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We study the effect of electromagnetic unidirectionality, which can occur in magnetic photonic crystals

under certain conditions. A unidirectional periodic medium, being perfectly transparent for an electromagnetic

wave of certain frequency, ‘‘freezes’’ the radiation of the same frequency propagating in the opposite direction.

One of the most remarkable manifestations of the unidirectionality is that while the incident radiation can enter

the unidirectional slab in either direction with little or even no reflectance, it cannot escape from there getting

trapped inside the periodic medium in the form of the coherent frozen mode. Having entered the slab, the wave

slows down dramatically and its amplitude increases enormously, creating unique conditions for nonlinear

phenomena. Such a behavior is an extreme manifestation of the spectral nonreciprocity, which can only occur

in gyrotropic photonic crystals. Unidirectional photonic crystals can be made of common ferro- or ferrimag-

netic materials alternated with anisotropic dielectric components. A key requirement for the property of uni-

directionality is the proper spatial arrangement of the constitutive components.

DOI: 10.1103/PhysRevB.67.165210 PACS number~s!: 78.20.Bh, 41.20.Jb, 78.20.Ls, 42.65.2k

I. INTRODUCTION

A. Unidirectional photonic crystals

Photonic crystals are spatially periodic composites made
up of lossless dielectric components. As a consequence of
spatial periodicity, the electromagnetic frequency spectrum
of a photonic crystal develops a band-gap structure similar to
that of electrons in semiconductors and metals ~see, for in-
stance, Refs. 1–6 and references therein!. Gyrotropic photo-
nic crystals are those in which at least one of the constitutive
components is a magnetic material ~a ferromagnet or a fer-
rite! displaying the Faraday rotation.7–9 Such materials are
often referred to as gyrotropic or bigyrotropic. If a gyrotropic
photonic crystal satisfies certain symmetry conditions formu-
lated in Ref. 10, its bulk electromagnetic dispersion relation

v(kW ) may display asymmetry with respect to the Bloch wave

vector kW ,

v~kW !Þv~2kW !, ~1!

as shown in Fig. 1.
The bulk spectral asymmetry ~1! by no means occurs au-

tomatically in any magnetic photonic crystal. Quite the op-
posite, only special periodic arrays of magnetic and other
dielectric components can produce the effect.25 An example
of a such periodic stack is shown in Fig. 2. The degree of the
spectral asymmetry depends on the magnitude of circular
birefringence of the gyrotropic component, as well as on
some other geometric and physical parameters of the peri-
odic array. Detailed theoretical analysis of the problem along
with a number of specific examples are provided in Ref. 10.

The property of bulk spectral asymmetry has various
physical consequences, one of which is the effect of unidi-

rectional wave propagation. Let us consider a transverse
monochromatic wave propagating along a symmetry direc-
tion z of a gyrotropic photonic crystal. The Bloch wave vec-

tor kW , as well as the group velocity uW (kW )5]v(kW )/]kW are
parallel to z. Let us denote

k5kz , u~k !5]v~k !/]k , ~2!

and suppose that one of the spectral branches v(k) has a
stationary inflection point at k5k0 , v5v0,

]v

]k
U

k5k0

50;
]2v

]k2 U
k5k0

50;
]3v

]k3U
k5k0

Þ0, ~3!

as shown in Fig. 1. Note that there are two propagating ~ex-
tended! Bloch waves with frequency v5v0: one with k

5k0, and the other with k5k1. Obviously, only one of the
two waves can transfer electromagnetic energy—the one
with k5k1 and the group velocity u(k1),0. The Bloch
eigenmode with k5k0 has zero group velocity u(k0)50 and
does not transfer energy. This latter eigenmode associated
with stationary inflection point ~3! is referred to as the frozen

mode. As one can see in Fig. 1, none of the eigenmodes with
v5v0 has positive group velocity and therefore none of the
electromagnetic eigenmodes can transfer the energy from left
to right at this particular frequency! Thus a photonic crystal
with the dispersion relation similar to that in Fig. 1 displays
the property of electromagnetic unidirectionality at v5v0.
Such a remarkable effect can be viewed as an extreme mani-
festation of the spectral asymmetry ~1!.

According to Ref. 10, the effect of unidirectionality can
occur in magnetic photonic crystals made up of common
dielectric and ferro- or ferrimagnetic components ~at least at
frequencies below 1012Hz). There are two key physical re-
quirements for that:

~i! The space arrangement of the constitutive components
must satisfy certain symmetry criterion for spectral asymme-
try. This criterion, specified in Ref. 10, rules out all nonmag-
netic and the majority of magnetic photonic crystals. The
space arrangement of magnetic and other constitutive com-
ponents must be complex enough to allow for the bulk spec-
tral asymmetry ~1!.

~ii! The magnetic constituent ~for instance, ferrite! must
display significant circular birefringence at frequency range
of interest, for example, several percent or more. Failure to
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satisfy this condition does not formally rule out the phenom-
enon of unidirectionality, but it makes the magnitude of the
effect insignificant. Indeed, weak Faraday rotation leads to a
small value of the third derivative (]3v/]k3)k5k0

in Eq. ~3!,

which, in turn, pushes the stationary inflection point v0 in
Fig. 1 too close to the photonic band edge vb .

The simplest and, perhaps, the most practical periodic
structures displaying the property of unidirectionality are
one-dimensional ~1D! periodic magnetic stacks, an example
of which is presented in Fig. 2. If the above two conditions

are met, one can always achieve electromagnetic unidirec-
tionality at a given frequency v0 by adjusting at least two
different physical and/or geometrical parameters, such as

• the ratio r5F/A of the layers thicknesses,
• the misalignment angle w5w12w2 between anisotropic

dielectric layers,
• magnetic permeability and/or electric permittivity of the

layers ~this can be done by application of external homoge-
neous magnetic or electric field19,20!.

Physical manifestations of the electromagnetic unidirec-
tionality prove to be rather universal and dependent solely on

the dispersion relation v(kW ) in the vicinity of the frozen
mode frequency v0. An essential characteristic determining
the magnitude of the respective electromagnetic abnormali-
ties is the dimensionless parameter

f5

1

v0L3 S ]3v

]k3 D
k5k0

, ~4!

where L is the length of the primitive cell of the photonic
crystal. For instance, periodic stacks made of different con-
stitutive materials and having completely different geometry,
display, nevertheless, very similar behavior in the vicinity of
the frozen mode frequency, provided that they have compa-
rable values of the parameter f from Eq. ~4!. For this reason,
all numerical examples considered in this paper are based on
a single magnetic periodic stack shown in Fig. 2 and de-
scribed in detail in Appendix A. These examples illustrate the
universal features of electromagnetic behavior of all unidi-
rectional photonic crystals.

FIG. 1. An example of asym-

metric bulk electromagnetic dis-

persion relation of a periodic mag-

netic stack. At v5v0 , k5k0, one

of the spectral branches develops

a stationary inflection point ~3! as-

sociated with the frozen mode. vb

is the edge of the lowest fre-

quency band. The graphs ~a! and

~b! represent two different choices

of the Brillouin zone. The values

v and k are expressed in units of

c/L and 1/L , respectively.

FIG. 2. A simplest periodic magnetic stack supporting asymmet-

ric bulk dispersion relation. Each primitive cell L52A1F com-

prises three layers: two anisotropic dielectric layers 1 and 2 of

thickness A and with misaligned in-plain anisotropy, and one mag-

netic layer of thickness F and magnetization shown by the arrows.

The misalignment angle between adjacent layers 1 and 2 must be

different from 0 and p/2.
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If any of the physical or geometrical parameters of a uni-

directional stack is altered, the stationary inflection point ~3!
can turn into a regular inflection point corresponding to a

finite group velocity, as shown in Fig. 3~a!, or a pair of close

inflection points, as in the situation in Fig. 3~b!. This blurs

and weakens the effects associated with electromagnetic uni-

directionality.

At first sight, the existence of the frozen mode related to a

stationary inflection point ~3! does not require the spectral

asymmetry ~1!. Indeed, a hypothetical symmetric dispersion

relation in Fig. 4~a! would have a pair of stationary inflection

points, although there would be no spectral asymmetry, let

alone unidirectionality, in such a case. But in fact, the situa-

tion similar to that in Fig. 4~a! cannot occur regardless of the

complexity of the composite structure. At any given fre-

quency, there cannot be more than one stationary inflection
point ~3! in the electromagnetic spectrum. Therefore the fro-

zen mode cannot exist in periodic stacks, either magnetic or

nonmagnetic, with symmetric dispersion relations v(kW )

5v(2kW ).

On the other hand, whenever the electromagnetic disper-

sion relation has a stationary inflection point ~3! ~i.e., the

frozen mode!, it always displays the property of unidirection-
ality at the same frequency. This implies that a hypothetical
dispersion relation in Fig. 4~b! having a stationary inflection
point at v5v0 but not displaying electromagnetic unidirec-
tionality at the respective frequency, cannot occur either. Re-
call that the unidirectionality means the existence of propa-
gating modes with only negative ~or only positive! group
velocity at a given frequency and given direction of propa-
gation.

The above statements suggest a strict one-to-one corre-
spondence between the existence of the frozen mode and the
property of unidirectionality at the same frequency in peri-

FIG. 3. Asymmetric dispersion

relations of the periodic structures

slightly modified compared to that

related to Fig. 1. In both cases, the

stationary inflection point of Fig.

1 evolves into a simple inflection

point with vkk9 (k)Þ0: ~a! the ra-

tio r5F/A of the layers thick-

nesses exceeds the the critical

value r0 by a third; ~b! r,r0 by a

third. Here r0 is the ‘‘unidirec-

tional’’ ratio corresponding to the

situation in Fig. 1.

FIG. 4. Hypothetical dispersion relations,

which cannot exist in any periodic stack regard-

less of its complexity: ~a! symmetric dispersion

relation with two stationary inflection points at

the same frequency v0; ~b! asymmetric disper-

sion relation with stationary inflection point ~the

frozen mode! at v5v0, but without the property

of unidirectionality at the same frequency.
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odic layered media. This is a consequence of the fact that the
dispersion relation v(k) of a periodic stack is determined by
characteristic equation of the fourth degree. Indeed, at a
given frequency v , there must be a total of four real and

complex solutions for the wave vector kW iz . Taking into con-
sideration that a stationary inflection point ~3! is always as-
sociated with a triple real root of the characteristic equation,
one can come to the following conclusions:

~i! There cannot be more than one frozen mode at the
same frequency v0. For instance, the dispersion relation in
Fig. 4~a! showing a couple of inflection points at the same
frequency cannot occur.

~ii! There must be one and only one additional eigenmode
at the frequency v0 of the frozen mode with the wave vector
k different from k0. For instance, the dispersion relation in
Fig. 4~b! showing three additional eigenmodes at the fre-
quency of the frozen mode, cannot occur either.

Detailed consideration of the bulk electromagnetic spectra
in infinite periodic gyrotropic stacks is presented in Sec. II,
where we thoroughly analyze a peculiar behavior of the ex-
tended and evanescent modes in nonreciprocal periodic
stacks. Emphasis is given to the vicinity of stationary inflec-
tion point where the phenomenon of unidirectionality occurs.
Importantly, if the frequency v exactly coincides with v0

from Eq. ~3!, the electromagnetic field inside the unidirec-
tional periodic array does not reduce to a linear superposition
of canonical Bloch eigenmodes. The latter peculiarity is re-
lated to the triple degeneracy of the stationary inflection
point. The results of Sec. II are further applied to semi-
infinite and finite unidirectional slabs.

B. Electromagnetic properties

of a semi-infinite unidirectional slab

The phenomenon of unidirectionality is associated with
unique electromagnetic properties of periodic media in the
vicinity of the frozen mode frequency v0. Some preliminary
conclusions can be drawn from the energy conservation con-
sideration. Consider a plane electromagnetic wave impinging
on the surface of a semi-infinite unidirectional photonic crys-
tal, as shown in Fig. 5. The direction z of wave propagation
is perpendicular to the photonic slab boundary and coincides

with the z axis in Eqs. ~2! and ~3!. Due to the spectral asym-
metry of the slab, the situation of the reversed incidence
presented in Fig. 6 appears to be quite different and will be
considered later on.

Let S I.0, SR<0 and ST >0 be the energy flux of the
incident (C I), reflected (CR) and transmitted (CT) waves,
respectively. The energy conservation yields

S I1SR5ST ~5!

or, equivalently

ST5tS I , SR52rS I , r512t , ~6!

where t and r are the normal transmittance and reflectance
of the semi-infinite slab, respectively (0<t<1,0<r<1).
Assume that the wave frequency v lies within the frequency
range

va,v,vb ~7!

in Fig. 1. In such a case, the transmitted wave CT(z) inside
the slab is a superposition of one extended ~propagating!
Bloch eigenmode Cex(z) ~the one with u.0) and one eva-
nescent mode Cev

(z) ~the one with Im k.0), as shown in
Fig. 5. Evanescent eigenmodes, which are not shown in the
dispersion relation in Fig. 1, do not contribute to the energy
flux, therefore the extended eigenmode Cex(z) is the only
one contributing to the energy flux ST transmitted inside the
slab. In the case of a single propagating mode, the energy
flux ST can be expressed in terms of the mode energy density
Wex and its group velocity u from Eq. ~2!

ST5uWex . ~8!

The fact that the group velocity u vanishes as v→v0, im-
plies two possible scenarios, depending on whether the en-
ergy flux ST inside the slab also vanishes as v→v0.

The most obvious scenario would be

ST→0,t→0, as v→v0 , ~9!

which implies a total reflectance of the incident wave at v
5v0. Such a behavior would be similar to what commonly
occurs in any semi-infinite photonic slab in the vicinity of a

FIG. 5. Forward ~left-to-right! normal incidence on the surface

of a semi-infinite unidirectional slab with the dispersion relation in

Fig. 1; the frequency v lies within the range va,v,vb . C I(z)

and CR(z) are the incident and reflected waves in vacuum; Cex(z)

and Cev
(z) are the extended ~with u.0) and the evanescent ~with

Im k.0) contributions to the transmitted wave CT(z).

FIG. 6. Backward ~right-to-left! normal incidence on the surface

of a semi-infinite unidirectional slab with the dispersion relation in

Fig. 1; the frequency v lies within the range va,v,vb . C I(z)

and CR(z) are the incident and reflected waves in vacuum; CEX(z)

and CEV(z) are the extended ~with u,0) and the evanescent ~with

Im k,0) contributions to the transmitted wave CT(z).
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photonic band edge, where the group velocity of the ex-
tended eigenmode also vanishes. Specifically, referring to the
example in Fig. 1, we have in the vicinity of the photonic
band edge at v5vb

ST→0, t→0, as v→vb ~10!

as illustrated in Fig. 7. This common situation occurs in any
semi-infinite photonic crystal near photonic band edges.

By contrast, it turns out that in the vicinity of the frozen
mode frequency v0 we have, instead of Eq. ~9!,

ST→S0.0, t→t0.0, WT→` , as v→v0 . ~11!

In such a case, the incident wave C I with the frequency v
close to v0 can enter the semi-infinite unidirectional slab
with little or even no reflectance @see Figs. 7~a!,~c! where the
transmittance t remains finite in the vicinity of v0]. Having
entered the slab, the incident wave converts into nearly fro-
zen extended mode Cex(z) and slows down dramatically.
Immediately upon entering the slab, the wave amplitude
uCT(z)u2 is limited, as shown in Fig. 8~a!, but then it gradu-

ally increases until reaches its saturation value

uCex~z !u2;uv2v0u22/3. ~12!

The distance l from the slab boundary, at which the wave
intensity approaches its maximum value ~12!, is also strongly
dependent on uv2v0u,

l;US ]3v

]k3 D
k5k0

~v2v0!21U1/3

. ~13!

Relatively small amplitude of the electromagnetic field
CT(z) in the transient region z!l is due to a destructive
interference of the nearly frozen mode Cex(z) and the eva-
nescent mode Cev

(z) with Re k.0. As illustrated in Figs. 8
and 9~a! and ~b!, both contributions have huge and nearly
equal and opposite values near the slab boundary, so that
their superposition CT(0)5FT5Fex1Fev

at z50 is rela-
tively small, as shown in Fig. 9~c!. The destructive interfer-
ence allows to satisfy the boundary condition ~81! at the
semi-infinite slab boundary. At z@l the contribution of the

FIG. 7. Transmittance te of

semi-infinite unidirectional slab vs

frequency v ~in units of c/L) for

the case of forward incidence

shown in Fig. 5. The characteristic

frequencies are explained in Fig.

1. The incident wave polarization

is: ~a! linear, with EW ix; ~b! linear,

with EW iy ; ~c! elliptic, correspond-

ing to maximal transmittance at

v5v0; ~d! elliptic, that produces

a single extended mode Cex(z)

inside the slab ~no evanescent

mode contribution!.

FIG. 8. Amplitude of the re-

sulting electromagnetic field

CT(z) and its extended and eva-

nescent components Cex(z) and

Cev
(z) inside unidirectional slab.

z is the distance from the slab sur-

face in units of L. Frequency v is

close to v0 ~specifically, v2v0

50.05v0). The amplitude uC Iu
2

of the incident radiation is equal

to unity.
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evanescent mode Cev
(z) decays exponentially, while the

contribution of the extended mode Cex(z) remains constant
and huge. As a result, the total electromagnetic field ampli-
tude CT(z) inside the slab gradually increases with the dis-
tance z until reaches its maximum value of Cex(z) from Eq.
~12!, as illustrated in Fig. 8~a!. If the frequency v exactly
coincides with v0, the transmitted wave CT(z) inside the
unidirectional slab is not a superposition of canonical Bloch
eigenmodes, and its amplitude inside the slab diverges

at v5v0 : uCT~z !u2;z2, as z→` ~14!

as shown in Fig. 10.
The phenomenon described by formulas ~12! and ~14! and

illustrated in Figs. 8 and 10 can be viewed as unidirectional

freezing of the incident electromagnetic wave inside the
semi-infinite unidirectional slab. It is accompanied by a dra-
matic slowdown of the transmitted wave inside the slab, as
well as a huge increase in its amplitude. Remarkably, the

transmittance te of the semi-infinite slab remains finite and

can be even close to 100%. By contrast, in the situation when
the plane electromagnetic wave of the same frequency v
close or equal to v0 impinges on the surface of the same
unidirectional stack but from the opposite direction, as
shown in Fig. 6, nothing extraordinary occurs. The incident
wave gets partially reflected, and the rest continues inside the
slab in the form of the extended Bloch eigenmode CEX(z)
with finite group velocity u(k1),0 and finite amplitude
uCEX(z)u2

5uFEXu2, as illustrated in Fig. 11. Such an ex-
treme asymmetry between the cases of forward and back-
ward incidence justifies the term unidirectional freezing for
what happens in a semi-infinite unidirectional slab.

The effect of unidirectional freezing proves to be rather
robust when some physical or geometrical parameters of the
original unidirectional array are slightly altered. For instance,
when the relative thickness r5F/A of the layers in the pe-
riodic structure in Fig. 2 is increased or decreased by a third
@the respective modified dispersion relations are presented in

FIG. 9. Destructive interfer-

ence of the extended and the eva-

nescent components of electro-

magnetic field FT5CT(0) at the

surface of semi-infinite unidirec-

tional slab for the case of forward

incidence: ~a! extended ~nearly

frozen! contribution uFexu
2

5uCex(0)u2 for EW iy ; ~b! evanes-

cent contribution uFexu
2

5uCex(0)u2 for EW iy ; ~c! the re-

sulting field amplitude uFTu2

5uFex1Fev
u2 for EW iy ; ~d! the

resulting field amplitude for EW ix .

FIG. 10. Amplitude uCT(z)u2 of electromagnetic field inside

unidirectional slab vs the distance z ~in units of L) from the slab

surface; the frequency v coincides with the frozen mode frequency

v0. Polarization of the forward incident wave is linear, with EW uux
@compare with Fig. 8~a!#.
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Figs. 3~a! and ~b!, respectively#, the frozen mode blurs, but
the surge in electromagnetic field amplitude inside the slab
remains quite significant—more than an order of magnitude.

In Sec. IV, we consider the transmittance of a finite gyro-
tropic photonic slab, which is a finite fragment of a unidirec-
tional photonic crystal. As long as the number of layers con-
stituting a finite slab is small, the electromagnetic properties
of the slab does not show any indication of the unidirection-
ality of the respective infinite or semi-infinite periodic stacks.
But when the number N of the elementary fragments L in
Fig. 2 is large, the finite slab does show some distinct behav-
ior in the vicinity of the frozen mode frequency v0. For
instance, the dependence of the slab transmittance on the
polarization of the incident radiation is similar to that of the
semi-infinite slab. In Figs. 12~a! and ~b! one can see that for
certain elliptical polarization of the forward incident radia-
tion, the thick unidirectional slab becomes virtually transpar-
ent in the vicinity of the frozen mode frequency v0. This
particular polarization coincides with that shown in Fig. 7~c!
and provides the maximal forward transmittance te of the
respective semi-infinite slab. In addition to this, both the
thick finite slab and the respective unidirectional semi-
infinite stack become totally reflective in the vicinity of v0,
if the polarization of the incident wave is orthogonal to the
previous one, as shown in Figs. 7~d! and 12~b!, respectively.

II. TRANSVERSE ELECTROMAGNETIC WAVES

IN PERIODIC GYROTROPIC MEDIA:

ELECTROMAGNETIC UNIDIRECTIONALITY.

This section starts with a brief discussion of bulk electro-
magnetic properties of gyrotropic periodic layered structures.

We consider the basic features of extended and evanescent
eigenmodes characteristic of nonreciprocal periodic arrays.
Particular attention is given to the effect of unidirectionality.
The results of this section are used in the following study of
the electromagnetic properties of unidirectional slabs.

A. Definitions and notations

Electromagnetic properties of gyrotropic layered media
have been a subject of numerous publications ~see, for ex-
ample Refs. 10–16, and references therein!. Our objective
here is to introduce those concepts, definitions, and nota-
tions, which are necessary for understanding the electromag-
netic properties of unidirectional photonic crystals. We con-
sider the simplest and the most important case of layered
dielectric media, which supports transverse electromagnetic
waves with alternating field components

EW ~z !, HW ~z !, DW ~z !, BW ~z !'zW . ~15!

The direction z of wave propagation is normal to the layers,
as shown in Fig. 5. In such a case, the time harmonic Max-
well equations

“3EW ~rW !5

iv

c
BW ~rW !, “3HW ~rW !52

iv

c
DW ~rW ! ~16!

can be recast as

ŝ
]

]z
EW ~z !5

iv

c
BW ~z !, ŝ

]

]z
HW ~z !52

iv

c
DW ~z !, ~17!

FIG. 11. The amplitude of

electromagnetic field FT and its

extended (FEX) and evanescent

(FEV) components at the surface

of semi-infinite unidirectional slab

in Fig. 6 for the case of backward

incidence: ~a! extended contribu-

tion uFEXu2 for EW iy ; ~b! evanes-

cent contribution uFEVu2 for EW iy ;

~c! the resulting field amplitude

uFTu2
5uFEX1FEVu2 for EW iy ; ~d!

the resulting field amplitude uFTu2

for EW ix .
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where, in accordance with Eq. ~15!, all the fields are two-
dimensional vectors lying in the x-y plane and

ŝ5F0 21

1 0
G .

The transverse alternating electric and magnetic fields EW (z)

and HW (z) in Eq. ~17! are related to the electric and magnetic

inductions DW (z) and BW (z) by common linear constitutive
relations

DW ~z !5 «̂~z !EW ~z !, BW ~z !5m̂~z !HW ~z !. ~18!

The Hermitian anisotropic tensors

«̂~z !5F«xx~z ! «xy~z !

«xy
* ~z ! «yy~z !

G , m̂~z !5Fmxx~z ! mxy~z !

mxy
* ~z ! myy~z !

G
~19!

are frequency dependent and take different values in differ-
ent layers of the stack. The substitution of Eq. ~18! into Eq.
~17! gives

ŝ
]

]z
EW ~z !5

iv

c
m̂~z !HW ~z !; ŝ

]

]z
HW ~z !52

iv

c
«̂~z !EW ~z !.

~20!

The fields EW (z) and HW (z) are continuous functions of z, even

if «̂(z) and m̂(z) along with DW (z) and BW (z) are not.
The reduced Maxwell equations ~20! can also be recast in

a compact form,

M̂ ~z !C~z !5vC~z !, ~21!

where

C~z !5F Ex~z !

Ey~z !

Hx~z !

Hy~z !

G ,

~22!

M̂ ~z !5

c

i F 0 m̂21~z !ŝ

2 «̂21~z !ŝ 0
G ]

]z
.

The transfer matrix of a layered structure

The transfer-matrix formalism is particularly useful in
electrodynamics of layered media composed of anisotropic
and/or gyrotropic layers. Below we introduce the basic defi-
nitions and notations, consistent with those of Ref. 10. More
information on the subject can be found in Refs. 13–16, and
references therein.

The reduced time-harmonic Maxwell equations ~21! con-
stitute a system of four ordinary linear differential equations
of the first order. Its general solution is a linear superposition
of four eigenmodes,

C~z !5C1C1~z !1C2C2~z !1C3C3~z !1C4C4~z !.
~23!

The four coefficients C i in Eq. ~23! can be uniquely
related to the four transverse field components ~22! at a
given point z,

FIG. 12. Forward transmit-

tance of a thick unidirectional slab

with N532 in the vicinity of the

frozen mode frequency v0. The

elliptical polarization of the inci-

dent wave is: ~a! the same as in

Fig. 7~c!, that provides the maxi-

mal transmittance; ~b! the same as

in Fig. 7~d!, that provides total re-

flectance in both cases. Small de-

viation of the extreme points from

v5v0 is due to a finite thickness

of the slab.
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C~z !5Ŵ~z !F C1

C2

C3

C4

G , ~24!

where Ŵ(z) is a nonsingular 434 matrix

Ŵ~z !5@C1~z ! C2~z ! C3~z ! C4~z !# ~25!

composed of the column vectors C i(z) from Eq. ~23!. The
equality ~24! yields a one-to-one correspondence between
the electromagnetic field components C(z) at any two dif-
ferent locations z1 and z2,

C~z2!5T̂~z2 ,z1!C~z1!, ~26!

where the 434 matrix

T̂~z2 ,z1!5Ŵ~z2!Ŵ21~z1! ~27!

is referred to as the transfer matrix.26

In homogeneous media, the transfer matrix ~26! has trans-
lation symmetry

T̂~z22z1!5T̂~z2 ,z1!, ~28!

where T̂(z)5T̂21(2z). In addition, in homogeneous mate-

rials without linear magnetoelectric effect, the matrix T̂(z)

and T̂21(z) are similar,

T̂~z !5UT̂21~z !U21, ~29!

implying that

det T̂~z !51. ~30!

We also introduce the transfer matrix of the mth homoge-

neous layer T̂m5T̂(zm), where zm is the layer thickness. The

single-layer transfer matrix T̂m depends on the layer thick-

ness zm and material tensors «̂m and m̂m . The explicit ex-

pressions for the T̂ matrices of anisotropic and gyrotropic
layers are rather cumbersome, and those we use are pre-
sented in Appendix A.

The T matrix of a stack of layers is the product of the
matrices Tm constituting the stack

T̂S5)
m

T̂m . ~31!

Equations ~30! and ~31! imply that

det T̂S51 ~32!

for an arbitrary stack. At the same time, the similarity rela-
tion

T̂S5UT̂S
21U21, ~33!

analogous to Eq. ~29!, may not hold for some gyrotropic
stacks composed of three or more layers. This is directly

related to the phenomenon of spectral asymmetry ~1!. For an
extended discussion see the next subsection.

B. Extended and evanescent modes

in nonreciprocal periodic stacks

1. Characteristic equation

Bloch solutions for the Maxwell equations ~20! in a peri-
odic medium satisfy

Ck~z1L !5e ikLCk~z !, ~34!

where L is the length of the primitive cell of the periodic
stack, k is the Bloch wave vector ~2!, and Ck(z) is the re-
spective column vector ~22!. The quasimomentum k is de-
fined uniquely up to a multiple of 2p/L .

It follows from the definition ~26! of the T matrix that

Ck~z1L !5T̂~z1L ,z !Ck~z !. ~35!

Comparing Eqs. ~35! and ~34! we get at z50

T̂LFk5e ikLFk , ~36!

where T̂L5T̂(L ,0) is the T matrix of the primitive cell of the
periodic stack, while Fk5Ck(0) is one of the four Bloch
solutions Ck(z) for the reduced Maxwell equations ~20! at
z50.

Equation ~36! implies that the Bloch eigenvectors Fk

uniquely relate to those of the transfer matrix T̂L . The re-
spective four eigenvalues

z i5e ik iL, i51,2,3,4 ~37!

of T̂L are the roots of the characteristic equation

det~ T̂L2z Î ![F~z !5z4
1P3z3

1P2z2
1P1z1150,

~38!

where, according to Ref. 10,

P15P3
* , P25P2

* . ~39!

Introducing the real coefficients

R5Re P1 , P5Im P1 , ~40!

we recast Eq. ~38! as

F~z !5z4
1~R2iP !z3

1P2z2
1~R1iP !z1150 ~41!

or, in the more symmetrical form,

M ~z !5z22F~z !5z2
1~R2iP !z1P21~R1iP !z21

1z22

50. ~42!

Plugging

z5cos~kL !1i sin~kL !

in Eq. ~42! yields yet another form of the characteristic equa-
tion
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M ~k !5221P212R cos~kL !12P sin~kL !14 cos2~kL !

50, ~43!

where all the coefficients are now real.

2. Extended and evanescent solutions

The coefficients of the characteristic equation are ex-

pressed in terms of the elements of the matrix T̂L . Those
elements are functions of the physical parameters of the con-
stitutive layers and the frequency v . For any given fre-
quency v , the characteristic equation defines a set of four
values $z1 ,z2 ,z3 ,z4%, or equivalently, $k1 ,k2 ,k3 ,k4%. Real
k ~roots with uzu51) correspond to propagating Bloch waves
~extended modes!, while complex k ~roots with uzuÞ1) cor-
respond to evanescent modes. Evanescent modes are relevant
near photonic crystal boundaries and other structural irregu-
larities.

The characteristic equation ~42! implies that for any given
frequency v ,

if z is a root, then 1/z* is also a root ~44!

or, equivalently,

if k is a solution, then k* is also a solution. ~45!

In view of the statement ~44!, one has to consider three dif-
ferent situations. The first possibility,

uz1u5uz2u5uz3u5uz4u51, ~46!

or, equivalently,

k1[k1
* , k2[k2

* , k3[k3
* , k4[k4

* ,

relates to the case of all four Bloch eigenmodes being ex-
tended ~see, for instance, the frequency range

0,v,va ~47!

in Fig. 1!.
The second possibility,

uz1u5uz2u51; z451/z3
* ; where uz3u,uz4uÞ1, ~48!

or, equivalently

k15k1
* , k25k2

* , k35k4
* , where k3Þk3

* , k4Þk4
* ,

relates to the case of two extended and two evanescent
modes ~the frequency range

va,v,vb ~49!

in Fig. 1!.
The last possibility,

z251/z1
* ; z451/z3

* ; where uz1u,uz2u,uz3u,uz4uÞ1,
~50!

or, equivalently,

k15k2
* , k35k4

* , where k1Þk1
* , k2Þk2

* , k3Þk3
* ,k4

Þk4
* ,

relates to the case of a frequency gap, when all four Bloch
eigenmodes are evanescent ~the frequency range

vb,v ~51!

in Fig. 1!.
Equation ~32! implies that in all cases

z1z2z3z451 ~52!

or, equivalently

k11k21k31k4[0. ~53!

C. Spectral symmetry vs spectral asymmetry

If all the coefficients in the characteristic equation ~38!
are real @that amounts to P50 in Eq. ~40!#, then for a given
frequency v

$z1 ,z2 ,z3 ,z4%5$z1
* ,z2

* ,z3
* ,z4

*%, ~54!

or, in terms of the Bloch wave vectors

if P50, then $k1 ,k2 ,k3 ,k4%5$2k1
* ,2k2

* ,2k3
* ,2k4

*%.
~55!

Observe that the relation ~54! together with Eq. ~44! ensure

similarity of the matrix T̂L and T̂L
21 ,

if P50, then T̂L5UT̂L
21U21.

Conversely

if PÞ0, then T̂LÞUT̂L
21U21 for any U .

In terms of the dispersion relation v(k), the relation ~55!
together with Eq. ~45! imply the spectral reciprocity ~spec-

tral symmetry! of the Bloch eigenmodes,

if P50 then

$v~k1!,v~k2!,v~k3!,v~k4!%

5$v~2k1!,v~2k2!,v~2k3!,v~2k4!%. ~56!

In view of the symmetry consideration of Ref. 10, the rela-
tion ~56! holds for all nonmagnetic and for the majority of
magnetic photonic crystals.

The appearance of complex coefficients P i in Eq. ~38!
@that amounts to PÞ0 in Eq. ~40!# leads to violation of the
relation ~55! for a given frequency v ,

if PÞ0 then $k1 ,k2 ,k3 ,k4%Þ$2k1
* ,2k2

* ,2k3
* ,2k4

*%,
~57!

which in terms of the dispersion relation v(k) implies the
spectral asymmetry

if PÞ0 then $v~k1!,v~k2!,v~k3!,v~k4!%Þ$v

~2k1!,v~2k2!,v~2k3!,v~2k4!%. ~58!
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A simplified definition of the spectral asymmetry is given by
Eq. ~1!, where k is presumed real.

Regardless of the spectral symmetry or asymmetry, the
evanescent modes ~those with kÞk*), if then exist, must
comply with the relation

$v~k1!, . . . %[$v~k1
*!, . . . % ~59!

following from Eq. ~44!.
A specific numerical example of asymmetric electromag-

netic spectrum is shown in Fig. 1. The physical parameters of
the corresponding periodic stack are chosen so that at a cer-
tain frequency v0 the dispersion relation v(k) of one of the
spectral branches develops a stationary inflection point. The
corresponding frequency is associated with the electromag-
netic unidirectionality. In the next subsection, we take a
closer look at this particular situation.

D. Stationary inflection point

The dispersion relation v(k) of an arbitrary periodic stack
is determined by the characteristic equation ~41!, where the
coefficients R, Q, and P are functions of the frequency v .
Using the characteristic equation ~41!, we can define the sta-
tionary inflection point z05exp(ik0L) in Eq. ~3! as one sat-
isfying

F~z0!50, Fz8~z0!50, Fzz9 ~z0!50 ~60!

with an additional condition

Fzzz- ~z0!Þ0. ~61!

Equations ~60! impose certain relations upon the values R0 ,
Q0, and P0 of the frequency dependent coefficients R, Q ,

and P at v5v0. Those relations require z0 to be a triple root
of the characteristic polynomial F(z) at v5v0, i.e.,

F0~z !5z4
1~R02iP0!z3

1Q0z2
1~R01iP0!z11

5~z2z1!~z2z0!3
50. ~62!

In view of Eqs. ~52! and ~44!, the values z0 and z1 are
related by

z15z0
23 , uz0u5uz1u51 ~63!

or, equivalently,

k1[23k0 , Im k05Im k150. ~64!

A small deviation of the frequency v from its special
value v0 changes the coefficients R0 , Q0, and P0 in Eq. ~62!
and removes the triple degeneracy of the solution z0. Taking
into account Eqs. ~60! and ~61!, we have

z2z0'2~6 !1/3S ]F/]v

]3F/]z3D
z5z0 ,v5v0

1/3

~v2v0!1/3j ,

where j51,e2pi/3,e22pi/3, ~65!

or, in terms of the quasimomentum k,

k2k0'S 1

6
v-~k0! D 21/3

~v2v0!1/3j ,

where j51,e i(2p/3),e2i(2p/3).
~66!

We can also rearrange Eq. ~66! in a different form, which is
actually used for further references,

5
kex'k0161/3@v-~k0!#21/3~v2v0!1/3,

kev
'k01

1

2
~6 !1/3@v-~k0!#21/3~v2v0!1/3

1i
A3

2
61/3@v-~k0!#21/3uv2v0u1/3,

kEV'k01

1

2
~6 !1/3@v-~k0!#21/3~v2v0!1/3

2i
A3

2
61/3@v-~k0!#21/3uv2v0u1/3.

~67!

The real quasimomentum kex in Eq. ~67! relates to the ex-
tended mode Cex(z), which turns into the frozen mode at
v5v0. The other two solutions, kev

and kEV5kev
* , corre-

spond to a pair of evanescent modes, Cev
(z) and CEV(z),

with positive and negative imaginary parts, respectively.
Those modes are truly evanescent ~i.e., have Im kÞ0) only
if vÞv0. But it does not mean that at v5v0, the eigen-
modes Cev

(z) and CEV(z) become extended!

Eigenmodes at frequency v0 of stationary inflection point

Consider four eigenvectors,

Fk1
5Ck1

~0 !, Fk2
5Ck2

~0 !,

Fk3
5Ck3

~0 !, Fk4
5Ck4

~0 !, ~68!
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of the transfer matrix TL from Eq. ~36! in the vicinity of
stationary inflection point. As long as vÞv0, four eigenvec-
tors ~68! comprise two extended and two evanescent Bloch
solutions. One of the extended modes ~say, Fk1

) corresponds

to the nondegenerate real root z15e ik1L of the characteristic
equation with the negative group velocity u(k1)5v8(k1)
,0, as shown in Fig. 1. This solution, relating to the back-
ward propagating mode, is of no interest for us. The other
three eigenvectors of TL correspond to three nearly degener-
ate roots ~65!. As v approaches v0, those three eigenvectors
not only become degenerate, but they also become colinear,

Fk2
→a2,4Fk4

, Fk3
→a3,4Fk4

as v→v0 , ~69!

where a2,4 and a3,4 are complex scalars. The latter important
feature relates to the fact that at v5v0, the matrix TL(v0)
has a nontrivial Jordan canonical form,

TL~v0!5UF z1 0 0 0

0 z0 1 0

0 0 z0 1

0 0 0 z0

GU21, ~70!

and therefore cannot be diagonalized ~see, for example, Ref.
17!. It is shown rigorously in Appendix B, that the very fact
that the TL eigenvalues display the singularity ~65! at v
5v0 implies that the matrix TL(v0) has the canonical form
~70!. One of the consequences of Eq. ~70! is that the matrix
TL(v0) has only two ~not four!! eigenvectors:

~1! Fk1
, corresponding to the nondegenerate root z1, and

~2! Fk0
, corresponding to the triple root z0 and describing

the frozen mode.
The other two solutions of the Maxwell equation ~21! at

v5v0 are general Floquet eigenmodes which do not reduce
to the canonical Bloch form. Yet, they can be related to the
frozen mode Ck0

(z). Indeed, following the standard proce-

dure ~see, for example, Ref. 18!, consider an extended Bloch
solution

Ck~z !5ck~z !e ikz, where ck~z1L !5ck~L !, Im k50
~71!

of the reduced Maxwell equation ~21!. By definition

M̂Ck~z !5v~k !Ck~z !. ~72!

Assume that the dispersion relation v(k) in Eq. ~72! has a
stationary inflection point ~3! at k5k0. Differentiating Eq.
~72! with respect to k gives, in view of Eq. ~3!,

at k5k0 : M̂
]

]k
Ck~z !5v~k !

]

]k
Ck~z !; M̂

]2

]k2
Ck~z !

5v~k !
]2

]k2
Ck~z !.

This implies that at k5k0, both functions

]

]k
Ck~z !5e ikz

]

]k
ck~z !1izck~z !e ikz ~73!

and

]2

]k2
Ck~z !5e ikz

]2

]k2
ck~z !1ize ikz

]

]k
ck~z !2z2ck~z !e ikz

~74!

are also eigenmodes of M̂ with the same eigenvalue v0.
Therefore all three solutions ~71!, ~73!, and ~74! are eigen-

modes of M̂ with the same eigenvalue v0 . For further ref-
erences we recast those three eigenmodes in the following
form:

Ck0
~z !,

C0,1~z !5Ċk0
~z !1izCk0

~z !, ~75!

C0,2~z !5C̈k0
~z !1izĊk0

~z !2z2Ck0
~z !,

where

Ċk0
~z !5S ]

]k
ck~z ! D

k5k0

e ik0z and C̈k0
~z !

5S ]2

]k2
ck~z !D

k5k0

e ik0z

are auxiliary Bloch functions ~not eigenmodes!. Observe that
only the first of the three solutions ~75! is a canonical Bloch
eigenmode @the frozen mode Ck0

(z)]. The other two solu-

tions diverge as the first and the second power of z, respec-
tively. They are referred to as general Floquet modes.

Deviation of the frequency v from v0 removes the triple
degeneracy ~70! of the matrix TL , as can be seen from Eq.
~65!. The modified matrix TL can now be reduced to a diag-
onal form with the set ~68! of four eigenvectors comprising
two extended and two evanescent Bloch solutions.

III. SEMI-INFINITE UNIDIRECTIONAL STACK

A. Transmittance and reflectance of a semi-infinite stack

Consider plane electromagnetic wave C I(z) impinging
normally on the surface of a unidirectional semi-infinite slab,
as shown in Fig. 5. In vacuum ~at z,0), the electromagnetic
field CL(z) is a superposition of the incident and reflected
waves

at z,0: CL~z !5C I~z !1CR~z ! ~76!

where

C I~z !5F IexpS iv

c
z D , CR~z !5FRexpS 2

iv

c
z D ,

~77!
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F I5C I~0 !5F E I ,x

E I ,y

2E I ,y

E Ix

G , FR5CR~0 !5F ER ,x

ER ,y

ER ,y

2ER ,x

G ,

~78!

EW I and EW R are complex vectors describing two elliptically
polarized waves.

The transmitted wave CT(z) inside the stack is a super-
position of two Bloch eigenmodes,

at z.0: CT~z !5C1~z !1C2~z !. ~79!

The eigenmodes C1(z) and C2(z) can be both extended,
one extended and one evanescent, or both evanescent, de-
pending on which of the three cases ~46!, ~48!, or ~50! we are
dealing with. In particular, if the frequency v lies within the
range va,v,vb in Fig. 1, we have the situation ~48!, and
the transmitted electromagnetic wave CT(z) is a superposi-
tion of the extended Bloch eigenmode Cex(z) with group
velocity u.0 and the evanescent mode Cev

(z) with Im k

.0,

at z.0: CT~z !5Cex~z !1Cev
~z !. ~80!

The only exception to Eq. ~80! is when the frequency v
exactly coincides with the frequency v0 of the frozen mode.
In such a case, CT(z) is a linear combination of the Floquet
eigenmodes ~75!, one of which is extended @the frozen mode
Ck0

(z)] and the other two cannot be expressed in canonical

Bloch form ~34!. In what follows we assume that v can be
arbitrarily close but not equal to v0, unless otherwise is ex-
plicitly stated.

Extended and evanescent modes inside a periodic gyrotro-
pic medium are defined by Eq. ~36!. Knowing the Bloch
eigenmodes inside the slab and using the standard electro-
magnetic boundary conditions

FT5F I1FR ~81!

at the slab surface at z50, one can express the amplitudes
FT and FR of transmitted and reflected waves in terms of
the amplitude and polarization F I of the incident wave. This
gives us the transmittance and reflectance coefficients of
semi-infinite slab, as well as the electromagnetic field distri-
bution CT(z) inside the slab, as functions of the incident
wave polarization.

The transmittance te and reflectance re of semi-infinite
slab are defined as

te5

S~FT!

S~F I!
, re52

S~FR!

S~F I!
; te1re51, ~82!

where

S~F !5

c

4p
^ExHy2EyHx&

is the energy density flux averaged over the period of oscil-
lations.

B. Overview of the results

A general idea of what happens when a plane electromag-
netic wave of the frequency v close to the frozen mode
frequency v0 impinges on the surface of a semi-infinite uni-
directional slab, is provided by the numerical examples
shown in Figs. 7 and 8.

First, the transmittance te of the semi-infinite unidirec-
tional slab remains finite within the frequency range va,v
,vb , including the frequency v0 of the frozen mode, as
seen in in Fig. 7. By contrast, the transmittance te of any
semi-infinite slab always vanishes in the vicinity of a band
edge ~see, for example, the vicinity of v5vb in Fig. 7!. That
the incident wave with the frequency v0 can freely enter a
semi-infinite unidirectional slab, in spite of the fact that the
wave group velocity inside the slab vanishes at v5v0, has
far-reaching implications.

Second, the field amplitude inside unidirectional slab can
rise by several orders of magnitude in the vicinity of the
frozen mode frequency v0, as shown in Figs. 8~a! and 10.
This remarkable feature will be discussed in great detail later
in this section.

Third, in the vicinity of v0, the density of mode has much
stronger anomaly compared to that of the vicinity of a band
edge frequency. This makes all the effects associated with
the frozen mode much more robust.

Finally, the transmittance as well as the reflectance coef-
ficients develop a cusplike singularity at v5v0; the magni-
tude and the sign of this singularity being dependent on the
polarization of the incident wave. In particular, if the incident
wave polarization is chosen so that only a single extended
mode Cex(z) continues inside the slab @no evanescent con-
tribution to CT(z)], then the transmittance te at v5v0

drops down to zero, as shown in Fig. 7~d!. But, if the inci-
dent wave polarization is orthogonal to the previous one @see
Fig. 7~c!#, the transmittance of the unidirectional slab is
maximal. The explanation for such an unusual behavior is
given further in this section. Of course, if the incident wave
polarization is chosen so that only a single evanescent mode
Cev

(z) continues inside the slab @no extended contribution
to CT(z)], the transmittance of any semi-infinite slab is
strictly zero regardless of the frequency v .

C. Frequency dependence of electromagnetic field amplitude

inside unidirectional slab

According to Eq. ~80!, the transmitted wave CT(z) inside
the stack is a superposition of one extended ~nearly frozen!
mode Cex(z) and one evanescent mode Cev

(z). Since eva-
nescent modes do not transfer energy, the extended mode
Cex(z) is solely responsible for the energy flux inside the
stack. The energy density Wex associated with the extended
Cex(z) can be expressed in terms of its group velocity
u(k)5v8(k) and the energy density flux S(Fex),

Wex5S~Fex!/v8~k !, where S~Fex!5S~FT!5teS~F I!.
~83!

In line with Eq. ~3!, in the vicinity of the frozen mode
frequency
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v~k !2v0'
1

6
v-~k0!~k2k0!3

that gives

v8~k !'
1

2
v-~k0!~k2k0!2'

62/3

2
@v-~k0!#1/3~v2v0!2/3.

~84!

Plugging Eq. ~84! into Eq. ~83! yields

Wex'
2

62/3
~teS I!@v-~k0!#21/3~v2v0!22/3, ~85!

where S I5S(F I) is a fixed intensity of the incident wave, te

is the transmittance coefficient ~82! depending on the inci-
dent wave polarization. Formula ~85! implies that the ampli-
tude Fex of the extended nearly frozen mode inside the stack
diverges in the vicinity of the stationary inflection point

Fex;AWex;AteS I@v-~k0!#21/6uv2v0u21/3 as v→v0 .
~86!

The divergence of the extended mode amplitude Fex in
the vicinity of the frozen mode frequency v0 imposes a simi-
lar kind of behavior on the evanescent mode amplitude Fev

.
Indeed, the boundary condition ~81! requires that the result-
ing field amplitude FT5Fex1Fev

at the slab boundary at
z50 remains limited to match the sum FL5F I1FR of the
incident and reflected waves outside the stack at z50. The
relation ~81! together with Eq. ~86! imply that there is a
destructive interference of the extended Fex and evanescent
Fev

modes at the stack boundary

Fex'2Fev
;~v2v0!21/3 as v→v0 ~87!

so that FT5Fex1Fev
remains limited. The expression ~87!

is in compliance with the earlier made statement ~69! that the
column vectors Fexand Fev

become colinear as v→v0.
The numerical illustration of the behavior of the field am-

plitudes uFexu
2, uFev

u2 and uFTu2
5uFex1Fev

u2 at the slab
surface is illustrated in Figs. 9~a!–~c!, respectively.

D. Space distribution of electromagnetic field

inside unidirectional slab

Since Cex(z) is an extended Bloch eigenmode, its ampli-
tude uCex(z)u remains constant at z.0, while the amplitude
of the evanescent contribution Cev

(z) to the resulting field
CT(z) decays as

at z.0: uCev
~z !u5uFev

ue2zIm kev. ~88!

Therefore, as the distance z from the unidirectional slab
boundary increases, the destructive interference of the ex-
tended and evanescent modes becomes ineffective, and at z

@(Im kev
)21 the only remaining contribution to CT(z) is

the extended nearly frozen mode Cex(z) with huge and in-
dependent of z amplitude ~86!.

Let us consider the above behavior in more detail. Ac-
cording to Eq. ~67!, in the vicinity of v5v0,

Im kev
'

A3

2
61/3@v-~k0!#21/3uv2v0u1/3. ~89!

Plugging Eq. ~89! in Eq. ~88! gives

at z.0: uCev
~z !u'uFev

uF12z
A3

2
61/3@v-~k0!#21/3

3uv2v0u1/3
1OS z2uv2v0u2/3

~v-~k0!!2/3 D G ,

which together with Eqs. ~86! and ~87! yields the following
asymptotic expression for the evanescent mode amplitude as
function of v and z:

uCev
~z !u'

AteS I

@v-~k0!#1/6 F uv2v0u21/3

2z
A3

2
61/3@v-~k0!#21/3

1OS z2uv2v0u1/3

~v-~k0!!2/3 D G .

~90!

Finally, plugging Cex(z) from Eq. ~86! and Cev
(z) from Eq.

~90! into CT(z)5Cex(z)1Cev
(z) yields

uCT~z !u'uFTu1z
AteS I

@v-~k0!#1/2

A3

2
61/3 as v→v0 ,

~91!

where, according to Eq. ~87!,

uFTu!uFexu'uFev
u.

The asymptotic expression ~91! for uCT(z)u is consistent
with the eigenmode C1,0(z) from Eq. ~75!, which represents
one of the two Floquet-type solutions for the Maxwell equa-
tion ~21! at v5v0.

A numerical example of electromagnetic field distribution
uCT(z)u2 inside the semi-infinite unidirectional slab for the
frequency v close to v0 is shown in Fig. 8, while the limit-
ing case ~91! of v5v0 is shown in Fig. 10. The relation ~91!
implies that the resulting field amplitude uCT(z)u2 increases
as the second power of the distance z from the slab surface.
It reaches its maximum value of uCex(z)u2;(v2v0)22/3 at
z@l , where

l5~Im kev
!21

5

2

A3
621/3@v-~k0!#1/3uv2v0u21/3. ~92!

There are two exceptions, however, merging into a single
one at v5v0. The first exception occurs when the elliptic
polarization of the incident wave is chosen so that it pro-
duces just a single extended eigenmode Cex(z) inside the
slab @no evanescent contribution to CT(z)]. In this case,
CT(z) reduces to Cex(z), and its amplitude uCT(z)u remains
limited and independent of z. As v approaches v0, the re-
spective transmittance te vanishes in this case, as shown in
Fig. 7~d!. The second exception occurs when the elliptic po-
larization of the incident wave is chosen so that it produces
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just a single evanescent eigenmode Cev
(z) inside the slab

@no extended contribution to CT(z)]. In such a case, CT(z)
reduces to Cev

(z), and its amplitude uCT(z)u decays expo-
nentially with z in accordance with Eq. ~88!. The respective
transmittance coefficient te in this latter case is zero regard-
less of the frequency v , because evanescent modes do not
transfer energy. Importantly, as v approaches v0, the polar-
izations of the incident wave that produce either a sole ex-
tended or a sole evanescent mode become indistinguishable,
which is a consequence of the property ~69! of the TL eigen-
vectors. If F I0 is such a polarization of the incident wave,
the maximal transmittance is reached when the incident
wave polarization is orthogonal to F I0 @see Fig. 7~c!#.

Let us see what happens if the degree of spectral asym-
metry of the unidirectional periodic stack is very small. In
this situation the stationary inflection point k0 ,v0 in Fig. 1 is
very close to the band edge kb ,vb . In such a case, the third
derivative v-(k0) along with the transmittance te of the
respective unidirectional slab at v5v0 are also very small.
At the same time, the ratio te /v-(k0), which according to
Eq. ~91! determines the electromagnetic field distribution in-
side the slab at v→v0, remains finite even if the quantities
te and v-(k0) vanish. This implies that at v5v0, the char-
acter of the field distribution shown in Fig. 10 does not
change qualitatively even if

v8~k0!5v9~k0!5v-~k0!50, v-8~k0!Þ0.

Such a situation, however, corresponds to a degenerate band
edge, rather than to a stationary inflection point ~3!.

E. Backward wave incidence

on a semi-infinite unidirectional slab

Consider now electromagnetic wave incident on the sur-
face of the same unidirectional slab from the opposite direc-
tion, as shown in Fig. 6. Such a situation is similar to that of
the forward incidence on the reversed slab, which can be
obtained from the original unidirectional slab in Fig. 2 by
changing the sign of the F layers magnetization or by chang-
ing the sign of the misalignment angle w5w12w2 of the
anisotropic dielectric layers.

Except for some obvious modifications involving the sub-
stitution z→2z , formulas ~76!–~83! still apply here. In par-
ticular, if the frequency v lies within the range va,v
,vb in Fig. 1, the transmitted electromagnetic wave CT(z)
inside the slab is a superposition of the extended Bloch
eigenmode CEX(z) with the group velocity u,0 and the
evanescent mode CEV(z) with Im k,0,

at z,0: CT~z !5CEX~z !1CEV~z !. ~93!

This expression is similar to Eq. ~80!, except that it involves
the other pair of the four Bloch eigenmodes. In the case of
backward incidence, the nearly frozen mode Cex(z) does not
contribute to CT(z) inside semi-infinite slab. Instead, the
extended contribution to the resulting transmitted electro-
magnetic field CT(z) is now CEX(z), which remains a regu-
lar extended mode with finite negative group velocity even at
v5v0. It does not mean, however, that the slab unidirec-

tionality does not manifest itself in the case of the backward
incidence. Indeed, the evanescent contribution CEV(z) to
CT(z) still displays a singularity at v5v0, although its am-
plitude now remains limited even at v5v0.

Let us take a closer look at this situation. The complex
wave vector kEV related to CEV(z) has negative imaginary
part and is defined in Eq. ~67!,

kEV'k01

61/3

2
@v-~k0!#21/3@~v2v0!1/3

2iA3uv2v0u1/3# .

Its singularity at v5v0 leads to a cusplike anomaly in fre-
quency dependence of the backward transmittance of semi-
infinite unidirectional slab, similar to what we already saw in
the case of forward incidence ~see Fig. 7!. But there is a
crucial difference: the propagating mode amplitude
uCEX(z)u5uFEXu now remains limited in the whole fre-
quency range va,v,vb , including the frozen mode fre-
quency v0 , as shown in Fig. 11. By contrast, in the case of
forward incidence, the propagating mode amplitude
uCex(z)u5uFexu along with the field amplitude uCT(z)u in-
side the stack rises enormously in the vicinity of the frozen
mode frequency v0, as shown in Fig. 9~a!. This striking
difference between the cases of forward and backward inci-
dence can be attributed to the frozen mode.

IV. A FINITE UNIDIRECTIONAL SLAB

Strictly speaking, the concept of unidirectionality applies
to infinite or semi-infinite periodic stacks. But in reality, if
we have a finite slab, which is a sufficiently large fragment
of a periodic unidirectional stack, the results of the previous
section can still be relevant. Let N be the number of the
primitive cells in the slab, so that the slab thickness D is
equal to LN . The approximation of infinite or semi-infinite
stack applies if

1!~LDk !21
!N , ~94!

where Dk is the spectral width of the wave packet. In such a
case, the interference of the pulses produced by internal re-
flections from the two opposite slab boundaries can be ig-
nored. The results of the previous section relate to this par-
ticular case.

In this section we consider a different situation when

1!N!~LDk !21. ~95!

In particular, we can refer to the limiting case Dk50 of a
strictly monochromatic incident wave. In this latter case the
approximation of infinite or semi-infinite slab does not hold
for any finite N, due to multiple internal reflections form the
two slab boundaries. The electromagnetic field CT(z) inside
the slab is now a superposition of all four Bloch eigenmodes
Ck i

(z), i51,2,3,4 for any given frequency v regardless of

the direction of the incident wave propagation outside the
slab. By contrast, in the case ~94! of semi-infinite slab, there
are only two Bloch contributions ~79! to CT(z). At the same
time, we expect some noticeable electromagnetic abnormali-
ties even in the limiting case ~95!, provided that the number
N of the elementary fragments L in the slab is large enough.
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Transmittance of a finite unidirectional slab

The transmittance of an arbitrary finite slab can be ex-
pressed directly in terms of the transfer matrix TN of the slab,
which in our case is defined by

TN5~TL!N. ~96!

Indeed, the relation

C~D !5TNC~0 ! ~97!

together with the pair of boundary conditions

C~0 !5C I~0 !1CR~0 !, C~D !5CP~D ! ~98!

allow us to express both the reflected wave CR(0) and the
wave CP(D) passed through the slab, in terms of a given
incident wave C I(0) from Eq. ~78! and the elements of the
transfer matrix TN . It also gives the transmittance/reflectance
coefficients of the slab defined as

tN5

uCP~D !u2

uC I~0 !u2
, rN5

uCR~0 !u2

uC I~0 !u2
; tN1rN51, ~99!

respectively. The above procedure is commonly used for
computation of the transmittance/reflectance coefficients of
magnetic layered structures ~see, for example, Refs. 13–16
and references therein!. Notice that as long as we are dealing
with strictly monochromatic incident wave (Dk50), the
transmittance/reflectance coefficients ~82! of a semi-infinite
slab cannot be viewed as the limiting case N→` of the
transmittance/reflectance coefficients ~99! of a finite slab.

Since the transmittance computation for a finite slab with
a given transfer matrix TN is a well-established procedure,

we skip the details and turn to the physical results. If a slab
is composed of just a few elementary cells L in Fig. 2, its
transmittance does not show any peculiarities in the vicinity
of the frozen mode frequency v0. As the number N in-
creases, the electromagnetic abnormalities in the vicinity of
the frozen mode frequency become more and more distinct.
In Figs. 12 and 13 we present some numerical results for the
transmittance of a finite unidirectional slab comprising N

532 identical elementary fragments L. This number of lay-
ers appears to be large enough to display all the qualitative
features characteristic of a very thick unidirectional slab. The
most distinguishable new feature is that the forward ~left-to-
right! and the backward ~right-to-left! transmittance coeffi-
cients do show a strong abnormality in the vicinity of the
frozen mode frequency v0. In particular, if the elliptic polar-
ization of the incident wave coincides with that of the maxi-
mal transmittance of the respective semi-infinite slab @see
Fig. 7~c!#, the finite slab becomes totally transparent, as
shown in Fig. 12~a!. A small difference between the fre-
quency of total transmittance and v0 is due to a finite thick-
ness of the slab.

At frequencies not too close to v0, the electromagnetic
properties of a unidirectional slab are not much different
from those of regular magnetic stacks ~see, for example,13–16

and references therein!. In particular, at certain polarizations
of the incident wave, a finite slab displays both, forward and
backward resonant transmittance even in the close proximity
of the band edges, as shown in Fig. 13.

V. SUMMARY

As we have shown, the phenomenon of unidirectionality
in magnetic photonic crystals is always associated with the

FIG. 13. Forward ~a! and

backward ~b! tramittance of the fi-

nite unidirectional slab with N

532. The frequency v lies in the

vicinity of the lowest band edge

vb in Fig. 1.
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existence of special propagating mode with zero group ve-

locity vk8(k) and its derivative vkk9 (k). We call it the frozen

mode. At first glance, the fact that the frozen mode has zero

group velocity will bring some similarity between the vicin-

ity of the frozen mode frequency ~at v'v0), and the vicin-

ity of the photonic band edge ~say, at v'vb). Indeed, in

either situation the propagating electromagnetic wave inside

the periodic medium slows down dramatically, although in

the frozen mode case the slowdown occurs only in one of the

two opposite directions ~the unidirectionality!. But in fact,

the dissimilarity between the two situations does not reduce

just to the phenomenon of unidirectionality.

The most graphic manifestation of the fundamental differ-

ence between the vicinity of the frozen mode frequency v0

and the vicinity of a band-gap frequency vb is provided by

the simple and important case of electromagnetic wave inci-

dence on the surface of a semi-infinite slab shown in Fig. 5.

In a broad vicinity of the frozen mode frequency, including

the point v5v0, the incident radiation enters the semi-

infinite slab with little reflectance. By contrast, at v'vb the

same semi-infinite slab reflects 100% of the incident radia-

tion. This crucial difference is illustrated in Figs. 7~a!–~c!. In

fact, the only way to transmit the radiation at frequency v
'vb inside the slab is to make the slab thin enough to en-

sure strong interference after multiple reflections from the

two slab boundaries ~see, for example, Ref. 21 and refer-

ences therein!.
What happens in a photonic crystal at frequencies close to

the frozen mode frequency v0 is that the pulse freely enters

the slab, where it slows down by, say, two or three orders of

magnitude and increases in amplitude proportionally. Then

the pulse slowly continues through the slab without losing its

distinct individuality until it reaches the opposite boundary

or gets converted or absorbed inside the slab. The fact that in

the vicinity of the stationary inflection point ~3! ~i.e., at v

'v0) the space dispersion vkk9 (k) vanishes, further contrib-

uting to the pulse stability. Nothing like that can occur in any

regular photonic crystal, not supporting the frozen mode. In

addition, the electromagnetic density of mode displays a

much stronger anomaly at v'v0 compared to any other

location in the Brillouin zone including the band edges. The

latter circumstance must facilitate the observation and utili-

zation of the frozen mode phenomena. The above unique

features, in a combination with the relative simplicity of the

multilayered structures, can make unidirectional photonic
crystals very attractive for practical purposes. This may in-
clude:

• various nonlinear applications ~see, for example, Refs.
22 and 21, and references therein!, which can take advantage
of huge amplitude of the frozen mode, in a combination with
high transmittance and high density of modes at the respec-
tive frequency;

• tunable delay lines, utilizing low group velocity of the

frozen mode, as well as its low dispersion (vkk9 '0) and high

transmittance of the slab;
• electromagnetic nonreciprocal devices, utilizing the phe-

nomenon of unidirectionality itself.
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APPENDIX A:

GYROTROPIC STACK WITH THREE-LAYERED CELL

Having studied numerically a number of periodic mag-
netic stacks with bulk spectral asymmetry, we come to the
following conclusion. As long as we restrict ourselves to the
lowest spectral band, the electromagnetic dispersion relations
with stationary inflection point computed for different stacks
appear to be qualitatively similar to each other and to what is
shown in Fig. 1. In addition to this, since our prime interest
here is with the vicinity of the frozen mode frequency v0, all
essential electromagnetic features prove to be quite universal
and dependent on a single dimensionless parameter f from
Eq. ~4!. In the case of strong spectral asymmetry, f is of the
order of magnitude of unity. This circumstance allows us to
use any particular numerical example to obtain a complete
picture of what is going on in unidirectional photonic crys-
tals in the vicinity of the frozen mode frequency. Example
considered in this section represents the simplest and, per-
haps, the most practical design of a periodic layered structure
with the property of bulk spectral asymmetry ~1!. This array,
shown in Fig. 2, is similar to that considered in Ref. 10. As
already noted, a particular choice of the physical parameters
of the stack does not matter, as long as it provides a certain
value of f .

The A layers are described by the following reduced
property tensors:

«̂A5F«xx «xy

«xy «yy
G5F«1d cos 2w d sin 2w

d sin 2w «2d cos 2w
G ,

m̂A5Fmxx mxy

mxy myy
G5Fm1D cos 2w D sin 2w

D sin 2w m2D cos 2w
G .

~A1!

All components of «̂A and m̂A are presumed real. Parameters
d and D describe the anisotropy in the xy plane, while the
angle w defines the orientation of the common principle axes

of «̂A and m̂A in the xy plane. The misalignment angle w1

2w2 between the neighboring layers in Fig. 2 must be dif-
ferent from 0 and p/2. All A layers are made of the same
dielectric material and have the same thickness A .

The four solutions for the Maxwell equation ~21! with
material relations ~A1! are
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e iq1zFA1 ,e2iq1zFA1 ,e iq2zFA2 ,e2iq2zFA2 , ~A2!

where

FA15F cos w

sin w

2h1sin w

h1cos w

G , FA25F 2sin w

cos w

2h2cos w

2h2sin w

G , ~A3!

q15

v

c
n15

v

c
A~«1d !~m2D !,

q25

v

c
n25

v

c
A~«2d !~m1D !, ~A4!

h15A~«1d !~m2D !21, h25A~«2d !~m1D !21.
~A5!

Substituting the eigenmodes ~A2! into Ŵ(z) from Eq.
~25! and using the definition ~27! of the T matrix, we have

the following expression for the transfer matrix T̂A of an
individual A layer as a function of the layer thickness A and
the misalignment angle w:

T̂A~w ,A !5Ŵ~w ,A !Ŵ21~w ,0!, ~A6!

where

Ŵ~w ,A !5F ~cos w !e in1a ~cos w !e2in1a
2~sin w !e in2a

2~sin w !e2in2a

~sin w !e in1a ~sin w !e2in1a ~cos w !e in2a ~cos w !e2in2a

2h1~sin w !e in1a h1~sin w !e2in1a
2h2~cos w !e in2a h2~cos w !e2in2a

h1~cos w !e in1a
2h1~cos w !e2in1a

2h2~sin w !e in2a h2~sin w !e2in2a

G , ~A7!

a5

v

c
A . ~A8!

The F layers are ferromagnetic ~or ferrimagnetic! with

magnetization MW 0 parallel to the z direction; there is no in-
plane anisotropy in this case,

«̂F5F e ia

2ia e
G ; m̂F5F m ib

2ib m
G . ~A9!

The real parameters a and b in Eq. ~A9! are responsible for
Faraday rotation. All F layers have the same thickness F.

The four solutions for the Maxwell equation ~21! with
material relations ~A9! are

e iq1zFF1 ,e2iq1zFF1 ,e iq2zFF2 ,e2iq2zFF2 , ~A10!

where

FF15F 1

2i

ih1

h1

G , FF25F 2i

1

2h2

2ih2

G , ~A11!

q15

v

c
n15

v

c
A~e1a !~m1b !, q25

v

c
n2

5

v

c
A~e2a !~m2b !, ~A12!

h15A~e1a !~m1b !21, h25A~e2a !~m2b !21.
~A13!

Substituting the eigenmodes ~A10! into Ŵ(z) from Eq. ~25!
and using the definition ~27! of the T matrix, we have the

following expression for the transfer matrix T̂F of an indi-
vidual F layer as a function of the layer thickness F:

T̂F5Ŵ~F !Ŵ21~0 !, ~A14!

where

Ŵ~F !

5F e in1 f e2in1 f
2ie in2 f

2ie2in2 f

2ie in1 f
2ie2in1 f e in2 f e2in2 f

ih1e in1 f
2ih1e2in1 f

2h2e in2 f h2e2in2 f

h1e in1 f
2h1e2in1 f

2ih2e in2 f ih2e2in2 f

G ,

~A15!

f 5

v

c
F . ~A16!

The T atrices of F layers with two opposite signs of MW 0, are
related by transposition of the indices 1 and 2.

Having the T matrices of both constitutive layers, one can
obtain the explicit expression for the transfer matrix TL of
the three-layered primitive cell in Fig. 2,

TL~w ,A ,F !5TA~w1 ,A !TA~w2 ,A !TF~F !. ~A17!

Symbolic analysis of the transfer matrix TL(w ,A ,F), as well
as the corresponding characteristic equation ~38!, has been
carried out using the computer algebra package of
‘‘maple 7.’’
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We have also conducted a number of numerical experi-
ments with this particular gyrotropic stack. When it comes to
the vicinity of the frozen mode frequency, the general picture
is universal, provided that the dimensionless parameter f
from Eq. ~4! is not too small. For this reason, all numerical
illustrations in this paper refer to a single numerical set of
material parameters of the stack chosen as follows:

for the A layer: n155.1, h155.1, n251.1, h251.1,

for the F layer: n1522.023, h150.227 04,

n2510.724, h250.466 25,
~A18!

with the misalignment angle

w12w25p/4.

The numerical values ~A18! are practically available at fre-
quencies below 10 12Hz, but otherwise they are chosen ran-
domly. On the other hand, having set the material parameters
~A18!, we must find the exact values of the layer thicknesses
so that at some frequency v0 the stack develops a stationary
inflection point ~3! and therefore displays the property of
unidirectionality. For the numerical values ~A18! we found

r05F/A50.009 536 025 9,

V05Lv0 /c50.607 676 756, ~A19!

K05k0L52.632 925 94

where r0 is the required ratio of the layer thicknesses; V0 is
the dimensionless frozen mode frequency; and K0 is the the
dimensionless wave vector associated with the frozen mode.
In all numerical graphs presented in this paper we use the
dimensionless notations vL/c and kL for the frequency and
the wave vector, respectively.

APPENDIX B: ANALYTIC PROPERTIES

OF THE TRANSFER MATRIX T̂L IN A VICINITY

OF THE FROZEN MODE FREQUENCY

Consider the frequency-dependent 434 transfer matrix
TL(v) in a vicinity of the frozen mode frequency v0,

T̂L~v !5T̂L01nT̂L11••• , n5v2v0 ;

T̂L05T̂L~v0!, T̂L15T̂L8~v0!, . . . . ~B1!

We assume the dependence of T̂L(v) on v to be analytic in
the vicinity of v5v0. The following considerations are
based on general facts from the analytic perturbation theory
for the spectra of matrices.23

The characteristic equation ~38! for T̂L(v) has the form

det@ T̂L~v !2z Î4#50, z5e ikL, ~B2!

where Î4 is the 434 identity matrix. Since TL(v) is a 4
34 matrix, Eq. ~B2! can be recast as

z4
1P3~n !z3

1P2~n !z2
1P1~n !z1150, ~B3!

where the complex valued functions PJ(n), j50,1,2,3 are
analytic in n in a vicinity of n50.

According to Eq. ~38!, the frozen mode regime at n50
can be ultimately characterized by the fact that for n50 Eq.
~B3! takes the following special form

~z2z0!3~z2z1!50,

where

z15z0
23 , uz1u5uz0u51, z1Þz0 , ~B4!

where z05e ik0L corresponds to the frozen mode.
If the characteristic equation ~B2! takes the special form

~B4! near n50, then TL(v) can be represented as follows:

T̂L~v01n !5Û~n !F z1~n ! 0

0 Q̂~n !
G Û21~n !, ~B5!

where Û(n) is an invertable 434 matrix depending analyti-
cally on n;

z1~n !5z11j1n1j2n2
1••• ~B6!

is an analytic in n complex valued function; Q̂(n) is a 3
33 matrix depending analytically on n . In addition to that,

Q̂~n !5Q̂01Q̂1n1••• , Q̂05z0 Î31D̂ , ~B7!

where Î3 is 333 identity matrix, and

Q̂05z0 Î31D̂ ~B8!

is the spectral decomposition ~related to Jordan forms! of Q̂0

with D̂ being nilpotent matrix ~see Ref. 24, Sec. 6!,26 i.e.,

D̂3
50. ~B9!

We would like to show that Eq. ~B8! is nontrivial in the

sense that D̂Þ0 and, in addition to that,

D̂2Þ0. ~B10!

Notice that the characteristic equation for Q̂(n) is

det~Q̂~n !2z Î3!50, z5e ikL, ~B11!

and, in view of Eqs. ~B2! and ~B4! it takes the following
form:

~z2z0!3
1@p2n1O~n2!#~z2z0!2

1@p1n1O~n2!#~z2z0!1p0n50, ~B12!

where

p0Þ0 ~B13!

@according to Eq. ~66!, p056iL3/v-(k0)]. In view of the
Caley-Hamilton theorem ~see, for instance, Ref. 24, Sec.

6.2!, Q̂(n) of the form ~B7! satisfies the characteristic equa-
tion ~B12!. In other words, Eq. ~B12! holds if we substitute

z5Q̂(n) treating all other complex numbers as scalar matri-
ces, i.e.,
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@Q̂~n !2z0 Î3#3
1p2n@Q̂~n !2z0 Î3#2

1p1n@Q̂~n !2z0 Î3#

1p0 Î3n1O~n2!50. ~B14!

Now substituting Q̂(n)5Q̂01Q̂1n1O(n2) in Eq. ~B14! and
taking in account Eq. ~B8! we single out the linear with
respect to n terms getting the following matrix equations:

D̂2Q̂11D̂Q̂1D̂1Q̂1D̂2
1p2D̂2

1p1D̂52p0 Î3 .
~B15!

Suppose now for the sake of argument that Eq. ~B10! does
not hold, and hence D2

50. Then Eq. ~B15! turns into

D̂Q̂1D̂1p1D̂5p0 Î3 , ~B16!

implying

det~D̂Q̂1D̂1p1D̂ !5det Ddet~Q̂1D̂1p1!5p0
3 .

~B17!

In view of Eq. ~B9!, det D̂50, which together with Eq.
~B17! implies that p050, contradicting Eq. ~B13!. Therefore

Eq. ~B10! is correct and Q̂05z0 Î31D̂ has nontrivial Jordan

structure. In fact, in view of Eq. ~B9! Q̂0 we have

Q̂05 Ŝ0F z0 1 0

0 z0 1

0 0 z0

G Ŝ0
21

for some invertable Ŝ0. Notice also that

Q̂~n !5F 0 1 0

0 0 1

n 0 0
G ~B18!

is an exact solution to the matrix equation

Q̂3~n !5nI3 . ~B19!
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