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Electromagnetic surface and line sources under coordinate transformations
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Although the analysis of electromagnetic sources in the context of coordinate transformations and the
implications for transformation optics have been discussed in the literature, a correct formulation that includes
surface and line currents has not been reported. Here we derive how surface and line currents behave under
coordinate transformations and validate the analysis through numerical validation of a specific example. This
analysis enables transformation optics to be applied to problems that include singular source distributions,
which is often the case for practical radiating systems and antennas, to make a given current distribution
produce the same fields as a different current distribution by surrounding it with a material with specific

electromagnetic properties.
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I. INTRODUCTION

The work of Greenleaf et al. [1] and Pendry et al. [2]
introduced the way in which coordinate transformations of
steady electric current and electromagnetic fields, respec-
tively, can be physically implemented with a complex me-
dium, offering a new paradigm for the control of electromag-
netic fields around arbitrary objects. Less complete is the
theory describing how electromagnetic sources, namely, cur-
rents and charges, are altered by these coordinate transfor-
mation media. Past work has examined the interaction of
sources with transformation optics media in special cases.
For example, Zolla et al. [3] showed how a line source
within an electromagnetic cloaking shell radiates fields as if
the source were in a different location. Greenleaf et al. [4],
Zhang et al. [5], and Weder [6] analyzed the detailed behav-
ior of sources in the interior of cloaked regions.

Luo et al. [7] examined the general problem of source
behavior in transformation optics to show how currents and
charges change under coordinate transformations. Impor-
tantly, they conceptually demonstrated how a coordinate
transformation medium could be used to make one current
distribution radiate like an entirely different one. Conformal
antennas are one potential application of such an approach,
in which currents may be constrained to a given surface but
one wishes to have these currents radiate as if they were in a
different location or had a different shape [7]. Kundtz et al.
[8] demonstrated this approach through numerical simula-
tions, confirming that complex current distributions can be
made to radiate like simple ones when surrounded by a prop-
erly designed transformation optics medium. However, the
analysis of [7] is incomplete in several areas and, impor-
tantly, does not give correct expressions for the of how cur-
rents constrained to surfaces or lines transform. These singu-
lar current distributions are practically important as many
physical antennas and radiating systems can be usefully de-
scribed in terms of surface and line currents.

In this work we add to the description of the behavior of
electromagnetic sources under coordinate transformations by
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deriving expressions for how surface and line current distri-
butions transform, and thus how their radiation can be inten-
tionally manipulated through transformation optics.

The results are illustrated through two examples, namely,
the mapping of a planar surface current to a nonplanar con-
figuration and the mapping of a line current segment to a
surface current on a sphere. In these examples the mechanics
of transforming surface and line currents are demonstrated in
two ways: treating the surface current as a vector implicitly
confined to a surface, and treating the surface current as a
volume current with delta functions. We show that these
forms are equivalent, and which one is more useful depends
on the specifics of the problem. In the former case, we
present numerical simulations that demonstrate the applica-
bility of our results to practical problems of source manipu-
lation.

II. VOLUME CURRENTS AND CURRENT CONSERVATION

The manner in which electromagnetic field vectors trans-
form has been analyzed both mathematically and physically
in recent work [2,4,7,9-11]. In this section, we briefly sum-
marize for completeness these results as they apply to elec-
tromagnetic sources, and we explicitly demonstrate the con-
servation of charge and current in transformation optics as
this property plays a key role in the analysis that follows.

Current density J is a contravariant vector density [12],
and as such it behaves in a specific way under coordinate
transformations to preserve the continuity of its normal com-
ponent at an interface. Mathematically, with a coordinate
transformation defined by 7' =F(7), the transformed current
density J’' can be written in terms of the original current
density J as [7]

1
J'=——AlJ. (1)

1 (2 =Tvd F—l
J () =Tod(F(r)) or dot A

In the former expression, we use the symbol T3 to generi-
cally denote the transformation operator for a contravariant
(hence the subscript con) vector density (hence the super-

script vd), and in the latter expression this operator is ex-
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pressed in terms of the Jacobian matrix, denoted here by A,
of the transformation 7' =F (7). Note that there are different
ways to express this contravariant vector density transforma-
tion operator 7)%, including in terms of unit vectors and
length scaling factors [2,10]. The det A term that appears in
the denominator of Eq. (1), which also appears in the de-
nominator of several important expressions that follow,
means that transformations that are singular in critical loca-
tions (i.e., det A=0) will require special care in analyzing
how sources behave (e.g., [13]). One of these examples is
treated in Sec. V below, although we emphasize that the
approach used may not be completely general for locally
singular transformations.

In this work we use vector and matrix notation in which
general vectors are understood to be three element column
vectors. Such expressions can also be written in component
form. For example, under a general coordinate transforma-
tion a contravariant vector m transforms as

m' = > Af’m", (2)

;! ! 7 . . . . -
where A! =du' /du' and the equivalent in matrix form is '
=Am=T,, . Similarly, a covariant vector 7 transforms as

ny = Al (3)

and because the matrix formed from Af’ is the inverse of that
formed from Aj., and the sum is over the first index, the
equivalent in matrix form is 7’ =(A™")Tn="T 7. Explicit dis-
tinctions are made between covariant and contravariant vec-
tors and each is transformed separately so that the metric of
the transformation is not required when forming inner prod-
ucts.

Note that there are two physical meanings of the expres-
sions in Eq. (1). In one, the components of J' are the con-
travariant components in terms of the new basis vectors de-
fined by the transformation. In this case, J’ and J are the
same vector described in different coordinate systems. In the
other, and the one relevant for transformation optics, the
components of J' are the contravariant components of the
vector in the original basis vectors, and thus J' is a new
vector that shows how J would change in the presence of a
medium derived through transformation optics. Physically,
the coordinate change describes the translation of the current
density from the original location to the transformed loca-
tion, and the transformation operator ngn scales and rotates
the vector so that it transforms as a contravariant vector den-
sity. For clarity in the derivations to follow we write these
vector transformations in general 7_ terms and simplify to
Jacobian matrix terms in the end.

A result useful in the analysis that follows is that charge
and current-density flux are conserved in transformation op-
tics. This is stated without demonstration by Luo et al. [7],
and because it is needed in our analysis below, it is explicitly
demonstrated in the Appendix.
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FIG. 1. An illustration of how a finite current channel behaves
under coordinate transformation.

III. SURFACE AND LINE CURRENTS

As many antennas involve currents that are restricted to
surfaces or lines, how surface current and line current vectors
transform is both theoretically and practically relevant. Al-
though surface currents were addressed by Luo er al. [7], the
expressions given there are not correct in general. Closed
form expressions for these operations in terms of transforma-
tion operators are derived below.

Since surface and line currents are limiting cases of vol-
ume currents, the direction of transformed surface and line
currents must be also defined by Eq. (1). However, transfor-
mations of volume currents also compress or expand them
into smaller or larger volumes, respectively, and the volume
current magnitude must change correspondingly to conserve
the total current. This idea is illustrated in Fig. 1, in which a
channel of width dw containing volume current J is trans-
formed to a narrower channel of width dw’ containing vol-
ume current J'. Thus to conserve the total current through
this channel, [J’|>|J|, and this amplitude scaling is naturally
produced by the transformation in Eq. (1).

Surface and line currents have zero extent in one or two
directions, however, and thus these currents cannot be further
compressed or expanded in these directions of zero extent by
a coordinate transformation. Thus, to transform a surface or
line current, the amplitude scaling produced by Eq. (1) cor-
responding to current compression or expansion in the direc-
tions normal to the surface or line current must be undone.

For a line current the implications are straightforward.
Because a line current has zero extent in both directions
transverse to the current flow, all of the magnitude scaling
from Eq. (1) must be undone. Thus for a one-dimensional
line current J,, the transformed line current J é is

|J(| d
Jo=a Teond (4
¢ |Tz(c)an€| ‘ )
or

|J€| A |J€|
,= = A 5 5
T ‘ 4 Jdetad’ IAT| I ®)

det A"

where again the latter expression expresses the transforma-
tion explicitly in terms of the Jacobian matrix A. The trans-
formation simply drags and deforms an infinitely thin
current-carrying wire without changing the line current mag-
nitude. Since total current is the same as line current magni-
tude, this expression is consistent with current conservation.

For a two-dimensional surface current J, the situation is
more complicated because the current magnitude scaling
must be undone in only the direction normal to the surface.
Let m be the vector of length dw that points across the width
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of a thin volume current distribution from point a to point b,
as in the left panel of Fig. 1, which before transformation is
parallel to the unit normal to the thin sheet 72. This displace-
ment vector 7 is a contravariant vector [12] and thus after
transformation becomes the vector between transformed
points a’ and b’ or

= TeonlM- (6)

Although it still extends across the thin current sheet, m' is
not necessarily normal to the sheet if the transformation is
not orthogonal, as illustrated by the right panel of Fig. I.
Normal vectors are covariant vectors and thus the unit nor-
mal to this transformed thin current sheet is given by

(7)

Note that 72" is not simply the transformed unit vector 71 but
has had its length rescaled so that it is still a unit vector after
the transformation.

We need to determine the factor by which the width of
this thin volume current has been expanded by the transfor-
mation. Let it be denoted by s=dw’/dw. Since dw= | and

dw'=m'-n', we find
_ (TZOnﬁl) ) (TZOﬁ) _ (TZOnﬁ) i (TZOﬁ)
A| ’

mllrial - IT

(8)

where in the latter expression we have used the pretransfor-
mation relation 77/ |fii|=7#. The transformed volume current
density is inherently scaled by s~! due to the geometric ex-
pansion of the channel in the direction normal to the trans-
formed thin current sheet. Consequently, this is the factor
that must be removed in a transformation of a surface cur-
rent, and therefore we multiply Eq. (1) by s and find that

(Teon®) - (Teo)
| Teo]

where 7 is the unit vector normal to the untransformed sur-
face current.
This can be further simplified by noting that

Ji = Tesds- 9)

(Teond) - (Teh) = [(A7)7]"(AR) = A"A" AR =1, (10)
which yields
3= 1o (1n)
or
QU KR (12)

[(A=1) 77| (det A)JS

Thus, Egs. (1), (5), and (12) describe how volume current,
line current, and surface current, respectively, behave under
coordinate transformations.

Equation (12) is consistent with the electromagnetic
boundary condition associated with surface currents, namely,
J,=i X AH. The vectors 7 and H are both covariant vectors
and their cross product is a contravariant vector density [12].
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Thus after a coordinate transformation this boundary condi-
tion transforms to

d
TZonJ

=T i X AT H). (13)

While true, the above needs to have the term 77, /i renormal-
ized to unit length to be useful as a boundary condition, and
thus

1
72

T =T, = JiX ATLH) = @' X AH', (14)

ITZOAI

which gives the same expression for the transformed surface
current as Eq. (12) and preserves this boundary condition
under coordinate transformations.

Equation (5) for a line current is also equivalent to Eq.
(12) when the transformation-induced current compression is
undone in two directions as it must be for a transformed line
current. Let 72, and 71, be orthogonal unit vectors that are
each orthogonal to a line current J,=|J|ii;, where ;=4
X A,. The line current scaling factor in Eq. (5) can thus be
rewritten as

Tl _ 13l _ 1
A A
deca”|  |dera ‘Mﬁ:"' ‘ dera
1 1
@iy < AN AT AT

(15)

Therefore the line current scaling factor in Eq. (5) is thus
identical to the product of two surface current scaling factors
in orthogonal directions, as expected.

We wish to emphasize that applying the source transfor-
mation expressions in Egs. (1), (5), and (12) to transforma-
tions in which det(A)=0 in certain locations will likely re-
quire special care. It has been shown that such locally
singular transformations can result in unusual material prop-
erties or wave behavior in these regions [13,14], and placing
singular or nonsingular sources in these regions seems likely
to lead to further anomalous behavior. The precise form of
this behavior appears to depend on the details of the trans-
formation [13,14], and thus we do not attempt to treat this
issue here in a general way.

IV. SURFACE CURRENT UNDER A NONORTHOGONAL
TRANSFORMATION

We demonstrate and validate through simulation the
above analysis on a surface current confined to y=0, on the
surface of a perfect magnetic conductor (PMC) half-space,
which is transformed to the triangular bump illustrated in
Fig. 2. The overall transformation is limited to a two-
dimensional box with sides —1 <x<1 and 0<y<1 and is
described by

x'=x,
y' =[1=-a(l=|xDly+a(l-
7 =z (16)

For this transformation the Jacobian matrix and its inverse
transpose are
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(-1,1) (1,1)

y transformation
region

FIG. 2. An illustration of the coordinate transformation de-
scribed by Eq. (16).

100 1 —c¢/b 0
A=|c b 0| A H'=l0 1/b 0], (17)
001 0 0 1

with b=1-a(l1-|x'|) and c=a sgn(x)y'—1/b for conve-
nience. Note that det(A)=b.

To illustrate the analysis, we consider two different vector
directions for the original y=0 surface current, J;;=J,Z and
J=Jox. These currents will radiate orthogonally polarized
uniform plane waves when on a PMC surface. In both cases
the unit normal to the original surface current is n=y. Ap-
plying Eq. (12), the resulting general transformed surface
current vector is

AL A
b7 |(A™H

J. J., (18)

[
Ve + 1

since |(A™")7$|=b"1\c?+ 1. We now revert to the original ba-
sis and coordinates by dropping the primes and thus let the
above expression represent a new surface current in the
original coordinates.

The resulting transformed current densities J;, and J/, are
confined in both cases for —1 <x<1 to the y=a(l-|x|) sur-
face (the transformed y=0 plane) and are given by

Jo

/=Z,
Ve + 1

A

’
Jsl =

’ Ji A A
JS2=’2—#(x+Cy). (19)

veo+ 1

On the y=a(1-|x|) plane, c=—a sgn(x) and we thus have on
the y=a(1-|x|) surface for -1 <x<1

Jo

! _ VY 2

J‘vl_ S
a

Va“ + 1

' Ji A A
o= 5=l -a sgn(x)5]. (20)
Va +1

The surface currents are thus dragged to a new location
and direction by the transformation. For case 1, the total
transformed current flowing in the z direction between x=
—1 and x=1 is 2J, and equals the untransformed current. For
case 2, the total transformed current per unit z width is J; and
also equals the untransformed current per unit width. Thus,
in both cases, the total current is conserved, and the |(A‘1)T)9
scaling factor from Eq. (12) plays a critical role in correctly
scaling the transformed current.

Case 1 is straightforward to simulate numerically using
the cOMSOL Multiphysics solver and we do so now to dem-
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FIG. 3. (Color online) The numerically simulated electric field
produced by a nonuniform surface current on the lower boundary of
the domain. In the presence of the transformation electromagnetic
medium contained in the region bounded by the dashed lines, the
radiated fields are identical to those produced by a uniform and flat
surface current in free space. The computed power flow direction
indicated by the gray lines remains purely in the y direction, even in
the anisotropic transformation medium.

onstrate and validate the analysis. The relative permittivity
and permeability of the transformation electromagnetic me-
dium inside the region defined by -1 <x<1 and 0<y <1 is
given by [15]

AAT 11 c 0
"=l = =—|c¢ *+b> 0. 21
T et A bg o @D

We choose the specific value a=0.6, which results in the
transformed current density J!,=0.86J,Z along the triangular
bump from —1<x<1. The source frequency is 1.5 GHz.
Figure 3 shows a time snapshot of the resulting electric field
(E.) distribution produced by this nonuniform surface current
distribution radiating on a PMC region. In the free space
region outside the transformed area, the electric field is ex-
actly the uniform plane wave that would be produced by a
uniform surface current along the y=0 plane radiating in free
space. Small nonuniformities are present that we attribute to
the discrete finite element approach used in the simulation.
This confirms that the combination of the transformation me-
dium from Eq. (21) with the deformed and appropriately
scaled surface current from Eq. (12) yields the expected re-
sult. If the correct scaling factor of 0.86 from Eq. (12) is not
applied to the transformed surface current, the resulting
simulated fields (not shown) are clearly not uniform in am-
plitude and are not equal to the fields produced by the un-
transformed uniform surface current in free space.

We note that the resulting electric and magnetic field di-
rections are also those expected from theory (e.g., [11]). Both
E and H are covariant vectors and thus transform as E’
=(A"HTE. For the untransformed problem, the radiated
plane-wave fields are E(y)=—ZE,exp(—jky) and H(y)=
—XH, exp(—jky). As seen in Fig. 3, the electric field inside
the transformation medium is spatially compressed in the y
direction as expected from the original coordinate transfor-
mation. The direction of E’ inside this region is given by
(ANYTE)2=E,? and is thus unaltered except for the spatial
compression. Similarly, the direction of H' inside the trans-
formation medium is given by (A™")"H£=H,% and is thus
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also unaltered except for the spatial compression. This re-
sults in the E’ X H' power flow direction in the transforma-
tion medium being solely in the y direction, while the wave
vector or phase normal clearly has an x component as well.
The anisotropy of the transformation medium is responsible
for this effect.

Note that if one defines the original surface current in
terms of delta functions, for instance,

J(7) =Joo(y)%, (22)

then this is an expression for volume current density, and Eq.
(1), not Eq. (12) must be used to compute the transformed
current. Applying Eq. (1) to case 2 above with the coordinate
transformation in Eq. (16) yields, for the transformed current
density,

Jo {y—all-

This shifts the surface current from y=0 to y=a(1-|x|), as
expected. Accounting for the scaling properties of the delta
function [16] and noting again that ¢=—a sgn(x) along y
=a(1-|x|) gives

J'(7) = Jy8(y — a(1 = |x]))[£ - a sgn(x)y], (24)

which becomes

J,(F) =77

J —a(l -
20 6<y a( |x|)
va +1

Va2 + 1 )[)2_ a sgn(x)y] (25)

after the delta function is scaled to unit amplitude. This ex-
pression for the transformed surface current is identical to
that for case 2 in Eq. (20). The scaling properties of the delta
function thus naturally yield the same scaling factor to the
surface current magnitude that is given explicitly in Eq. (12).

V. LINE TO SURFACE CURRENT TRANSFORMATION

Some source transformations, for example one that trans-
forms a line to a surface current, are perhaps more easily
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handled through the delta function approach and applying
Eq. (1). Luo et al. [7] considered a three-dimensional trans-
formation of a finite line current to the surface of a sphere via

x=a(r')cos ¢' sin @', y=a(r')sin ¢’ sin &, z

=b(r')cos ¢, (26)
R
a(”)=R2_2R1(r' -Ry) =k /(r' =Ry),
. Ry—di2 d , d
b(r') = RZ_RI (' =R)+ 2=kl =R)+ 2, (27)

in which the constants k; and k, are defined implicitly. Note
that Luo er al. [7] did not specify the mapping of the polar or
azimuthal angles in their presentation of this transformation.
For this transformation the inverse Jacobian matrix is given
by

dx dx  Ox
o' ap oo
P
o' ag 90
dz  dz Iz
o' od a0

-kl cos ¢’ sin ¢ -—a sin @' sin 6 a cos ¢’ cos &

=|k;sin @' sin @ acos @ sinf asin @' cos b

k, cos 6’ 0 —bsin ¢
(28)

To apply Eq. (1) we will need A/det(A). For our particular
problem, the source and transformation possess complete
azimuthal symmetry and thus we can derive A/det(A) by
making the convenient assumption that ¢’=0, which results
in

A —ab sin’® ¢’ 0 —a*sin ' cos 6’
S 0 — kb sin® @' — kya cos® 0 0 . (29)
e
—kya sin 0" cos ¢’ 0 kya sin® 0’

As in Fig. 4, we begin with an infinitely thin linear vol-
ume current density in the original domain of

P z
J( =127Tp105(p)n( d), (30)

where p=1x?+y? and the unit pulse or rect function IT(x)
=1 for —% <x<% and =0 otherwise [16]. This creates a line
current of total current [, that extends to =d/2 in the z di-
rection.

Noting that the transformation defines p=a(r’)sin ' and
z=b(r')cos @', and following Eq. (1), the original volume
current can be written to

o A o Sasin @) _[bcos @
V)= At =l 0'H( d )
—a®sin @' cos ¢’
X 0 , (31)
kya sin® 0’

and when we revert to the original coordinates and basis by
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FIG. 4. An illustration of the transformation in Eq. (26), which
maps a finite length line current to a spherical surface.

dropping the primes, the original current density transforms
to the new current density

Nasin6) (b 0 —a? sin O cos 6
a sin cos
J'(r) =1 . ( ) 0
27ra sin 6 d i
kia sin” 6

(32)

This can be simplified through several steps. First, we use
the scaling properties of the delta function to find
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Sla sin 6) = 8(k,(r = R,)sin 6) = i(rs;if;). (33)
1

When all of the terms are combined, the first component of
the transformed current has a radial dependence proportional
to (r—R;)8(r—R,)=0, and thus this term vanishes (except at
6=0 because of a remaining sin # term in the denominator,
but this is not significant). After fully expanding the remain-
ing third component and simplifying, we find that the trans-
formed current distribution is

b 0
(r)cos 49) 0 (34)

v Ao o
J (7)—2775(r Rl)l_[( y

1

The basis vectors for the above expression are defined by the
transformation from Cartesian to spherical coordinates using
A, /det(A,,) according to Eq. (1) and where A, is the Jaco-
bian matrix for the Cartesian to spherical transformation.
One could thus either multiply Eq. (34) by AZ!/det(A7)) to
convert back to a Cartesian basis or use the third column of
the matrix A;xl/ det(A;SI) as the needed basis vector in Eq.
(34). Both result in

P
U

o Lo o
J (r)—zwﬁ(r Rl)H< y

and when we substitute in =R to reflect the delta function
distribution, the pulse distribution in theta becomes H(%}
and thus simply extends across the entire domain of 6=0 to
7. The transformed current distribution then can be written

simply as

b soe—ry. (36)

"7 = — é—
VO ==0, % no

Thus, the original line current of magnitude /, is now a sur-
face current spread uniformly over the surface of the r=R;
sphere with the same total current through any transformed
contour.

VI. CONCLUSIONS

Building on the ideas first described by Luo et al. [7] and
numerically simulated by Kundtz er al. [8], we have derived
how surface and line currents behave under coordinate trans-
formations as applied in transformation electromagnetics.
These cases require special handling because they cannot be
stretched by transformations in their directions of zero ex-
tent. This effect appears as additional scaling factors that
must be added to the expression for the transformation be-
havior of volume current. The relevance and correctness of

b(r)cos 0) —cos ¢ cos 6% —sin ¢ cos 65 +sin 67

rsin 6

5(r—R1)H(b(r)%9>, (35)

27rr sin 0

these scaling factors is illustrated through a specific example
supported by numerical simulations.

We have also shown that surface and line current trans-
formations can be obtained by treating these singular distri-
butions as volume current distributions containing explicit
delta functions. This approach, demonstrated in two specific
cases, can be easier to apply in situations where the transfor-
mation changes the character of the current distribution, such
as one that maps a line current to a surface current. Collec-
tively, the analysis presented here contributes to the theoret-
ical picture of how a current distribution can be made to
produce the same fields as a different current distribution by
surrounding it with a material with electromagnetic proper-
ties determined by transformation optics.

APPENDIX: CHARGE AND CURRENT CONSERVATION
IN TRANSFORMATION ELECTROMAGNETICS

Here we demonstrate charge and current conservation un-
der transformation electromagnetics. Given a charge-density
distribution p(7) and a volume defined in terms of a function
v(7) such that v(7)=1 inside the volume and v(r)=0 outside,
then the charge in this volume is given by
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Q=fp(ﬂv(7)d\/, (A1)

where the integral is over all space. After applying the coor-
dinate transformation 7' =F(7) through the transformation
optics approach, the new charge-density distribution is given
by Luo et al. [7],

1 (= _L 1
pr(R) =y PE (). (A2)

This form results from p being a scalar density [12], and
represents the physical displacement of the charge from one
location to another and the magnitude scaling that result
from the transformation. The new charge in the transformed
volume is thus given by

0= f L F e E @), (A3

det A
where again the integral is over all space and the original
volume has been transformed to a new volume defined by
v(F~'(r))=1. Now change coordinates to ' =F(7) and, in
doing so, dV becomes dV(det A) and thus
Q'=fp(F"(7))v(F1(7))dV=fp(F’)v(F’)dV=Q,
(A4)

and thus total charge in a volume is conserved through the
translation and scaling of the volume and the charge density.
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If charge is conserved and the Maxwell equations are still
satisfied after the transformation, then total current must also
be conserved. But this can also be shown directly by a simi-
lar approach in which we define

I= f s(AJ(F) - ds, (A5)

where s(r)=1 defines the integration surface. After transfor-
mation, the total current through the new s(F~'(r))=1 sur-
face is

1
det A

I'= J s(F7(7) AJ(F\(7)) - ds, (A6)

where Eq. (1) has been used to give the new current density
after the transformation. Again change coordinates to 7’
=F(7), and because the infinitesimal surface element is a
covariant vector capacity [12], ds becomes (det A)(A~")7d5.
Thus

I’=fs(7’)AJ(F’)~[(A‘I)Td5]=fs(F’)J(7’)«d§=I,

(A7)

where we have used AJ-[(A~)Tds]=JTAT(A~") ds=]-d5.
Thus, total current through a surface is conserved through
the translation and scaling of the surface and the vector cur-
rent density.
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