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Abstract

A method for electromagnetic shunt damping (EMSD) will
be presented in this paper. Compared to piezoelectric shunt
damping, the proposed EMSD vibration controller has a
number of benefits. It requires small shunt voltages, can pro-
vide large stroke and can dampen larger mechanical struc-
tures. A passive control strategy is validated through experi-
mentation on a simple e ectromagnetic mass-spring-damper
system. Theoretical results are a so presented.

1 Introduction

Electromagnetic transducers [1, 2, 3] can be used as actua-
tors, sensors or both. When a current is applied to the ter-
minals of the transducer a force is exerted and when a ve-
locity is applied avoltage is induced across the terminal s of
the transducer. Piezoelectric transducers [4] exhibit similar
electromechanica properties, but have considerably differ-
ent physical characteristics to electromagnetic transducers.
Electromagnetic transducers have a much greater stroke,
typically in the millimeter range compared to the microm-
eter range associated with piezoelectric transducers. These
devices are physically robust and can be manufactured to ei-
ther MEMS scale[5], or aslarge asa 50k N electrodynamic
shaker [6]. Electromagnetic transducers have been used in
the field of active vibration control of car suspension sys-
tems[7], isolation platforms[8], magnetic levitation [9, 10]
and magnetic bearings[11].

Placing an electrical impedance (or admittance) across the
terminals of a piezoelectric transducer which is bonded to
a resonant structure with the view to minimizing structural
vibrations, is referred to as piezoelectric shunt damping
[12, 13, 14, 15, 16]. This has been proven to be a reli-
able dternative to active control techniques [4, 17], offer-
ing the benefits of stability and performance without the
need of additional sensors. Most importantly, the inherent
robustness makes passive shunt control techniques very de-
sirable. Another desirable characteristic is collocation [18].
Shunt damping, by its very nature, is collocated, therefore
enhances the stability characteristics of the closed loop sys-
tem.

This paper presents a new shunt method for reducing struc-
tural vibration, electromagnetic shunt damping (EMSD). By
attaching an el ectromagnetic (or electrodynamic) transducer
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to a resonant mechanical structure and shunting the trans-
ducer with an electrical impedance (or admittance), kinetic
energy from the resonant structure can be dissipated. Asthe
mechanical structure displaces, an opposing e ectro-motive-
force (emf) isinduced in the transducer. This potential, and
corresponding shunt current, resultsin the dissipation of en-
ergy in resistive circuit components. Using an appropriately
designed electrical shunt the transducer is capable of signif-
icantly reducing mechanical vibration.

Compare to piezoelectric shunt damping, the EMSD offers
large stroke, more robustness, smaller shunt voltages, and
larger control forces.

2 Background

2.1 Electromagnetic Transducer Model

When an electrical conductor, in the form of a coil, moves

in a magnetic field as shown in Figure 1 (a), a voltage V.

proportional to the velocity i, isinduced and appears across

the terminals of the coil, i.e. V, o &.. Specificaly,
Ye _p,

Te

D

where D isthe magnetic flux (in Tesas), [ isthelength of the
conductor (in meters), and i isthe vel ocity of the conductor
relative to the magnetic field (in m/s). A permanent magnet
is usually the source of the magnetic field.

(b)

@

Figure 1: Electromagnetic transducer, (a) sensor and (b) actuator.

Equation (1) can ideally be rewritten as[2],

E:E:Dlzcn (2)
Te 1.
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where F, denotes the force (in Newtons) acting on the cail
whilst carrying a current 1., (in Amps), and C,, is the ideal
electro-mechanica coupling coefficient. Asshownin Figure
1 (b), when the cail isemployed asaforce actuator, Equation
(2) relates the induced force to an applied current. Such de-
signsform the basis for el ectrodynamic shakers and acoustic
actuators, such as a speaker coil.
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Figure 2: Electromagnetic transducer (a) mechanical model and
(b) electrical model.

Equation (2) can be simplified with the assumption that the
el ectromagnetic transducer operatesin its linear region, i.e.,
undergoes only small displacements. As shown in Figure 2
(@), the cail can be modeled as series connection of an in-
ductor L., aresistor R, and a dependent voltage source V,
[3]. If the transducer is attached to a resonant mechanical
system, the voltage source V., represents the induced emf
that is dependent on relative velocity ., and hence struc-
tural dynamics.

2.2 Forced Mass-Spring-Damper System

In many cases where vibration becomes an issue, the me-
chanical structure can be modeled as a simple mass-spring-
damper system, as shown in Figure 3 (a). The equivalent
mass M (in Kg), spring constant & (in N/m) and damping
constant C' (in Ns/m) for such a structure can be easily de-
termined. The equation of motion for this forced one degree
of freedom system is given by:

Mi(t)+ Ca(t) + Ka(t) = Fy(t), ®)

where Z(t), ¢(t) and z(t) are the acceleration, velocity and
displacement of the massrespectively. Notethat Fy;(t) isthe
applied force disturbance. The dimensionless representation
of Equation (3) is

(1) +2¢,wnd(t) + w%x(t) = fa(t), (4)

where w,, is the natural frequency of the system, and ¢,, is

the damping ratio. Note that w,, = \/ﬁ and

fa(t) = E48.

K
M Cn =
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Figure 3: (a) Mass-spring-damper system and (b) electromag-
netic shunted mass-spring-damper system.

3 Structural Dynamicsfrom First Principles

3.1 Modd System

Consider Figure 3 (b), where a electromagnetic transducer
(cail 1) is attached to the mass. If acurrent 1,(¢) is applied
to a linear electromagnetic transducer, a disturbance force
F,(t) isinduced such that, Fy(t) = Cqla(t), where Cy is
the electromagnetic coupling coefficient relating the applied
current to a resulting force in coil 1. Using the equation of
motion, the disturbed system has the following relationship,
Mi(t)+ Cz(t) + Kx(t) = Cala(t).

By taking the L aplace transform, the transfer functionsrelat-
ing the current I,(s) to displacement z(s), and the current
14(s) tovelocity sxz(s) are,

s x(s) Cq
Goils) = ) T M2 st K ©®)
Gails) 2 sx(s) Cas ©)

Is(s) Ms2+Cs+K'

These equationsarevalid when cail 2, isheld in open circuit,
i.e. Z(s) = oo, asshownin Figure 3 (b).

3.2 Composite System
For an electromagnetic shunted composite system, as shown
in Figure 3 (b), an impedance Z is attached to coil 2. we
have the following relationship, M (t) + Ci(t) + Kz (t) =
Fy(t) — F.(t), where F,(t) isthe opposing force due to the
impedance Z attached to the terminals of the electromag-
netic transducer. In the Laplace domain, we have the fol-
lowing relationship,

z(s)(Ms®>+Cs+ K) = Cala(s) — Fa(s), (7
where 1;(s) isthe input current applied to coil 1, as shown
in Section 3.1.

To determine the opposing force F.(s), we need to consider
the simplified electrical model of the el ectromagnetic shunt,
as shown in Figure 4. Ohm’s law states that

Ve(s) = 1.(s)Z(s), (8)
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Figure 4: Simplified model of the electromagnetic shunt.

where V., (s) is the voltage across the terminal's of the shunt
impedance Z(s), and I.(s) is the corresponding current.
From the KVL, we obtain the following relationship be-
tween V. (s) and V,(s), asV,(s) = Ve(s) — (Les+ Re) 1. (s)
which implies

Z(s)

V-() = IR 20

Ve(s)- ©)
As shown in Equation (1), we have the following linear re-
lationship

Ve(s) = Cesz(s), (10)
where C. isthe electromagnetic constant relating sz.(s) to
Ve(s). Since the shunted electromagnetic transducer is at-
tached to the mass M, sz.(s) isequivaent to sz(s).

By substituting, (10) into (9), we obtain

Z(s)

V-() = I R 20

Cesz(s). (12)

Alternatively, the current flowing through the shunt 7., (s), is

Vi) 1
 Z(s)  Les+Re+Z(s)

I(s) (12)

Cesx(s),
and the opposing shunt force F,(s) = C.1.(s), assuming a
linear electromagnetic transducer, we obtain

9 1

Fe(s) = Ce —Les—f—Re + Z(S)

sa(s) = C2K (s)sx(s). (13)
where K (s) = ToTRTZ0)

Substituting (13) into (7), the composite system transfer
function I4(s) to z(s), is
x(s)

la(s) M2+ (C+C§K(s)> s+ K

(1>

Gai(s)

, (14

or dternatively, the transfer function relating 1,(s) to sz(s),

IS
sxz(s)

_ C’ds
la(s)  Ms24 (C+C§K(s)>s+K

éii (S) é (15)
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4 Composite System in Transfer Function Form

By modeling the system in transfer function form, wegain a
greater abstraction from the underlying system. Such meth-
ods are particularly useful when dealing with higher order
systems or when using models not obtained directly through
physical modeling, i.e.,, when using models obtained by
means of system identification [19]. Referring to Figure 5,
the modelsrequired are: G (s), the transfer function from
an applied force to the resulting velocity &; and G (s), the
transfer function from an applied current to the induced emf.

Figure 5: Electrical equivaent model of atwin coil electromag-
netic system.

Considering first the case where two identical coils expe-
rience the same velocity. When an impedance Z(s) is at-
tached to cail 2, V,(s) = Ve(s) — (Les+ Re)I(s),

O e O
I(s) = m%(s)~ 17

By considering the emf induced in both coils 1 and
2, and applying the principle of superposition, V.(s) =
Gui(s)1a(s) — Gui(s)I.(s).  Subgtituting (17) yields,
Ve(s) = Gui(s)Ta(s) — Guils) graizr-  Hence, the
composite transfer function relating 7,(s) to V.(s) is

Croi(s) 2 Ve(s) _ ~Gm(s) 7 (18)
La(s) 14 K(8)Gui(s)
where K (s) = 7577 Thereader will appreciate that

the damped system transfer function G‘m(s) isintheform of
afeedback system wheretheimpedance Z(s) parameterizes
acontroller K (s), asshownin Figure 6 ().

The open loop transfer function G,;(s) consists of both
the structural dynamics and the electromagnetic coupling,
GUZ'(S) = CQGM(S) = CzGiF(S).

Inamore general case, wewish to know the damped transfer
function G; r(s) from some disturbance force F(s) to the
resulting velocity sz (s). Thisiseasily found,

sx(s)  Ve(s) sx(s)

Li(s)  Ia(s) Vu(s)

L

Gii(s)




sxz(s) Gzi(9)

= Cul)y =1 R (3)Goils) (19)
Thus, Gir(s) £ 58 = 255 = 4-Glils), and
B Gzi(s) Gzr(s)
sx(s) = 11 K (5)Goi(s) Ta(s)+ 1+f<(s)Gm(s)F(8()’ )
20

as shown in Figure 6 (b). If coils are not identical, where
Goi(s) istransfer function from the current in cail 2 to the
induced emf, and G;;(s) is the transfer function from the
current in coil 1 to the velocity.

Figure 6: Electromagnetic shunt damping feedback structure: (a)
Equation (18) and (b) Equation (20).

5 Single Mode Electromagnetic Shunt Controller

When apiezoel ectric transducer is shunted by apassive elec-
trical network, it acts as amedium for dissipating mechani-
cal energy of the attached structure. Hagood and von Flotow
[13] suggested that a series resistor-inductor circuit attached
across the conducting surfaces of a piezoel ectric transducer
can be tuned to dissipate mechanical energy of a host struc-
ture. They demonstrated the effectiveness of this technique
by tuning the resulting resistor-inductor (R — L) and inherit
capacitance of the piezoel ectric transducer, to a specific res-
onance frequency of the host structure.

For electromagnetic shunt damping, we can apply the same
methodology as suggested above. For this particular sys-
tem, though, we need to apply a resistor-capacitor (R — C)
circuit to the terminals of the electromagnetic transducer.
That is, Z(s) ﬁps + R, where Cop = 77— There-
fore, the shunted electromagnetic transducernsm(s) is re-
lated to F, via F,(s) = C2K,,(s)sxz(s), where K,p(s) =
1

—p2=—— It should be noted that the controller has
s +L—es+m
aresonant structure, where R; = (R. + R) determines the
controller damping and w,, is the resonance frequency of
the mechanical structure to be damped.

The closed loop composite transfer function be-
tween current-to-velocity is  Gai(s) 2 %(g)l
Cqs i AL () A sa(s)
]\452+(C+C§Kap(s))s+K or a|tefnaIIV€|y, G;M(S) = Id(s) =
Gyi(s

1+Kap(s)Gyi(s)

1148

Figure 7: An externa photograph of the experimental electro-
magnetic apparatus.

Flexible Support

-4

Magnetic Plunger

Rigid Support

Figure 8: Side section of the experimental electromagnetic appa-
ratus. (All dimensionsin mm)

6 Experimental Verification of Electromagnetic Shunt
Damping Concept

6.1 Electromagnetic Transducer Design

In support of the preceding sections, the technique of elec-
tromagnetic shunt damping was applied to an experimen-
tal assembly at the Laboratory for Dynamics and Control
of Smart Structures in The University of Newcastle, Aus-
tralial. A photograph of the eectromagnetic transducer
apparatus, showing the rigid external support, flexible end
supports, mounting plate, coils and winding cables is pro-
vided in Figure 7. As shown in Figure 8, the assembly is
essentially a trandational solenoid with two identical fixed
coilsand amagnetic plunger supported at either end by flex-
ible supports. This system is mechanically equivalent to the
mass-spring-damper shown in Figure 3. Together with an
attached electrical impedance Z(s) = 7 + R, coil 2 is
employed to damp translational vibrations resulting from an
applied disturbance current I to coil 1.

In practice, the magnetic field strength, as well as being a
function of the magnetic material, is limited by the maxi-
mum allowable dimensions and weight of the magnets. In
these experiments, three rare earth magnets (Neodymium
Iron Boron), are arranged to form the magnetic plunger, as

Lhttp://rumi.newcastle.edu.au/



shown in Figure 8. At the two points where opposing poles
meet (at the center of each winding), a strong magnetic field
exits at right angles to the plunger. When the plunger isin
motion, the strong parallel field flowing through the coil re-
sultsin ahigh flux density and corresponding large induced
force.

Each coil is wound from 0.25 mm diameter enamel coated
copper wire and has an electrical impedance of 3.3 © and
1 mH. Non-magnetic material's, such as aluminum and cop-
per, were used in the construction of the rigid external sup-
port, flexible end supports and the mounting plate. Non-
magnetic materials were utilized so as to prevent the mag-
netic disturbance.

Parameter Value

Spring constant K 56 kNm !
Damping coefficient C 2.667 Nsm™!
Plunger mass M 0.150 kg
Electromagnetic Coupling Cy | 3.65
Electromagnetic Coupling C., | 3.4

Caoil Inductance L. 1mH

Coil Resistance R, 3.3Q

Table 1: Electromechanical system parameters.

Figure 9: The open loop frequency response from an applied ac-
tuator current to plunger velocity, i.e. G;(s), mode
(=) and measured results (- -).

6.2 Determining Optimal Damping Resistance

The electromechanical model G;(s) was first determined
by measuring the resonance frequency and plunger weight
M , and subsequently the spring constant /. The remaining
parameter w,,, together with the electromagnetic coupling
coefficients Cy and C., were determined experimentally. A
summary of the model parameters is provided in Table 1.
The frequency response from an applied current to the re-
sulting plunger velocity G (s), isshownin Figure 9. Itis
observed that the model is an accurate representation of the
physical system.

Since we wish to damp the fundamental frequency of the
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mass-spring-damper system, i.e. w, = 97.3 Hz, the re-
quired shunt capacitance valueis Cyp = 2.6 mF.

In order to determine an appropriate value for the total shunt
resistance R;, an optimization approach was used to mini-
mize the Hy norm of the closed loop system G;(s). This
required a solution to the following optimization problem to

be found R} = ~r&min é“(s)Hg'

Rt>0

Using the proposed optimization strategy the required opti-
mal shunt resistance R; = 0.29 €2, and alternatively R; can
be found by plotting 2 norm against R;, as shown in Fig-
ure 10.

01 02 03 04 _05 06 07 08 09
R (ohms)

Figure 10: H('}*g-”'(s)H2 against R; ().

6.3 Impedance | mplementation

To implement the proposed arbitrary shunt impedance Z(s),
acurrent controlled voltage source was utilized, as shownin
Figure 11. The controlled voltage v. was set to be a func-
tion of the measured current i,, i.e., v,(t) = f(i.(t)), &
shown in Figure 11 (a). If the function f(i.(t)), isalinear
transfer function Z(s) whose input impedance is the mea-
sured current I.(s), i.e,, V. (s) = Z(s)I.(s), then the termi-
nal impedance Z,(s) is equal to Z(s), as shown in Figure
11 (b). For a more detailed description of the impedance
apparatus, the reader isreferred to Fleming et. al. [20, 21].

[
v, C&E P

Figure 11: (a) Ideal current controlled voltage source, and (b)
experimental current controlled voltage source.

6.4 Simulated vs Experimental Results

With the aim of damping the mechanical system, atota se-
riesresistance R; of 0.35 £ and acapacitor of 2.7 mF were
applied to the second windingusing the synthetic impedance
apparatus explained in Section 6.3. The measured open
loop, theoretically predicted damped, and measured damped



frequency responses are shown in Figure 12. A significant
reduction of 21.8 d B inthe magnitude of the el ectromechan-
ical system can observed.

Simulated and experimental results closely agree, therefore
validating the proposed el ectromagnetic shunt damping.

f(Hz)

Figure 12: The open loop (---), theoretically predicted damped
(-), and measured damped (- -) frequency responses
from an applied current to the resulting plunger ve-
locity.

7 Acknowledgments

This research was supported by the Centre for Integrated
Dynamics and Control (CIDAC) and the Australian Re-
search Council (ARC).

References

[1] S Mirzaei, S. M. Saghaianngjad, V. Tahani, and
M. Moallem, “Linear electric actuators and generators,”
|EEE Transaction on Energy Conversion 14, pp. 712 —717,
September 1999.

[2] S. S Rao, Mechanical Vibrations, Addison-Wesley
Publishing Company, 3rd ed., 1995.

[3] B. M. Hanson, M. D. Brown, and J. Fisher, “Sdf
sensing:  Closed-loop estimation for a linear electromag-
netic actuator,” in Proc. IEEE American Control Confer-
ence, pp. 1650-1655, (Arlington, VA USA), June 2001.

[4] C.R. Fuller, S. J. Elliott, and P. A. Nelson, Active
Control of Vibration, Academic Press, 1996.

[5] R. Amirthargah and A. P Chandrakasan, “Self-
powered signal processing using vibration-based power gen-
eration,” |EEE Journal of Solid-Sate Circuits 33, pp. 687—
695, May 1998.

[6] Gearing and Watson Electronics Ltd., South Road,
Hailsham, E Sussex BN27 3JJ England, Large Shaker
Model No. V53-64/DSA4. http://www.gearing-watson.com.

[7] Y. B. Kim, W. G. Hwang, C. D. Kee, and H. B.
Yi, “Active vibration control of suspension system using an

1150

electromagnetic damper,” in Proc. of the | MECH E part D
Journal of Automoblie Engineering (Professional Engineer-
ing Publishing), 215(8), pp. 865-873, 2001.

[8] J. Shaw, “Active vibration isolation by adaptive con-
trol,” in Proc. |[EEE International Conference on Control
Applications, pp. 1509-1514, (Hawaii, USA), August 1999.

[9] D. Vischer and H. Bleuler, “Sdf-sensing active mag-
netic levitation,” 1EEE Transactions on Magnetics 29(2),
pp. 169-177, 1993.

[10] C. Choi and K. Park, “Self-sensing magnetic levita-
tion using LC resonant circuits,” Sensors and Actuators ,
pp. 1276-1281, 1999.

[11] N. Morse, R. Smith, and B. P. J. Antaki, “Position
sensed and self-sensing magnetic bearing configuations and
associated robustness limitations,” in Proc. |[EEE Confer-
ence on Decison and Control, pp. 2599-2604, (Tampa,
Florida USA), December 1998.

[12] R. L. Forward, “Electronic damping of vibrationsin
optical structures,” Applied Optics 18, pp. 690-697, March
1979.

[13] N. W. Hagood and A. Von Flotow, “Damping of
structural vibrationswith piezoel ectric materialsand passive
electrical networks,” Journal of Sound and Vibration 146(2),
pp. 243-268, 1991.

[14] D. L. Edberg, A. S. Bicos, C. M. Fuller, J. J. Tracy,
and J. S. Fechter, “ Theoretical and experimental studies of
atrussincorporating active members,” Journal of Intelligent
Materials Systems and Structures 3, pp. 333-347, 1992,

[15] S. Behrensand S. O. R. Moheimani, “Current flow-
ing multiple mode piezoelectric shunt dampener,” in Proc.
SPIE Smart Materials and Structures, Paper No. 4697-24,
pp. 217226, (San Diego, CA), March 2002.

[16] S. Beéhrens, S. O. R. Moheimani, and A. J. Fleming,
“Multiple mode current flowing passive piezoelectric shunt
controller,” Accepted for Publication in: Journal of Sound
and Mbration , 2002.

[17] G. S. Agnes, “Active/passive piezoelectric vibration
suppression,” in Proc. SPIE Smart Sructuresand Materials,
Passive Damping, SPIE Vol. 2193, pp. 24-34, (San Diego,
CA), May 1994.

[18] D.G. MacMartin, “Collocated structural control: mo-
tivation and methodology,” in Proc. |IEEE International
Conference on Control Applications, pp. 1092-1097, (Al-
bany, New York USA), September 1995.

[19] L. Ljung, System Identification: Theory for the User,
Prentice Hall, 1999.

[20] A.J Feming, S. Behrens, and S. O. R. Moheimani,
“Synthetic impedance for implementation of piezoelectric
shunt-damping circuits,” Electronics Letters 36, pp. 1525—
1526, August 2000.

[21] A.Flemingand S. O. R. Moheimani, “Improved cur-
rent and charge amplifiers for driving piezoelectric loads,
and issuesin signal processing design for synthesis of shunt
damping circuits.,” Journal of Intelligent Material Systems
and Structures, Submitted August 2002.



