Electromagnetic Transients in Transformer and Rotating Machine Windings

Charles Q. Su Charling Technology, Australia

Table of Contents

Foreword	xiv
Preface	xvi
Acknowledgment	xvii

Section 1 Basic Theories

Chapter 1

Transmission Line Theories for the Analysis of Electromagnetic Transients in Coil Windings Akihiro Ametani, Doshisha University, Japan	
Teruo Ohno, Tokyo Electric Power Co., Japan	
Shapter 2	
asic Methods for Analysis of High Frequency Transients in Power Apparatus Windings	15
Shapter 3	
requency Characteristics of Transformer Windings1	11
Charles Q. Su, Charling Technology, Australia	
Chapter 4	
requency Characteristics of Generator Stator Windings1	51
Charles Q. Su, Charling Technology, Australia	
hapter 5	
erroresonance in Power and Instrument Transformers	34
Afshin Rezaei-Zare, Hydro One Networks Inc., Canada	
Reza Iravani, University of Toronto, Canada	

Section 2 Modelling

Chapter 6

Transformer Modelling for Impulse Voltage Distribution and Terminal Transient Analysis
Marjan Popov, Delft University of Technology, The Netherlands
Bjørn Gustavsen, SINTEF Energy Research, Norway
Juan A. Martinez-Velasco, Universitat Politècnica de Catalunya, Spain
Chapter 7
Transformer Model for TRV at Transformer Limited Fault Current Interruption
Masayuki Hikita, Kyushu Institute of Technology, Japan
Hiroaki Toda, Kyushu Institute of Technology, Japan
Myo Min Thein, Kyushu Institute of Technology, Japan
Hisatoshi Ikeda, The University of Tokyo, Japan
Eiichi Haginomori, Independent Scholar, Japan
Tadashi Koshiduka, Toshiba Corporation, Japan
Chapter 8
Z-Transform Models for the Analysis of Electromagnetic Transients in Transformers
and Rotating Machines Windings

Charles Q. Su, Charling Technology, Australia

Chapter 9

Computer Modeling of Rotating Machines	
J.J. Dai, Operation Technology, Inc.,	USA

Section 3 Applications

Chapter 10

Lightning Protection of Substations and the Effects of the Frequency-Dependent	
Surge Impedance of Transformers	. 398
Rafal Tarko, AGH University of Science and Technology, Poland	
Wieslaw Nowak, AGH University of Science and Technology, Poland	

Chapter 11

Chapter 12

.

Chapter 13 Partial Disch

Partial Discharge Detection and Location in Transformers Using UHF Techniques Martin D. Judd, University of Strathclyde, UK	487
Chapter 14	
Detection and Location of Partial Discharges in Transformers Based on High Frequency Winding	
Responses B.T. Phung, University of New South Wales, Australia	521
Compilation of References	540
About the Contributors	561
Index	566