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Abstract

In previous works, it was suggested to use Steklov eigenvalues for Maxwell equations as
target signature for nondestructive testing, and it was recognized that this eigenvalue
problem cannot be reformulated as a standard eigenvalue problem for a compact
operator. Consequently, a modified eigenvalue problem with the desired properties
was proposed. We report that apart for a countable set of particular frequencies, the
spectrum of the original self-adjoint eigenvalue problem consists of three disjoint parts:
The essential spectrum consisting of the origin, an infinite sequence of positive
eigenvalues which accumulate only at infinity and an infinite sequence of negative
eigenvalues which accumulate only at zero. The analysis is based on a suitable
topological decomposition, a representation of the operator as block operator and
Schur-factorizations. For each Schur-complement, the existence of an infinite sequence
of eigenvalues is proven via an intermediate value technique. The modified eigenvalue
problem arises as limit of one Schur-complement.
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1 Introduction
An important topic in many areas of science and engineering is to determine by means of
noninvasive methods if an object is subject to material defects. Many such nondestructive
evaluation methods test the object with incident waves, observe the resulting scattering
effect and deduce information about the medium from the resulting data. A popular
approach is to use eigenvalues as target signatures to characterize the material [2–4,8–
15,17]. Early methods use resonances/scattering poles as target signatures for which a
fruitful theory exists [20]. However, the success of resonances/scattering poles as target
signatures for electromagnetic interrogation was poor [2,13]. An alternative is to use
transmission eigenvalues instead of scattering poles, and we refer to Cakoni et al. [8]
for a detailed presentation of this subject. The first such methods chose the frequency
as eigenvalue parameter. However, this has the drawbacks that multi-frequency data is
necessary and only real eigenvalues can bemeasured (which is of limited use for absorbing
media).More recentmethods choose the eigenvalue parameter to be artificial to overcome
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these issues [2,4,10,12,16,17]. There is a lot of freedom in the construction of such
methods, and a number of different versions have been proposed. Another improvement
is the introduction of an additional sensitivity parameter as e.g. in [14,16,17] to tune the
dependence of the eigenvalues with respect to changes in the material parameters. All of
these emerging eigenvalue problems can roughly be classified in two types: transmission
eigenvalue problems and Steklov eigenvalue problems. Among the important questions
on these eigenvalue problems are:

• characterization of the essential spectrum (i.e. eigenvalue parameters for which the
operator is not Fredholm),

• characterization of the Fredholm set (i.e. eigenvalue parameters for which the oper-
ator is Fredholm) and non-empty resolvent sets (in each connected subset),

• existence of “enough“ eigenvalues (as minimal requirement to be a meaningful target
signature), e.g. infinitely many,

• continuity of the eigenvalues with respect to changes in the material parameters,
• further qualitative properties of the eigenvalue distribution as e.g. eigenvalue free

zones, accumulation points and estimates on the location of certain characteristic
(e.g. the smallest) eigenvalues,

• reliable computational methods.

A classical approach to obtain such analytical results is to transform the eigenvalue
problemfirst to a stencilK−λI with a compact operatorK .While this is a very convenient
technique, it is not always applicable. Indeed, this is not possible if multiple accumulation
points of the spectrum exist, which was observed in [12] for electromagnetic Steklov
eigenvalues. Hence, the authors of Camaño et al. [12] introduced amodification, which led
to an alternative problem, which admits the desired properties. In [22], the Fredholmness
and the discreteness of the spectrumof the original electromagnetic Steklov problemwere
reported by means of the T-coercivity technique, and in [21] the existence and stability of
eigenvalues of the modified electromagnetic Steklov problem in conductive media were
proven.
In this article, we consider the original electromagnetic Steklov eigenvalue problem in

the self-adjoint case. We report a complete description of the spectrum (see Proposi-
tion 7): The spectrum consists of three disjoint parts: The essential spectrum consisting
of the point zero, an infinite sequence of positive eigenvalues that accumulate only at
infinity and an infinite sequence of negative eigenvalues that accumulate only at zero.
The analysis is based on a representation of the operator as block operator. For small/big
enough eigenvalue parameter, the Schur-complements with respect to different compo-
nents can be built. For each Schur-complement, the existence of an infinite sequence of
eigenvalues is proved via a fixed point/intermediate value technique as e.g. used in [11].
Roughly speaking, the original electromagnetic Steklov problem is a coupled system of an
eigenvalue problem for a compact operator and an eigenvalue problem for the inverse of
a compact operator. As a side result, we also analyze the spectrum of the modified elec-
tromagnetic Steklov eigenvalue problem, see Sect. 7. We report that the spectrum of the
modified eigenvalue problem consists of an infinite sequence of eigenvalues, which accu-
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mulate only at +∞.1 Our analysis further reveals that the modified eigenvalue problem
arises as asymptotic limit for λ → +∞ of one of the Schur-complements. This clarifies
the relation between the original and the modified problem.
As the original problem contains two kinds of eigenvalue sequences, it carries more

information than the modified problem and hence seems to be better suited for inverse
applications. In practice, only a few eigenvalues can be identified and thus an increase
of observable target signatures is of great value. For example, significant targets are the
smallest negative eigenvalue and the smallest positive eigenvalue.
At last, we address the asymptotic limit for λ → 0 of the respective Schur-complement.

This eigenvalue problem is of a similar type as the modified Steklov problems considered
in [14]. It has three interesting properties: It is independent of the permeability, the
eigenvalues scale with the power minus two of the frequency and the eigenvalues suffice
a min–max characterization.
The remainder of this article is organized as follows: In Sect. 2, we recall some results

from [12] and explain the origin of the Steklov eigenvalue problem. In Sect. 3, we set
our notation and formulate our assumptions on the domain and the material parameters.
We also recall some classical regularity, embedding and decomposition results, which
will be essential for our analysis and adapt them to our setting. In Sect. 4, we introduce
the considered electromagnetic Steklov eigenvalue problem and define the associated
holomorphic operator function AX (·). We establish in Theorem 2 that the spectrum of
AX (·) is real and that AX (λ) is Fredholm if and only if λ �= 0. In Sect. 5, we analyze the
spectrum in a neighborhood of zero. We report in Theorem 3 that there exists c0 > 0
so that σ

(
AX (·)

) ∩ (0, c0) = ∅. We establish in Theorem 4 the existence of an infinite
sequence of negative eigenvalues which accumulate at zero. In Sect. 6, we analyze the
spectrum in a neighborhood of infinity. We report in Theorem 5 that there exists c∞ > 0
so that σ

(
AX (·)

)∩ (−∞,−c∞) = ∅. We establish in Theorem 6 the existence of an infinite
sequence of positive eigenvalues, which accumulate at +∞. In Sect. 7, we collect our
results in Proposition 7 and comment on the connection between the original and the
modified electromagnetic Steklov eigenvalue problems.

2 Inverse scattering
In this section, we recall the discussion from Camaño et al. [12] to explain the relation
between the Steklov eigenvalue problem and nondestructive inverse scattering methods.
Let S2 = {x ∈ R

3 : |x| = 1}. We consider a plane wave

ui = i
ω
curl curl pe−iωx·p (1)

with direction of propagation d ∈ S
2, polarization vector p ∈ R

3 \ {0} and frequency
ω ∈ R \ {0}. Let ε ∈ L∞(R3) be the relative permittivity such that infx∈R3 	(ε) > 0 and

(ε) ≥ 0. Let D ⊂ R

3 be a bounded Lipschitz domain such that ε = 1 on R
3 \ D. We

consider the forward scattering problem to find u such that

1This result has already been reported in [12, Theorem 3.6] However, the proof thereof requires dim(kerT)⊥ = ∞
which the authors don’t elaborate on.
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curl curl u − ω2εu = 0 in R
3,

u = ui + us in R
3,

lim
r→∞(curl us × x − iωrus) = 0 (2)

The scattered field us has the following asymptotic expansion

us(x) = eiωr

r
u∞(x̂, d; p) + O

(
1
r2

)
(3)

whereby we call u∞(x̂, d; p) the far-field pattern of us for measurement direction x̂ ∈ S
2,

incident direction d and polarization p. Let F : L2t (S2) → L2t (S2) be the far-field operator
defined by

(Fg)(x̂) :=
∫

S2
u∞(x̂, d, g(d))dsd. (4)

We consider the following inverse problem. Let either B = D or B ⊂ R
3 be a bounded

Lipschitz domain with D in its interior. Given the far-field pattern for all x̂, d, p we wish
to compute approximations of Steklov eigenvalues (that we shall define shortly). To this
end, we introduce the ε-independent auxiliary scattering problem to find uλ such that

curl curl uλ − ω2uλ = 0 in R
3 \ B,

uλ = ui + usλ in R
3 \ B,

ν × curl uλ + λ ν × uλ × ν = 0 on ∂B,

lim
r→∞(curl usλ × x − iωrusλ) = 0 (5)

whereby λ is a real constant. Note the sign of λ herein is reversed compared to Camaño
et al. [12]. The existence and uniqueness of solutions to (2) and (5) are established in the
following manner. The problems are reformulated on a ball BR by means of the capacity
operator. The injectivity is shown by testing with u′ = u, taking the imaginary part of
the sesquilinear form and applying properties of the capacity operator. If the problem is
Fredholm, then the bijectivity follows. The Fredholmness of the operators related to (2)
and (5) for λ ≤ 0 can be shown by standard techniques. The case λ > 0 can be treated as
in [22]. Let uλ,∞ be the far-field pattern of usλ and let

(Fλg)(x̂) :=
∫

S2
uλ,∞(x̂, d, g(d))dsd. (6)

Consider a Herglotz wave function

vg (x) := iω
∫

S2
g(d)e−iωx·ddsd (7)

with Herglotz kernel g . Then, the weighted far-field pattern

w∞(x̂) :=
∫

S2
u∞(x̂, d, g(d))dsd (8)
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is the far-field pattern of the scattered part of the solution w of

curl curlw − ω2εw = 0 in R
3,

w = vg + ws,

lim
r→∞(curlws × x − iωrws) = 0. (9)

Analogously

wλ,∞(x̂) :=
∫

S2
uλ,∞(x̂, d, g(d))dsd (10)

is the far-field pattern of the scattered part of the solution wλ of

curl curlwλ − ω2wλ = 0 in R
3 \ B,

wλ = vg + ws
λ,

ν × curlwλ + λ ν × wλ × ν = 0 on ∂B,

lim
r→∞(curlws

λ × x − iωrws
λ) = 0 (11)

If (F −Fλ)g = 0, then the far-field patterns agree w∞ = wλ,∞. Then, by Rellich’s Lemma
w = wλ in R

3 \ D. It follows that w is a nontrivial solution to

curl curl−ω2εw = 0 in B,

ν × curlw + λ ν × w × ν = 0 on ∂B. (12)

The problem to find λ ∈ C and nontrivial w such thas (12) holds is called the electro-
magnetic Steklov eigenvalue problem. It was shown in [12, Sect. 4] that indeed F − Fλ

is injective with dense range if and only if there does not exist a Steklov eigenfunction,
which has a decomposition w = vg +ws. Moreover, Theorems 4.2 and 4.4 of [12] support
the claim that Steklov eigenvalues can be detected from far-field measurements. Further,
it can be seen as in [10, p. 1740] that if ε is perturbed by δε, then for an eigenpair (λ, w)
the change in the eigenvalue δλ is

δλ ≈ 〈δε curlw, curlw〉L2(B)
〈ν × w, ν × w〉L2t (∂B)

(13)

up to linear terms.

3 General setting
In this section, we set our notation and formulate assumptions on the domain andmaterial
parameters. We also recall necessary results from different literature and adapt them to
our setting.
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3.1 Functional analysis

Let (X, ‖ · ‖X ), (Y, ‖ · ‖Y ) be generic Banach spaces. We denote the space of all
bounded linear operators from X to Y as L(X, Y ) with operator norm ‖A‖L(X,Y ) :=
supu∈X\{0} ‖Au‖Y /‖u‖X ,A ∈ L(X, Y ). In addition,we setL(X) := L(X, X). ForA ∈ L(X, Y ),
we denoteA∗ ∈ L(Y, X) its adjoint operator defined through 〈u, A∗u′〉X = 〈Au, u′〉Y for all
u ∈ X, u′ ∈ Y . We call the space of compact operators as K (X, Y ) ⊂ L(X, Y ) and K (X) :=
K (X, X). We say that an operator A ∈ L(X) is coercive, if infu∈X\{0}|〈Au, u〉X |/‖u‖2X > 0.
We say that A ∈ L(X) is weakly coercive, if there exists K ∈ K (X) so that A + K is
coercive. Let 	 ⊂ C be open and consider an operator function A(·) : 	 → L(X). We
call A(·) (weakly) coercive if A(λ) is (weakly) coercive for all λ ∈ 	. We denote the
spectrum of A(·) as σ

(
A(·)) := {λ ∈ 	 : A(λ) is not bijective} and the resolvent set as

ρ
(
A(·)) := 	 \ σ

(
A(·)). We denote σess

(
A(·)) := {λ ∈ 	 : A(λ) is not Fredholm} the

essential spectrum. For A ∈ L(X), we set σ (A) := σ
( · I −A

)
, σess(A) := σess

( · I −A
)
and

ρ(A) := ρ
( · I − A

)
.

3.2 Lebesgue and Sobolev spaces

Let � ⊂ R
3 be a bounded path connected open Lipschitz domain and ν the outer unit

normal vector at ∂�. Let C∞
0 (�) be the space of infinitely many times differentiable

functions from � to C with compact (closure of the) support in �. We use standard
notation for Lebesgue and Sobolev spaces L2(�), L∞(�),W 1,∞(�),Hs(�) defined on the
domain� andL2(∂�),Hs(∂�) definedon the boundary ∂�.We recall the continuity of the
trace operator tr ∈ L

(
Hs(�), Hs−1/2(∂�)

)
for all s > 1/2. For a vector space X of scalar-

valued functions, we denote its bold symbol as space of three-vector-valued functions
X := X3 = X × X × X , e.g. L2(�), Hs(�), L2(∂�), Hs(∂�). For L2(∂�) or a subspace,
e.g. Hs(∂�), s > 0, the subscript t denotes the subspace of tangential fields. In particular,
L2t (∂�) = {u ∈ L2(∂�) : ν · u = 0} and Hs

t (∂�) = {u ∈ Hs(∂�) : ν · u = 0}. Let further
H1
0 (�) be the subspace of H1(�) of all functions with vanishing Dirichlet trace, H1∗ (�)

be the subspace of H1(�) of all functions with vanishing mean, i.e. 〈u, 1〉L2(�) = 0 and
H1∗ (∂�) be the subspace of H1(∂�) of all functions with vanishing mean 〈u, 1〉L2(∂�) = 0.

3.3 Additional function spaces

Denote ∂xiu the partial derivative of a function u with respect to the variable xi. Let

∇u := (∂x1u, ∂x2u, ∂x3u)�,
div(u1, u2, u3)� := ∂x1u1 + ∂x2u2 + ∂x3u3,

curl(u1, u2, u3)� := (∂x2u3 + −∂x3u2, ∂x3u1 − ∂x1u3, ∂x1u2 − ∂x2u1)�.

For ε ∈ (
L∞(�)

)3x3 let divε u := div(εu). For a bounded Lipschitz domain �, let
∇∂ , div∂ and curl∂ = ν × ∇∂ be the respective differential operators for functions
defined on ∂�. We recall that for u ∈ L2(�) with curl u ∈ L2(�) the tangential trace
trν× u ∈ H−1/2(div∂ ; ∂�) := {u ∈ H−1/2(∂�) : div∂ u ∈ H−1/2(∂�)}, ‖u‖2H−1/2(div∂ ;∂�) :=
‖u‖2H−1/2(∂�) + ‖ div∂ u‖2H−1/2(∂�) is well defined and ‖ trν× u‖2H−1/2(div∂ ;∂�) is bounded by
a constant times ‖u‖2L2(�) + ‖ curl u‖2L2(�). Likewise for u ∈ L2(�) with div u ∈ L2(�)
the normal trace trν· u ∈ H−1/2(∂�) is well defined and ‖ trν· u‖2H−1/2(∂�) is bounded by a
constant times ‖u‖2L2(�) + ‖ div u‖2L2(�). Likewise for u ∈ L2(�) with divε u ∈ L2(�) the
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normal trace trν·ε u ∈ H−1/2(∂�) is well defined and ‖ trν·ε u‖2H−1/2(∂�) is bounded by a
constant times ‖εu‖2L2(�) + ‖ divε u‖2L2(�). For d ∈ {curl, div, divε, trν×, trν·, trν·ε} let

L2(d) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

L2(�), d = curl,
L2(�), d = div, divε,
L2t (∂�), d = trν×,
L2(∂�), d = trν·, trν·ε

. (14a)

Let

H (d;�) := {u ∈ L2(�) : du ∈ L2(d)}, (14b)

〈u, u′〉H (d;�) := 〈u, u′〉L2(�) + 〈du, du′〉L2(d), (14c)

H (d0;�) := {u ∈ H (d;�) : du = 0}. (14d)

Also for d1, d2, d3, d4 ∈ {curl, div, divε, trν×,trν·,trν·ε , curl0,div0,divε0,tr0ν×,tr0ν·,tr0ν·ε} let

H (d1, d2;�) := H (d1;�) ∩ H (d2;�),

〈u, u′〉H (d1 ,d2;�) := 〈u, u′〉L2(�) + 〈d1u, d1u′〉L2(d1) + 〈d2u, d2u′〉L2(d2), (14e)

and H (d1, d2, d3;�), H (d1, d2, d3, d4;�) be defined like-wise.

3.4 Assumption on the domain andmaterial parameters

Assumption 3.1 (Assumption on ε) Let ε ∈ (
L∞(�)

)3x3 be a real, symmetric matrix
function so that there exists cε > 0 with cε |ξ |2 ≤ ξHε(x)ξ for all x ∈ � and all ξ ∈ C

3.
We further assume that there exists a Lipschitz domain �̂ ⊂ � so that the closure of �̂ is
compact in � and ε|�\�̂ equals the identity matrix I3×3 ∈ C

3×3.

Let �̌ ⊂ � be a Lipschitz domain so that the closure of �̌ is compact in � and the
closure of �̂ ⊂ �̌ is compact in �̌. Let χ be infinitely many times differentiable, so that
χ |

�\�̌= 1 and χ |�̂= 0.

Assumption 3.2 (Assumption on μ) Let μ−1 ∈ (
L∞(�)

)3x3 be a real, symmetric matrix
function so that there exists cμ > 0 with cμ|ξ |2 ≤ ξHμ−1(x)ξ for all x ∈ � and all ξ ∈ C

3.
We further assume that μ|�\�̂ equals the identity matrix I3×3 ∈ C

3×3.

Assumption 3.3 (Assumption on�) Let� ⊂ R
3 be a bounded path-connected Lipschitz

domain so that there exists δ > 0 and the following shift theorem holds on �: Let f ∈
L2(�), g ∈ H1/2(∂�) with 〈f, 1〉L2(�) + 〈g, 1〉L2(∂�) = 0 and w ∈ H1∗ (�) be the solution to

−�w = f in �, n · ∇w = g at ∂�. (15a)

Then, the linear map (f, g) �→ w : L2(�) × H1/2(∂�) → H3/2+δ(�) is well defined and
continuous.

The above assumption holds e.g. for smooth domains and Lipschitz polyhedral [19,
Corollary 23.5].
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Assumption 3.4 (Assumption on �, ε and μ−1) Let ε,μ−1 and � be so that a unique
continuation principle holds, i.e. if u ∈ H (curl;�) solves

curlμ−1 curl u − ω2εu = 0 in �, (16a)

trν× u = 0 at ∂�, (16b)

trν× μ−1 curl u = 0 at ∂�, (16c)

then u = 0.

To our knowledge, the most general todays available result on the unique continuation
principle for Maxwell’s equations is the one of Ball et al. [5]. It essentially requires ε and
μ−1 to be piece-wiseW 1,∞.

3.5 Trace regularities and compact embeddings

We recall a classical result from Costabel [18]:

trν· ∈ L
(
H (curl, div, trν×;�), L2(∂�)

)
, (17a)

trν× ∈ L
(
H (curl, div, trν·;�),L2t (∂�)

)
, (17b)

and

The embeddings from H (curl, div, trν·;�) and H (curl, div, trν×;�)

toH1/2(�) are bounded. (18)

We adapt the trace results of Costabel to our setting in the next lemmata.

Lemma 3.5 Let ε suffice Assumption 3.1. Thence trν· ∈ L
(
H (divε;�), H−1/2(∂�)

)
, trν· =

trν·ε , trν·ε ∈ L
(
H (div;�), H−1/2(∂�)

)
, and trν·ε = trν·.

Proof Ifu ∈ H (divε;�) thenχu ∈ H (div;�). Sinceχ |
�\�̌= ε|

�\�̌= 1, it follows trν× u =
trν× χu = trν× εχu. The reverse direction follows the same way. ��

Lemma 3.6 Let ε suffice Assumption 3.1. Thence,

trν·ε ∈ L
(
H (curl, divε, trν×;�), L2(∂�)

)
, (19a)

trν× ∈ L
(
H (curl, divε, trν·ε ;�),L2t (∂�)

)
. (19b)

Proof Apply (17) to χu and employ Lemma 3.5. ��

We deduce the next lemma from Amrouche et al. [1].

Lemma 3.7 Let ε suffice Assumption 3.1 and � suffice Assumption 3.3. Thence, trν× ∈
L
(
H (curl, divε, tr0ν·ε ;�),Hδ

t (∂�)
)
. In particular trν× ∈ L

(
H (curl, divε, tr0ν·ε ;�),L2t (∂�)

)
is

compact.

Proof Apply the proof of [1, Proposition 3.7] to χu and employ Assumption 3.3 to
obtain χu ∈ H1/2+δ(�). Employ tr ∈ L

(
H1/2+δ(�),Hδ(∂�)

)
and the compact embed-

dingHδ
t (∂�) → L2t (∂�). ��
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For ε satisfying Assumption 3.1, we recall fromWeber [29]:

The embeddings from H (curl, divε, tr0ν·ε ;�) and H (curl, divε, tr0ν×;�)

to L2(�) are compact. (20)

Lemma 3.8 Let ε suffice Assumption 3.1. Thence, the embedding H (curl, divε, trν×;�) →
L2(�) is compact.

Proof Let E : H (curl, divε, trν·ε ;�) → L2(�) : u �→ u. Let M(α) be the multiplication
operator with symbol α. We split the identity operator in two parts I = M(χ )+M(1−χ ).
Thence, EM(χ ) is compact due to (18) and EM(1 − χ ) is compact due to (20). Hence,
E = EM(χ ) + EM(1 − χ ) is compact too. ��

3.6 Helmholtz decomposition on the boundary

We recall from Buffa, Costabel and Sheen [7, Theorem 5.5]:

L2t (∂�) = ∇∂H1(∂�) ⊕⊥ curl∂ H1(∂�). (21)

and denote the respective orthogonal projections by

P∇∂
: L2t (∂�) → ∇∂H1(∂�), P∇�

∂
: L2t (∂�) → curl∂ H1(∂�). (22)

Recall div∂ trν× ∈ L
(
H (curl;�), H−1/2(∂�)

)
. So for u ∈ H (curl;�) let z be the solution to

find z ∈ H1∗ (∂�) so that

〈∇∂z,∇∂z′〉L2t (∂�) = −〈div∂ trν× u, z′〉H−1(∂�)×H1(∂�) (23)

for all z′ ∈ H1∗ (∂�) and set

Su := ∇∂z. (24)

From the construction of S, it follows S ∈ L
(
H (curl;�),L2t (∂�)

)
and further

Su = P∇∂
trν× u for each u ∈ H (curl, trν×;�). (25)

4 The electromagnetic Steklov eigenvalue problem
Let ω > 0 be fixed. For λ ∈ C, let A(λ) ∈ L

(
H (curl, trν×;�)

)
be defined through

〈A(λ)u, u′〉H (curl,trν× ;�) := 〈μ−1 curl u, curl u′〉L2(�) − ω2〈εu, u′〉L2(�)

− λ〈trν× u, trν× u′〉L2t (∂�) for all u, u′ ∈ H (curl, trν×;�).

(26)

The electromagnetic Steklov eigenvalue problem, which we investigate in this note, is to

find (λ, u) ∈ C × H (curl, trν×;�) \ {0} so that A(λ)u = 0. (27)

We note that the sign of λ herein is reversed compared to [12]. Let
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〈u, u′〉X̃ := 〈μ−1 curl u, curl u′〉L2(�) + 〈εu, u′〉L2(�) + 〈trν× u, trν× u′〉L2t (∂�) (28)

for all u, u′ ∈ H (curl, trν×;�). It is straightforward to see that the norms induced by
〈·, ·〉X̃ and 〈·, ·〉H (curl,trν× ;�) are equivalent. To analyze the operator A(λ), we introduce the
following subspaces of H (curl, trν×;�):

V := H (curl, divε0, trν×, tr0ν·ε ;�), (29a)

W1 := H (curl0, divε0, trν×;�) ∩ W⊥X̃
2 , (29b)

W2 := H (curl0, tr0ν×;�). (29c)

We recall [26, Theorem 4.3 and Remark 4.4]:

KN (�) := {∇u : u ∈ H1(�), divε u = 0 in �,

tr u is constant on each of the connected parts of ∂�} (30)

and dimKN (�) = number of connected parts of ∂� − 1 < ∞. It holds

W2 = ∇H1
0 (�) ⊕⊥X̃ KN (�). (31)

Thus,

W1 = {∇u : u ∈ H1(�), divε u = 0 in �, trν·ε ∇u ∈ L2(∂�),

〈trν·ε ∇u, 1〉L2(�) = 0 for each � of the connected parts of ∂�}. (32)

We continue with a decomposition of H (curl, trν×;�), which is similar but different to
Halla [22, Theorem 3.1].

Theorem 1 Let ε suffice Assumption 3.1 and μ suffice Assumption 3.2. Thence,

H (curl, trν×;�) = (V ⊕ W1) ⊕⊥X̃ W2 (33)

in the following sense. There exist projections PV , PW1 , PW2 ∈ L
(
H (curl, trν×;�)

)
with

ran PV = V, ran PW1 = W1, ran PW2 = W2, W1,W2 ⊂ ker PV , V,W2 ⊂ ker PW1 , V,W1 ⊂
ker PW2 and u = Pvu+PW1u+PW2u for each u ∈ H (curl, trν×;�). Thus, the norm induced
by

〈u, u′〉X := 〈PV u, PV u′〉X̃ + 〈PW1u, PW1u′〉X̃ + 〈PW2u, PW2u′〉X̃ , (34)

u, u′ ∈ H (curl, trν×;�), is equivalent to ‖ · ‖H (curl,trν×;�).

Proof 1. Step: Let PW2 be the X̃-orthogonal projection onto W2. Hence, PW2 ∈
L
(
H (curl, trν×;�)

)
is a projection with rangeW2 and kernel

W
⊥H (curl,trν× ;�)
2 ⊃ V,W1.
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2a. Step: Let u ∈ H (curl, trν×;�). Note that due to divε(u−PW2u) = 0 and Lemma 3.6
it hold trν·ε(u − PW2u) ∈ L2(∂�) and 〈trν·ε(u − PW2u), 1〉L2(�) = 0 for each � of the
connected parts of ∂�. Let w∗ ∈ H1∗ (�) be the unique solution to

− divε ∇w∗ = 0 in �, ν · ε∇w∗ = trν·ε(u − PW2u) at ∂�.

Let PW1u := ∇w∗. By construction of PW1 and due to Lemma 3.6, it holds PW1 ∈
L
(
H (curl, trν×;�)

)
and ran PW1 ⊂ W1. Letu ∈ W1. Then,PW2u = 0 and hencePW1u = u.

Thus, PW1 is a projection and ran PW1 = W1.
2b. Step: If u ∈ W2 then u−PW2u = 0, further trν·ε(u−PW2u) = 0 and thus PW1u = 0.

Thus,W2 ⊂ ker PW1 . If u ∈ V then PW2u = 0, further trν·ε(u − PW2u) = trν·ε u = 0 and
thus PW1u = 0. Hence, V ⊂ ker PW1 .
3. Step: Let u ∈ H (curl, trν×;�) and PV u := u − PW1u − PW2u. It follows PV ∈

L
(
H (curl, trν×;�)

)
, PV u ∈ V and PV PV u = PV u. If u ∈ V , then PV u = u, and hence,

ran PV = V . It follows furtherW1,W2 ⊂ ker PV .
4. Step: By means of the triangle inequality and a Young inequality, it holds.

‖u‖2X̃ = ‖PV u + PW1u + PW2u‖2X̃ ≤ 3
(‖PV u‖2X̃ + ‖PW1u‖2X̃ + ‖PW2u‖2X̃

) = 3‖u‖2X .

On the other hand, due to the boundedness of the projections

‖u‖2X = ‖PV u‖2X̃ + ‖PW1u‖2X̃ + ‖PW2u‖2X̃
≤ (‖PV ‖2L(X̃) + ‖PW1‖2L(X̃) + ‖PW2‖2L(X̃)

)‖u‖2X̃ .

Thus, ‖ · ‖X is equivalent to ‖ · ‖X̃ . Since ‖ · ‖X̃ is equivalent to ‖ · ‖H (curl,trν×;�), ‖ · ‖X is
also equivalent to ‖ · ‖H (curl,trν×;�). ��

Let us look at A(λ) in light of this substructure of H (curl, trν×;�). To this end, we
consider the space

X := H (curl, trν×;�), 〈·, ·〉X as defined in (34). (35)

It follows that PV , PW1 and PW1 are even orthogonal projections in X . Let further
AX (·), Ac, Aε , Atr ∈ L(X) be defined through

〈AX (λ)u, u′〉X := 〈A(λ)u, u′〉H (curl,trν×;�) for all u, u′ ∈ X, λ ∈ C (36a)

〈Acu, u′〉X := 〈μ−1 curl u, curl u′〉L2(�) for all u, u′ ∈ X, (36b)

〈Aεu, u′〉X := 〈εu, u′〉L2(�) for all u, u′ ∈ X, (36c)

〈Atru, u′〉X := 〈trν× u, trν× u′〉L2t (∂�) for all u, u′ ∈ X. (36d)

From the definitions of V,W1 andW2, we deduce that

AX (λ) = (PV + PW1 + PW2 )(Ac − ω2Aε − λAtr)(PV + PW1 + PW2 )

= PVAcPV − ω2(PVAεPV + PW1AεPW1 + PW2AεPW2

)

− λ(PV + PW1 )Atr(PV + PW1 )
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= PVAcPV − ω2(PVAεPV + PW1AεPW1 + PW2AεPW2

)

− λ
(
PVAtrPV + PW1AtrPW1 + PVAtrPW1 + PW1AtrPV

)
. (37)

If we identifyX ∼ V ×W1 ×W2 and X � u ∼ (v, w1, w2) ∈ V ×W1 ×W2, we can identify
AX (λ) with the block operator

⎛

⎜
⎝
PV (Ac − ω2Aε − λAtr)|V −λPVAtr|W1

−λPW1Atr|V −PW1 (ω2Aε + λAtr)|W1

−ω2PW2Aε |W2

⎞

⎟
⎠ . (38)

Theorem 2 Let ε suffice Assumption 3.1, μ suffice Assumption 3.2 and � suffice Assump-
tion 3.3. Thence, AX (λ) is Fredholm if and only if λ ∈ C\ {0}. If in addition Assumption 3.4
holds true, then σ

(
A(·)) ⊂ R and σ

(
A(·)) \ {0} consists of an at most countable set of

eigenvalues with finite algebraic multiplicity which have no accumulation point inR \ {0}.
Proof The first statement follows fromTheorem3.2 andCorollary 3.4 of [22]. The second
statement can be seen as in the proof of Corollary 3.3 of [22]. ��
From (37) or (38), we recognize that any eigenfunction u ∈ X satisfies PW2u = w2 = 0.

Hence, to study the eigenvalues of AX (·) it suffices to study

(PV + PW1 )AX (λ)|V⊕W1

∼
(
PV (Ac − ω2Aε − λAtr)|V−λPVAtr|W1

−λPW1Atr|V−PW1 (ω2Aε + λAtr)|W1

)
.

(39)

5 Spectrum in the neighborhood of zero
First, we establish in Theorem 3 the absence of eigenvalues ofAX (·) in (0, c) for sufficiently
small c > 0. Later on in Theorem 4, we establish the existence of an infinite sequence of
negative eigenvalues of AX (·) which accumulate at zero.

5.1 Spectrum right of zero

We will require in this section the following additional assumption.

Assumption 5.1 (ω2 is no Neumann eigenvalue) PVAc|V−ω2PVAε |V∈ L(V ) is bijective.

Due toAssumption5.1,weknow thatPV (Ac−ω2Aε)|V is invertible.Thus, by aNeumann
series argument PV (Ac − ω2Aε − λAtr)|V∈ L(V ) is invertible too for all

|λ| <
1

‖(PV (Ac − ω2Aε)|V )−1PVAtr|V ‖L(V )
(40)

and thence it holds

‖(PV (Ac − ω2Aε − λAtr)|V )−1‖L(V )

≤ 1
1 − λ‖(PV (Ac − ω2Aε)|V )−1PVAtr|V ‖L(V )

. (41)
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For λ satisfying (40), we build the Schur-complement of (PV + PW1 )AX (λ)|V⊕W1 with
respect to PV u = v:

AW1 (λ) := −ω2PW1Aε |W1−λ(PW1Atr|W1+HW1 (λ)) ∈ L(W1), (42a)

HW1 (λ) := λPW1Atr(PV (Ac − ω2Aε − λAtr)|V )−1PVAtr|W1∈ L(W1). (42b)

It is straightforward to see, that forλ satisfying (40),λ is an eigenvalue toAX (·) if and only
if λ is an eigenvalue to AW1 (·). Hence, to study the eigenvalues of AX (·) in a neighborhood
of zero, it completely suffices to study the eigenvalues ofAW1 (·) in a neighborhood of zero.
For

|λ| <
1

2‖(PV (Ac − ω2Aε)|V )−1PVAtr|V ‖L(V )
(43)

we deduce

‖HW1 (λ)‖L(W1) ≤ λ2‖PV ‖L(X)‖PW1‖L(X)‖Atr‖2L(X). (44)

Let Btr ∈ L
(
X,L2t (∂�)

)
: u �→ trν× u so that

Atr = B∗
trBtr. (45)

Lemma 5.2 Let Assumptions 3.1 hold true. Thence, PW1Atr|W1 is strictly positive definite,
i.e.

inf
w1∈W1\{0}

〈(PW1Atr|W1 )w1, w1〉X
‖w1‖2X

> 0. (46)

Proof Atr is self-adjoint and positive semi-definite due to (45) and hence so is PW1Atr|W1 .
PW1Atr|W1 is weakly coercive due to Lemma 3.8 and curlw1 = 0 for each w1 ∈ W1.
PW1Atr|W1 is injective since w1 ∈ W1 ∩ ker(PW1Atr|W1 ) implies w1 ∈ W2 and hence
w1 = 0. Since PW1Atr|W1 is self-adjoint, positive semi-definite and bijective, it is already
strictly positive definite. ��

Lemma 5.3 Let Assumptions 3.1–3.3 and 5.1 hold true. Thence, there exists c0 > 0 so that
PW1Atr|W1+HW1 (λ) is strictly positive definite, i.e.

inf
w1∈W1\{0}

〈(PW1Atr|W1+HW1 (λ))w1, w1〉X
‖w1‖2X

> 0, (47)

for each λ ∈ (−c0, c0).

Proof It is straightforward to see that HW1 (λ) self-adjoint for λ ∈ R satisfying (40). The
inverse triangle inequality, Lemma 5.2 and (43), (44) yield the claim. ��

Theorem 3 Let Assumptions 3.1–3.4 and 5.1 hold true and c0 be as in Lemma 5.3. Thence,
σ
(
AX (·)

) ∩ (0, c0) = ∅.
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Proof For λ ∈ (0, c0), we can build the Schur-complement AW1 (λ) of AX (λ) with respect
to PV u = v and AX (λ) is bijective if and only if AW1 (λ) is so. It follows from the definition
(42a) of AW1 (λ) and Lemma 5.3 that AW1 (λ) is strictly positive definite for λ ∈ (0, c0) and
hence bijective. ��

5.2 Spectrum left of zero

To study the eigenvalues of AW1 (·) in (−c0, 0), we introduce

AW1 (τ , λ) := −ω2PW1Aε |W1−τ (PW1Atr|W1+HW1 (λ)). (48)

We notice that λ ∈ (−c0, 0) is an eigenvalue of AW1 (·), if and only if τ is an eigenvalue of
AW1 (·, λ) and τ = λ. We prove the existence of infinite eigenvalues of AW1 (·) in (−c0, 0)
by the fixed point technique outlined in [11].

Lemma 5.4 Let Assumptions 3.1–3.4 and 5.1 hold true and c0 be as in Lemma 5.3. Let
λ ∈ (−c0, c0). The spectrum of AW1 (·, λ) consists of σess

(
AW1 (·, λ)

) = {0} and an infinite
sequence of negative eigenvalues (τn(λ))n∈N which accumulate at zero.

Proof Due to Lemma 5.3 (PW1Atr|W1+HW1 (λ))−1/2 is well defined and self-adjoint. It
holds dimW1 = ∞ due to (32). The spectra of AW1 (·, λ) and

(PW1Atr|W1+HW1 (λ))−1/2AW1 (·, λ)(PW1Atr|W1+HW1 (λ))−1/2

= −ω2(PW1Atr|W1+HW1 (λ))−1/2PW1Aε |W1 (PW1Atr|W1+HW1 (λ))−1/2 − ·IW1

coincide. The latter is the pencil of a standard eigenvalue problem for a compact self-
adjoint non-positive injective operator on an infinite-dimensional Hilbert space and
respective properties follow. ��

Lemma 5.5 Let Assumptions 3.1–3.4 and 5.1 hold true and c0 be as in Lemma 5.3. Let the
sequence of negative eigenvalues (τn(λ))n∈N to the operator function AW1 (·, λ) be ordered
non-decreasingly with multiplicity taken into account. The function (−c0, c0) → R : λ �→
τn(λ) is continuous for each n ∈ N.

Proof Follows from the ordering of (τn(λ))n∈N and [23, Sect. 3] or [27, Proposition 5.4]. ��

Theorem 4 Let Assumptions 3.1–3.4 and 5.1 hold true. Thence, there exists an infinite
sequence (λn)n∈N of negative eigenvalues to AX (·) which accumulate at zero.

Proof Let (τn(λ))n∈N be as in Lemma5.5. Letλ ∈ (−c0, 0). Letn1 ∈ Nbe so thatλ < τn1 (λ).
Consider the function f1(t) := τn1 (t) − t. It holds: f1 is continuous on (−c0, c0) due to
Lemma 5.5, f1(λ) > 0 and f1(0) = τn1 (0) < 0. It follows from the intermediate value
theorem that there exists λ1 ∈ (λ, 0) with f1(λ1) = 0, i.e. λ1 is an eigenvalue to AW1 (·).
Let now λ ∈ (λ1, 0) and n2 ∈ N be so that λ < τn2 (λ). We can repeat the former
procedure to construct a second eigenvalue λ2 ∈ (λ1, 0) to AW1 (·). Since λ2 ∈ (λ1, 0), λ2 is
distinct from λ1.We can repeat the former procedure inductively to construct a sequence
(λn ∈ (−c0, 0))n∈N of pairwise distinct eigenvalues to AW1 (·). As already discussed, the
spectra of AW1 (·) and AX (·) coincide on the ball (40). Since [−c0, 0] is compact and the
sequence (λn ∈ (−c0, 0))n∈N has an infinite index set, (λn)n∈N admits a cluster point in
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[−c0, 0]. Due to Theorem 2 σ
(
AX (·)

)
admits no cluster points in C \ {0}. Thus, (λn)n∈N

accumulate at zero. The claim is proven. ��

6 Spectrum in the neighborhood of infinity
First, we establish in Theorem 5 the absence of eigenvalues of AX (·) in the interval
(−∞,−c) for sufficiently large c > 0. Later on in Theorem 6, we establish the existence
of an infinite sequence of positive eigenvalues of AX (·) which accumulate at +∞.

6.1 The spectrum near negative infinity

We require the following additional assumption for Theorem 5.

Assumption 6.1 (ω2 is no Dirichlet eigenvalue) There exists no nontrivial solution u ∈
H (curl, tr0ν×;�) to curlμ−1 curl u − ω2εu = 0 in �.

Lemma 6.2 (Nitsche penalty technique)LetAssumptions 3.1–3.3hold true. Let f ∈ L2(�)
and u ∈ H (curl, tr0ν×;�) be the solution to curlμ−1 curl u + εu = f in �. For λ > 0 let
uλ ∈ H (curl, trν×;�) be the solution to

〈μ−1 curl uλ, curl u′〉L2(�) + 〈εuλ, u′〉L2(�) + λ〈trν× uλ, trν× u′〉L2t (∂�) = 〈f, u′〉L2(�)

for all u′ ∈ H (curl, trν×;�). Then, there exist C, λ0 > 0 so that ‖u−uλ‖H (curl,trν×;�) ≤ C/λ

for all λ > λ0.

Proof We are not aware of a direct appropriate reference for this lemma. Although we
believe that the technique applied in this proof is common knowledge. We introduce
mixed equations for u (and uλ) as e.g. in [28] as follows. Let f̂ ∈ X be so that 〈f̂ , u′〉X =
〈f, u′〉L2(�) for all u′ ∈ X . Due to u ∈ H (curl, tr0ν×;�) and Assumption 3.2, it follows φ :=
ν × trν× μ−1 curl u ∈ L2t (∂�). It holds φλ := ν × trν× μ−1 curl uλ = λ trν× uλ ∈ L2t (∂�)
too. Integration by parts yields that (u,φ), (uλ,φλ) ∈ X × L2t (∂�) solve

(
Ac + Aε B∗

tr
Btr 0

) (
u
φ

)

=
(
f̂
0

)

(49)

and
(
Ac + Aε B∗

tr
Btr −λ−1IL2t (∂�)

) (
uλ

φλ

)

=
(
f̂
0

)

(50)

respective. Both (49) and (50) are stable saddle point problems [6, Theorem 4.3.1]. Since
(50) is a perturbation of (49) by magnitude λ−1, the claim follows. ��

Theorem 5 Let Assumptions 3.1–3.4 and 6.1 hold true. Thence, there exists c > 0 so that
AX (λ) is bijective for all λ ∈ (−∞,−c).

Proof Assume the contrary. Thus, there exists a sequence (λn < 0)n∈N with limn∈N λn =
−∞, so that AX (λn) is not bijective. Due Theorem 2 (λn)n∈N are eigenvalues of AX (·).
Hence, let (un ∈ X)n∈N be a corresponding sequence of normalized eigenfunctions:
AX (λn)un = 0 and ‖un‖X = 1 for each n ∈ N. It follows
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un = (ω2 + 1)(Ac + Aε + |λn|Atr)−1Aεun. (51)

As already discussed at the end of Sect. 4, it holds un ∈ V ⊕ W1 for each n ∈ N. Denote
E ∈ L

(
X,L2(�)

)
the embedding operator and Mε ∈ L

(
L2(�)

)
the multiplication oper-

ator with symbol ε. Thus, Aε = E∗MεE. Due to Lemma 3.8, there exist f ∈ L2(�) and
a subsequence (n(m))m∈N so that limm∈N Eun(m) = f . Let u ∈ H (curl, tr0ν×;�) be the
solution to curlμ−1 curl u + εu = εf in �. It follows from Lemma 6.2 and (51) that
limm∈N un(m) = (ω2 + 1)u in X . Since curlμ−1 curl un(m) − ω2εun(m) = 0 in � for each
m ∈ N, it follows that curlμ−1 curl u − ω2εu = 0 in � as well. Due to Assumption 6.1
it holds u = 0, which is a contradiction to ‖un(m)‖X = 1 for each m ∈ N. The claim is
proven. ��

6.2 The spectrum near positive infinity

PW1Atr|W1∈ L(W1) is strictly positive definite due to Lemma 5.2. Hence, there exists
c∞ > 0 so that

PW1 (ω2Aε + λAtr)|W1= λPW1 (ω2λ−1Aε + Atr)|W1 (52)

is coercive and thus bijective for each λ ∈ C with |λ| > c∞. (Since Aε is positive semi
definite, it follows even thatPW1 (ω2Aε+λAtr)|W1 is coercive for eachλ ∈ C\R−

0 .However,
we will not use this fact.) Hence for |λ| > c∞ we build and study the Schur-complement
of (PV + PW1 )AX (λ)|V⊕W1 with respect to PW1u = w1:

AV (λ) := PV (Ac − ω2Aε)|V−λKV (λ) ∈ L(V ), (53a)

KV (λ) := PV (Atr − AtrSV (λ)PW1Atr)|V∈ L(V ), (53b)

SV (λ) :=
(
PW1 (ω2λ−1Aε + Atr)|W1

)−1 ∈ L(W1). (53c)

It is straightforward to see that for λ satisfying |λ| > c∞, λ is an eigenvalue to AX (·)
if and only if λ is an eigenvalue to AV (·). Hence to study the eigenvalues of AX (·) in
a neighborhood of infinity, it completely suffices to study the eigenvalues of AV (·) in a
neighborhood of infinity. It will be more convenient to work with λ−1 instead of λ. Hence
let

ÃV (λ̃) := λ̃AV (λ̃−1) = λ̃PV (Ac − ω2Aε)|V−K̃V (λ̃) ∈ L(V ), (54a)

K̃V (λ̃) := KV (λ̃−1) = PV (Atr − AtrS̃V (λ̃)PW1Atr)|V∈ L(V ), (54b)

S̃V (λ̃) := SV (λ̃−1) =
(
PW1 (ω2λ̃Aε + Atr)|W1

)−1 ∈ L(W1), (54c)

for λ̃ ∈ C with |λ̃| < c−1∞ . Again, it is straightforward to see that λ̃ with 0 < |λ̃| < c−1∞ is
an eigenvalue to ÃV (·) if and only if λ̃−1 with |λ̃−1| > c∞ is an eigenvalue to AV (·). Thus,
we study the eigenvalues of ÃV (·) in the ball

Bc−1∞ := {z ∈ C : |z| < c−1∞ }. (55)

To this end, we introduce
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ÃV (τ̃ , λ̃) := τ̃PV (Ac − ω2Aε)|V−K̃V (λ̃). (56)

We note that λ̃ ∈ Bc−1∞ is an eigenvalue of ÃV (·), if and only if τ̃ is an eigenvalue of ÃV (·, λ̃)
and τ̃ = λ̃ ∈ Bc−1∞ .
We would like to proceed as in Sect. 5. Operator K̃V (λ̃) is compact due Lemma 3.7.

However, different to Sect. 5, PV (Ac − ω2Aε)|V is (for arbitrary ω > 0) not definite!
Moreover, K̃V (λ̃) is not injective! Indeed, {curl f : f ∈ (C∞

0 (�̂\�̌))3} ⊂ ker K̃V (λ̃). There-
fore, we introduce the abstract Lemma 6.3. Subsequently, we prove that the conditions of
Lemma 6.3 are satisfied and the lemma can be employed for our particular application.
We derive the results aimed at in Lemma 6.12 and consequently continue the analysis in
the same manner as in Sect. 5.

Lemma 6.3 Let Y be a separable Hilbert space. Let G ∈ L(Y ) be compact, self-adjoint
and I +G be bijective. Let K ∈ L(Y ) be compact, self-adjoint, positive semi-definite and so
that kerK = ker(K 1/2(I +G)K 1/2) and dim(kerK )⊥ = ∞. Let P(kerK )⊥ be the orthogonal
projection onto (kerK )⊥ and P(kerK )⊥ (I + G)|(kerK )⊥ be bijective.
Then, the spectra of (I + G)K and K 1/2(I + G)K 1/2 coincide and consist of the essential

spectrum {0} and an infinite sequence (τn ∈ R)n∈N of nonzero eigenvalues. Apart from a
finite set, all (τn)n∈N are positive and it holds limn∈N τn = 0.

Proof 1. Step: If (τ , y) ∈ C\{0} × Y \{0} solves
(
τ I − (I + G)K

)
y = 0,

then K 1/2y �= 0 and

0 = K 1/2
(
τ I − (I + G)K

)
y =

(
τ I − K 1/2(I + G)K 1/2

)
K 1/2y.

Vice versa, if (τ , y′) ∈ C\{0} × Y \{0} solves
(
τ I − K 1/2(I + G)K 1/2

)
y′,

then (I + G)K 1/2y′ �= 0 and

0 =
(
I + G)K 1/2(τ I − K 1/2(I + G)K 1/2

)
y′ =

(
τ I − (I + G)K

)
(I + G)K 1/2y′.

By assumption, (I + G)Ky = 0 if and only if K 1/2(I + G)K 1/2y = 0. Thus, the spectra of
(I + G)K and K 1/2(I + G)K 1/2 coincide.
2. Step: Since K 1/2(I + G)K 1/2 is compact and self-adjoint and Y is separable with

dim Y ≥ dim(kerK )⊥ = ∞ the Spectral Theorem for compact, self-adjoint opera-
tors yields: The spectrum of K 1/2(I + G)K 1/2 consists of the essential spectrum {0} and
an infinite sequence of eigenvalues (τn ∈ R)n∈N (with multiplicity taken into account),
limn∈N τn = 0 and there exists an orthonormal basis (yn)n∈N of corresponding eigenele-
ments. Due to dim(kerK )⊥ = ∞, there exists an infinite index setM ⊂ N so that τm �= 0
for eachm ∈ M.
3. Step: It remains to prove that all (τm)m∈M apart from a finite set are positive. To this

end, we apply a technique which is inspired by [25, Sect. 3]. Let
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Ỹ := span{ym : m ∈ M}cl = (kerK 1/2(I + G)K 1/2)⊥ = (kerK )⊥

and denote PỸ the orthogonal projection onto Ỹ . We note that for each y ∈ Y , y0 ∈ kerK
it holds

〈K 1/2y, y0〉Y = 〈y, K 1/2y0〉Y = 0.

Thus, ranK 1/2 ⊂ (kerK )⊥ = Ỹ and so (τ I + K )1/2Ỹ ⊂ Ỹ . Let G = G+ − G− so that G+
and G− are compact, self-adjoint and positive semi-definite, i.e. a decomposition of G in
the positive and the negative part. For τ > 0, we compute

(
τ I + K 1/2(I + G)K 1/2)|Ỹ = (

τ I + K + K 1/2GK 1/2)|Ỹ
= (τ I + K )1/2

(
I − (PỸ (τ I + K )|Ỹ )−1/2

K 1/2(G1/2
+ G1/2

+ − G1/2
− G1/2

− )K 1/2(PỸ (τ I + K )|Ỹ )−1/2
)

× (τ I + K )1/2|Ỹ .

By means of the Spectral Theorem for compact, self-adjoint operators, we deduce that
(PỸ (τ I + K )|Ỹ )−1/2K 1/2 converges point-wise to PỸ for τ → 0+. Since G1/2

± is compact,
it follows that (PỸ (τ I + K )|Ỹ )−1/2K 1/2G1/2

± converges to PỸ G
1/2
± in L(Y ) for τ → 0+.

Hence,
(
(PỸ (τ I + K )|Ỹ )−1/2K 1/2G1/2

±
)∗ = G1/2

± K 1/2(PỸ (τ I + K )|Ỹ )−1/2PỸ

converges to (PỸ G
1/2
± )∗ = G1/2

± PỸ in L(Y ). Thus

PỸ
(
I − (PỸ (τ I + K )|Ỹ )−1/2K 1/2GK 1/2(PỸ (τ I + K )|Ỹ )−1/2

)
|Ỹ (57)

converges in norm to PỸ (I − G)|Ỹ . Hence, there exists c > 0 so that (57) is bijective for
all τ ∈ (0, c). Since for each τ ∈ (0, c), (τ I + K 1/2(I + G)K 1/2)|Ỹ∈ L(Ỹ ) is a composition
of three bijective operators in L(Ỹ ), it is bijective. Due to limm∈M τm = 0 there can only
exist a finite number ofm ∈ M with τm < 0. ��

Lemma 6.4 Let Assumptions 3.1–3.3 hold true. Thence K̃V (λ̃) is compact, self-adjoint and
positive semi-definite for each λ̃ ∈ [0, c−1∞ ). It holds further ker K̃V (λ̃) = kerBtr for each
λ̃ ∈ (0, c−1∞ ).

Proof Let λ̃ ∈ [0, c−1∞ ). K̃V (λ̃) is compact due Lemma 3.7. It follows from the definition of
K̃V (λ̃) that K̃V (λ̃) is self-adjoint. Let v ∈ V and w1 := S̃V (λ̃)PW1B∗

trBtrv. We compute

〈Btrw1, Btrw1〉L2t (∂�) ≤ 〈Btrw1, Btrw1〉L2t (∂�) + ω2λ̃〈εw1, w1〉L2(�)

= 〈(Atr + ω2λ̃Aε)w1, w1〉X
= 〈(Atr + ω2λ̃Aε)S̃V (λ̃)PW1B∗

trBtrv, w1〉X
= 〈Btrv, Btrw1〉L2t (∂�) ≤ ‖Btrv‖L2t (∂�)‖Btrw1‖L2t (∂�)

and hence ‖BtrS̃V (λ̃)PW1B∗
trBtrv‖L2t (∂�) = ‖Btrw1‖L2t (∂�) ≤ ‖Btrv‖L2t (∂�). Thus
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〈BtrS̃V (λ̃)PW1B∗
trBtrv, Btrv〉L2t (∂�) ≤ ‖BtrS̃V (λ̃)PW1B∗

trBtrv‖L2t (∂�)‖Btrv‖L2t (∂�)

≤ ‖Btrv‖L2t (∂�)‖Btrv‖L2t (∂�).

Hence

〈K̃V (λ̃)v, v〉X = 〈(Atr − AtrS̃V (λ̃)PW1Atrv, v〉X
= 〈Btrv, Btrv〉L2t (∂�) − 〈BtrS̃V (λ̃)PW1B∗

trBtrv, Btrv〉L2t (∂�) ≥ 0. (58)

Let λ̃ ∈ (0, c−1∞ ). Let Btrv �= 0. If PW1B∗
trBtrv = 0 it follows S̃V (λ̃)PW1B∗

trBtrv = 0 and (58)
is strict. So let PW1B∗

trBtrv �= 0. It follows w1 �= 0 and hence 〈εw1, w1〉L2(�) > 0. Since
w1 ∈ W1, it also holds ‖Btrw1‖L2t (∂�) �= 0. So in this case ‖BtrS̃V (λ̃)PW1B∗

trBtrv‖L2t (∂�) <

‖Btrv‖L2t (∂�) and (58) is strict too. Thus K̃V (λ̃)v �= 0. On the other hand: If Btrv = 0,
then also K̃V (λ̃)v = 0 due to the definition of K̃V (λ̃). Thus ker K̃V (λ̃) = kerBtr for each
λ̃ ∈ (0, c−1∞ ). ��

Lemma 6.5 Let Assumptions 3.1–3.3 hold true. Thence K̃V (0) = B∗
trP∇∂

Btr.

Proof Let P ∈ L
(
L2t (∂�)

)
be the L2t (∂�)-orthogonal projection onto the closure of

ran Btr|W1 . It follows from the definition of K̃V (0) that K̃V (0) = B∗
tr(I − P)Btr. The

claim is proven, if we show that ranBtr|W1= curl∂ H1(∂�). It follows from the defini-
tion ofW1 that ran Btr|W1⊂ curl∂ H1(∂�). Let φ ∈ curl∂ H1(∂�) and ψ ∈ H1(∂�) so that
φ = curl∂ ψ = ν×∇∂ψ . Let w̃ ∈ H1(�) solve divε ∇w̃ = 0 in� and tr w̃ = ψ at ∂�.With
(31), it follows ∇w̃ − PW2∇w̃ =: w ∈ W1 and Btrw = φ. Thus, ranBtr|W1= curl∂ H1(∂�)
and

K̃V (0) = B∗
tr(I − P)Btr = B∗

tr(I − P∇⊥
∂
)Btr = B∗

trP∇∂
Btr.

��

Lemma 6.6 Let Assumptions 3.1, 3.2, 3.3 hold true. Thence,

dim(kerBtr|V )⊥V = dim(ker P∇∂
Btr|V )⊥V = ∞.

Proof Let (fn)n∈N be an orthonormal basis of ∇∂H1(∂�) ⊂ L2t (∂�). Let un ∈ H (curl;�)
be so that trν× un = fn. Hence un ∈ X . It follows

P∇∂
Btr(PV un + ker P∇∂

Btr|V ) = fn.

Thus if
∑N

n=1 cn(PV un + ker P∇∂
Btr|V ) would be a nontrivial linear combination of zero

in V /(ker P∇∂
Btr|V ), then ∑N

n=1 cnfn would be a nontrivial linear combination of zero in
∇∂H1(∂�). Hence, dimV /(ker P∇∂

Btr|V ) = +∞. Since kerBtr ⊂ ker P∇∂
Btr, it follows

dimV /(kerBtr|V ) ≥ dimV /(ker P∇∂
Btr|V ) and thus the dimension of dimV /(kerBtr|V is

infinite too. The claim follows from dimV /Z = dimZ⊥V for any closed subspace Z ⊂ V .
��

We require the following additional assumption for Lemma 6.8.



18 Page 20 of 24 M. Halla ResMath Sci (2023) 10:18

Assumption 6.7 (ω2 is no “Dirichlet” eigenvalue) Let

Z1 := {z ∈ V : Btrz = 0} = H (curl, divε0, tr0ν×, tr0ν·ε ;�)

and denote PZ1 the X-orthogonal projection onto Z1. The operator

PZ1Ac|Z1−ω2PZ1Aε |Z1∈ L(Z1)

is bijective.

Lemma 6.8 Let Assumptions 3.1–3.3, 5.1 and 6.7 hold true. Let λ̃ ∈ (0, c−1∞ ). Thence

ker
(
K̃V (λ̃)1/2

(
PV (Ac − ω2Aε)|V

)−1K̃V (λ̃)1/2
)

= ker K̃V (λ̃).

Proof Let v ∈ ker
(
K̃V (λ̃)1/2

(
PV (Ac − ω2Aε)|V

)−1K̃V (λ̃)1/2
)
and

z := (
PV (Ac − ω2Aε)|V

)−1K̃V (λ̃)1/2
)
v.

It followsBtrz = 0 due to kerKV (λ̃)1/2 = kerKV (λ̃) and Lemma 6.4. Due to the definitions
of z and Z1, z ∈ Z1 solves

(PZ1Ac − ω2PZ1Aε)z = 0.

It follows from Assumption 6.7 that z = 0. Thus, v ∈ kerKV (λ̃)1/2 = kerKV (λ̃). ��
We require the following additional assumption for Lemma 6.10.

Assumption 6.9 (ω2 is no “hybrid” eigenvalue) Let

Z2 := {z ∈ V : P∇∂
Btrz = 0}

and denote PZ2 the X-orthogonal projection onto Z2. The operator

PZ2Ac|Z2−ω2PZ2Aε |Z2∈ L(Z2)

is bijective.

Lemma 6.10 Let Assumptions 3.1–3.3, 5.1 and 6.9 hold true. Thence,

ker
(
K̃V (0)1/2

(
PV (Ac − ω2Aε)|V

)−1K̃V (0)1/2
)

= ker K̃V (0).

Proof Let v ∈ ker
(
K̃V (0)1/2

(
PV (Ac − ω2Aε)|V

)−1K̃V (0)1/2
)
and

z := (
PV (Ac − ω2Aε)|V

)−1K̃V (0)1/2
)
v.

It follows P∇∂
Btrz = 0 due to kerKV (0)1/2 = kerKV (0) and Lemma 6.5. Due to the

definitions of z and Z2, z ∈ Z2 solves

(PZ2Ac − ω2PZ2Aε)z = 0.

It follows from Assumption 6.9 that z = 0. Thus, v ∈ kerKV (0)1/2 = kerKV (0). ��
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We require the following additional assumption for Lemma 6.12.

Assumption 6.11 (ω2 is no “projected” eigenvalue) The operators

PZ1

(
PV (Ac − ω2Aε)|V

)−1|Z1∈ L(Z1) andPZ2

(
PV (Ac − ω2Aε)|V

)−1|Z2∈ L(Z2)

are bijective.

We note that

PVAc|V= PV (I − Aε − Atr)|V (59)

and consequently

PV (Ac − ω2Aε)|V
)−1 = I |V−PV (Ac − ω2Aε)|V

)−1PV ((ω2 + 1)Aε + Atr)|V
=: IV + G.

(60)

Lemma 6.12 LetAssumptions3.1–3.4and5.1, 6.7, 6.9, 6.11hold true. Let λ̃ ∈ [0, c−1∞ ). The
spectrum of ÃV (·, λ̃) consists of σess

(
ÃV (·, λ̃)

) = {0} and an infinite sequence of nonzero
eigenvalues (τ̃n(λ̃))n∈N with limn∈N τ̃n(λ̃) = 0. Apart from a finite number, all nonzero
eigenvalues (τ̃n(λ̃))n∈N are positive.

Proof Wenote that ÃV (·, λ̃) and PV (Ac −ω2Aε)|V
)−1ÃV (·, λ̃) have the very same spectral

properties. We aim to apply Lemma 6.3 to

PV (Ac − ω2Aε)|V
)−1ÃV (·, λ̃) = τ̃ I − (I + G)K̃V (λ̃)

with G defined as in (60). G is compact due to Lemmas 3.8 and 3.7. Since PV (Ac −
ω2Aε)|V

)−1 and the identity are self-adjoint, the self-adjointness of G follows from (60).
I +G is bijective due to its definition and Assumption 5.1. K̃V (λ̃) is compact, self-adjoint
and positive semi-definite due to Lemma 6.4. It holds ker

(
K̃V (λ̃)1/2(I + G)K̃V (λ̃)1/2

)
=

ker K̃V (λ̃) due to Lemmas 6.8 and 6.10. It holds dim(ker K̃V (λ̃))⊥ = ∞ due to Lemma 6.6.
P(ker K̃V (λ̃))⊥ (I + G)|(ker K̃V (λ̃))⊥ is bijective due to Assumption 6.11. Hence, the conditions
of Lemma 6.3 are satisfied and the claim follows. ��

Lemma 6.13 Let Assumptions 3.1–3.3 and 5.1, 6.7, 6.9, 6.11 hold true. For λ̃ ∈ [0, c−1∞ ),
let (τ̃+

n (λ̃))n∈N be a non-increasing ordering with multiplicity taken into account of the
positive eigenvalues of ÃV (·, λ̃). Thence, for each n ∈ N the function τ̃+

n : [0, c−1∞ ) → R
+ is

continuous.

Proof We note that for each n ∈ N it holds inf
λ̃∈[0,c−1∞ ) τ̃

+
n (λ̃) > 0: Indeed, the exis-

tence of λ̃0 ∈ [0, c−1∞ ), n ∈ N so that limλ̃→λ̃0+ τ̃+
n (λ̃) = 0 would imply that for λ̃ = λ̃0

there would exist only a finite number of positive eigenvalues, which is a contradiction to
Lemma6.12. The continuity of τ̃+

n followswith SanchezHubert and Sánchez-Palencia [27,
Proposition 5.4]. We note that a delicate part of Sanchez Hubert and Sánchez-Palencia
[27, Proposition 5.4] is the existence of eigenvalues. However, the existence of eigen-
values is already established by Lemma 6.12. We only require the continuity result of
Sanchez Hubert and Sánchez-Palencia [27, Proposition 5.4]. ��
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Theorem 6 Let Assumptions 3.1–3.4 and 5.1, 6.7, 6.9, 6.11 hold true. Thence, there exists
an infinite sequence (λn)n∈N of positive eigenvalues to AX (·) which accumulate at +∞.

Proof Proceed as in the proof of Theorem 4. ��

7 Conclusion
We conclude with a summary of Theorems 2–6 and some remarks on assumptions and
the relation to the modified electromagnetic Steklov eigenvalue considered in [12,22].

7.1 Main result

We formulate the individual results of the previous sections in the following proposition.

Proposition 7 Let Assumptions 3.1–3.4 and 5.1, 6.1, 6.7, 6.9, 6.11 be satisfied. Then, it
holds

σ
(
AX (·)

) = σess
(
AX (·)

)∪̇
⋃

n∈N
{λ−0

n }∪̇
⋃

n∈N
{λ+∞

n } (61)

and σess
(
AX (·)

) = {0}. The sequence (λ−0
n )n∈N consists of pairwise distinct negative eigen-

values with finite algebraic multiplicity so that limn∈N λ−0
n = 0. The sequence (λ+∞

n )n∈N
consists of pairwise distinct positive eigenvalues with finite algebraic multiplicity so that
limn∈N λ+∞

n = +∞.

Proof Follows from Theorems 2–6. ��

7.2 Remarks to the assumptions

The condition inAssumptions 3.1 and 3.2 thatμ and ε equal the identitymatrix in a neigh-
borhood of the boundary is used to obtain extra regularity of traces. If this extra regularity
can be derived by other means, then the mentioned assumption becomes obsolete.
Each of the Assumptions 5.1, 6.1, 6.7, 6.9, 6.11 can be formulated in the following

manner: Y is a Hilbert space, A ∈ L(Y ) is weakly coercive, K (·) : 	 ⊂ C → K (Y ) is
holomorphic and it is imposed thatA−K (ω2) is bijective. Consequently, for fixed domain
� and fixed material parameters μ−1, ε there exists only a countable set of frequencies ω

for which the Assumptions 5.1, 6.1, 6.7, 6.9, 6.11 are not satisfied (see e.g. [24, Proposi-
tion A.8.4]).

7.3 Modified electromagnetic Steklov eigenvalues

The modified electromagnetic Steklov eigenvalue problem considered in [22] is to find
(λ, u) ∈ C × H (curl;�) \ {0} so that

〈μ−1 curl u, curl u′〉L2(�) − ω2〈εu, u′〉L2(�) − λ〈Su, Su′〉L2t (∂�) = 0 (62)

for all u′ ∈ H (curl;�) (with S defined as in (24)). It can easily be seen that
the eigenvalue problem decouples with respect to the decomposition H (curl;�) =
H (curl, divε0, tr0ν·ε ;�) ⊕ ∇H1(�). Thus, the eigenvalue problem can be reformulated to
find (λ, u) ∈ C × H (curl, divε0, tr0ν·ε ;�)\{0} so that
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0 = 〈μ−1 curl u, curl u′〉L2(�) − ω2〈εu, u′〉L2(�) − λ〈Su, Su′〉L2t (∂�)

= 〈μ−1 curl u, curl u′〉L2(�) − ω2〈εu, u′〉L2(�) − λ〈P∇∂
trν× u, trν× u′〉L2t (∂�)

= 〈λÃV (λ−1, 0)u, u′〉X (63)

for all u′ ∈ H (curl, divε0, tr0ν·ε ;�). Thence if the respective assumptions are satisfied,
Lemma 6.12 yields that the spectrum consists of an infinite sequence of eigenvalues
(λn)n∈N which accumulate only at +∞. A similar existence result has been reported
in [12, Theorem 3.6]. Though it seems to us that the proof of [12, Theorem 3.6] requires
dim(kerT)⊥ = ∞ which the authors don’t elaborate on. The former observation admits
to interpret the modified electromagnetic Steklov eigenvalue problem as asymptotic limit
of the original electromagnetic Steklov eigenvalue problem for large eigenvalue parameter
λ. We have seen that (at least in the self-adjoint case) the original electromagnetic Steklov
eigenvalue problem yields two kinds of spectra. Contrary the modified electromagnetic
Steklov eigenvalue problemyields only one kind of spectrum.This suggests that for inverse
scattering applications the original version is more advantageous than the modified ver-
sion, because it contains more information, though the approximation of the modified
eigenvalue problem is better understood than for the original version [22].
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