
 1 

Electromagnetic Toroidal Excitations in Matter and Free 

Space 

 
N. Papasimakis1,*, V. A. Fedotov1, V. Savinov1, T. A. Raybould1, and N. I. Zheludev1, 2 

1Optoelectronics Research Centre & Centre for Photonic Metamaterials, 
University of Southampton, Highfield SO17 1BJ, UK 

2TPI and Centre for Disruptive Photonic Technologies, 
Nanyang Technological University, Singapore 637378, Singapore 

* n.papasimakis@soton.ac.uk 

 

 
The toroidal dipole is a localized electromagnetic excitation, distinct from the magnetic 

and electric dipoles. While the electric dipole can be understood as a pair of opposite 

charges and the magnetic dipole as a current loop, the toroidal dipole corresponds to 

currents flowing on the surface of a torus. Toroidal dipoles provide physically significant 
contributions to the basic characteristics of matter including absorption, dispersion, and 

optical activity. Toroidal excitations also exist in free-space as spatially and temporally 

localized electromagnetic pulses propagating at the speed of light and interacting with 

matter. We review recent experimental observations of resonant toroidal dipole 

excitations in metamaterials and the discovery of anapoles, non-radiating current 

configurations involving toroidal dipoles. While certain fundamental and practical 

aspects of toroidal electrodynamics remain open for the moment, we envision that 

exploitation of toroidal response can have important implications for the fields of 

photonics, sensing, energy and information.   

 

 

Introduction 

The interactions of electromagnetic radiation with matter underpin some of the most important 
technologies today - from telecommunications to information processing and data storage; from 
spectroscopy and imaging to light-assisted manufacturing. Our understanding and description of the 
electromagnetic properties of matter traditionally involves the concept of electric and magnetic dipoles, 
as well as their more complex combinations, known as multipoles. Introduced by Maxwell and Lorentz 
and later refined by Jackson and Landau, this framework, termed the multipole expansion, is central in 
physics and is being routinely applied in the study of optical, condensed matter, atomic, nuclear 
phenomena and beyond1. Within this framework, electromagnetic media can be represented by a set of 
point-like multipole sources2–5. The commonly used set of multipoles comprises the electric and 
magnetic families, which can be represented by oscillating charges and loop currents respectively. 
Dynamic toroidal multipoles constitute a third independent family of elementary electromagnetic 
sources, rather than an alternative multipole expansion or higher-order corrections to the conventional 
electric and magnetic multipoles (see tutorial inset I).  

Introduced in 1958 by Y. B. Zeldovich, toroidal moments have been considered in systems of toroidal 
topology (see Fig. 1) and studied in the context of nuclear6, atomic7, and molecular physics8, classical 
electrodynamics9,10, and solid state physics3.  In the field of electromagnetism, in particular, a number 
of works have led to the development of a complete theoretical framework for toroidal 
electrodynamics11–15 and the prediction of exotic effects, including dynamic non-radiating charge 
current configurations10 and non-reciprocal interactions9. Following recent experimental observations 
of toroidal contributions in the response of materials across the electromagnetic spectrum, dynamic 
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toroidal multipoles are now the focus of substantial research efforts. Here, we will trace the development 
of toroidal electrodynamics from the early considerations of static toroidal moments in condensed 
matter, to the recent experimental works on dynamic toroidal multipoles. We will examine the way by 
which toroidal multipoles enter the description of the materials’ response, a topic of ongoing discussion, 
and review advances in the studies of the peculiar radiation properties of toroidal dipoles, as well as the 
free-space propagating toroidal excitations. 

 

Static toroidal multipoles  

Initially, the static toroidal dipole (or anapole) was introduced as a configuration of static currents 
flowing on the surface of a torus17, in order to represent nuclear currents that participate in parity-
violating weak interactions (see Fig. 1). It was pointed out that the external field of such a configuration 
is identically zero, whereas the currents create a magnetic field confined within the torus; hence static 
toroidal dipoles do not interact directly with electric and magnetic fields17. The concept of the anapole 
was generalized to a full family of toroidal multipoles and applied to the description of condensed 
matter3,18. Toroidal ordering in the solid-state was first investigated theoretically in 1946 by Charles 
Kittel in his work on ferromagnetic domains of small particles19 and experimentally in 197420, followed 
by a series of observations, in 1984 and 1985, which confirmed the existence of static toroidal 
moments21,22 (see also23 and references therein). Two sets of toroidal multipoles have been considered 
in this context, termed toroidal electric (or axial) and toroidal magnetic (or polar)2. The first set arises 
from vortex-like configurations of electric dipoles2, whereas the latter set arises from currents flowing 
on the surfaces of tori, along the meridians, or, equivalently, from vortex-like configurations of 
magnetic dipoles (see Fig. 2). Similarly, the family of electric (magnetic) toroidal multipoles can be 
generated by magnetic (electric) charge currents. However, since magnetic currents have not been 
observed to date, static electric toroidal multipoles can only be imitated, by virtue of the dual symmetry, 
through electric polarization2, whereas dynamic electric toroidal multipoles cannot exist. It is for this 
reason that, from these two sets of toroidal moments, research interest has concentrated predominantly 
on the magnetic toroidal multipoles. In this Progress Article, electric toroidal multipoles are discussed 
only in the static regime.   

Toroidal multipoles enter the description of condensed matter by an order parameter related to the 
toroidal dipole moment, termed toroidization or toroidal polarization, analogous to the macroscopic 
electric polarization and magnetization24. Where electric polarization accounts for the electric dipole 
density and magnetization for magnetic dipole density, toroidization represents the density of toroidal 
dipoles. A macroscopic toroidization emerges from configurations of local toroidal moments that 
exhibit long-range order25. Such media are called ferrotoroids, on equal footing with ferroelectrics and 
ferromagnets. While ferroelectrics break spatial inversion symmetry and ferromagnets break time 
reversal symmetry, ferrotoroids with magnetic toroidization break simultaneously time reversal and 
spatial inversion symmetry. Ferrotoroids with electric toroidization, on the other hand, remain invariant 
under both time and space inversions26–28. Ferrotoroids will exhibit electric polarization (magnetization) 
in response to an external magnetic (electric) field. This magnetoelectric response is expected to form 
the basis for applications in technological areas, such as data storage, where for example an electric 
field can read or write information in the magnetic state of a medium29,30. In addition, ferrotoroids are 
expected to exhibit unique forms of magnetic response31–33 and nonreciprocal reflection and 
dichroism18.  

Today, the range of static toroidal systems under study includes various compounds34,35, boracites36, 
pyroxines37 and olivines38, metals39, glasses40, ferroelectric nanoscale disks and rods27, molecular 
magnets41,42. However, unambiguous observations of long-range toroidal order have proven challenging 
due to the weak, short-range interactions between toroidal dipoles and the requirement of 
simultaneously breaking both space and time reversal symmetry  to demonstrate its existence18. Early 
experiments focused on the magnetoelectric effect43,44, which is not unique to the toroidal moments28, 
only provided an indication for ferrotoroidic order. Subsequent experiments reported direct 
observations of ferrotoroidicity, where ferrotoroidic domains were observed in an olivine crystal 
(LiCoPO4) and domain orientations were identified by second harmonic generation26. These findings 
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were confirmed in follow-up works demonstrating hysteretic effects by a similar nonlinear optical 
method45

.  

Dynamic toroidal multipoles  

In the dynamic regime, only magnetic toroidal moments can exist, whereas electric toroidal multipoles 
are absent, as explained in the previous section. Thus, for simplicity we will refer to magnetic toroidal 
moments as toroidal in this section. Dynamic toroidal dipoles, in contrast to their static counterparts, 
interact with oscillating electromagnetic fields, and thus contribute to the optical properties of materials 
across the entire electromagnetic spectrum3. However, the inclusion or omission of the dynamic toroidal 
multipoles from the multipole expansion has been the subject of an on going discussion46–48, in 
particular with respect to equivalent descriptions, such as Mie theory49,50.  We address this in detail in 
a dedicated section (see tutorial inset II), where we demonstrate that although both the vector spherical 
harmonic Mie expansion and the (full, including toroidal contributions) charge-current multipole 
expansion are complete, the toroidal multipoles appear as distinct entities only in the latter. This has 
direct implications for the interpretation of electromagnetic excitations and optical forces in media of 
toroidal topology and, in combination with the experimental observations of isolated toroidal dipoles, 
justifies the consideration of toroidal moments as a separate family of multipoles. 

Although observations of toroidal excitations are often complicated by the contributions of the electric 
and magnetic multipoles to the material response, they may be expected in the case of large molecules 
or molecules with toroidal symmetry. Indeed, electromagnetic fields scattered by the toroidal dipole 
moment of a molecule with a characteristic size R scale with the free-space wavelength λ as ~(R/λ)3, 
while electric and magnetic dipole scattering scales as ~(R/λ) and ~(R/λ)2, respectively13,15,51. Hence, 
the toroidal response of a system will become increasingly important in comparison to the standard 
dipoles, as the size of the system or molecule increases. Relatively large molecules with R≤λ, known 
as “metamolecules” are often employed in artificial metamaterials. A metamaterial of toroidal topology 
can be engineered in such a way that the lower order electric and magnetic multipoles cannot be excited 
due to symmetry, allowing thus the toroidal dipole to become the leading term in the multipole 
expansion and to contribute strongly to the electromagnetic properties of the metamaterial10. When 
scattering contributions of the conventional multipoles are dominant, toroidal response of the 
nanostructure might still be detected through optical forces50. Even for small, deeply sub-wavelength 
systems, such as atoms and molecules, one can expect that toroidal dipole excitations should be 
observable, in principle, given that effects of the same order, for instance magnetic quadrupole 
transitions52, are also experimentally accessible. 

 

Toroidal response in artificial media 

Metamaterials, artificial media periodically structured at the sub-wavelength scale in order to achieve 
desirable electromagnetic functionality, served as a platform for the first observation of resonances due 
to induced toroidal dipoles. Early works on toroidal metamaterials predicted the presence of backward 
waves and negative refraction in such material systems53. Experimental signatures of a toroidal dipole 
response were first seen in the microwave dichroism spectra of chiral toroidal solenoid arrays in 200954, 
obscured however by the presence of dipole and higher order electric and magnetic multipoles. First 
observation of an isolated toroidal dipole absorption resonance was reported in 201055 in a metamaterial 
whose metamolecules were formed by a ring-shaped arrangement of microwave  resonators (see Fig. 
3a). In this type of metamaterial, excitation at the resonant frequency induces a loop chain of oscillating 
magnetic dipole moments, the excitation of which is possible due to a combination of retardation effects 
and electromagnetic interactions between individual resonators. The induced magnetic dipoles trace the 
circumference of a closed loop leading to a field structure similar to that of a toroidal solenoid. These 
initial observations were quickly followed by a number of works aiming to further enhance the toroidal 
response and suppress the contributions of competing electric and magnetic multipoles56,57.  

Planar designs were considered58,59 (Fig. 3b) in an effort to simplify the fabrication of toroidal 
metamaterials. By scaling down metamaterial designs based on clusters of split-ring resonators, toroidal 
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response at terahertz60 and optical frequencies61,62 (Fig. 3c) has been unambiguously detected. In 
parallel, fabrication difficulties were also overcome by introducing artificial patterns that are less 
challenging to manufacturing at the nanoscale, where split-ring resonators are replaced by pairs of bars63 
(Fig. 3d) and disks64,65, while still supporting toroidal excitation modes. In the optical part of the 
spectrum, a toroidal dipole response, although weakened due to high ohmic losses in metals, was found 
in even simpler systems, such as plasmonic core-shell nanoparticles66, and bas-relief patterns that 
support spoof plasmons, including periodic grids67 and arrays of ring-shaped grooves illuminated at 
oblique angles68 (Fig. 3e). A toroidal response was also observed in plasmonic void oligomers using 
energy-loss transmission electron microscopy69 (Fig. 3f). Finally, recent studies of toroidal excitations 
moved towards novel and active laser emitters70, and low-loss dielectric71 (Fig. 3g) and 
superconducting59 material systems.  

The link between the dynamic microscopic toroidal response and directly observable macroscopic 
quantities (such as material transmission, reflection and absorption), has been investigated in a series of 
works24,25,48,51,72, but the discussion on the form of the constitutive equations which include the toroidal 
response remains open. 

Radiating properties of toroidal multipoles 

The recent observations of toroidal dipole excitations in metamaterials have enabled the study of their 
peculiar radiation properties. The radiation pattern of the toroidal dipole is identical to that of an electric 
dipole (apart from a phase factor), although the corresponding charge-current configurations are 
different (see Fig. 2). Hence, a coherent superposition of dynamic electric and toroidal dipoles can be 
realized in a way that the radiated fields by the two dipoles interfere destructively10,14,15. Such a non-
radiating configuration is in fact a dynamic version of the anapole; in contrast to the static anapole (that 
directly identifies with the static toroidal dipole), it comprises an electric dipole component24. The 
dynamic anapole was first observed using a microwave metamaterial73

 (Fig. 3h), where it was shown 
that the destructive interference between coherently oscillating electric and toroidal dipoles provides a 
new mechanism of electromagnetic transparency that yields narrow and symmetric Lorentzian 
transparency lines. Similar resonances were recently detected in the scattering spectra of dielectric 
nanoparticles49 (Fig. 3i) and were also predicted for core-shell wires74 and hybrid nanoparticles66. 
Computational studies showed that inhomogeneous dielectric environment perturbs the non-radiating 
charge-current configuration leading to directional emission.75 

In addition, non-radiating configurations composed of electric and toroidal dipoles can act as sources 
of propagating electromagnetic potentials13 (see Fig. 4), with the potential as a new channel for 
information transfer in time-dependent Aharonov-Bohm-like experiments. These suggestions were later 
challenged; it was argued that not only the fields but also the associated potentials are unobservable 
everywhere exterior to the spatially localized non-radiating source, while Aharonov-Bohm-type effects 
associated with non-radiating potentials are only possible in static situations76.  

Recently, the weak interaction of non-radiating configurations and static toroidal moments with 
electromagnetic fields has been discussed as a potential mechanism that can protect superconducting 
qubits from environmental disturbances77. Combinations of electric and magnetic moments with their 
toroidal counterparts give rise to a new mechanism of optical activity, a phenomenon of polarization 
rotation of electromagnetic waves travelling through chiral media. In the past optical activity was linked 
to the presence of the electric and magnetic dipole (or electric quadrupole) moments in the medium1. 
Following early work that indicated the toroidal moment contribution to optical activity54, a recent 
experimental demonstration showed a dominant role for the toroidal moment in the polarization 
properties of a purposely designed microwave metamaterial78.  

Finally, it has been argued that electrodynamic interactions between toroidal sources and electric or 
magnetic sources could violate the standard (Lorentz and Feld-Tai) formulation of reciprocity lemmas, 
under the condition that space- and time-dependence of the two sources cannot be separated or that they 
do not share the same form of time dependence9. These conclusions were extracted by considering the 
interactions between currents in a toroidal coil and in a ring with different time-dependence, a 
configuration that breaks action-reaction equality.  However, we are not aware of any independent 
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verification of this result and to our knowledge these predictions have not been confirmed 
experimentally; their implications remain unclear to date. 

 

Propagating toroidal excitations 

Although most considerations of toroidal electrodynamics focused on the localized toroidal excitations 
of matter, a new form of free-space propagating toroidal excitation was predicted79 in 1996 and has 
recently began to receive attention80,81. Known as “Focused Doughnuts”, such pulses belong to a 
broader family of finite energy, non-pathological solutions to Maxwell’s equations introduced a few 
years earlier82. Focused doughnuts are single-cycle, broad bandwidth pulses with a spatially localized 
toroidal field configuration and strong longitudinal field components. Importantly, the space and time 
dependence of such pulses cannot be separated, resulting in a spatially dependent frequency spectrum, 
in which lower (higher) frequency components dominate the outer (inner) area of the torus. Focused 
doughnut pulses come in two forms, transverse electric (TE) and transverse magnetic (TM), where one 
can be obtained from the other by merely exchanging electric and magnetic fields. Although most of 
the energy of the pulse is confined inside a torus-shaped region (see Fig. 5), the pulses exhibit strong 
longitudinal field components79. In the context of toroidal electrodynamics, it shall be noted that the 
focused doughnuts have magnetic fields oriented along the equatorial lines of the torus (transverse to 
the propagation direction) and the electric fields along its meridians, a configuration identical to the one 
found in the near-field of toroidal resonators. Hence, focused doughnut pulses are essentially free-space 
propagating versions of the localized toroidal excitations. It was recently reported that focused doughnut 
pulses can excite dominant toroidal dipoles in a spherical dielectric nanoparticle, a system which lacks 
toroidal topology81. It has been further predicted that the TM pulse exhibits favorable coupling to 
nanoparticles with a toroidal topology, exciting a broad spectrum of dominant toroidal dipole 
resonances within a dielectric nanotorus80. To date, Focused Doughnut pulses have not yet been realized 
experimentally, mainly due to the challenging task of controlling simultaneously frequency and spatial 
dispersion over a wide bandwidth. However, early works suggested the potential of ultra-broadband 
antenna arrays83 for the generation of a broad class of space-time non-separable pulses.  

 

Outlook 

The observation of a resonant toroidal response in metamaterials has enabled the systematic study of 
toroidal electrodynamics. Despite the recent stream of experimental and theoretical works, however, 
the field is still in its infancy with many questions to be resolved and applications to be explored. 
Toroidal resonances in natural media remain to be observed and the spectroscopy of toroidal resonances 
to be developed. The similarity between the radiation properties of electric and toroidal dipoles calls 
for a re-examination of spectroscopic data, especially where systems of toroidal symmetry are involved, 
as is often the case with biological macromolecules84.   

The full practical potential of natural and artificial media with toroidal elements in their structure is still 
to be identified; however it is already clear that they interact with electromagnetic waves in an unusual 
way. While strong toroidal contribution is expected only from large toroidal “molecules” (comparable 
with the wavelength of light), this contribution can be profound. Toroidal resonances can destructively 
interfere with other modes of excitations in the materials providing a new mechanism of induced 
transparency (slow light) and scattering suppression49,73 that can be used in narrow-band filters and for 
controlling emission. Toroidal metamaterials provide useful platform for tailoring electromagnetic 
environment of complex symmetry and topology for light confinement, trapping and sensor applications 
(highly gradient electric filed is strong in the centre of the torus). Novel laser designs have been 
investigated where arrays of artificial toroidal “metamolecules” are uses as gain medium on the 
frequency of high-Q toroidal mode70. An emerging field of study is interaction of toroidal media with 
structured illumination: for instance toroidal “molecules” efficiently interact with vortex 
electromagnetic beams85,86. Finally, the “Focused Doughnut” pulses as propagating toroidal excitations 
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represent an exciting new opportunity for energy and information transfer and, in fact, it is has already 
been shown that they couple efficiently to toroidal antennas which may be used for their detection80.  

 

Tutorial Insets 
Inset I: Toroidal multipoles 
Dynamic toroidal multipoles constitute an independent family of elementary 
electromagnetic sources. In the absence of intrinsic magnetisation, toroidal 
multipoles complete the standard dynamic multipole expansion comprising 
the conventional electric and magnetic multipoles (see Fig. 2). More 
specifically, they represent the scattering contributions of oscillating radial 
currents J (that is r ⋅ J ≠ 0) and hence are different in nature from the electric 
and magnetic multipoles associated with oscillating charge density and 
transverse currents (r × J ≠ 0), respectively. In particular, the lowest order 
toroidal multipole, the toroidal dipole, corresponds to currents flowing on the 
surface of an imaginary torus, along its meridians (see Fig. 2). Its moment T 
is directed along the axis of the torus and is given by3,15  𝑻𝑻 =

1

10𝑐𝑐 �𝑑𝑑3𝑟𝑟 [𝒓𝒓(𝒓𝒓 ∙ 𝑱𝑱) − 2𝑟𝑟2𝑱𝑱] 
Importantly, the toroidal dipole features neither charge poles (since it is a 
purely current excitation), nor magnetic poles where magnetic field lines 
would diverge or converge. Furthermore, the toroidal dipole interacts directly 
only with external conduction (Jext) and displacement currents (∂D/∂t) or, 
equivalently, with a vortex of magnetic field (curl B), as it follows from the 
expression for the energy of its interaction with electromagnetic fields (for a 
comparison with the electric and magnetic dipole terms, see Table 1)11  𝑊𝑊𝑇𝑇 = −𝑻𝑻 ∙ �4𝜋𝜋𝑐𝑐 𝑱𝑱𝑒𝑒𝑒𝑒𝑒𝑒 +

1𝑐𝑐 𝜕𝜕𝑫𝑫𝜕𝜕𝜕𝜕 �. 

 

In particular, in the static case, the toroidal dipole interacts only with 
conduction currents, and tends to align its moment parallel to the current flow.  

Despite being physically distinct from the electric dipole, the toroidal dipole 
emits radiation with the same angular momentum and parity properties as the 
former5,13, and therefore the two multipoles cannot be distinguished by a 
distant observer. Nevertheless, the toroidal dipole emission presents a distinct 
frequency dependence, and in the harmonic case where T(t)∝eiωt, its intensity 
has an additional scaling factor k2 = ω2/c2 as compared to the electric dipole15: 𝐼𝐼𝑇𝑇 =

2

3
𝑐𝑐𝑘𝑘4|𝑘𝑘𝑻𝑻|2, 

which, in principle, allows one to disentangle toroidal and electric dipole 
emissions via spectroscopic analysis5,15. Moreover, the vector potential, 
AT(r,t), of the toroidal emission differs from the vector potential, Ap(r,t), 
emitted by an electric dipole, and, in fact, their difference  ∆A = AT – Ap 
cannot be eliminated via a gauge transformation13. Indeed, the 
electromagnetic fields emitted by a point-like toroidal dipole, superimposed 
with a point-like electric dipole p = ikT vanish at any distance away from the 
source (but not at the source), whereas for the corresponding vector potential 
remains nonzero51 
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𝛥𝛥𝜜𝜜 = 𝛻𝛻 �𝜯𝜯 ⋅ 𝛻𝛻 �𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟 �� + 4𝜋𝜋𝛿𝛿3(𝑟𝑟)𝑻𝑻 

Since all effects of gauge-fixing can be described by addition of a gradient of 
an arbitrary function, ∇f , to the vector potential, the non-trivial part of the 
vector potential, irremovable by gauge-fixing, will be given by terms with 
non-zero curl: 

𝛻𝛻 × (𝛥𝛥𝜜𝜜) = 𝛻𝛻 × �𝛻𝛻 �𝜯𝜯 ⋅ 𝛻𝛻 �𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟 ��� + 4𝜋𝜋[𝛻𝛻𝛿𝛿3(𝑟𝑟) × 𝑻𝑻] 

It follows that the second term in the expression for the net vector potential 
does not vanish upon application of the curl, which indicates that net vector 
potential cannot be eliminated at all points in space in any gauge, and is 
therefore non-trivial.   

We would like to note that in the current and following insets, we employ a 
Gaussian unit system, in accordance with the majority of works on the topic 
of toroidal electrodynamics. Simple means to convert the relations reported 
here to SI units can be found in89. 

 

Inset II: Charge -current multipole expansion vs. Mie theory 

Both charge-current multipole expansion and Mie theory provide a complete 
mathematical description of electromagnetic scattering in the far field. 
However, toroidal excitations seemingly appear only in the multipole 
expansion. This apparent discrepancy is explained in this inset.  

Multipole expansion. The multipole expansion (if carried out in the spherical 
basis) represents scattered electromagnetic field as a series of vector spherical 
wave harmonics Ψl,m and Φl,m (where Ψl,m = −i[∇ × Φl,m]/ k), with coefficients 
that in the absence of magnetization are explicitly determined by radial and 
angular distributions of charge ρ and current J densities induced in the 
scatterer: 

 

These expansion coefficients Ql,m, Tl,m, and Ml,m, known as multipole 
moments, characterize the strength of dynamic multipoles – modes of 
localized charge and current oscillations that replace the actual distributions 
of ρ and J, and act as elementary point-like sources of spherical wave 
harmonics. Such sources are represented by three families of physically 
independent excitations, which correspond to volumetric oscillations of (i) 
charges yielding electric multipoles, (ii) transverse currents (r × J ≠ 0) 

( )

( )
( )[ ]

( )
[ ]( ) ( )

( )
( ) ( )∫

∫

∫

∑

∗

∗

∗

⋅
+

=

×⋅∇
+

=

+
=

++=

rdkrjY
ll

k
T

rdkrjY
lli

M

rdkrrj
dr

d
Y

lli

c
Q

TMQ
c

k

lmlml

lmlml

lmlml

ml

mlmlmlmlmlml

3
,,

3
,,

3
,,

,
,,,,,,

2

sca

1

1

1

1

4

Jr

Jr

ΨΦΨE

ρ

π



 8 

yielding magnetic multipoles, and (iii) radial currents (r ⋅ J ≠ 0) yielding 
toroidal multipoles. In general, sources of all three types contribute to 
electromagnetic scattering and their contributions can be uniquely identified 
through the multipole moments3,5,15 . 

Mie theory. In the frame of Mie theory the spherical harmonic expansion is 
applied to scattered, as well as incident and internal (with respect to the 
scatterer) electromagnetic fields. While the expansion coefficients for the 
incident fields are given, those for the internal and scattered fields (known as 
Mie coefficients) are determined by enforcing continuity of the fields across 
the scatterer’s boundary. Since the scattered magnetic field has no radial 
component, while the radial component of electric field vanishes in the far-
field zone90, the boundary conditions are respected only for the transverse 
components: 

 

Correspondingly, Mie expansion features scattering contributions of only two 
kinds, as defined by the resulting two sets of Mie scattering coefficients al,m 
and bl,m

90 

 

where Al,m and Bl,m are the expansion coefficients for the incident field. 
Although these contributions are commonly referred to as electric and 
magnetic multipole fields, al,m and bl,m are not related (at least directly) to a 
particular mode of charge-current excitation, but rather to the shape of the 
scatterer and the spatial structure of scattered electromagnetic field. For 
example, in the case of a spherical dielectric particle in air with a radius r0 
and refractive index n, the coefficients are defined simply through the 
spherical Bessel functions jl: 

 

Importantly, since toroidal and electric multipoles are identical in terms of 
far-field scattering and their difference in the near field (due to non-vanishing 
radial electric field) is not recognized by the boundary conditions, their 
contributions in al,m are mixed together and cannot be separated without the 
knowledge of the actual charge-current distribution, yielding the so-called 
renormalized electric multipoles50. Thus, unlike the multipole expansion, Mie 
theory offers merely a mathematical description of the scattering problem 
providing little physical insight. Consequently, one should exercise caution 
while establishing a relation between the radiation properties of an 
electromagnetic scatterer and the distribution of the actual charge-current 
density (polarization) induced in the scatterer.  

Failure to recognize toroidal multipoles in the frame of Mie theory may lead 
to a confusion and incorrect physical interpretation of the scattering 

( )[ ]
( )[ ] .0

,0

intscainc

intscainc

=×−+
=×−+

rHHH

rEEE

( ),
,

,,,,,,
2

sca ∑ +=
ml

mlmlmlmlmlml bBaAk ΦΨE

( ) ( )[ ] ( ) ( )[ ]
( ) ( )[ ] ( ) ( )[ ]

( ) ( )[ ] ( ) ( )[ ]
( ) ( )[ ] ( ) ( )[ ]

.

,

000000

000000

000000
2

000000
2

′−′

′−′
=

′−′

′−′
=

krnjkrnkrhkrhkrkrnj

krnjkrnkrjkrjkrkrnj
b

krnjkrnkrhkrhkrkrnjn

krnjkrnkrjkrjkrkrnjn
a

llll

llll

l

llll

llll

l



 9 

phenomena. In particular, such a situation arises in conjunction with a non-
trivial non-radiating excitation, also known as a dynamic anapole, where 
collocated electric and toroidal dipolar modes interfere destructively 
cancelling each other’s radiation everywhere in the far field10,73. Since electric 
dipole scattering in this case is virtually absent the corresponding Mie 
coefficient a1,m will be zero. The latter suggests that the polarization induced 
in the scatterer should be also zero, while a priori it is not. This paradox has 
been recently brought to light by Miroshnichenko and co-workers, who 
experimentally studied light scattering by Si nanodisks in the visible part of 
the spectrum49. Ignoring the role of the toroidal multipoles in the physical 
picture may also have implications for understanding the optical force as a 
consequence of external fields interacting with nanostructures50. 
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Figure Legends 

FIG. 1. Toroidal structures at different length scales. Toroidal topology, encountered very often in both 
artificial and naturally occurring objects, provides an indication for the presence of spontaneous or induced 
toroidal moments. Top row, from left to right: solenoidal currents lead to a toroidal moment in the atomic 
nucleus17; quaternary structure  of archaeon (S. solfataricus Cas4) protein84;  red blood cells take a biconcave, 

torus-like shape87. Bottom row from left to right: benzene (left), hexaphenylbenzene (centre) and toroidal carbon 

cage consisting of 120 carbon atoms8 (right) are organic molecules with elements of toroidal symmetry; perovskite 

(BaTiO3) nanotori88 are examples of artificial toroidal structures. 

FIG. 2. The “Multipole Zoo” (adapted from51). Electric multipoles represent charge configurations (far left 
column), whereas magnetic multipoles correspond to current sources (second column from left). The (magnetic) 
toroidal multipole family (second column from the right) corresponds to current distributions that cannot be 
represented by electric and magnetic multipoles. Same order members of each multipole family have identical 
power radiation patterns of corresponding oscillating multipoles (far right column). Electric and toroidal dipoles 
have also identical radiated field patterns as indicated by the same colour (red) arrows. 
 
FIG. 3. Toroidal metamaterials. (a) Artistic drawing of the metamaterial unit cell used for the first demonstration 
of a dynamic toroidal dipole absorption resonance55. (b) Planar low-loss split-ring metamaterial on a dielectric 

substrate supports toroidal modes of excitation58. (c) A scaled-down version of the metamaterial presented in (a) 

shows plasmonic toroidal response at optical wavelengths62
. (d) Optical toroidal metamaterial exploiting resonant 

plasmonic response63. (e) Spoof plasmon structure supports a toroidal dipole excitation at oblique angles of 
incidence68

. (f) Plasmonic oligomers consisting of voids in metallic films exhibit toroidal response at visible 
wavelengths and can be excited by a free-electron beam69. (g) Low-loss toroidal metamaterial consisting of 
dielectric cylinders71. (h) Interference of induced electric and toroidal dipoles in a resonantly transparent 

metamaterial consisting of dumbbell-shaped apertures, leads to a non-radiating configuration73. (i) Near-field 
signature of toroidal dipole excitation in a dielectric nanoparticle49. 
 

FIG. 4. Non-radiating configurations consist of a toroidal dipole, represented by a solenoid with oscillating 
poloidal currents, and an electric dipole, represented by a pair of opposite charges, oscillating on the same 
frequency as the currents. With an appropriate phase difference and amplitudes of their oscillations destructive 
interference takes place: the combined source does not radiate electromagnetic fields. However, the scalar (ϕ) and 
vector (A) potentials associated with radiation of these dipoles do not cancel, but instead propagate to the far-
field. Hence, a non-radiating configuration acts as a source of electromagnetic potentials (but not electromagnetic 
fields). The physical significance and detectability of these potentials are not established and are being actively 
discussed in the literature.  
 
FIG. 5. “Focused Doughnut” (FD) pulses. Artistic representation of a transverse magnetic (TM) focused 
doughnut pulse propagating from right to left. Here, the magnetic field is azimuthally polarized and confined in a 
torus-shaped region, and the electric field is winding along the meridians of the torus resulting in a longitudinal 
component at the centre of the pulse. Focused doughnut pulses have broad spectrum and are characterized by two 
parameters, q1, which represents an effective wavelength, and q2, which quantifies the focal depth and is analogous 
to the Rayleigh range of conventional beam optics. The projected cross-section demonstrates the confinement of 
the pulse energy in two adjacent toroidal regions, while the white arrow indicates the propagation direction. 
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Tables 

 

Multipole 

family 

Dipole Moment Interaction energy 𝑊𝑊 = �𝑑𝑑3𝑟𝑟 �𝜌𝜌𝜌𝜌 − 1𝑐𝑐 𝑱𝑱 ∙ 𝑨𝑨� 

Far-field radiation 

patterns  

(𝒓𝒓� ∙ 𝑺𝑺) 

Electric 𝒑𝒑 =
1𝑖𝑖𝑖𝑖�𝑑𝑑3𝑟𝑟 𝑱𝑱 −𝒑𝒑 ∙ 𝑬𝑬 − 1𝑐𝑐 𝜕𝜕𝜕𝜕𝜕𝜕 (𝒑𝒑 ∙ 𝑨𝑨) 

𝑖𝑖4
4𝜋𝜋𝑐𝑐3 |𝒑𝒑|2(1 − (𝒓𝒓� ∙ 𝒑𝒑�)2) 

Magnetic 𝒎𝒎 =
1

2𝑐𝑐 �𝑑𝑑3𝑟𝑟 (𝒓𝒓 × 𝑱𝑱) −𝒎𝒎 ∙ 𝑩𝑩 
𝑖𝑖4

4𝜋𝜋𝑐𝑐3 |𝒎𝒎|2(1 − (𝒓𝒓� ∙ 𝒎𝒎� )2) 

Toroidal 𝑻𝑻 =
1

10𝑐𝑐 �𝑑𝑑3𝑟𝑟 [𝒓𝒓(𝒓𝒓 ∙ 𝑱𝑱) − 2𝑟𝑟2𝑱𝑱] −𝑻𝑻. �𝑫̇𝑫 + 4𝜋𝜋𝑱𝑱�/𝑐𝑐 
𝑖𝑖6

4𝜋𝜋𝑐𝑐5 |𝑻𝑻|2 �1− �𝒓𝒓� ∙ 𝑻𝑻��2� 

Table 1.  Dipole moments (p,m,T), interaction energy (W) with an electromagnetic field, and radiated power 
(expressed as the radial component of the Poynting vector S) for the three multipole families (electric, magnetic, 
toroidal).  
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