.003248 -0.01956 0.000027
110.0 0.1171 0.01312 ~0.03919 0.000025
120.0 0.1161 0.02832 -0.05735 0.000021
130.0 0.1153 0.04692 -0.07355 0.000016
140.0 0.1146 0.06663 +0.08737 0.000011
150.0 0.1140 0.08508 =-0.09847 0.000007
160.0 0.1135 0.1001 -0.1066 0.000003
170.0 0.1133 0.1098 -0.1115 0.000000

180.0 0.1132 0.1132 -0.1132 0



TABLE T.89

m = .78 — 0.0024i

Table T.89

Model: Hail H (ice)

249

fex = 0.244] km—1

A=02cm x: 0.10(0.10)4(0.20)44 @ = 0.9563
[7} P,j4xn P, /4 P,ldr P,ldn
0.0 3.705 3.705 3.705 ]
2.5 3.450 3.453 3.451 -0.02059
5.0 2,815 2.825 2.818 -0.06528
7.5 2.072 2.087 2.073 -0.1025
10.0 1.431 1.447 1.426 -0.1159
12.5 0.9657 0.9788 0.9535 -0.1086
15.0 0.6604 0.6687 0.6411 ~0.09110
17.5 0.4692 0.4726 0.4448 -0.07174
20.0 0.3507 0.3499 0.3234 "0-05451
30.0 0.1662 0.1597 0.1413 -0.01709
40.0 ©.0.1063 0.1043 0.08850 ~0.005639
.50.0 0.07485 0.07878 0.06277 -0.001908
60.0 0.05092 0.06135 0.04322 0.000528
70.0 0.03744 0.04883 0.03136 0.001422
80.0 0.02588 0.03933 0.02098 0.002233
90.0 0.01983 0.03182 0.01481 0.003149
100.0 0.01440 0.02700 0.009753 0.002570
110.0 0.01194 0.02328 0.006396 0.003171
120.0 0.01098 0.02068 0.004365 0.003033
130.0 0.01133 0.02020 0.004188 0.00329¢Q
140.0 0.01396 0.02090 0.003013 0.003081
150.0 0.01965 0.02127 0.004329 -0.001455
160.0 0.03634 0.03835 -0.006898 -0.01235
162.5 0.0450L 0.05143 -0.01806 -0.01647
165.0 0.058l6 0.06994 -0.03663 -0.02166
167.5 0.07961 0.09634 -0.06612 ~0.02671
170.0 0.1143 0.1336 -0.1097 ~-0.02897
172.5 0.1649 0.1825 ~0.1670 -0.02553
175.0 0.2259 0.2371 -0.2297 -0.01599
177.5 0.2790 0.2826 -0.2807 ~0.004963
180.0 0.3006 0.3006 ~0.3006 0
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Table T.90
m = 1.78 — 0.0024i Model: Hail H (ice) Bex = 0.3044 km™1
A=05cm x: 0.05(0.05)2(0.10)18 w = 0.9843
0 P.j4m Pofdr Pyldx Py/4+

0.0 0.8141 0.8l4l: 0.8lal 0]

5.0 0.7780 0.7796 0.7787 -~0.005145
10.0 0.6832 0.6888 0.6851 -0.01741
15.0 0.5605 0.5710 0.5621 -0.03005
20.0 0.4393 0.4538 0.4389 ~0.03778
30.0 0.2557 0.2742 0.2510 -0.03585
40.0 0.1513 0.1703 0.1461 -0.02395
50.0 0.09455 0.1130 0.09036 -=0.01381
60.0 0.06247 0.07976 0.05885 =0.007341
70.0 0.04319 0.05906 0.03974 -0.003429
80.0 0.03112 0.04556 0.02763 ~0.000948
90.0 0.02369 0.03681 0.01993 0.000609

100.0 0.01886 0.03141 0.01495 0.001608
110.0 0.01621 0.02876 0.01197 0.002399
120.0 0.01488 0.02865 0.01037 0.002805
130.0 0.01431 0.03064 0.009437 0.002191
140.0 0.01396 0.03263 0.007287 ~0.001900
150.0 0.01570 0.03278 -0.000888 -0.01121
160.0 0.03080 0.04083 =0.0255% -0.01770
162.5 0.03851 0.04648 ~0.03536 -0.01707
165.0 0.0478L 0.05382 -0.065632 ~0.01532
167.5 0.05827 0.06252 -0.05792 -0.01250
170.0 0.06914 0.07189% -0.00937 ~0.0092v85
172.5 0.07937 0.08093 «0.07975 -0.005809
175.0 0.08781 0.08850 -0.08807 -0.002790
177.5 0.09339 0.09356 =0.09347 ~0.00073%
180.0 0.09534 0.09534 -0.09534 0
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Table T.91
m = 1.78 — 0.0024i Model: Hail H (ice) Bex = 0.2002 km—1
A=10cm x: 0.025(0.025)(0.05)9 @ = 0.9905
6 P4n Pyj4n Pylan Poldar
0.0 0.4539 0.4539 0.4539 0
5.0 0.4472 0.4468 0.4470 ~0.001078
10.0 0.4279 0.4266 0.4272 -0.004085
15.0 0.3983 0.3955 0.3967 -0.008413
20.0 0.3614 0.3569 0.3585 -0.01325
25.0 0.3207 0.3143 0.3162 -0.01779
30.0 0.2791 0.2711 0.2729 -0.02142
40.0 0.2024 0.1924 0.1929 -0.02483
50,0 0.1419 0.1318 0.1301 -0.02350
60.0 0.09859 0.0898L 0.08566 -0.01940
70.0 0.06922 0.06265 0.05614 -0.01444
80.0 0.04977 0.04575 0.03711 -0.009774
90.0 0.03686 0.03555 0.02489 -0.005879
100.0 0.02808 0.02964 0.01684 -0.002890
110.0 0.02177 0.02640 0.01108 -0.000862
120.0 0.01689 0.02464 0.006264. 0.000078
130.0 0.01302 0.02341 0.001391 -0.000194
140.0 0.01066 0.02220 -0.004155 -0.001427
150.0 0.01111 0.02132 ~0.01045 -0.002598
160.0 0.01523 0.02161 -0.01685 -0.002410
170.0 0.02105 0.02303 -0.02192 -0.000918
180.0 0.02389 0.02389 -0.02389 0
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Table T.92
m = 1.78 — 0.0024i Model: Hail H (ice) Bex = 0.03943 km—1
A =20cm x: 0.025(0.025)1(0.05)5 = = 0.9860
6 P, [4n Py[dn PyfAx » Pyldn

0.0 0.2576 0.2576 0.2576 0

20.0 0.2394 0.2245 ) 0.2318 -0.002011
40.0 0.1945 0.1488 0.1693 ~0.005546
60.0 0.1431 0.07501 0.100L -0.006624
80.0 0.09954 0.0293L 0.04460 ~0.004430
100.0 0.06867 0.01246 0.007318 -0.001062
120.0 0.04964 0.01406" ~0.01535 0.001153
140.0 0.04000 0.02340 ~0.02811 0.001396
160.0 0.03668 0.03250 -0.03455 0.000521

180.0 0.03616 0.03616 ~0.03616 0
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Table T.93
m = [.78 — 0.0024i Model: Hail H (ice) Bex = 0.006448 km—1
A =33cm x: 0.01(0.01)3 w = 0.9656
0 P,[4m P[4 Pyldm P47
0.0 0.1763 0.1763 0.1763 0
20.0 0.1713 0.1549 0.1629 0.000044
40.0 0.1580 0.1027 0.1272 0.000229
60.0 0.1397 0.04640 0.07979 0.000604
80.0 0.1206 0.009887 0.03186 0.001045
100.0 0.1037 0.002335 ~-0.008939 0.001292
120.0 0.09059 0.01820 ~0.03949 0.001157
140.0 0.08157 0.04414 -0.05979 0.000701
160.0 0.07642 0.06624 -0.07114 0.000209
180.0 0.07476 0.07476 ~0.07476 ¢]
Table T.94
m = 1.78 — 0.0024; Model: Hail H (ice) Bex = 0.0002578 km—1
A =80cm x: 0.005(0.005)1.25 = = 0.7090
6 Py[4ar Poldn Pylda P4
0.0 0.1283 0.1283 0.1283 0
20.0 0.1277 0.1131 0.1202 0.000004
40.0 0.1261 0.07492 0.09719 0.000014
60.0 0.1236 0.03200 0.06290 0.000026
80.0 0.1207 0.004135 0.02232 0.000033
100.0 0.1177 0.003112 -0.01911 0.000033
120.0 0.1149 0.02774 -0.05646 0.000025
140.0 0.1127 0.06533 ~0.08581 0.000014
160.0 0.1113 0.09801 -0.1045 0.000004

180.0 0.1108 0.1108 -0.1108 0
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m = 4.2214 — 2.5259i
2

Table T.95

Model: Hail H (0°C water)

NUMERICAL TABLES

Bex = 0.2594 km—1

= [.0cm x: 0.025(0.025)1(0.05)% w = 0.05872
6 P4 PyfAm P[4 P,ldm
0.0 0.3016 0.3016 0.3016 0
10.0 0.2881 0.2786 0.2831 ~0.01070
20.0 0.2536 0.2226 0.2342 ~0.03545
30.0 0.2103 0.1598 0.1705 ~0.05930
40.0 0.1693 0.1100 0.1080 ~0.07199
50.0 0.1358 0.07847 0.05665 -0.07231
60.0 0.1106 0.06122 0.01949 -0.06446
70.0 0.09222 0.05241 -0.005023 -0.05330
80.0 0.07893 0.04770 -0.02017 -0.04210
90.0 0.06930 0.04473 -0.02913 -0.,03236
100.0 0.06232 0.04253 -0.03437 ~0.02447
110.0 0.05731 0.04086 -0.03758 ~-0.01824
120.0 0.05381 0.03986 -0.03981 -0.01333
130.0 0.05147 0.03978 -0.04170 -0.009396
140.0 0-05001 0.04083 -0.04354 -0.006199
156.0 0.04921 0.04294 -0.04539 -0.003620
160.0 0.04884 0.04557 -0.04706 -0.001667
170.0 0.04871 0.04781 -0.04825 -0.000428
180.0 0.04869 0.04869 -0.04869 0
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Table T.96
m =7.1755 — 2.8642i  Model: Hail H (0°C water) Bex = 0.09053 km—1
A=33cm x: 0.01(0.01)3 = = 0.3503
0 Pif4n Polan Psfdm P,jAm
0.0 0.09493 0.09493 0.09493 g
20.0 0.09484 0.08199 0.08803 ~0.004993
40.0 0.09538 0.05160 0.06790 -0.01684
60.0 0.09809 0.02274 0.03658 -0.02853
80.0 0.1038 0.01224 ~0.002062 -0.03397
100.0 0.1120 0.02595 -0.04285 -0.03120
120.0 0.1211 0.05805 -0.08049 -0.02232
140.0 0.1291 0.09580 -0.1105 -0.0L156
160.0 0.1345 0.1254 -0.1298 -0.003144
1R0.0 0.1364 0.1364 -0.1364 0
Table T.97

m = 8.7889 — 1.7531i

Model: Hail H (0°C water) Bex = 0.01847 km—1

A =80cm x: 0.005(0.005)1.25 = = 0.07287

0 Pjdr Pyjdn Pyfan Pfda

0.0 0.1079 0.1079 0.1079 0

20.0 0.1058 0.09688 0.1011 -0.004334
40.0 0.1008 0.06960 0.08140 -0.01519
60.0 0.09606 0.04011 0.05081 -0.02723
80.0 0.09479 0.02363 0.01262 -0.03469
100.0 0.09889 0.02897 ~0.02881 -0.03415
120.0 0.1077 0.05457 -0.06847 -0.02602
140.0 0.1185 0.08959 -0.1013 -0.01416
160.0 0.1272 0.1191 -0.1230 -0.003979
180.0 0.1305 0.1305 -0.1305 0
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Table T.98
m = [.55 Model: Silicate haze M fex = 0.1085 km—1
A =058 x: 0.10(0.10)12.0(0.20)56 = = 1.0
0 P f4x Pyldw Pyjdm Pyfdnm
0.0 6.022 64022 6.022 0
2.5 4.850 4.857 4.853 ~0.03756
5.0 3.070 3.084 3.073 -0.07453
7.5 1.911 1.926 1.909 -0.08072
10.0 1.248 1.261 1.242 -0:07312
12.5 0.8676 0.8779 0.8575 -0.06140
15.0 0.6395 0.6476 0.6272 -0.04928
17.5 0.4945 0.5013 0.4819 -0.03820
20.0 0.3963 0.4022 0.3846 -0.02938
30.0 0.2032 0.2111 0.1970 -0.01021
40.0 0.1201 0.1310 0.1168 ~0.002534
50.0 0.07530 0.08666 0.07272 0.000745
60.0 0.04882 0.05922 0.04595 0.002077
70.0 0.03239 0.04119 0.02877 0.002592
80.0 0.02198. 0.02951 0.01781 0.002502
90.0 0.01527 0.02191 0.01108 0.002356
100.0 0.01111 0.01716 0.007086 0.002352
110.0 0.008818 0.01446 0.007422 0.002425
120.0 0.007938 0.01330 0.003399 0.002813
130.0 0.007956 0.01397 0.002795 0.003817
135.0 0.008502 0.01522 0.002767 0.004562
140.0 0.009607 0.01791 0.002784 0.005716
145.0 0.01150 0.02230 0.003082 0.007826
150.0 0.01498 0.02961 0.003075 0.01092
155.0 0.01982 0.04061 0.002312 0.01450
160.0 0.02703 0.05352 -0.001146 0.01664
165.0 0.03852 0.0639¢4 -0.007299 0.01390
170.0 0.05647 0.08033 -0.02457 0.008314
175.0 0.08133 0.1008 -0.07119 -0.003157
180.0 0.1154 0.1154 -0.1154 0
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Table T.99
m = .55 — 0.0155; Model: Silicate haze M fex = 0.1079 km—1
4 =0589 4 x: 0.10(0.10)12.0(0.20)56 = = 0.8090
0 PojAn P,jd=

0.0 7.345 7.345 7.345 0

2.5 5.894 5.901 5.898 -0.04848

5.0 3.691 3.705 3.696 ~0.0971l6

7.5 2.259 2.272 2.260 -0.1049
10.0 1.442 1.452 1.439 -0.09328
12.5 0.9744 0.9817 0.9586 -0.07695
15.0 0.6957 0.7009 0.6877 ~0.06148
17.5 0.5212 0.5250 0.5122 -0.04843
20.0 0.4062 0.4092 0.3971 -0.03796
30.0 0.1929 0.1968 0.1865 «0.01447
40.0 0.1108 0.1173 0.1068 -0.005275
50.0 0.06828 0.07587 0.06534% -0.001265
60.0 0.04371 0.05113 0.04091 0.000552
70.0 0.02882 0.03560 0.02581 0.001355
80.0 0.01961 0.02564 0.01635 0.001703
90.0 0.01384 0.01923 0.01041 0.001878
100.0 0.01025 0.01517 0.006682 0.002004
110.0 0.008094 0.01277 0.004379 0.002187
120.0 0.006947 0.01174 0.003034 0.002525
130.0 0.006677 0.01218 0.002400 0.003214
135.0 0.006915 0.01317 0.002314 0.003787
140.0 0.007467 0.01499 0.002378 0.004621
145.0 0.008431 0.01802 0.002562 0.005810
150.0 0.009833 0.02269 0.002708 0.007281
155.0 0.01138 0.02881 0.002349 0.008242
160.0 0.01244 0.03393 0.000478 0.006419
165.0 0.01445 0.03592 -0.00468§ 0.000634
170.0 0.02337 0.04145 ~0.01873 ~0.004401
175.0 0.04317 0.05258 ~0.04473 -0.004767
180.0 0.06098 0.06098 ~0.06098 Q
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m = 1.55 — 0.1550i

Table T.100

Model: Silicate haze M

NUMERICAL TABLES

fex = 0.1032km—1

A = 0.589 u x: 0.10(0.10)12.0(0.20)56 = = 0.523]

[7} P l4n Pyl4m Pyldn Pyfdn

0.0 11.37 11.37 11.37 0

2.5 9.071 9.057 9.064 -0.07841

5.0 5.586 5.556 5.567 -0.1565

7.5 3.324 3.287 3.299 -0.1682
10.0 2.041 2.002 2.011 -0.1489
12.5 1.310 1.273 1.280 -0.1226
15.0 0.8804 0.8466 0.8502 -0.09809
17.5 0.6162 0.5827 0.5870 -0.07781
20.0 0.4472 0.4161 0.4193 -0.06174
30.0 0.10629 0.1401 0.1408 -0.02598
40.0 0.07872 0.06196 0.06112 -0.01222
50.0 0.04475 0.03211 0.03020 -0.006264
60.0 0.02820 0.01850 0.01575 -0.003392
70.0 0.01913 0.011064 0.008191 -0.001884
80.0 0.01370 0.008002 0.003945 -0.001041
90.0 0.01040 0.006038 0.001452 ~0.000546
100.0 0.008204 0.005001 -0.000052 -0.000242
110.0 0.006733 0.004500 -0.000973 -0.000042
120.0 0.005729 0.004331 -0.001535 0.000100
130.0 0.005042 0.004388 -0.001870 0.000217
140.0 0.004564 0.004613 -0.002074 0.000306
150.0 0.004179 0.004808 -0.002282 0.000280
160.0 0.003805 0.004358 -0.002745 -0.000070 .
170.0 0.003786 0.003732 -0.003557 -0.700028_4
180.0 0.004066 0.004006 -0.004066 0
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Table T.10I

m = 1.55 Model: Silicate haze L fex = 0.05134 km—1
A =0.589 1 x: 0.1(0.1)10(0.2)34 @ = 1.0
0 P,j4r Pol4m P4 P,ldm
0.0 2.042 2.042 2.042 0
2.5 1.939 1.941 1.940 -0.006291
5.0 1.688 1.693 1.690 -0.02026
7.5 1.393 1.402 1.395 -0.03364
10.0 1.124 1.136 1.125 -0.04222
12.5 0.9020 0.9161 0.9018 -0.04551
15.0 0.7280 0.7434 0.7266 -0.04471
17.5 0.5934 0.6093 0.5911 -0.04141
20.0 0.4889 0.5049 0.4864 -0.035697
30.0 0.2480 0.2632 0.2467 -0.01990
40.0 0.1396 0.1539 0.1387 -0.009576
50.0 0.08343 0.09559 0.08196 -0.003854
60.0 0.05266 0.06246 0.05034 -0.000974
70.0 0.03454 0.04248 0.03159 0.000678
80.0 0.02351 0.03017 0.02016 0.001509
90.0 0.01682 0.02270 0.01340 0.002050
100.0 0.01287 0.01819 0.009223 0.002547
110.0 0.01046 0.01580 0.006671 0.003090
120.0 0.009423 0.01527 0.005266 0.003797
130.0 0.009384 0.01678 0.004685 0.005094
140.0 0.01068 0.02192 0.004620 0.007124
150.0 0.01312 0.03322 0.004331 0.009927
160.0 0.01459 0.04676 -0.001769 0.005313
165.0 0.01732 0.0507136 -0.901143 ~-0.002369
170.0 0.03041 0.05694 -0.03200 -0.007460
175.0 0.05908 0.07024 ~-0.06281 -0.004882
180.0 0.07964 0.07964 -0.0794 0
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Table T.102

NUMERICAL TABLES

m = 1.56 Model: Silicate haze H Bex = 0.02913 km—!
A=045u x: 0.05(0.05)2(0.10)18 = 1.0
7} Pil4n Pyl4w Psldn P4
0.0 1.146 1.146 1.146 0
5.9 1.086 1.088 1.087 -0.005779
10.0 0.9305 0.9385 0.9337 -0.01881
15.0 0.7369 0.7501 0.7405 ~0.03061
20.0 0.5515 0.5698 0.5561 -0.03591
30.0 0.2897 0.3100 0.2930 -1.02988
40.0 0.1541 0.1719 0.1558 -0.01805
50.0 0.08722 0.1011 0.08737 -0.009362
60.0 0.05280 0.96317 0.05177 -0.004229
70.0 0.03404 0.04183 0.03222 -0.001341
80.0 0.02330 0.02938 0.02097 0.009339
30.0 0.01695 0.02201 0.01429 0.001413
100.0 0.01315 0.01777 0.01027 0.002224
110.0 0.01099 0.01573 0.007910 0.003005
120.9 0.009990 0.01563 3.006677 0.003970
130.9 0.009857 0.01790 0.006260 0.005297
140.0 0.009959 0.02328 0.006037 0.006657
150.0 0.00859% 0.03031 0.003611 0.005290
160.0 0.007619 0.03308 -0.006426 -0.002364
165.0 0.01239 0.03352 -0.01596 -0.005602
170.0 0.02330 0.03595 -0.02765 -0.005199
175.0 0.03628 0.04010 -0.03803 -0.001940
180.0 0.04229 0.04229 -0.04229 0
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Table T.103

m = 1.54 Model: Silicate haze H Bex = 0.02065 km—2
=070 x: 0.05(0.05)2(0.10)i4 @ = 1.0
6 P [4xn Pyl4n P,j4n P,JAn
0.0 0.7824 0.7824 0.7824 0
5.0 0.7613 0.7699 0.7611 -0.002188
10.0 0,722 0.7007 0.7014 -0.007934
15.0 0.6168 0.6137 0.6149 -0.01523
20.0 0.5192 0.5145 0.5158 -0.02187
30,0 0.3345 0.3274 0.328L -0.02812
40.0 0.2006 0.1930 0.1923 -0.02519
50.0 0.1186 D.1118 H.1097 -2.01836
60.0 0.072901 0.006626 7.06330 -0.01170
70.0 0.04586 0.04125 0.03773 -0.006627
80.0 0.03097 0.02740 0.02346 -0.003112
90.0 0.02224 0.01969 0.01527 -0.000709
100.0 0.01697 0.01555 0.01041 0.001010
110.0 0.01368 0.01372 0.007380 0.002355
120.0 0.01150 0.01359 0.005266 0.003481
130.0 0.009772 0.01480 0.003272 0.004289
140.0 0-008055 0.01673 0.000454 0.004270
150.0 0.006841 0.01814 -0.004105 0.002786
160.0 0.008541 0.01830 -0,01029 0.000524
165.0 0.01117 0.01821 ~0.01342 -0.000157
175.0 0.01449 0.01825 -0.01606 -0.000302
175.0 0.01734 0.01839 ~-0.01784 -0.000123

180.0 0.01847 0.01847 -0.01847 0
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Table T.104

m = .56 Model: Silicate cloud C.3 fex = 2.896 km™1
A=0454 x: 7.125(0.125)27(0.25)47 @ = 1.0
(7 P, /4r Pyf4m Pyldn P[4
0.0 41.38 41.38 41.38 0
1.0 37.90 37.92 37.91 -0.1031
2.0 29.04 29.08 29.06 -0.3276
3.0 18.41 18.47 18.42 -0.4958
4.0 9.510 9.536 9.500 -0.4959
5.0 4.000 4.01) 3.965 -0.3501
6.0 1.552 1.532 1.50% -0.1721
7.0 0.8704 ) 0.8203 0.8232 -0.05429
8.0 0.2925 0.7338 0.7482 -0.01133
9.0 0.7538 0.0885 0.709s -0.01180
10.0 0.6513 0.3873 0.6067 -0.01887
11.0 0.5397 0.4836 0.4983 -0.01560
12.0 0.4575 0.4123 0.4229 -0.008619
13.0 0.4032 0.3686 0.3757 01004534
14.0 0.3640 0.3387 0.3419 -0.004391
15.0 0.3331 0.3152 0.3143 -0.005253
20.0 0.2458 0.2320 0.2307 -0.007837
30.0 0.1617 0-1623 0.1548 0.003045
40.0 0.1001 0.1119 0.09947 0.000958
50.0 0.06229 0.07506 0.06290 0.002111
60.0 0.03850 0.05113 0.03930 0.001699
70.0 0.02734 0.03381 0.02319 0.003437
80.0 0.01706 0.02173 0.01126 0.002221
90.0 0.009683 0.01348 0.005059 0.000823
100.0 0.006575 0.008615 0.001615 0.000755
110.0 0.003973 0.005814 0.000126 -0.000092
120.0 0.004408 0.004517 -0.001122 0.000143
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0 P,j4m Pylam Pilan P4
130.0 0.003560 0.004086 -0.001123 0.000024
140.0 0.004317 0.005242 -0.001404 0.000622
142.0 0.004378 0.005280 -0.001238 0.000738
144.0 0.004186 0.006007 -0.000789 0.000891
146.0 0.004783 0.006074 -0.000644 0.001177
148.0 0.005085 0.006626 -0.000666 0.001956
150.0 0.005825 0.008506 -0.000425 ).002299
152.0 0.007986 0.009473 -0.000670 0.003832
154.0 0.009863 0.01265 -0.001478 0.005992
156.0 0.01482 0.01620 -0.002098 0.008898
158.0 0.02374 0.02161 -0.004382 0.01569
160.0 0.03632 0.03072 -0.008288 0.02348
162.0 0.05850 0.03729 -0.01460 0.03348
164.0 0.08790 0.04480 -0.02016 0.04516
166.0 0.1238 0.04858 -0.02295 0.05592
168.0 0.1558 0.04856 -0.02360 0.06054
170.0 9.1576 0.03456 -0.01800 0.03797
171.0 0.1637 0.02627 -0.003969 0.02198
172.0 0.1928 0.03215 0.02677 0.01596
173.0 0.2372 0.05774 0.07224 0.02187
174.0 0.2604 0.08977 0.1144 0.02612
175.0 0.2271 0.1052 0.1270 0.01170
176.0 0.1457 0.09579 0.09584 -0.01973
177.0 0.07159 0.07917 0.03177 -0.04385
178.0 0.05403 0.07839 -0.03726 -0.03917
179.0 0.08297 0.99361 -0.08611 -0.0141%

180.0 0.1032 0.1032 -0.1032 0
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Table T.105

NUMERICAL TABLES

m = .54 Model: Silicate cloud C.3 Bex = 2.995 km—1
A=070pu x: 4.125(0.125)34 w = 1.0
7 P4 Pyldn Pyldn P,j4m
0.0 17.81 17.81 17.81 0
1.0 17.16 17.16 17.16 -0.02628
2.0 15.34 15.35 15.34 -0.09518
3.0 12.71 12.73 12.71 -0.1812
4.0 9.729 9.754 9.730 -0.2538
5.0 6.865 6894 6.858 -0.2897
6.0 4.457 4.485 4.439 -0.2805
7.0 2.677 2.697 2.648 ~0.2338
8.0 1.526 1.533 1.489 -0.1673
9.0 0.8899 0.8804 0.8483 -0.1010
10.0 0.6014 0.5761 0.5591 -0.04941
11.0 0.5029 0.4662 0.4629 -0.01818
12.0 0.4797 0.4378 0.4433 -0.005165
13.0 0.4679 0.4272 0.4354 ~0.003780
14.0 0.4444 0.4091 0.4154 -0.006965
15.0 0.4094 0.3809 0.3833 -0.009835
16.0 0.3712 0.3484 0.3473 -0.01043
17.0 0.3367 0.3174 0.3144 -0.009032
18.0 0.3087 0.2910 0.2877 ~0.006854
20.0 0.2687 0.2527 0.2502 -0.003853
30.0 0.1632 0.1621 0.1547 0.000368
40.0 0.1033 0.1100 0.09986 0.002767
50.0 0.06309 0.07558 0.06331 0.002751
60.0 0.03940 0.05209 0.03963 0.003447
70.0 0.02676 0.03477 0.02341 0.003551
80.0 0.01813 0.02259 0.01235 0.002599
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0 Pyjdn Pyjdm Pyl P,jAn
90.0 0.01170 0.01582 0.006127 0.001702
100.0 0.007241 0.01041 0.002616 0.001082
110.0 0.005141 0.007464 0.000619 0.000520
120.0 0.004550 0.005953 -0.000535 0.000512
130.0 0.004013 0.005417 -0.000833 0.000636
140.0 0.004974 0.006422 -0.00089%9 0.001375
145.0 0.006295 0.008541 -0.000815 0.002807
150.0 0.009502 0.01257 -0.001033 0.005834
155.0 0.01989 0.02136 -0.003855 0.01400
160.0 0.04580 0.04000 -0.008127 0.03337
162.0 0.05687 0.04730 -0.01320 0.04034
164.0 0.06713 0.04808 -0.01830 0.04108
166.0 0.09236 0.04212 -0.01609 0.04391
168.0 0.1459 0.04769 0.000551 0.06433
170.0 0.1989 0.07537 0.02875 0.09469
171.0 0.2048 0.08908 0.04166 0.1016
172.0 0.1889 0.09498 0.04946 0.09645
173.0 0.1534 0.09005 0.04954 0.07881
174.0 0.1075 0.07616 0.04083 0.05279
175.0 0.06495 0.05942 0.02432 0.02586
176.0 0.03768 0.04703 0.002884 0.005451
177.0 0.03040 0.04328 -0.01956 -0.004509
178.0 0.03851 0.04722 -0.0389% -0.005252
179.0 0.05093 0.05362 -0.05201 -0.001901

180.0 0.05660 0.05660 -0.05660 0
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Table T.106

m =220 Model: Limonite haze M Bex = 0.1049 km—1
A =0.589 4 x: 0.10(0.10)12.0(0.20)56 @ = 1.0
i} P, l4+ Pyldr P,l4n P, jaxn
0.0 5.916 5.916 5.916 o
2.5 4.721 4.739 4.728 -0.06663
5.0 2.917 2.950 2,921 -0.1316
7.5 1.757 1.786 1.747 -0.1404
16.0 1.107 1.123 1.081 -0.1259
12.5 0.7388 0.744% 0.7029 -0.1073
15.0 0.5211 0.5207 0.4807 -0.08970
17.5 0.3856 0.3830 0.3438 -0.07397
20.0 0.2978 0.2945 0.2572 -0.06026
30.0 0.1492 0.1429 0.1169 -0.02653
40.0 0.09559 0.09593 0.07412 -0.01303
50.0 0.06855 0.07419 0.05227 -0.006123
60.0 0.051864 0.06054 0.03972 -0.002003
70.0 0.03980 0.05167 0.03011 -0.000525
80.0 0.03143 0.06632 0.02325 0.001117
30.0 0.02546 0.03960 0.01647 0.002132
100.0 0.02140 0.03556 0.01161 0.002001
110.0 0.02019 0.03285 0.007488 0.003132
120.0 0.01952 0.02845 0.004489 0.002309
130.0 0.02191L 0.02732 0.000441 0.000330
132.5 0.0229% 0.02707 -0.000472 0.000028
135.0 0.02430 0.02682 -0.001417 -0.000276
137.5 0.02591 0.02658 -0.002438 -0.000531
140.0 0.02782 0.02647 -0.003544 -0.000848
142.5 0.02934 0.02675 -0.004961 -0.001576
145.0 0.03049 0.02783 -0.007096 -0.002601
147.5 0.03394 0.02938 -0.01006 -0.003257
150.0 0.03914 0.03142 -0.01354 -0.004026
152.5 0.04388 0.03420 -0.01743 -0.005298
155.0 0.04864 0.03794 -0.02224 -0.006734
157.5 0.05473 0.04300 -0.02866 -0.008047
160.0 0.06295 0.04965 -0.03724 -0.009102
162.5 0.07370 0.05846 -0.04857 -0.009859
165.0 0.08728 0.07046 -0.06348 -0.01010
167.5 0.1043 0.08682 -0.08286 -0.009753
170.0 0.1251 0.1088 -0.1074 -0.008775
172.5 0.1495 0.1363 -0.1368 -0.006898
175.0 0.1760 0.1672 -0.1689 -0.004170
177.5 0.2000 0.1965 -0.1979 -0.001334
180.0 0.2108 0.2108 -0.2108 )



TABLE T.107

m = 2.20 — 0.0220/

Table T.107

Model: Limonite haze M

267

Box = 0.1047 km~1

A =0.589 u x: 0.10(0.10)12.0(0.20)56 o = 0.7478
i} P j4rn Pyldm Psl4m P,l4m
0.0 7.816 7.816 7.816 Q
2.5 6.228 6.239 6.233 -0.08335
5.0 3.827 3.847 3.831 -0.1709
7.5 2.279 2.294 2.273 -0.1849
10.0 1.406 1.412 1.390 -0.1652
12.5 0.9133 0.9106 0.8895 ~0.1374
15.0 0.6252 0.6159 0.5957 -0.1114
17.5 0.4493 0.4355 0.4165 -0.08950
20.0 0.3374 0.3209 0.3028 -0.07210
30.0 0.1492 0.1319 0.1163 -0.03226
40.0 0.09084 0.07909 0.06340 -0.01618
50.0 0.06360 0.05770 0.04123 -0.008426
60.0 0.04731 0.04616 0.02906 -0.004156
70.0 0.03628 0.03921 0.02092 -0.001719
80.0 0.02853 0.03451 0.01490 -0.000329
390.0 0.02302 0.03098 0.01017 0.000573
100.0 0.01921 0.02831 0.006482 0.000891L
110.0 0.01680 0.02626 0.003662 0.001018
120.0 0.015066 0.024060 0.001303 0.,000656
130.0 0.01592 0.02333 -0.001030 -0.000310
135.0 0.01670 0.02292 -0.002405 -0.001034
140.0 0.01806 0.02289 ~0.004193 -0.001852
145.0 0.02021 0.02357 -0.006727 ~-0.002734
150.0 0.02347 0.02521 -0,01042 -(.003704
155.0 0.02833 0.02812 -0.01585 ~0.004755
160.0 0.03556 0.03287 -0.02398 -0.005680
165.0 0.04604 0.04051 -0.03610 -0.005956
170.0 0.05987 0.05260 ~-0.05282 -0.004809
175.0 0.07396 0.06950 -0.07123 -0.001989
180.0 0.08050 0.08050 -0.08050 0
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Table T.108

m =220 — 0,2200; Model: Limonite haze M Bex = 0.1040 km—1
A =0.589 u x: 0.10(0.10)12.0(0.20)56 @ = 0.5317

0 P4 Pyl4x Pyjdmr Pyfdn

0.0 10.99 10.99 10.99 0

2.5 8.749 8.742 8.745 -0.1230

5.0 5.358 5.339 5.340 -0.2457

7.5 3.168 3.137 3.135 -0.2649
10.0 1.933 1.893 1.888 -0.2357
12.5 1.234 1.189 1.182 -0.1952
15.0 0.8255 0.7770 0.7700 -0.1573
17.5 0.5763 0.5266 0.5196 -0.1258
20.0 0.4180 0.3685 0.3616 -0.1008
30.0 0.1563 0.1133 0.1067" -0.04431
40.0 0.08128 0.04668 0.03932 -0.02197
50.0 0.05135 0.02413 0.01537 -0.01199
60.0 0.03648 0.01532 0.004982 -0.007007
70.0 0.02790 0.01166 -0.000222 -0.004291
80.0 0.02243 0.01021 -0.003112 -0.002717
90.0 0.01872 0.009772 -0.004830 -0.001764
100.0 0.01608 0.009814 -0.005901 -0.001174
110.0 0.01417 0.01005 -0.006597 -0.000823
120.0 0.01278 0.01025 -0.007096 -0.000664
130.0 0.01179 0.01021 -0.007559 -0.000695
140.0 0.01117 0.009895 -0.008156 -0.000881
150.0 0.01098 0.009730 -0.009038 -0.001018
160.0 0.01130 0.01019 ~0.01027 -0.000842
170.0 0.01190 0.01140 -0.01160 -0.000331

180.0 0.01223 0.01223 -0.01223 0
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Table T.109
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m =220 Model: Limonite haze L Bex = 0.05071 km™1
A =0,589 ¢ x: 0.0(0.1)10(0.2)34 @ = 1.0
6 P.JAn Py[4n Py/4n Pyldn
0.0 1.770 1.770 1.770 0
2.5 1.700 1.673 1.672 -0.01040
5.0 1.427 1.438 1.431 -0.03325
7.5 1.146 1.163 1.149 -0.05489
10.0 0.8956 0.9169 0.8947 -0.06990
12.5 0.6949 0.7163 Q.6883 -0.07531
15.0 0.5423 0.5635 0.5300 -0.07554
17.5 7.4289 0.4489 0.4116 -0.07165
20.0 0.3456 0.3632 0.3239 -0.06536
30.0 0.1781 0-.1844 0.1488 -0.03869
40.0 7.1102 0.1190 0.08636 -0.02285
50.0 0.07671 7.08758 0.05737 -0.01257
60.0 9.05749 0.96802 0.04224 -0.005433
70.0 0.04471 0.035686 0.03243 -0.002721
80.0 0-935%6 0.05031 0.02529 -0.000090
90.0 0.02964 0.04373 0.01870 0.001313
100.0 0.92509 0.04002 0.01360 0.001312
110.0 0.02390 0.93817 0.009988 0-00.2338
120.0 9.02279 2.03434 0.007061 0.000789
130.0 .92612 0.03349 0.002037 -0.002219
140.9 0.03333 0.03355 -0.003678 -0.004801
142.5 n.03519 0.03412 -0.005938 ~0.005840
145.0 0.03747 0.03534 -0.008976 -0.007014
147.5 0.04092 7.03730 ~0.01291 -0.008150
150.0 0.04567 0.04000 -N.01772 -0.009229
152.5 3.05123 0.04344 -0.02341 -0.01932
155.0 0.05725 0.04773 -0.03017 -0.01139
157.5 0.06385 0.05306 -0.03832 -0.0122
160.0 0.07146 0.05970 -0.04818 -0.01258
162.5 0.08056 0.06802 -2.06003 -0.01225
165.0 0.09137 0.07846 -0.07410 -0.0L113
167.5 0.1039 0.09140 -0.09027 -0.009319
170.0 0.1179 0.1068 -0.1080 -0.007000
172.5 0.1323 0.1240 -0.1262 -0.004515
175.0 0.1455 0.1409 -0.1427 -0.002238
177.5 0.1553 0.1540 -0.1546 -0.000602
180.0 0.1590 0.1590 -0.1590 0
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Table T.I110

NUMERICAL TABLES

m =220 Meodel: Limonite cloud C.3 Bex = 2.876 km—1
3 =045, x: 7.125(0.125)27(0.25)47 @ = 1.0
) Pyjdm Pylam Pyfdn P,J4n
0.0 40.98 40.98 40.98 0
1.0 37.54 37.57 37.56 -0.1631
2.0 28.76 28.85 28.80 -0.5164
3.0 18.24 18.36 18.25 -0.7786
4.0 9.413 9.503 9.366 -0.7692
5.0 3.941 3.952 3.826 -0.5327
6.0 1.498 1.428 1.347 -0.2494
7.0 0.8011 0.687L 0.6595 -0.06411
8.0 0.7053 0.58452 0.5915 -0.001619
9.0 0.6536 0.5434 0.5614 -0.006411
10.0 0.5463 0.4456 0.4611 -0.02102
11.0 0.4384 0.3397 0.3519 -0.02351
12.0 0.3660 0.2654 0.2783 -0-01787
13.0 0.3238 0.2224 0.2376 -0.01259
14.0 0.2953 0.1963 0.212 -0.01092
15.0 0.2712 0.1770 0.1928 -0.01192
20.0 0.1848 0.122 0.1295 -0.01439
30.0 0.1064 0.08798 0.08529 -0.003796
40.0 0.08064 0.07508 0.06779 -0.000976
50.0 0.06139 0.06631 0.05265 -0.000619
60.0 0.04728 0.05558 0.03936 0.000019
70-0 0.03387 0.04964 0.02938 0.001081
80.0 0.02538 0.04232 0.02002 0:001114
90.0 0.01869 0.03545 0.01236 0.001331
100.0 0.01532 0.02928 0.007521 0.001353
110.0 0.01342 0.02463 0.003011 0.001711
120.0 0.01412 0.01990 0.000154 0.001548
130.0 0.01390 0.01511 -0.002533 0.002231
140.0 0.01620 0.01122 -0.003913 0.002210
145.0 0.02012 0.0L174 -0.006308 0.002396
150.0 0.02607 0.01165 -0.009242 0.002032
155.0 0.03433 0.01401 -0.01489 0.002216
160.0 0.04608 0.02138 -0.02528 0.001009
165.0 0.06929 0.03750 -0.04505 ~0.002189
170.0 0.1186 0.08652 ~0.09441 -0.008687
175.0 0.2453 0.2190 -0.2130 -0.01365
180.0 0.3874 0.3874 -0.387 0
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Table T.111

m =220 Model: Limonite cloud C.3 Bex = 2.963 km™1
A=070pu x: 4.125(0.125)34 @ = 1.0
0 P, |4m Pyldw Pyl P,j4m
0.0 17.52 17.52 17.52 0
1.0 16.87 16.88 16.88 -0.04533
2.0 15.08 15.11 15.09 -0.1641
3.0 12.48 12.53 12.50 -0.3119
4.0 9.541 9.608 9.547 -0.4362
5.0 6.718 6.781 6.698 -0.4969
6.0 4,347 4.387 4.289 -0.4801
7.0 2.595 2.597 2.497 -0.3993
8.0 1.461 1.421 1.333 -0.2859
9.0 0.8309 0.7523 0.6886 -0.1738
10.0 0.5412 0.4359 6.4003 -0.08739
11.0 0.4375 0.3194 0.3093 -0.03599
12.0 0.4081 0.2895 0.2973 -0.01550
13.0 0.3910 0.2804 0.2966 -0.01466
14.0 0.3639 0.2654 0.2818 -0.02159
15.0 0.3270 0.2410 0.2530 -0.02808
16-0 0.2882 0.2130 0.2192 -0.03064
17.0 0.2545 0.1871 0.1890 -0.02935
18.0 0.2287 0.1664 0.1661 -0.02593
20.0 0.1954 0.1398 0.1395 -0.01900
30.0 0.1140 0.09235 0.08802 -0.006090
40.0 0.08154 0.07467 0.06644 -0.001533
50.0 0.06155 0.06574 0.05207 0.000148
60.0 0.04648 0.05715 0.03955 0.000764
70.0 0.03480 0.04957 0.02894 0.001249
80.0 0.02605 0.04256 0.02013 0.001636
90.0 0.01999 0.03626 0.01356 0.001803
100.0 0.01668 0.03115 0.009096 0.001888
110.0 0.01456 0.02555 0-004537 0.002038
120.0 0.01475 0.02089 0.001061 0.002040
130.0 0.01549 0.01729 -0.001658 0.001991
140.0 0.01783 0.01430 -0.004173 0.002435
145.0 0.02075 0.01448 -0.006168 0.002342
150.0 0.02610 0.01538 -0.01010 0.002064
155.0 0.03580 0.01778 -0.01590 0.000764
160.0 0-04809 0.02568 -0.02657 -0.000965
165.0 0.07205 0.04234 -0.04669 -0.005060
170.0 0.1247 0.1071 -0.09873 -0.009606
175.0 0.2301 0.2083 -0.2085 -0.008571

180.0 0.3286 0.3286 -0.3286 0
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m = 1.28 — |.37i

Table T.I112

Model: Iron haze M

NUMERICAL TABLES

Bex = 0.1034 km—1

A=0441 4 X: 0.]0(0.'0)]2(0.20)72 @ = 0.5946
0 Py f4r P,j4m Pyl P,l4n
0.0 17.75 17.75 17.75 ]
2.5 12.39 12.00 12.19 ~0.1735
5.0 6.385 5.785 6.065 -0.2647
7.5 3.372 2.822 3.062 -0.2309
10.0 1.922 1.477 1.656 -0.1718
12.5 1.181 0.8300 0.9593 =0.1206
15.0 0.7744 0.4967 0.5891 -0.08224
17.5 0.5367 0.3134 0.3796 -0.05491
20.0 0.3897 0.2068 0.2545 -0.03566
22.5 0.2943 0.1417 0.1761 -0.02212
25.0 0.2298 0.1003 0.1249 -0.01255
27.5 0.1847 0.07298 0.09031 =0.005752
30.0 0.1521 0.05447 0.06619 -0.000903
32.5 0.1279 0.04160 0.04891 0.002565
35.0 0.1095 0.03247 0.03623 0.005041
37.5 0.09520 0.02588 0.02672 0.006795
40.0 0.08394 0.02105 0.01944 0.008019
45.0 0.06750 0.01481 0.009275 0.009396
50.0 0.05628 0.01133 0.002726 0.009888
55.0 0.04827 0.009410 -0.001716 0.009863
60.0 0.04232 0.008408 -0.004869 0.009539
65.0 0.03775 0.007975 -0.007179 0.009046
70.0 0.0341¢4 0.007898 -0.008918 0.008451
75.0 0.03123 0.008054 -0.01026 0.007805
80.0 0.02883 0.008360 -0.01131 0.007140
85.0 0.02682 0.008759 -0.01213 0.006473
90.0 0.02512 0.009218 -0.01279 0.005817
95.0 0.02366 0.009710 -0.01331 0.005185
100.0 0.02240 0.01022 -0.01372 0.004580
105.0 0.02130 0.01072 ~-0.01404 0.004008
110.0 0.02033 0.01122 -0.01430 0.003472
120.0 0.01875 0.01217 -0.01465 0.002514
130.0 0.01752 0.01301 -0.01484 0.001715
140.0 0.01660 0.01371 =-0.01495 0.001073
150.0 0.01592 0.01428 ~-0.01501 0.000587
160.0 0.01547 0.01471 -0.01506 0.000251
170.0 0.01523 0.0150L -0.01512 0.000060
180.0 0.01515 0.01515 ~-0.01515 0
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Table T.I113
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m = 1.5 — 1.63i Model: Iron haze M Bex = 0.1083 km—?
A =0.589 & x: 0.10(0.10)12(0.20)S6 @ = 0.5971
V] P [4n P,[4xw P.l4r P 4=
0.0 10.18 10.18 10.18 0
2.5 8.184 7.978 8.079 -0.1168
5.0 5.125 4.714 4.904 -0.2343
7.5 3.108 2.662 2,854 -0.2503
10.0 1.945 1.541 1.699 -0.2181
12.5 1.273 0.9303 1.050 -0.1750
15.0 0.8718 0.5859 0.6733 -0.1353
17.5 0.6221 0.3839 0.4462 -0.1029
20.0 0.4604 0.2606 0.3040 -0.07746
22.5 0.3519 0.1826 0.2119 -0.05796
25.0 0.2766 0.1316 0.1504 -0.04309
27.5 0.2229 0.09729 0.1081 -0.03175
30.0 0.1835 0.07364 0.07832 -0.02308
32.5 0.1540 0.05698 0.05691 -0.01643
35.0 0.1314 0.04504 0.04120 -0.01131
37.5 0.1138 0.03633 0.02946 -0.007358
40.0 0.09983 " 0.02990 0.02054 -0.004301
45.0 0.07944 0.021649 0.008281L -0.000099
50.0 0.06556 0.01670 0.000621 0.002411
55.0 0.05570 0.0139 -0.004387 0.003862
60.0 0.04843 0.01241 -0.00779 0.004643
65.0 0.04290 0.01162 -0.01018 0.004996
70.0 0.03859 0.01129 -0.01191 0.005065
75.0 0.03515 0.01127 -0.01318 0.004950
80.0 0.03235 0.01144 -0.01413 0.004719
85.0 0.03003 0.01173 -0.01485 0.004409
90.0 0.02810 0.01210 -0.01541 0.004055
95.0 0.02646 0.01252 -0.01583 0.003678
100.0 0.02505 0.01295 -0.01616 0.003292
105.0 0.02384 0.01340 -0.01641 0.002908
110.0 0.02280 0.01383 -0.01660 0.002536
120.0 0.02110 0.01466 -0.01685 0.001843
130.0 0.01982 0.01539 -0.01699 0.001244
140.0 0.01887 0.01601 -0.01708 0.000756
150.0 0.01822 0.01651 -0.01717 0.000389
160.0 0.01781 0.01693 -0.01729 0.000148
170.0 0.01762 0.01734 -0.01747 0.000029
180.0 0.01758 0.01758 -0.01758 0
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m = 1.70 — 1.84i

Table T.114

Model: Iron haze M

NUMERICAL TABLES

Bex = 0.1103 km—1

A =0.668 4 x: 0.10(0.10)12(0.20)52 = = 0.6070
6 Py j4 Py)4ar P jAr P4
0.0 7.904 7.904 7.904 0
2.5 6.628 6.479 6.552 -0.09935
5.0 4.458 4,133 4.282 -0.2198
7.5 2.862 2.485 2.644 -0.2542
10.0 1.868 1.509 1.644 -0.2358
12.5 1.260 0.9449 1.048 -0.19%
15.0 0.8825 0.6127 0.6873 ~0.1615
17.5 0.6402 0.4111 0.4626 ~0.1281
20.0 0.4796 0.2848 0.3184 -0.1007
22.5 0.3699 0.2031 0.2233 -0.07873
25.0 0.2927 0.1488 0.1588 -0.06142
27.5 0.2370 0.1117 0.1140 -0.04783
30.0 0.1958 0.08579 0.08226 ~0.03715
32.5 0.1647 0.06734 0.05929 -0.02874
35.0 0.1407 0.05397 0.04238 -0.02211
37.5 0.1220 0.04413 0.02973 -0.01685
40.0 0.1071 0.03679 0.02014 -0.01268
45.0 0.08519 0.02705 0.006999 -0.006702
50.0 0.07026 0.02137 ~-0.001130 -0.002871
55.0 0.05963 0.01800 -0.006367 -0.000425
60.0 0.05180 0.01602 -0.009867 0.001120
65.0 0.04586 0.01489 -0.01227 0.00206%
70.0 0.04123 0.01432 -0.01396 0.002610
75.0 0.03756 0.01409 ~0.01518 0.002876
80.0 0.03457 0.01410 -0.01607 0.002956
85.0 0.03212 0.0l425 -0.01673 0.002906
90.0 0.03008 0.01451 ~0.01722 0.002768
95.0 0.02835 0.01482 -0.01759 0.002575
100.0 0.02688 0.01516 -0.01786 0.002345
105.0 0.02562 0.01552 ~0.01807 0.002095
110.0 0.02454 0.01589 -0.01823 0.001839
120.0 0.02280 0.01658 -0.01843 0.001334
130.0 0.02150 0.01720 -0.01855 0.000879
140.0 0.02056 0.01772 -0.01864 0.000503
150.0 0.01994 0.01817 -0.01877 0.000226
160.0 0.01958 0.01860 -0.01897 0.000060
170.0 0.01946 0.01911 -0.01927 0.000002
180.0 0.01945 0.01945 -0.01945 0
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Table T.115

m = 1.28 — 1.37i Model: Iron haze L Bex = 0.04835 km~!
A =0.441 p x: 0.1(0.1)12(0.2)24 w = 0.5604
0 P.l4m P.j4m Pyjbm P,ylAm
0.0 5.194 5.19 5.194 0
2.5 4.807 4.737 4.771 -0.03363
5.0 3.873 3.659 3.762 -0.1014
7.5 2.844 2.526 2.673 -0.1486
10.0 2.019 1.668 t.821 -0.1593
12.5 1.440 1.999 1.238 -0.14864
15.0 1.943 0.7313 0.8485 -0.1290
17.5 7.7695 0.4949 0.5884 -0.107L
20.0 0.5807 0.3406 0.4146 -0.08649
22.5 0.4478 0.239% 0.2962 -0.06868
25.0 0.3524 0.1717 0.2143 -0.05368
27.5 0.2829 0.1256 0.1569 -0.06145
30.0 0.7312 0.09362 0.1158 -0.03162
32.5 0.1921 0.07111 0.0859 -0.02372
35.0 0.1620 0.95501 0.06401 -0.01746
37.5 0.1386 0.04329 0.04756 -0.01247
40.0 0.1200 0.03470 0.03509 -0.008517
45.0 0.09304 1.02350 0.01807 -0.102942
50.0 0.07485 0.01714 0.007557 0.700519
55.0 0.06208 0.01346 0.000783 0.002610
60.0 0.05278 0.01135 -0.003742 0.003816
65.0 0.04581 0.01019 -0.006858 0.006453
70.0 0.04044 0.009623 -0.009067 0.004710
75.0 0.03621 0.009439 -0.01067 0.006718
80.0 0.03281 0.009505 -0.01184 0.004567
90.0 0.02774 0.01006 -0.01339 0.003991
100.0 0.02418 0.01088 -0.01427 0.003265
110.0 0.02159 0.01178 -0.01478 0.002525
120.0 0.01967 0.01265 -0.01506 0.001840
130.0 0.01825 0.01342 -0.01521 0.001248
140.0 0.01720 0.01409 -0.01530 0.000766
150.0 0.01647 0.01463 -0.01538 0.000403
160.0 0.01600 0.01509 -0.01549 0.000162
170.0 0.01577 0.01549 -0.01562 0.000036
180.0 0.01570 0.01570 -0.01570 0
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Table T.116

m = 1.70 — |.84i Model: Iron haze L Bex = 0.05190 km-1
A =0.668pu x: 0.05(0.05)6(0.1)18 w = 0.5736
0 P jAw P[4 Psfdm Pif4m
0.0 2.395 2.395 2.395 0
2.5 2.306 2,284 2.295 -0.01571
5.0 2,069 1.992 2.029 -0.05415
7.5 1.753 1.616 1.679 ~0.09639
10.0 1.431 1.248 1.327 -0.1271
12.5 1.147 0.9415 1.122 -0.1417
15.0 0.9167 0.7047 0.7796 ~0.1438
17.5 0.7353 3.5276 0.5924 -0.1379
20.0 0.5937 0.3968 0.4494 -0.1276
22.5 0.4836 0.3009 0.3411 -0.1150
25.0 0.3979 0.2308 0.2593 -0.1018
27.5 0.3311 0.1792 0.1974 -0.08908
30.0 0.2784 0.1409 0.1532 -0.07735
32.5 0.2365 0.1124 0.1140 ~0.06674
35.0 0.2030 0.09104 0.08625 -0.05734
37.5 0.1759 0.07482 0.06473 -0.04916
40.0 0.1538 0.06242 0.04794 -0.04206
50.0 0.09751 0.0351¢4 0.009559 -0.02228
60.0 0.06861 0.02457 -0.006252 ~0.01166
70.0 0.05216 0.02022 -0.01326 -0.005998
80.0 0.04203 0.01847 -0.01654 ) -0.002999
90.0 0.03539 0.01790 -0.01812 ~0.001449
100.0 0.03083 0.01787 -0.01889 =0.000691
110.0 0.02761 0.21808 -0.01927 ~0.000368
120.0 0.02531 0.01838 ~0.01947 -~0.909270
130.0 0.02368 0.91870 -0.01962 ~0.000269
140.0 0.02258 0.01902 -0.01982 -0.000284
150.0 0.02190 0.01944 -0.02015 -0.700263
160.0 0.02159 0.02009 -0,02065 -0.000181
170.0 0.02152 0.02100 ~0.02124 ~0.000062

180.0 0.02153 0.02153 -0.02153 0
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m = 2.660 — 2.840i

Table T.117

Model: lron haze L

277

Bex = 0.04782 km—1

A= 0441 » x: 0.10(0.10)12(0.20)36 = = 0,740

6 P[4 P.far Pyl P,j4n

0.0 4.089 4.089 4.089 0

2.5 3.715 3.662 3.687 ~0.07410

5.0 2.894 2,751 2.810 -0.2057

7.5 2.092 1.899 1.960 -0.2848
10.0 1.484 1.282 1.322 -0.3019
12.5 1.060 0.8719 0.8842 -0.2818
15.0 0.7719 0.6055 0.5923 ~0.2463
20.0 0.4405 0.3168 0.2694 -0.1719
25.0 0.2772 0.1854 0.1224 ~0.1150
30.0 0.1900 0.1200 0.05177 -0.07652
35.0 0.1396 0.08467 0.01603 -0.05124
40.0 0.1085 0.06421 ~-0.002878 -0.03463
45.0 0.08822 0.05168 -0.01328 -0.02361
50.0 0.07427 0.04367 -0.01916 -0.01618
60.0 0.05698 0.03479 -0.02454 ~0.007609
70.0 0.04709 0.03060 ~0.02640 -0.003444
80.0 0.04091 0.02856 -0.02699 -0.001401
90.0 0.03680 0.02758 ~0.02712 -0.000435
100.0 0.03393 0.02715 -0.02707 -0.000035
120.0 0.03042 0.02696 -0.02686 0.000006
140.0 0.02874 0.02702 -0.02684 ~0.000222
160.0 0.02849 0.02736 -0.02757 ~0.000245
180.0 0.02908 0.02908 -0.02908 0
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m = 3.460 — 3.880i

Table T.118

Model: lron haze L

NUMERICAL TASBLES

,Bex = 0.04788 km—*

A =0.589 u x: 0.05(0.05)8(0.10)32 @ = 0.7205

7} P[4 Pylanm Pyl4n P4

Q0.0 2.390 2.390 2.390 o]

2.5 2.257 2.239 2.248 -0.03316

5.0 1.931 1.877 1.900 -0.1051

7.5 1.553 1.466 1.494 -0.1702
10.0 1.214 1.107 1.129 -0.2084
12.5 0.9402 0.8266 0.8357 -0.2206
15.0 0.7311 0.6192 0.6122 -0.2149
20.0 0.4577 0.3599 0.3245 -0.1791
25.0 0.3043 0.2236 0.1696 -0.1377
30.0 0.2150 0.1491 0.08527 -0.1027
35.0 0.1604 0.1063 0.03323 -0.07599
40.0 0.1254 0.08055 0.01132 -0.05634
45.0 0.1018 0.06429 -0.004437 -0.04204
50.0 0.08541 0.05363 -0.01384 -0.03163
60.0 0.06468 0.04140 -0.02302 -0.01839
70.0 0.05265 0.03529 ~0.02646 -0.01108
80.0 0.04509 0.03205 -0.02768 -0.006906
90.0 0.04006 0.03027 -0.02804 -0.004470
100.0 0.03657 0.02928 -0.02806 -0.003021
120.0 0.03238 0.02838 -0.02789 -0.001615
140.0 0.03049 0.02810 -0.02806 ~0.000998
160.0 0.03026 0.02876 ~-0.02920 -~0.000447
180.0 0.03074 0.03074 -0.03074 [¢]
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Table T.119
m = 3.57 — 4.03j Model: Iron haze L Bex = 0.04810 km—1
- A =10.668 x: 0.05(0.05)6(0.10)26 w = 0.7227

(7] Pj4n Pyldn Pl P,l4n

0.0 1.871 1.871 1,871 0

2.5 1.790 1.778 1.784 -0.02294

5.0 1.582 1.543 1.560 -0.07644

7.5 1.323 1.257 1.279 -0.1313
10.0 1.074 0.9879 1.008 -0.1696
12.5 0.8610 0.7652 0.7761 -0.1886
15.0 0.6897 0.5914 0.589%4 -0.1920
20.0 0.4520 0.3608 0.3326 -0.1721
25.0 . 0.3099 0.2316 0.1837 ~0.1401
30.0 0.2234 0.1580 0.09775 -0.1094
35.0 0.1688 0.1144 0.04756 ~-0.08405
40.0 0.1329 0.08753 0.01776 -0.06433
45.0 0.1084 0.07029 -0.000249 -0.04935
50.0 0.09103 0.05883 -0.01129 -0.03807
60.0 0.06889 0.064542 -0.02242 ~0.02315
70.0 0.05591 0.03850 -0.02677 -0.01453
80.0 0.04770 0.03467 -0.02840 -0.009423
90.0 0.04223 0.03246 -0.02893 -0.006326
100.0 0.03846 0.03112 -0.02902 -0.004401
120.0 0.03396 0.02975 -0.02891 ~0.002383
140.0 0.03201 0.02927 -0.02923 -0.001380
160.0 0.03185 0.03012 ~0.03067 -0.000556

180.0 0.03236 0.03236 -0.03236 0
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Table T.120

NUMERICAL TABLES

m = 1.28 — 1.37i Model: Iron haze H Bex = 0.02684 km™1
A =044 u x: 0.05(0.05)2(0.10}18 = = 0.5195

0 P[4 Pyfdn Pyl4n P,larn

0.0 1.572 1.572 1.572 0

5.0 1.483 1.447 1.465 -0.01679
10.0 1.257 1.139 1.195 ~0.05407
15.0 0.9758 0.7856 0.8691 ~0.08662
20.0 0.7138 0.4907 0.5780 -0.09953
30.0 0.3571 0.1665 0.2153 -0.07772
40.0 0.1865 0.056012 0.06978 ~0.04266
50.0 0.1091 0.02814 0.01747 -0.01972
60.0 0.07160 0.01762 -0.001886 -0.007894
70.0 0.05160 0.01381 -0.009677 -0.002346
80.0 0.03988 0.01254 -0.01311 0.000076
100.0 0.02751 0.01275 -0.01552 0.001191
120.0 0.02158 0.01396 -0.01605 0.000807
140.0 0.01859 0.01505 -0.01619 0.000284
160.0 0.01729 0.01606 -0.01658 0.000023
180.0 0.01700 0.01700 ~0.01700 0
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Table T.121

m =170 — |.84{ Model: Iron haze H Bex = 0.0287] km-1
A = 0.668 x: 0.05(0.05)2(0.10) 14 w = 0.5336

6 PyfAm Pyl4m Pyfdn Pyfan

0.0 0.7189 0.7189 0.7189 0

5.0 0.7008 0.6895 0.6951 -0.006892
10.0 0.6502 0.6094 0.6288 -0.02487
15.0 0.5771 0.4997 0.5342 -0.04740
20.0 0.4938 0.3842 0.4282 -0.06745
30.0 0.3356 0.1987 0.2360 -0.08506
40.0 0.219 0.09810 0.1077 -0.07527
50.0 0.1457 0.05478 0.03801 -0.05533
60.0 0.1012 0.03766 0.004203 -0.03706
70.0 0.07422 0.03057 -0.01118 -0.02388
80.0 0.05742 0.02718 -0.01788 -0.01529
100.0 0.03935 0.02406 -0.02173 -0.006620
120.0 0.03106 0.02253 -0.02226 -0.003259
140.0 0.02736 0.02195 -0.02298 -0.001678
160.0 0.02617 0.02377. -0.02478 -0.000550

180.0 0.02604 . 0.02604 -0.02604 0
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Table T.122

m = 2.66 — 3.84i Model: Iron haze H Bex = 0.02633 km—2
A =044 u x: 0.05(0.05)2(0.10)18 o = 0.7243
6 P jdx Pyf4n Pyj4n PyjAn
0.0 1.088 1.088 1.088 0
5.0 1.028 1.006 1.016 -0.02685
10.0 0.8746 0.8032 0.8324 -0.08694
15.0 0.6851 0.5734 0.6054 -0.1407
20.0 0.5094 0.3842 0.3974 -0.1641
30.0 0.2708 0.1751 0.1300 -0.1351
40.0 0.1548 0.09813 0.02187 ~0.08169
50.0 0.1001 0.06663 -0.01440 -0.04483
60.0 0.07219 0.05084 -0.02544 -0.02444
70.0 0.05656 0.04195 -0.02836 -0.01373
80.0 0.04707 0.03671 -0.02876 -0.008075
100.0 0.03683 0.03159 -0.02796 -0.003343
120.0 0.03207 0.02942 -0.02717 -0.001893
140.0 0.03023 0.02804 -0.02715 ~0.001334
160.0 0.03056 0.02838 -0.02906 -0.000633

180.0 0.031L40 0.03140 -0.03140 0
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Table T.123

m = 3.57 — 4.03i Model: [ron haze H Bex = 0.02626 km™1
A = 0.668 u x: 0.05(0.05)2(0.10)i4 w = 0.7005
0 P, /4m Pylan Pyldm Pyldn
0.0 0.5136 0.5136 0.5136 0
5.0 0.5011 0.4943 0.4976 ~0.008189
10.0 0.46064 0.4420 0.4528 -0.02968
15.0 0.4165 0.3705 0.3876 -0.05695
20.0 0.3600 0.2956 0.3126 -0.08181
30.0 0.2537 0.1758 0.1705 -0.1058
40.0 0.1739 0.1100 0.07022 -0.09687
50.0 0.1259 0.07908 0.01343 -0.07418
60.0 0.09472 0.06377 -0.01438 -0.05214
70.0 0.07495 0.05473 ~0.02657 -0.03549
80.0 0.06204 0.04853 -0.03130 -0.02414
100.0 0.04744 0.04043 -0.03290 -0.01182
120.0 0.04070 0.03549 -0.03256 -0.006349
140.0 0.03821 0.03315 -0.03352 -0.003326
160.0 0.03820 0.03535 -0.03652 ~0.001061

180.0 0.03863 0.03863 -0.03863 0
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Table T.124

m = 1.28 — [.37i Model: Iron cloud C.3 Bex = 2.940 km—1
A = 0.441 4 x: 7.20(0.20)51 @ = 0.644]
0 P /4 P,jdm Psl4m P4
0.0 67.56 67.56 67.56 o
2.0 47.17 45.70 46.62 -0.6459
4.0 15.12 12.99 13.98 -0.8800
6.0 2.232 1.495 1.775 -0.1877
8.0 0,9861 0.8139 0.8601 0.06902
10.0 0.7122 0.5091 0.5822 0.02756
12.0 0.4043 0.2522 0.2990 0.03252
16.0 0.2120 0.1123 0.1388 0.03465
20.0 0.1350 0.05844 0.07534 0.03120
30.0 0.06943 0.01912 0.02383 0.02420
40.0 0.04843 0.01004 0.007614 0.01982
50.0 0.03851 0.007435 -0.000362 0.01666
60.0 0.03265 0.006959 -0.005251 0.01405
70.0 0.02866 0.007371 -0.008553 0.01172
80.0 0.02567 0.008196 -0.01086 0.009606
90.0 0.02330 - 0.009205 -0.01246 0.007693
100.0 0.02138 0.01027 -0.01355 0.005993
110.0 0.01980 0.01132 -0.01427 0.004516
120.0 0.01851 0.01229 -0.01472 0.003263
130.0 0.01746 0.01315 -0.01499 0.002229
140.0 0.01664 0.01388 -0.01513 0.001406
150.0 0.01601 0.01447 -0.01520 0.000781
160.0 0.01558 0.01489 -0.01522 0.000344
170.0 0.01532 0.01515 -0.01523 0.000085

180.0 0.01523 0.01523 -0.01523 0
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Table T.125

m = 1.70 — 1.84i Model: Iron cloud C.3 Bex = 3.079 km—1
1 = 0.668 u X: 4.125(0.125)34 @ = 0.6586
0 P j4n Pyl4m Pyl4m Pjdm
0.0 30.02 30.02 30.02 0
2.0 25.62 25.09 25.35 -0.3504
4.0 15.74 14.39 15.02 -0.8883
6.0 6.739 5.343 5.923 ~0.8864
8.0 2.002 1.222 1.462 -0.4234
10.0 0.6407 0.3655 0.3920 -0.04427
12.0 0.4860 0.3372 0.3508 0.04789
14.0 0.4144 0.2479 0.2869 0.01878
16.0 0.2961 0.1412 0.1719 0.007758
18.0 0.2133 0.09009 0.1055 0.01749
20.0 0.1701 0.06675 0.07661 0.02306
30.0 0.08267 0.01822 0.01623 0.02068
40.0 0.05535 0.009143 ~0.000454 0.01733
50.0 0.04308 0.007684 -0.007539 0.01450
60.0 0.03624 0.008301 -0.01146 0.01212
70.0 0.03184 0.009555 -0.01394 0.01005
80.0 0.02872 0.01097 -0.01562 0.008215
90.0 0.02635 0.01237 -0.01677 0.006583
100.0 0.02449 0.01368 -0.01754 0.005142
110.0 0.02299 0.01485 -0.01805 0.003891
120.0 0.02177 0.01587 -0.01837 0.002825
130.0 0.02079 0.01674 -0.01855 0.001939
140.0 0.02001 0.01744 -0.01864 0.001229
150.0 0.01943 0.01799 -0.01868 0.000685
160.0 0.01902 0.01839 -0.01870 0.000302
170.0 0.01878 0.01862 -0.01870 0.000075

%80.0 0.01870 0.01870 ~0.01870 0
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Colloidal suspension, 4, 71
Complex amplitude, see Mie theory
Complex angle of refraction, 36
Complex index of refraction, 12, 36,
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ice, 84
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limonite, 88

liquid water, 83, 84-85, 118

silicates, 88
Coronas, 51, 53, 82, 108-111
Creeping wave, 46
Cross-section theorem, 14, 41
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Differential cross section, 13, 40, 59
Diffraction theory, 10, 51, 53, 102, 108
Double precision, 21, 39, 89

Electric field, 12
phase angles and difference, 61
scalar amplitude, 12, 13, 61
vector amplitude, 13, 61
Extinction cross-section and efficiency,
14
for absorbing spheres, 28, 35
for metallic spheres, 19, 35
for non-absorbing spheres, 28, 32
for refiecting spheres, 35, 36
series expansion, 33
van de Hulst approximation, 10, 29
with empirical correction, 29-33

Filtered-sun effect, 113-114
Forest fire smoke, 107, 108
blue sun, 107

Geometrical optics, 10, 35, 41, 46, 55
Glory phenomena, 51, 53-55, 108,
111-113, 116, 118, 119, 131

Halo, 10, 131
Haze and aerosol particles, 98
see also Aureole, Mixing ratio,
Polarization, Polydisperse scatter-
ing, Radiative transfer, Scattering
layers, Size distribution function

Incident flux, 13, 14, 72, 74
Incoherent or independent scattering,
56, 60, 105, 127
Incoherent radiation, 56, 127
Intensity function, see Mie theory
Interstellar dust and grains, 136, 139-
142
differential extinction, 139-142
iron particles, 140-141
mass, 141
polarization, 141
starlight polarization, 139, 142
Inverse problems, 7, 8, 102, 119, 140
Isotropic scattering, 8, 38

SUBJECT INDEX

Laser light and scattering, 57, 71, 105,
124-126
bistatic system, 125
communications and propagation,
125-127
Legendre polynomials, 15

Machine computation, 14, 15, 23
convergence of integrals, 90
integration scheme, 89-92
printout, 89, 91
significant figures, 93
time, 89

Martian atmosphere, 132-134

Microwave scattering, 119-123, 130
bistatic system, 123
extinction coefficient, 123
radar cross-section, 10, 37, 119, 121

Mie theory, 4, 11-12
complex amplitude, 13, 61, 71
coefficients, 14, 16-27
convergence circle, 26-27
functions, 12
intensity functions, 72
particles, 11, 68, 70
scattering parameters, 14
series, 13, 14
Stokes matrix elements, 68-71

Mixing ratio for scattering, 99
as a turbidity coefficient, 100

Monodispersed suspension, 3, 51, 53,

72-74, 109

Natural (unpolarized) light, 13, 67, 72
Non-spherical particles, 108
Non-polar molecules, 9, 98
Normalization, 72-73
of incident flux, 72, 74
of scattering matrix elements, 73,
100

Optical thickness, 95, 99

Phase function, 73

Polarization, 46
depolarization, 71, 105, 126-127
elliptical, 60, 65, 71, 104, 138
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Polarization, (Contd.)
full, 60, 64, 70, 71
handedness, 65
linear, 54, 71, 118, 138
observations of, 104, 112
of cloudbows and glories, 112-113
partial, 56, 67, 70

Polydispersed suspension, 3, 4, 71,

115

Polydisperse scattering, 4, 74-75, 98
mass-absorption coefficient, 115
scattering matrix, 75, 99
volume absorption coefficient, 89,
115

volume back-scattering coefficient,
119-123

volume extinction coefficient, 89,
116-118, 123

volume scattering coefficient, 75, 89,
117

Poynting’s vector, 13

Precipitation, 119
hail, 81, 121, 123
rain, 81, 121

Propagation constant, 12

Radar cross section, 119, 130

see Microwave scattering
Radiation

balance, 114

field, 13

pressure, 36
Radiative transfer, 6, 72

equation of, 94-97

for primary scattering, 96

in mixed media, 98-100

in optically thin media, 97
Rainbow and cloudbow phenomena,

10, 51, 54, 108, 111-113, 116
Rayleigh scattering and approxima-
tion, 9, 45, 46, 47, 98, 100-102

Rayleigh-Gans approximation, 10
Recursion formula, 15

for angular functions, 15

for Bessel functions, 17, 18
Reflection

Fresnel, 35, 39, 46

Lambert, 105

289

Refractive index, 83
see Complex index of refraction
Ricatti-Bessel functions, 16, 18

Saturn’s rings, 54, 134-136, 138
Scattering layers
of arbitrary optical thickness, 96
optically thin, 47, 51, 74, 97, 108,
125

Scattering plane and angle, 13, 60, 68,
69

Single particle scattering, 3, 24
absorption efficiency, 28, 34
back scattering (radar) efficiency,
—41

complex amplitude components,
4146
extinction efficiency, 28-37
intensity parameters, 46-55
matrix elements, 94, 72-74
scattering efficiency, 14, 28, 33
volume scattering coeflicient, 74
Size-distribution models, 6, 75
composite, 83
continuous, 74
gamma distribution, 75
integration of, 74, 76
mode radius, 76
properties of function, 75-77
specific functions, 77-83
volume and mass of particles, 76,
77
Size parameter, 9
for Mie particles, 12, 75
for van de Hulst’s approximation,
29
Skylight, 3
blue color of, 5
brightness, 114
polarization, 104, 105, 108
Snell’s law, 36
Source function, 95
Space platforms, 98, 124, 131, 133,
136, 138
Spheres
hard, 11
large absorbing, 24
metallic, 27, 35, 38, 108, 139
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Spheres, (Contd.)
totally reflecting, 11, 29, 38, 45
transparent, 29-33
Stokes vector, matrix and parameters,
56, 57, 64-72
for incident flux, 72
modified, 70
Sunlit planetary atmosphere, 7, 95

Turbidity coefficient, 100
see Mixing ratio
Twilight phenomena, 82, 106

van de Hulst’s approximation, 10
see Extinction
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Venus, 54, 128-132
clouds, 118, 129-131
greenhouse effect, 128, 130
microwave emission, 129, 131
polarization, 130, 131, 132
radar cross-section, 123, 130
temperature, 128, 129

Volcanic dust, 53, 102, 107
green sun, 108

Water-vapor bands, 8, 130
Zodiacal light, 137-139

gegenschein, 139
polarization, 138, 139.
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