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Abstract—In this paper we provide a general formulation for the
electromagnetic wave interaction with stratified media and then
specialize to slabs of negative isotropic media. The field solutions are
obtained in all regions of the stratified medium. The characteristic
waves in negative isotropic media are backward waves. We derive the
field solutions and show that a Gaussian beam is laterally shifted by a
negative isotropic slab. The amount of beam center shift is calculated
for both cases of transmission and reflection. Guided waves in stratified
media are studied. Placing a linear antenna and all types of Hertzian
dipole antennas in a stratified medium, we obtained solutions in all
regions. We demonstrate and locate the positions of the perfect images
of the antenna sources in the presence of negative isotropic slabs.
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1. INTRODUCTION

In the constitutive relations for negative isotropic media, both the
permittivity ε and the permeability µ are negative. Vesolago [1]
explored their various electromagnetic properties. He observed that
in such media, the wave vector k, the electric field vector E, and
the magnetic field vector H form a left-handed system, and called
them left-handed subtances. The left-handed materials (LHM) possess
negative refractive indeces. Experimental verifications were made with
metamaterials and their use as perfect lenses was suggested [2–6]. In
light of their potential new applications, negative isotropic media have
received wide attention.

In this paper we provide a general formulation with complete
solution for electromagnetic waves interacting with a stratified medium
and then specialize to slabs of negative isotropic medium. After
showing that the characteristic waves in negative isotropic meia are
backward waves, we consider relection and transmission of TE and TM
waves by a negative isotropic medium. The solutions for the reflection
and transmission by a stratified medium are then derived and listed by
using the propagation matrices [7]. Specializing to a slab of negative
isotropic medium, we show how wave beam incident on the slab will
be laterally shifted.

We then consider guided waves in negative isotropic materials in
stratified media. Coupling of guided waves are studied. Next we derive
field solutions for a linear antenna situated in a stratified medium. The
images and their locations are calculated. Finally we consider Hertzian
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electric and magnetic dipole sources with different orientation inside
stratified media. The complete solutions in all regions are derived
and listed [8]. Specializing to slabs of negative isotropic medium, we
show positions of its images for various configurations, suggesting that
perfect images can be made using flat lenzes made of slab negative
isotropic slabs.

2. BACKWARD WAVES IN NEGATIVE ISOTROPIC
MEDIA

The constitutive relations for isotropic media have been written as

D = εE where ε = permittivity (1a)
B = µH where µ = permeability (1b)

For negative isotropic media, both ε and µ are negative. For a plane
electromagnetic wave of the form[

E(r, t)
H(r, t)

]
=

[
E

H

]
cos(k · r − ωt) (2)

The Maxwell equations become

k × E = ωµH (3)
k ×H = −ωεE (4)
k · E = 0 (5)
k ·H = 0 (6)

where k = ω
√

µε.
The Poynting’s vector power density is

E ×H =
1

ω2µε
(k × E)× (k ×H) =



−1
ωµ (k × E)× E = k

ωµ |E|2

1
ωε H × (k ×H) = k

ωε |H|2
(7)

When µ and ε ar both positive, Poynting’s power vector is in the same
direction as k and so are the group and phase velocities. From (3)–
(6), we see that the three vectors k, E, and H form a right-handed
system. When either µ or ε is negative, we have evanescent instead of
propgating waves.

In negative isotropic media, both µ and ε are negative, Poynting’s
power vector is in the opposite direction of k and so are the group and
phase velolcities. The three vectiors k, E, and H form a left-handed
Medium (LHM). In this medium, the power propagates in a direction
that is opposite to the direction of k. The plane wave in the negative
isotropic medium is thus a backward wave.
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Figure 1. Reflection and transmission of TM waves by negative
isotropic media.

3. REFLECTION AND TRANSMISSION BY A
NEGATIVE ISOTROPIC MEDIUM

We first study the case of TM wave incidence from free space upon a
negative isotropic medium with permittivity εt = −ε0 and permeability
µt = −µ0. The incident magnetic field is assumed to have unit
amplitude and points in the x̂ direction (Fig. 1). We write, omitting
the time convention e−iωt,

H i = x̂Hix = x̂ ei(kyy+kzz) (8a)

Ei = [−ŷkz + ẑky]
1

ωε0
ei(kyy+kzz) (8b)

Si = E ×H
∗ = [ŷky + ẑkz]

1
ωε0

ei(ki−k
∗
i )·r (8c)

The reflected field components for the incident TM wave are

Hr = x̂ RTMe(kryy+krzz) (9a)

Er = [−ŷkrz + ẑkry]
1

ωε0
RTMe(kryy+krzz) (9b)

Sr = E ×H
∗ = [ŷkry + ẑkrz]

|RTM |2
ωε0

ei(kr−k
∗
r)·r (9c)

The incident wave vector ki = ŷky + ẑkz and the reflected wave vector
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kr = ŷkry + ẑkrz are governed by the dispersion relations

k2
y + k2

z = ω2µ0ε0 = k2 (10)

k2
ry + k2

rz = ω2µ0ε0 = k2 (11)

The reflection coefficient RTM for the magnetic field component Hix

is to be determined by the boundary conditions.
In region t, the transmitted TM field components are

Ht = x̂ T TMei(ktxx+ktzz) (12a)

Et = [−ŷktz + ẑkty]
1

ωεt
T TMei(ktyy+ktzz) (12b)

St = [ŷkty + ẑktz]
|T TM |2

ωεt
ei(kt−k

∗
t )·r (12c)

where T TM is the transmission coefficient for the magnetic field
component Hix. The dispersion relation

k2
ty + k2

tz = ω2µtεt = k2
t (13)

governs the magnitude kt for the transmitted wave vector kt = ŷkty +
ẑktz.

Let the boundary surface be at z = 0. The boundary condition of
continuity of tangential H field gives

eikyy + RTMeikryy = T TMektyy (14)

Since (14) must hold for all y and t, it follows that

ky = kry = kty (15)

Eq. (15) is known as the phase matching condition. Eq. (14) then
reduces to

1 + RTM = T TM (16)

From the dispersion relations (10) and (11) by noting that the reflected
wave propagates in the negative ẑ direction, we find krz = −kz.

The continuity of the tangential components of Ex at z = 0 for all
y and t gives

kz
ε0

(1−RTM ) =
ktz
εt

T TM (17)

Note that the boundary conditions of normal D and normal B
components continuous at z = 0 are also satisfied. Solving (16) and
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(17), we find

pTM0t =
ε0ktz
εtkz

(18)

RTM =
1− pTM0t

1 + pTM0t

(19)

T TM =
2

1 + pTM0t

(20)

for the reflection coefficient RTM and the transmission coefficientT TM .
In the negative isotropic medium, we have εt = −ε0 and µt = −µ0.

From Eq. (18), we find pTM = 1, and from Eqs. (19) and (20), we
determine that RTM = 0 and T TM = 1. From the dispersion relation
(13), we find ktz = −kz. As seen from Fig. 1, the transmitted kt vector
is in the same direction as the reflected kr vector.

The Poynting power vector density is, from (23c),

St = [−ŷky + ẑkz]
|T TM |2
ωε0

ei(kt−k
∗
t )·r (21)

such that the transmitted power is directed away from the boundary
into the transmitted medium.

When the incident wave is an evanescent wave with ki = ŷky +
ẑikIz and ky > k, we have

H i = x̂Hix = x̂ ei(kyy+kzz) (22a)

Ei = [−ŷkz + ẑky]
1

ωε0
ei(kyy+kzz) (22b)

Si = E ×H
∗ = [ŷky + ẑkz]

1
ωε0

ei(ki−k
∗
i )·r (22c)

Ht = x̂ T TMei(ktxx+ktzz) (23a)

Et = [−ŷktz + ẑkty]
1

ωεt
T TMei(ktyy+ktzz) (23b)

St = [ŷkty + ẑktz]
|T TM |2

ωεt
ei(kt−k

∗
t )·r (23c)

For an incident TE wave, the incident wave vector ki = ŷky+ ẑkz,
the reflected wave vector kr = ŷkry + ẑkrz = ŷky − ẑkz, and the
transmitted wave vector kt = ŷky + ẑktz all satisfy the dispersion
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relations (10), (11), and (13), and the phase match condition (15).
The incident electric and magnetic field vectors are

Ei = x̂eiki·r (24a)

H i = [ŷkz − ẑky]
1

ωµ0
eiki·r (24b)

Si = E ×H
∗ = [ŷky + ẑk∗z ]

1
ωµ0

ei(ki−k
∗
i )·r (24c)

The reflected electric and magnetic field vectors are

Er = x̂RTEeikr·r (25a)

Hr = [−ŷkz − ẑky]
RTE

ωµ0
eikr·r (25b)

Sr = E ×H
∗ = [ŷky − ẑk∗z ]

|RTE |2
ωµ0

ei(kr−k
∗
r)·r (25c)

In region t, the transmitted TE wave solution takes the form

Et = x̂ T TEeikt·r (26a)

Ht = [ŷktz − ẑky]
T TE

ωµt
eikt·r (26b)

St = [ŷky + ẑk∗tz]
|T TE |2
ωµt

ei(kt−k
∗
t )·r (26c)

where T TE is the transmission coefficient. From the boundary
conditions of continuity of tangential E and H fields, we find

pTE0t =
µ0ktz
µtkz

(27)

RTE =
1− pTE0t

1 + pTE0t

(28)

T TE =
2

1 + pTE0t

(29)

for the reflection coefficient RTE and the transmission coefficientT TE .
In the negative isotropic medium, µt = −µ0, and ktz = −kz such

that the transmitted power is directed away from the boundary into
the transmitted medium. From Eq. (27), we find pTE = 1. Eqs. (28)
and (29) then yield that RTE = 0 and T TE = 1.
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Figure 2. Reflection and transmission of TE waves by negative
isotropic media.
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4. REFLECTION AND TRANSMISSION BY
STRATIFIED MEDIA

Consider a plane wave incident on a stratified isotropic medium with
boundaries at z = d1, d2, . . . , dt (Fig. 3). The (n + 1)th region is
semi-infinite and is labeled region t, t = n + 1. The permittivity and
permeability in each region are denoted by εl and µl. The plane wave is
incident from region 0 and has the plane of incidence parallel to the y-z
plane. All field vectors are dependent on y and z only and independent
of x. Since ∂/∂x = 0, the Maxwell equations in any region l can be
separated into TE and TM components governed by Elx and Hlx. We
obtain

Hly =
1

iωµl

∂

∂z
Elx (30)

Hlz =
−1
iωµl

∂

∂y
Elx (31)

( ∂2

∂y2
+

∂2

∂z2
+ ω2µlεl

)
Elx = 0 (32)

Ely =
−1
iωεl

∂

∂z
Hlx (33)

Elz =
1

iωεl

∂

∂y
Hlx (34)

( ∂2

∂y2
+

∂2

∂z2
+ ω2µlεl

)
Hlx = 0 (35)

The TE waves are completely determined by (30)–(32) and the TM
waves by (33)–(35). The two sets of equations are duals of each other
under the replacements El → H l, H l → −El, and µl →← εl.

For a TE plane wave, Ex = E0 eikzz+ikyy, incident on the stratified
medium, the total field in region l can be written as

Elx =
(
E+
l eiklzz + E−l e−iklzz

)
eikyy (36)

Hly =
klz
ωµl

(
E+
l eiklzz − E−l e−iklzz

)
eikyy (37)

Hlz =
−ky
ωµl

(
E+
l eiklzz + E−l e−iklzz

)
eikyy (38)
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Obviously (36) satisfies the Helmholtz wave equation in (32).
Substitution of (36) in (32) yields the dispersion relation

k2
lz + k2

y = ω2µlεl (39)

We do not write a subscript l for the y component of k as a consequence
of the phase-matching conditions. Truly, there are multiple reflections
and transmissions in each layer l. The amplitude E+

l thus represents
all wave components that have a propagating velocity component along
the positive ẑ direction, and E−l represents those with a velocity
component along the negative ẑ direction.

We note that in region 0 where l = 0,

E+
0 = E0 (40)

E−0 = RE0 (41)

In region t where l = n + 1 = t, we have

E+
t = TE0 (42)

E−t = 0 (43)

because region t is semi-infinite and there is no wave propagating
with a velocity component in the positive ẑ direction. We denote the
transmitted amplitude by T .

The wave amplitudes E+
l and E−l are related to wave amplitudes

in neighboring regions by the boundary conditions. At z = dl+1,
boundary conditions require that Ex and Hy be continuous. We obtain

E+
l eiklzdl+1+E−l e−iklzdl+1 = E+

l+1 eik(l+1) zdl+1+E−l+1 e−ik(l+1) zdl+1 (44)

E+
l eiklzdl+1 − E−l e−iklzdl+1

= pl(l+1)

[
E+
l+1e

ik(l+1) zdl+1 − E−l+1e
−ik(l+1) zdl+1

]
(45)

where

pl(l+1) =
µlk(l+1) z

µl+1klz
(46)

for the TE wave. There are n+1 boundaries which give rise to (2n+2)
equations. In region 0 , we have an unknown reflection coefficient R.
In region t, we have an unknown transmission coefficient T . There
are two unknowns E+

l and E−l in each of the regions l = 1, 2, . . .,
n. Thus we have a total of (2n + 2) unknowns. To solve for the
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(2n + 2) unknowns from the (2n + 2) linear equations, we can arrange
the equations in matrix form with the unknowns forming a (2n + 2)
column matrix and the coefficients forming a (2n+2)×(2n+2) square
matrix. The solution is then obtained by inverting the square matrix.
This procedure is straightforward but tedious. We shall now describe
simpler ways to deal with the problem.

For a TM plane wave, Hx = H0 eikzz+ikyy, incident on the
stratified medium, the total field in region l can be written as

Hlx =
(
E+
l eiklzz + E−l e−iklzz

)
eikyy (47)

Ely =
−klz
ωεl

(
E+
l eiklzz − E−l e−iklzz

)
eikyy (48)

Elz =
ky
ωεl

(
E+
l eiklzz + E−l e−iklzz

)
eikyy (49)

Matching boundary conditions at the boundaries, identifying

pl(l+1) =
εlk(l+1) z

εl+1klz
(50)

for TM waves, we obtain the same equations as in (44) and (45).

4.1. Reflection Coefficients

To find a closed form solution for the reflection coefficient R for the
stratified medium, we first solve (44) and (45) for Al and Bl.

E+
l eiklzdl+1 =

1
2

(
1 + pl(l+1)

)
{
E+
l+1e

ik(l+1)zdl+1 + Rl(l+1)E
−
l+1e

−ik(l+1)zdl+1

}
(51)

E−l e−iklzdl+1 =
1
2

(
1 + pl(l+1)

)
{
Rl(l+1)E

+
l+1e

ik(l+1)zdl+1 + E−l+1e
−ik(l+1)zdl+1

}
(52)

where
Rl(l+1) =

1− pl(l+1)

1 + pl(l+1)
(53)

is the reflection coefficient for waves in region l, caused by the boundary
separating regions l and l + 1. We note from (46) that

p(l+1) l =
1

pl(l+1)
(54)



12 Kong

which also gives
R(l+1) l = −Rl(l+1) (55)

Thus the reflection coefficient in region l + 1, R(l+1) l , caused by the
boundary separating regions l + 1 and l , is equal to the negative of
Rl(l+1) .

Forming the ratio of (51) and (52) we obtain

E−l
E+
l

=
ei2klzdl+1

Rl(l+1)
+

[
1−

(
1/R2

l(l+1)

)]
ei2(k(l+1) z+klz)d(l+1)[

1/Rl(l+1)

]
ei2k(l+1) zd(l+1) + (E−l+1 /E+

l+1)

=
ei2klzd(l+1)

Rl(l+1)
+

[
1−

(
1/R2

l(l+1)

)]
ei2(k(l+1) z+klz)d(l+1)

∣∣∣∣[
1/Rl(l+1)

]
ei2k(l+1) zd(l+1)

+
E−l+1

E+
l+1

(56)

With the second equality we introduce a notation for writing a
continued fraction. Equation (56) expresses (E+

l /E−l ) in terms of
E−l+1/E

+
l+1 and so on, until the transmitted region t, where E−t /E+

t =
0, is reached.

The reflection coefficient due to the stratified medium is R =
B0/A0. Making use of the continued fractions, we obtain

R =
ei2k0zd1

R01
+

[
1− (1/R2

01)
]
ei2(k1z+k0z)d1

∣∣∣
(1/R01)ei2k1zd1

+
ei2k1zd2

R12

+

[
1− (1/R2

12)
]
ei2(k2z+k1z)d2

∣∣∣
(1/R12)ei2k2zd2

+ · · ·+ ei2k(n−1) zdn

R(n−1)n

+

[
1−(1/R2

(n−1)n)
]
ei2(knz+k(n−1) z)dn

∣∣∣∣
(1/R(n−1)n)ei2knzdn

+Rnte
i2knzd(n+1) (57)

This is a closed-form solution for the reflection coefficient expressed
in continued fractions. Such a solution is very easily programmed for
numerical computation.

4.2. Propagation Matrices and Transmission Coefficients

For a plane wave incident on a stratified medium, we have obtained the
boundary conditions of continuity of tangential electric and magnetic
fields at each interface z = dl, with the two equations (44)–(45) relating
wave amplitudes in regions l and l + 1:

E+
l+1e

ik(l+1) zd(l+1) + E−l+1e
−ik(l+1) zd(l+1) = E+

l eiklzd(l+1) + E−l e−iklzd(l+1)

(58)
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E+
l+1e

ik(l+1) zd(l+1) − E−l+1 e
−ik(l+1) zd(l+1)

= p(l+1) l

[
E+
l eiklzd(l+1) − E−l e−iklzd(l+1)

]
(59)

where for TE waves
p(l+1) l =

µl+1klz
µlk(l+1)z

(60)

and for TM waves
p(l+1) l =

εl+1klz
εlk(l+1)z

(61)

Equations (60) and (61) follow from duality but bear in mind that E+
l

and E−l denote amplitudes of tangential electric fields for TE waves
and H+

l and H−l denote amplitudes of tangential magnetic fields for
TM waves. In the last section we determined the reflection coefficients
R = E−0 /E+

0 from the (2n+2) boundary conditions. We will now show
that the transmission coefficient T = E+

t /E+
0 can be obtained by the

use of propagation matrices.
We solve for E+

l+1 and E−l+1 in terms of E+
l and E−l from (58)–(59)

and obtain

E+
l+1e

ik(l+1)zdl+1 =
1
2
(1 + p(l+1)l)

(
E+
l eiklzdl+1 + R(l+1)lE

−
l e−iklzdl+1

)
E−l+1e

−ik(l+1)zdl+1 =
1
2
(1 + p(l+1)l)

(
R(l+1)lE

+
l eiklzdl+1 + E−l e−iklzdl+1

)
Expressing in the form of matrix multiplication, we have E+

l+1

E−l+1

 = V (l+1) l ·
 E+

l

E−l

 (62)

where

V (l+1) l =
1
2
[1 + p(l+1) l] e−i(k(l+1)z−klz)dl+1 R(l+1) le

−i(k(l+1)z+klz)dl+1

R(l+1) le
i(k(l+1)z+klz)dl+1 ei(k(l+1)z−klz)dl+1

 (63)

is called the forward-propagating matrix. In (63),

R(l+1) l =
1− p(l+1) l

1 + p(l+1) l
= −Rl(l+1)

is the reflection coefficient at the boundary separating regions l+1 and
l , and the first subscript denotes the region with the incident wave.
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It is to be noted for the forward-propagating matrix between layers n
and t = n + 1, T

0

 = V tn ·
E+

n
E−n


with

V tn =
1
2

(1 + ptn)
 e−i(ktz−knz)dt Rtne

−i(ktz+knz)dt
Rtne

i(ktz+knz)dt ei(ktz−knz)dt


By the same token, we may express E+

l and E−l in terms of E+
l+1 and

E−l+1 by using (51)–(52) and define a backward-propagating matrix.
The propagation matrices can be used to determine wave

amplitudes in any region in terms of those in any other region. For
m > l, we make use of the forward propagation matrix to obtain

E+
m

E−m

 = V m(m−1) · V (m−1)(m−2) · · ·V (l+1) l ·
E+

l

E−l


Similarly, backward-propagating matrices can be used to express wave
amplitudes in any region j in terms of those in region l for l > j.

In particular, the transmission coefficient T = E−t /E0 for a
stratified medium with t = n + 1 layers can be calculated by the
multiplication of n + 1 propagation matrices. Using the forward-
propagating matrices, we haveT

0

 = V t0 ·
 1

R


where

V t0 = V tn · V n(n−1) · · · V 10

includes all information about the stratified medium. Once V t0

is known, both the reflection and transmission coefficients can be
calculated from its matrix elements.

4.3. Reflection and Transmission by a Slab Medium

For a slab medium with boundary surfaces at z = d1 and z = d2, we
find from (57), with t = 2 and n = 1, the reflection coefficient

R =
ei2k0zd1

R01
+

[
1− (1/R2

01)
]
ei2(k1z+k0z)d1

(1/R01)ei2k1zd1 + R12ei2k1zd2

=
R01 + R12e

i2k1z(d2−d1)

1 + R01R12ei2k1z(d2−d1)
ei2k0zd1 (64)



Stratified negative isotropic media 15

Making use of propagation matrix V (l+1) l as shown in (62)

E+
1

E−1

 =
1
2
(1 + p10)

 e−i(k1z−k0z)d1 R10e
−i(k1z+k0z)d1

R10e
i(k1z+k0z)d1 ei(k1z−k0z)d1

 1
R


T

0

 =
1
2
(1 + pt1)

 e−i(ktz−k1z)dt Rt1e
−i(ktz+k1z)dt

Rt1e
i(ktz+k1z)dt ei(ktz−k1z)dt


E+

1

E−1


we find the amplitudes inside the slab medium to be

E+
1 =

2e−i(k1z−k0z)d1

(1 + p01)(1 + R01R1tei2k1z(d2−d1))
(65)

E−1 =
2R12e

−i(k1z−k0z)d1ei2k1zd2

(1 + p01)(1 + R01R1tei2k1z(d2−d1))
(66)

The transmission coefficient is

T =
4eik0zd1eik1z(d2−d1)e−ik2zd2

(1 + p01)(1 + p1t)(1 + R01R1tei2k1z(d2−d1))
(67)

For an electromagnetic wave incident on a negative isotropic slab in
free space, we let µ1 = −µ0, ε1 = −ε0, and µt = µ0, εt = ε0. We find
k1z = −k0z, k2z = k0z, p01 = p12 = 1, R01 = R12 = R = 0, E−1 = 0,
E+

1 = ei2k0zd1 , T = e−i2k0z(d2−d1).
Assuming a Gaussian beam with beamwidth g incident on the

negative isotropic slab with incident angle θi and incident vector
ki = ŷkiy + ẑkiz, where kiy = k0 sin θi , kiz = k0 cos θi . For an incident
TM wave field, we write

Hx =
∫ ∞
−∞

dky e
i(kyy+k0zz)Ψ(ky) (68)

Ψ(ky) =
g2

4π
e−g

2|ky−kiy |2/4 (69)

Then for the transmitted magnetic field, we have

Hx =
∫ ∞
−∞

dky e
i(kyy+k0z [z−2(d2−d1)])Ψ(ky) (70)

Thus on the plane at a constant z in the transmitted region, the
Gaussian beam spot is at yout, which is shifted by a distance of
2(d2 − d1) tan θi in the negative ŷ direction in the presence of the
negative isotropic slab as compare to the location of the spot yin in
the absence of the slab.
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t

µ0, ε0

Ei E
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k
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1

µ0, ε0
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iny

z = d1 z = d2

H i

Et

Ht

kt

Figure 4. Beam center shifted by 2(d2 − d1) tan θi.

The reflected beam shift will be twice when we place the negative
isotropic slab in front of a perfect conductor. We find

µ1 = −µ0, ε1 = −ε0, k1z = −k0z,

T = 0, E+
1 = ei2k0zd1 , E−1 = R12e

−i2k0z(d2−d1),

p01 = 1, R01 = 0.

For TE waves

RTE
12 = −1, RTE = −e−i2k0z(d2−d1)ei2k0zd1 .

For TM waves

RTM
12 = 1, RTM = e−i2k0z(d2−d1)ei2k0zd1 .

In the absence of the negative isotropic slab, the reflection coefficient
is

RTE
0 = −ei2k0zd2 . RTM

0 = ei2k0zd2 .

Thus on the plane at a constant z in Region 0, the Gaussian beam
spot is at yout, which is shifted by a distance of 4(d2− d1) tan θi in the
negative ŷ direction in the presence of the negative isotropic slab as
compare to the location of the spot yin in the absence of the slab.
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
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outy

y

z = d1 z = d2

H i

kE

H1

1

E1

H1

k

k

Figure 5. Beam center shifted by 4(d2 − d1) tan θi.

5. GUIDED WAVES IN STRATIFIED MEDIA

5.1. Guidance Conditions

The geometrical configuration of the problem is shown in Figure 6.
There are t layers at z = d1, d2, . . . dt, and s + 1 layers at z =
d0, d−1, . . . , d−s. We shall first assume that all regions contain isotropic
media. In region l, we denote the permittivity and permeability by εl
and µl. Notice that in region 0, ε0 and µ0 are not necessarily equal to
the free space permittivity εo and permeability µo .
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z

y
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Region tRegion −1t
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0

Region − 1Region −
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Figure 6. Guided Waves in stratified media.

For TE waves, the solutions in region l take the following form:

Elx =
[
E+
l eiklzz + E−l e−iklzz

]
eikyy (71)

Hly =
klz
ωµl

[
E+
l eiklzz − E−l e−iklzz

]
eikyy

Hlz =
−ky
ωµl

[
E+
l eiklzz + E−l e−iklzz

]
eikyy (72)

For TM waves we invoke duality with the replacement E → H,
H → −E, µ0 →← ε0.

The boundary conditions of the interfaces require that tangential
electric and magnetic field components be continuous for all x and y.
At z = dl+1 , we obtain

E+
l eiklzdl+1 + E−l e−iklzdl+1

= E+
l+1 eik(l+1) zdl+1 + E−l+1 e−ik(l+1) zdl+1 (73)

E+
l eiklzdl+1 − E−l e−iklzdl+1

= pl(l+1)

[
E+
l+1e

ik(l+1) zdl+1 − E−l+1e
−ik(l+1) zdl+1

]
(74)

where

pl(l+1) =
µlk(l+1) z

µl+1klz
=

1
p(l+1)l

(75)
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We now determine the wave amplitudes in region l. From (73)–(74) we
can express E+

l and E−l in terms of E+
l+1 and E−l+1 or express E+

l+1 and
E−l+1 in terms of E+

l and E−l . We find

E+
l eiklzdl+1 =

1
2

(
1 + pl(l+1)

)
{
E+
l+1e

ik(l+1)zdl+1 + Rl(l+1)E
−
l+1e

−ik(l+1)zdl+1

}
(76)

E−l e−iklzdl+1 =
1
2

(
1 + pl(l+1)

)
{
Rl(l+1)E

+
l+1e

ik(l+1)zdl+1 + E−l+1e
−ik(l+1)zdl+1

}
(77)

for E+
l and E−l in terms of E+

l+1 and E−l+1, and

E+
l+1e

ik(l+1)zdl+1 =
1
2
(1 + p(l+1)l){

E+
l eiklzdl+1 + R(l+1) lE

−
l e−iklzdl+1

}
(78)

E−l+1e
−ik(l+1)zdl+1 =

1
2
(1 + p(l+1)l){

R(l+1) lE
+
l eiklzdl+1 + E−l e−iklzdl+1

}
(79)

for E+
l+1 and E−l+1 in terms of E+

l and E−l . In (76)–(??), the Fresnel
reflection coefficient

R(l+1)l =
1− p(l+1)l

1 + p(l+1)l
= −Rl(l+1) (80)

where
Rl(l+1) =

1− pl(l+1)

1 + pl(l+1)
(81)

is the reflection coefficient for waves in region l, caused by the boundary
separating regions l and l+1. The reflection coefficient in region l+1,
R(l+1) l , caused by the boundary separating regions l+1 and l , is equal
to the negative of Rl(l+1) .

There are altogether s + t boundaries which give rise to 2(s + t)
equations as shown above. There are altogether s + t + 1 regions.
In regions t and −s we have E−t = 0 and E+

−s = 0 because there
are no waves originating from infinity. Thus we have a total of
2(s + t + 1) − 2 = 2(s + t) unknowns to be solved from the 2(s + t)
equations.
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For z ≥ 0, we let l = 0, and obtain the reflection coefficients
R0+ = E−0+/E+

0+ in the form of continued fractions. We find

R0+ =
E−0+
E+

0+

=
ei2k0zd1

R01

+

[
1− (1/R01)

2
]
ei2(k0z+k1z)d1

(1/R01)ei2k1zd1 + (E−1 /E+
1 )

(82)

where E−1 /E+
1 can be expressed in terms of E−2 /E+

2 and so on until
region t where E−t /E+

t = 0.
For z ≤ 0, we let l = 0, and obtain the reflection coefficients

R0− = E+
0−/E

−
0− in the form of continued fractions. We find

R0− =
E+

0−
E−0−

=
e−i2k0zd0

R0(−1)
+

[
1−

(
1/R0(−1)

)2
]
e−i2(k0z+k−1z)d0

(1/R0(−1))e−i2k−1zd0 + (E+
−1/E

−
−1)

(83)

where E+
−1/E

−
−1 are expressible in terms of E+

−2/E
−
−2 and so on until

region −s, where E+
−s/E

−
−s = 0.

In region 0, the guidance condition is determined from

R0+R0− = 1 (84)

For s = 2 and t = 2, we find

R0+ =
R01 + R12e

i2k1z(d2−d1)

1 + R01R12e
i2k1z(d2−d1)

ei2k0zd1 (85)

R0− =
R0(−1) + R(−1)(−2)e

−i2k−1z(d−1−d0)

1 + R0(−1)R(−1)(−2)e
−i2k−1z(d−1−d0)

e−i2k0zd0 (86)

Consider guidance in Region 0 with evanescence in Regions 1 and -1
such that k1z =

√
k2

1 − k2
y = iα1z and k−1z =

√
k2
−1 − k2

y = iα−1z. We
then have

p01 = i
µ0α1z

µ1k0z
; R01 = ei2φ01 ; φ01 = −tan−1µ0α1z

µ1k0z
(87)

p0(−1) = i
µ0α−1z

µ−1k0z
; R0(−1) = ei2φ0(−1) ; φ0(−1) = −tan−1µ0α−1z

µ−1k0z
(88)

where φ01 and φ0(−1) are Goos-Haschen shifts at the boundaries z = d1

and z = d0.
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5.2. Fields of Guided Waves

For a slab waveguide with s = 1 and t = 1, we have

R0+ = R01e
i2k0zd1 (89)

R0− = R0(−1)e
−i2k0zd0 (90)

The guidance condition becomes

φ0(−1) + φ01 + k0zd1 − k0zd0 = mπ (91)

for the mth order guided mode.For an asymmetric slab waveguide, we
have

E+
−1 = 0 (92)

E−−1 =
1
2

(
1 + p(−10)

) {
R(−1)0E

+
0 ei(k0z+k−1z)d0 + E−0 e−i(k0z−k−1z)d0

}
(93)

E+
1 =

1
2
(1 + p10)

{
E+

0 ei(k0z−k1z)d1 + R10E
−
0 e−i(k0z+k1z)d1

}
(94)

E−1 = 0 (95)

The field in Region −1 is

E−1x =
[
E−−1e

α−1zz
]
eikyy (96)

H−1y =
k−1z

ωµl

[
−E−−1e

α−1zz
]
eikyy (97)

H−1z =
−ky
ωµ−1

[
E−−1e

α−1zz
]
eikyy (98)

< S−1 > = ŷ
ky

2ωµ−1

[
|E−−1|2e2α−1zz

]
(99)

The field in Region 0 is

E0x =
[
E+

0 eik0zz + E−0 e−ik0zz
]
eikyy (100)

H0y =
k0z

ωµ0

[
E+

0 eik0zz − E−0 e−ik0zz
]
eikyy (101)

Hlz =
−ky
ωµ0

[
E+

0 eik0zz + E−0 e−ik0zz
]
eikyy (102)

< S0 > = ŷ
ky

2ωµ0

[
|E+

0 |2 + |E−0 |2 + 2Re
{
E+

0 (E−0 )∗ei2k0zz
}]

(103)
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The field in Region 1 is

E1x =
[
E+

1 e−αlzz
]
eikyy (104)

H1y =
k1z

ωµ1

[
E+

1 e−α1zz
]
eikyy (105)

H1z =
−ky
ωµ1

[
E+

1 e−α1zz
]
eikyy (106)

< S1 > = ŷ
ky

2ωµ1

[
|E+

1 |2e−2α1zz
]

(107)

When the waveguide is a negative isotropic slab with µ0 = −µo and
ε0 = −εo, we observe that the Poynting power inside the wave guide
is flowing in the negative ŷ direction while the Poynting power outside
the slab flow in the positive ŷ direction.

5.3. Coupling of Guided Waves

For the case of s = 2 and t = 2, we find

E+
−2 = 0 (108)

E−−2 =
1
2

(
1 + p−2(−1)

)
{
R−2(−1)E

+
−1e

i(k−1z+k−2z)d−1 + E−−1e
−i(k−1z−k−2z)d−1

}
(109)

E+
−1 =

1
2

(1 + p−10)
{
E+

0 ei(k0z−k−1z)d0 +R−10E
−
0 e−i(k0z+k−1z)d0

}
(110)

E−−1 =
1
2

(1 + p−10)
{
R−10E

+
0 ei(k0z+k−1z)d0 +E−0 e−i(k0z−k−1z)d0

}
(111)

E+
1 =

1
2
(1 + p10)

{
E+

0 ei(k0z−k1z)d1 + R10E
−
0 e−i(k0z+k1z)d1

}
(112)

E−1 =
1
2
(1 + p10)

{
R10E

+
0 ei(k0z+k1z)d1 + E−0 e−i(k0z−k1z)d1

}
(113)

E+
2 =

1
2
(1 + p21)

{
E+

1 ei(k1z−k2z)d2 + R21E
−
1 e−i(k1z+k2z)d2

}
(114)

E−2 = 0 (115)

We let waves be guided in Region −1 and Region 1, thus k0z = iα0z,
k−2z = iα−2z, and k2z = iα2z. The electromagnetic fields in all regions
take the following forms.
In Region −2:

E−2x =
[
E−−2e

α−2zz
]
eikyy (116)
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H−2y =
k−2z

ωµ−2

[
−E−−2e

α−2zz
]
eikyy

H−2z =
−ky
ωµ−2

[
E−−2e

α−2zz
]
eikyy (117)

< S−2 > = ŷ
ky

2ωµ−2

[
|E−−2|2e2α−2zz

]
(118)

In Region −1:

E−1x =
[
E+
−1e

ik−1zz + E−−1e
−ik−1zz

]
eikyy (119)

H−1y =
k−1z

ωµ−1

[
E+
−1e

ik−1zz − E−−1e
−ik−1zz

]
eikyy

H−1z =
−ky
ωµ−1

[
E+
−1e

ik−1zz + E−−1e
−ik−1zz

]
eikyy (120)

< S−1 > = ŷ
ky

2ωµ−1

[
|E+
−1|2+|E−−1|2−2Re

{
E+
−1(E

−
−1)
∗ei2k1zz|

}]
(121)

In Region 0:

E0x =
[
E+

0 eik0zz + E−0 e−ik0zz
]
eikyy (122)

H0y =
k0z

ωµ0

[
E+

0 eik0zz − E−0 e−ik0zz
]
eikyy

H0z =
−ky
ωµ0

[
E+

0 eik0zz + E−0 e−ik0zz
]
eikyy (123)

< S0 > = ŷ
ky

2ωµ0

[
|E+

0 |2 + |E−0 |2 + 2Re
{
E+

0 (E−0 )∗ei2k0zz
}]

(124)

In Region 1:

E1x =
[
E+

1 eik1zz + E−1 e−ik1zz
]
eikyy (125)

H1y =
k1z

ωµ1

[
E+

1 eik1zz − E−1 e−ik1zz
]
eikyy

H1z =
−ky
ωµ1

[
E+

1 eik1zz + E−1 e−ik1zz
]
eikyy (126)

< S1 > = ŷ
ky

2ωµ1

[
|E+

1 |2 + |E−1 |2 + 2Re
{
|E+

1 (E−1 )∗ei2k1zz|
}]

(127)

In Region 2:

E2x =
[
E+

2 e−α2zz
]
eikyy (128)
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H2y =
k2z

ωµ2

[
E+

2 e−α2zz
]
eikyy

H2z =
−ky
ωµ2

[
E+

2 e−α2zz
]
eikyy (129)

< S2 > = ŷ
ky

2ωµ2

[
|E+

2 |2e−2α2zz|
]

(130)

We observe that if Region −1 is a slab medium with positive µ and
ε, while Region 1 is a negative slab, the guided wave in Region −1 is
propagating in the positive ŷ direction, and the guided wave in Region
1 is propagating in the negative ŷ direction. Thus the guided wave
direction is reversed through evanescent coupling with Region 0.

6. LINEAR ANTENNAS IN STRATIFIED MEDIA

6.1. Integral Formulation

The geometrical configuration of the problem is shown in Figure 7.
The origin of the coordinate system is placed in the location of the
linear antenna, which is in the x̂-direction.

J(r′) = x̂I δ(y′)δ(z′) (131)

There are t layers at z = d1, d2, . . . dt and s + 1 layers at z =
d0, d−1, . . . , d−s. We shall first assume that all regions contain isotropic
media. In region l, we denote the permittivity and permeability by εl
and µl. Notice that in region 0, ε0 and µ0 are not necessarily equal
to the free space permittivity and permeability which we denote by εo
and µo .

The solution of the electric field vector for the linear antenna in
unbounded medium with permittivity ε0 and µ0 is

E = iωµ0

∫ ∞
−∞

∫ ∞
−∞

dy dz G(r, r′) · J(r′)

= x̂ iωµ0I

{
i

4
H

(1)
0 (kρ)

}

= x̂ iωµ0I

{
i

4π

∫ ∞
−∞

dky
1

k0z
eikyy+ ik0z |z|

}

= x̂

∫ ∞
−∞

dky
−ωµ0I

4πk0z
eikyy

{
eik0zz

e−ik0zz

}
z ≥ 0
z ≤ 0

(132)

We have from the Maxwell equations in source-free regions

H =
1

iωµ0
∇× E =

iI

4π
∇× x̂

∫ ∞
−∞

dky
1

k0z
eikyy+ ik0z |z|
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Figure 7. Linear antennas in stratified media.

= ŷ
−I

4π

∫ ∞
−∞

dkye
ikyy

{
eik0zz

−e−ik0zz

}
z ≥ 0
z ≤ 0

(133)

+ẑ
I

4π

∫ ∞
−∞

dky
ky
k0z

eikyy
{

eik0zz

e−ik0zz

}
z ≥ 0
z ≤ 0

(134)

The solutions in region l take the following form:

Elx =
∫ ∞
−∞

dky
[
E+
l eiklzz + E−l e−iklzz

]
eikyy (135)

Hly =
∫ ∞
−∞

dky
klz
ωµl

[
E+
l eiklzz − E−l e−iklzz

]
eikyy

Hlz =
∫ ∞
−∞

dky
−ky
ωµl

[
E+
l eiklzz + E−l e−iklzz

]
eikyy (136)

The boundary conditions of the interfaces require that tangential
electric and magnetic field components be continuous for all x and
y. At z = dl+1 , we obtain

E+
l eiklzdl+1 + E−l e−iklzdl+1

= E+
l+1 eik(l+1) zdl+1 + E−l+1 e−ik(l+1) zdl+1 (137)

E+
l eiklzdl+1 − E−l e−iklzdl+1

= pl(l+1)

[
E+
l+1e

ik(l+1) zdl+1 − E−l+1e
−ik(l+1) zdl+1

]
(138)
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where

pl(l+1) =
µlk(l+1) z

µl+1klz
=

1
p(l+1)l

(139)

We now determine the wave amplitudes in region l. From (137)–(138)
we can express E+

l and E−l in terms of E+
l+1 and E−l+1 or express E+

l+1

and E−l+1 in terms of E+
l and E−l . We find

E+
l eiklzdl+1 =

1
2

(
1 + pl(l+1)

)
{
E+
l+1e

ik(l+1)zdl+1 + Rl(l+1)E
−
l+1e

−ik(l+1)zdl+1

}
(140)

E−l e−iklzdl+1 =
1
2

(
1 + pl(l+1)

)
{
Rl(l+1)E

+
l+1e

ik(l+1)zdl+1 + E−l+1e
−ik(l+1)zdl+1

}
(141)

for E+
l and E−l in terms of E+

l+1 and E−l+1, and

E+
l+1e

ik(l+1)zdl+1 =
1
2
(1 + p(l+1)l){

E+
l eiklzdl+1 + R(l+1) lE

−
l e−iklzdl+1

}
(142)

E−l+1e
−ik(l+1)zdl+1 =

1
2
(1 + p(l+1)l){

R(l+1) lE
+
l eiklzdl+1 + E−l e−iklzdl+1

}
(143)

for E+
l+1 and E−l+1 in terms of E+

l and E−l . In (140)–(143), the Fresnel
reflection coefficient

R(l+1)l =
1− p(l+1)l

1 + p(l+1)l
= −Rl(l+1) (144)

where
Rl(l+1) =

1− pl(l+1)

1 + pl(l+1)
(145)

is the reflection coefficient for waves in region l, caused by the boundary
separating regions l and l+1. The reflection coefficient in region l+1,
R(l+1) l , caused by the boundary separating regions l+1 and l , is equal
to the negative of Rl(l+1) .

There are altogether s + t boundaries which give rise to 2(s + t)
equations as shown above. There are altogether s + t + 1 regions.
In regions t and −s we have E−t = 0 and E+

−s = 0 because there
are no waves originating from infinity. Thus we have a total of
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2(s + t + 1) − 2 = 2(s + t) unknowns to be solved from the 2(s + t)
equations. The wave amplitudes are related to the configurations and
the excitation amplitudes of the dipole antenna in region 0. Thus field
amplitudes in Region 0 require special attention.

For z ≥ 0, we notice that E−t = 0. Letting l = 0, we obtain
the reflection coefficients R0+ = E−0+/E+

0+ in the form of continued
fractions. We find

R0+ =
E−0+
E+

0+

=
ei2k0zd1

R01

+

[
1− (1/R01)

2
]
ei2(k0z+k1z)d1

(1/R01)ei2k1zd1 + (E−1 /E+
1 )

(146)

where E−1 /E+
1 can be expressed in terms of E−2 /E+

2 and so on until
region t where E−t /E+

t = 0.
For z ≤ 0, we notice that E+

−s = 0. Letting l = 0, we obtain
the reflection coefficients R0− = E+

0−/E
−
0− in the form of continued

fractions. We find

R0− =
E+

0−
E−0−

=
e−i2k0zd0

R0(−1)
+

[
1−

(
1/R0(−1)

)2
]
e−i2(k0z+k−1z)d0

(1/R0(−1))e−i2k−1zd0 + (E+
−1/E

−
−1)

(147)

where E+
−1/E

−
−1 are expressible in terms of E+

−2/E
−
−2 and so on until

region −s, where E+
−s/E

−
−s = 0.

Once the wave amplitudes in region 0 are found, wave amplitudes
in other regions can be determined by the use of propagation matrices,
and from a set of dual equations for TE waves.

In region 0 it becomes necessary that we distinguish the wave
amplitudes in region 0 for z ≥ 0 from those in region 0 for z < 0. For
z > 0 we use E+

0+ , E−0+; and for z < 0 we use E+
0− , E−0−. Thus we have

E+
0− = E+x

0 E+
0+ = E+x

0 + Elin

E−0− = E−x0 + Elin E−0+ = E−x0

Elin = −ωµ0I/4πk0z


 (148)

where E−x0 and E+x
0 characterize contributions due to the stratified

medium. Let

R0+ =
E−0+
E+

0+

=
E−x0

E+x
0 + Elin

(149)

R0− =
E+

0−
E−0−

=
E+x

0

E−x0 + Elin
(150)
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we find

E+x
0 =

R0−(1 + R0+)
1−R0−R0+

Elin (151)

E−x0 =
R0+(1 + R0−)
1−R0−R0+

Elin (152)

E+
0− =

R0−(1 + R0+)
1−R0−R0+

Elin E+
0+ =

1 + R0−
1−R0−R0+

Elin

E−0− =
1 + R0+

1−R0−R0+
Elin E−0+ =

R0+(1 + R0−)
1−R0−R0+

Elin




(153)

We have expressed the solution in region 0 where the linear antenna
is located in terms of superpositions of the primary excitations in the
absence of the stratified medium and the homogeneous solutions of the
stratified medium in the absence of the source.

6.2. Linear Antenna Between Two Negative Isotropic Slabs

For a linear antenna situated in-between two negative isotropic slabs,
we let µ−2 = µ0, ε−2 = ε0; µ−1 = −µ0, ε−1 = −ε0; µ1 = −µ0, ε1 = −ε0,
and µt = µ0, εt = ε0. We find k−2z = k2z = k0z, k−1z = k1z = −k0z,
p(−2)(−1) = p(−1)0 = p01 = p12 = 1, R(−2)(−1) = R(−1)0 = R01 = R12 =
R0− = R0+ = 0.

E+
0− = 0 E+

0+ = Elin

E−0− = Elin E−0+ = 0

}
(154)

From (140) to (143), we find

E+
l = E+

l+1e
i(k(l+1)z−klz)dl+1 (155)

E−l = E−l+1e
−i(k(l+1)z−klz)dl+1 (156)

It follows that

E+
−1 = 0

E−−1 = Eline
−i(k0z−k−1z)d0 = Eline

−i2k0zd0

}
(157)

E+
−2 = 0

E−−2 = Eline
−i(k−1z−k−2z)d−1e−i2k0zd0 = Eline

−i2k0z(d0−d−1)

}
(158)

E+
1 = Eline

−i(k1z−k0z)d1 = Eline
i2k0zd1

E−1 = 0

}
(159)



Stratified negative isotropic media 29

E+
2 = Eline

−i(k2z−k1z)d2ei2k0zd1 = Eline
−i2k0z(d2−d1)

E−2 = 0

}
(160)

The field in Region −2 is

E−2x =
∫ ∞
−∞

dky
[
Eline

−ik0z [z+2(d0−d−1)]
]
eikyy (161)

H−2y =
∫ ∞
−∞

dky
k−2z

ωµ−2

[
−Eline

−ik0z [z+2(d0−d−1)]
]
eikyy

H−2z =
∫ ∞
−∞

dky
−ky
ωµ−2

[
Eline

−ik0z [z+2(d0−d−1)]
]
eikyy (162)

The field in Region −1 is

E−1x =
∫ ∞
−∞

dky
[
Eline

ik0z [z−2d0]
]
eikyy (163)

H−1y =
∫ ∞
−∞

dky
k−1z

ωµ−1

[
−Eline

ik0z [z−2d0]
]
eikyy

H−1z =
∫ ∞
−∞

dky
−ky
ωµ−1

[
Eline

ik0z [z−2d0]
]
eikyy (164)

In Region 0 for z ≤ 0

E0x =
∫ ∞
−∞

dky
[
Eline

−iklzz
]
eikyy (165)

H0y =
∫ ∞
−∞

dky
k0z

ωµ0

[
−Eline

−iklzz
]
eikyy

H0z =
∫ ∞
−∞

dky
−ky
ωµ0

[
Eline

−iklzz
]
eikyy (166)

In Region 0 for z ≥ 0

E0x =
∫ ∞
−∞

dky
[
Eline

iklzz
]
eikyy (167)

H0y =
∫ ∞
−∞

dky
k0z

ωµ0

[
Eline

iklzz
]
eikyy

H0z =
∫ ∞
−∞

dky
−ky
ωµ0

[
Eline

iklzz
]
eikyy (168)

In region 1

E1x =
∫ ∞
−∞

dky
[
Eline

−ik0z [z−2d1]
]
eikyy (169)
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Figure 8. Images of a linear antenna in Region 0.

H1y =
∫ ∞
−∞

dky
k1z

ωµ1

[
Eline

−ik0z [z−2d1]
]
eikyy

H1z =
∫ ∞
−∞

dky
−ky
ωµ1

[
Eline

−ik0z [z−2d1]
]
eikyy (170)

In region 2

E2x =
∫ ∞
−∞

dky
[
Eline

ik0z [z−2(d2−d1)]
]
eikyy (171)

H2y =
∫ ∞
−∞

dky
k2z

ωµ2

[
Eline

ik0z [z−2(d2−d1)]
]
eikyy

H2z =
∫ ∞
−∞

dky
−ky
ωµ2

[
Eline

ik0z [z−2(d2−d1)]
]
eikyy (172)

It is thus seen that the field in Region 2 is due to a linear antenna
situated at z = 2(d2− d1), which is a perfect image of the original line
source. Likewise a perfect image is formed in Region −2 and located
at z = 2(d−1 − d0).

6.3. Linear Antenna in Front of a Negative Isotropic Slab

For linear antennas in front of stratified media, all regions −1 to −s
are absent, we have E+

0− = 0 and R0− = 0. It follows that

E+
0− = 0 E+

0+ = Elin

E−0− = (1 + R0+)Elin E−0+ = R0+Elin

}
(173)
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For a linear antenna in front of a slab medium with boundary surfaces
at z = d1 and z = d2, we find the reflection coefficient

R0+ =
R01 + R12e

i2k1z(d2−d1)

1 + R01R12e
i2k1z(d2−d1)

ei2k0zd1 (174)

the amplitudes inside the slab medium

E+
1 =

2Eline
−i(k1z−k0z)d1

(1 + p01)(1 + R01R1te
i2k1z(d2−d1))

(175)

E−1 =
2R12Eline

−i(k1z−k0z)d1ei2k1zd2

(1 + p01)(1 + R01R1tei2k1z(d2−d1))
(176)

and the transmission coefficient

T =
4eik0zd1eik1z(d2−d1)e−ik2zd2

(1 + p01)(1 + p1t)(1 + R01R1te
i2k1z(d2−d1))

(177)

Consider a linear antenna in front of the slab medium,

(A) In region 0; z ≤ 0

E0x =
∫ ∞
−∞

dky
[
(1 + R0+)Eline

−iklzz
]
eikyy (178)

H0y =
∫ ∞
−∞

dky
k0z

ωµ0

[
−(1 + R0+)Eline

−iklzz
]
eikyy (179)

H0z =
∫ ∞
−∞

dky
−ky
ωµ0

[
(1 + R0+)Eline

−iklzz
]
eikyy (180)

(B) In region 0; z ≥ 0

E0x =
∫ ∞
−∞

dkyElin

[
eiklzz + R0+e−iklzz

]
eikyy (181)

H0y =
∫ ∞
−∞

dky
k0z

ωµ0
Elin

[
eiklzz −R0+e−iklzz

]
eikyy (182)

H0z =
∫ ∞
−∞

dky
−ky
ωµ0

Elin

[
eiklzz + R0+e−iklzz

]
eikyy (183)

(C) In region 1

E1x =
∫ ∞
−∞

dky
[
E+

1 eiklzz + E−1 e−iklzz
]
eikyy (184)
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H1y =
∫ ∞
−∞

dky
k1z

ωµ1

[
E+

1 eiklzz − E−1 e−iklzz
]
eikyy (185)

H1z =
∫ ∞
−∞

dky
−ky
ωµ1

[
E+

1 eik1zz + E−1 e−ik1zz
]
eikyy (186)

(D) In region 2, k2z = k0z

E2x =
∫ ∞
−∞

dky
[
TEline

ik2zz
]
eikyy (187)

H2y =
∫ ∞
−∞

dky
k2z

ωµ2

[
TEline

ikzz
]
eikyy (188)

H2z =
∫ ∞
−∞

dky
−ky
ωµ2

[
TEline

ik2zz
]
eikyy (189)

For a linear antenna in front of a negative isotropic slab in free
space, we let µ1 = −µ0, ε1 = −ε0, and µt = µ0, εt = ε0. We find
k1z = −k0z, k2z = k0z, p01 = p12 = 1, R01 = R12 = R0+ = 0, E−1 = 0,
Elin = −ωµ0I/4πk0z, E+

1 = Eline
i2k0zd1 , T = e−i2k0z(d2−d1).

(A) In region 0; z ≤ 0

E0x =
∫ ∞
−∞

dkyElin

[
e−ik0zz

]
eikyy (190)

H0y =
∫ ∞
−∞

dky
k0z

ωµ0
Elin

[
−e−ik0zz

]
eikyy (191)

H0z =
∫ ∞
−∞

dky
−ky
ωµ0

Elin

[
e−ik0zz

]
eikyy (192)

(B) In region 0; z ≥ 0

E0x =
∫ ∞
−∞

dkyElin

[
eik0zz

]
eikyy (193)

H0y =
∫ ∞
−∞

dky
k0z

ωµ0
Elin

[
eik0zz

]
eikyy (194)

H0z =
∫ ∞
−∞

dky
−ky
ωµ0

Elin

[
eik0zz

]
eikyy (195)

H
(1)
0 (kρ) =

1
π

∫ ∞
−∞

dky
1

k0z
eikyy+ ik0z |z|

=
1
π

∫ ∞
−∞

dky
1

k0z
eikyy

{
eik0zz

e−ik0zz

}
z ≥ 0
z ≤ 0

(196)
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(C) In region 1, d1 < z < 2d1, k0z → iky

E1x =
∫ ∞
−∞

dkyEline
−ik0z(z−2d1)eikyy

= H
(1)
0

(
k
√

y2 + |z − 2d1|2
)

(197)

H1 =
−1
iωµ0

(ŷ
∂

∂z
− ẑ

∂

∂y
)E1x (198)

H1y =
∫ ∞
−∞

dky
k0z

ωµ0
Eline

−ik0z(z−2d1)eikyy (199)

H1z =
∫ ∞
−∞

dky
ky
ωµ0

Eline
−ik0z(z−2d1)eikyy (200)

(D) In region 1, 2d1 < z < d2, ky → −ky, k0z → −iky

E1x =
∫ ∞
−∞

dkyEline
−ik0z(z−2d1)e−ikyy (201)

H1y =
∫ ∞
−∞

dky
k0z

ωµ0
Eline

−ik0z(z−2d1)e−ikyy (202)

H1z = −
∫ ∞
−∞

dky
ky
ωµ0

Eline
−ik0z(z−2d1)e−ikyy (203)

(E) In region 2, d2 < z < 2(d2 − d1), ky → −ky, , k0z → −iky

E2x =
∫ ∞
−∞

dkyEline
ik0z(z−2(d2−d1))e−ikyy (204)

H2y =
∫ ∞
−∞

dky
k0z

ωµ0
Eline

ik0z(z−2(d2−d1))e−ikyy (205)

H2z =
∫ ∞
−∞

dky
ky
ωµ0

Eline
ik0z(z−2(d2−d1)e−ikyy (206)

(F) In region 2, 2(d2 − d1) < z, k0z → iky

E2x =
∫ ∞
−∞

dkyEline
ik0z(z−2(d2−d1))eikyy (207)

H2y =
∫ ∞
−∞

dky
k0z

ωµ0
Eline

ik0z(z−2(d2−d1))eikyy (208)

H2z =
∫ ∞
−∞

dky
−ky
ωµ0

Eline
ik0z(z−2(d2−d1)eikyy (209)

It is seen that in the transmitted region, the field originates from a
linear antenna located at z = 2(d2 − d1), which is a perfect image of
the original antenna.



34 Kong

7. DIPOLE ANTENNAS IN STRATIFIED MEDIA

7.1. Hertzian Electric and Magnetic Dipoles

The most fundamental model for radiating structures is a Hertzian
electric dipole which consists of a current-carrying element with an
infinitesimal length l. Denoting the current dipole moment with Il, the
current density J(r) of a Hertzian dipole pointing in the ẑ direction
and located at the origin is

J(r′) = ẑIl δ(r′) (210)

The exact expressions for the electric field vector E(r) for the Hertzian
dipole is calculated to be

E(r) = iωµ

[
I +

1
k2
∇∇

]
·
∫∫∫

d r′
eik|r−r

′|

4π |r − r′| ẑIlδ(r
′)

= iωµIl

[
ẑ +

1
k2
∇ ∂

∂z

]
eikr

4πr

=
iωµIl

4π

{
ẑ
1
r
eikr +

1
k2

(x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
)
[
(
ikz

r2
+
−z

r3
)eikr

]}

=
iωµIl

4π

{
ẑ
1
r

[
1 +

i

kr
− 1

k2r2

]
− x̂

xz

r3

[
1 +

3i
kr
− 3

k2r2

]

−ŷ
yz

r3

[
1 +

3i
kr
− 3

k2r2

]
−ẑ

zz

r3

[
1 +

3i
kr
− 3

k2r2

]}
eikr

=
iωµIl

4πr

{
ẑ

[
1 +

i

kr
− 1

k2r2

]
− ẑ

zz

r2

[
1 +

3i
kr
− 3

k2r2

]

− ρ̂
zρ

r2

[
1 +

3i
kr
− 3

k2r2

]}
eikr

=
iωµeikr

4πr
Il

{
ẑ

[
1 +

i

kr
− 1

k2r2

]
− r̂

z

r

[
1 +

3i
kr
− 3

k2r2

]}
(211)

Notice that with g(r) = eikr/4πr and ∂g(r)/∂z = (ik− 1/r) cos θ g(r).
To cast in spherical coordinates, note that ẑ = r̂ cos θ − θ̂ sin θ and
z = r cos θ. We find from (211)

E(r) = − iωµeikr

4πr
Il

{
r̂

[
i

kr
+

(
i

kr

)2
]
2 cos θ+θ̂

[
1+

i

kr
+

(
i

kr

)2
]
sin θ

}

(212)
The magnetic field follows from Faraday’s law

H(r) =
1

iωµ
∇× E = −φ̂ ikIl

eikr

4πr

[
1 +

i

kr

]
sin θ (213)



Stratified negative isotropic media 35

The complex Poynting power density is calculated by taking the cross
product of E and the complex conjugate of H

S = E×H
∗=η

[
kIl

4πr

]2
{
r̂

[
1−

(
i

kr

)3
]
sin2 θ−θ̂

[(
i

kr

)
−

(
i

kr

)3
]
sin 2θ

}

(214)
The time-average Poynting power density is

<S>=
1
2
Re{S} = r̂

η

2

[
kIl

4πr

]2

sin2 θ (215)

Let the electric current moment be in a general direction, we write
Il = x̂Ixl + ŷIyl + ẑIzl. From (211), (212), and (213) we find

E(r) =
iωµeikr

4πr

{
Il

(
1+

i

kr
− 1

k2r2

)
−r̂(r̂ · Il)

[
1+

3i
kr
− 3

k2r2

]}
(216)

H(r) = r̂ × Il
ikeikr

4πr

[
1 +

i

kr

]
(217)

Notice that r̂ = ẑz/r + ρ̂ρ/r = x̂x/r + ŷy/r + ẑz/r. The Poynting
vector is

S = E ×H
∗ = η

[
k

4πr

]2

{
r̂(Il)2(1+

i

k3r3
)−r̂(r̂ · Il)2

[
1+

2i
kr

+
3i

k3r3

]
+(r̂ · Il)Il

[
2i
kr

+
2i

k3r3

]}
(218)

The time-average Poynting power density is

<S>=
1
2
Re{S} = r̂ ηk2 [(Il)2 − (r̂ · Il)2]

2(4πr)2
(219)

In a negative isotropic medium when k = −|k| the phase velocity of
the radiated wave points towards the dipole while the Poynting power
is propagating in the direction of increasing r.

The dual of a Hertzian electric dipole is a magnetic dipole. A
Hertzian magnetic dipole can be realized with the model of a small
current loop with area A and carrying current I. The correspondence
between the electric and magnetic dipoles can be quantified by letting
the Hertzian dipole moment Il to be [7]

(Il)e = (ikIA)m (220)



36 Kong

z

ρ

Region 1Region 0Region −1Region − 1Region −

z =d 2 z = d2z = d1z = d0z = d−1

dipole
antenna

Region t

-s

Region −1t

z = d tz = d −1t

s s+

+z =d 1-s +

Figure 9. Hertzian dipole source in stratified media.

Em = ηHe (221)

Hm = −Ee

η
(222)

where the subscripts e and m are used to denote the electric dipole
and the current loop, respectively. The solutions for a small current
loop thus follow from the solutions for electric dipoles.

7.2. Integral Formulation for Dipoles in Stratified Media

The geometrical configuration of the problem is shown in Figure 9. The
origin of the coordinate system is placed in the location of the dipole
which can be a z-directed electric dipole (ZED), a z-directed magnetic
dipole (ZMD), an x-directed electric dipole (XED), an y-directed
electric dipole (YED), an x-directed magnetic dipole (XMD). or an y-
directed magnetic dipole (YMD). There are t layers at z = d1, d2, . . . dt
and s+1 layers at z = d0, d−1, . . . , d−s+1. We shall first assume that all
regions contain isotropic media. In region l, we denote the permittivity
and permeability by εl and µl. Notice that in region 0, ε0, and µ0 are
not necessarily equal to the free space permittivity and permeability
which we denote by εo and µo .

Making use of cylindrical coordinate system, the integrands of
transverse field components Es = ρ̂Eρ + φ̂Eφ and Hs = ρ̂Hρ + φ̂Hφ
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are derived from those of the longitudinal components Ez and Hz. Let

Ez =
∫ ∞
−∞

dkρEz(kρ) (223)

Hz =
∫ ∞
−∞

dkρHz(kρ) (224)

We have from the Maxwell equations in source-free regions

Es(kρ) =
1
k2
ρ

[
∇s

∂

∂z
Ez(kρ) + iωµl∇s ×Hz(kρ)

]
(225)

Hs(kρ) =
1
k2
ρ

[
∇s

∂

∂z
Hz(kρ)− iωεl∇s × Ez(kρ)

]
(226)

The fields of a dipole radiating in unbounded space with permittivity
ε0 and µ0 can be transformed from spherical coordinates to cylindrical
coordinates by using the Sommerfeld identity

eik0r

r
=

i

2

∫ ∞
−∞

dkρ
kρ
k0z

H
(1)
0 (kρρ)eik0z |z| (227)

From the previsous section, we find for a Hertzian electric dipole Ilδ(r)
situated at the origin,

E(r) =
iωµ

4π

[
I +

1
k2
∇∇

]
· Il eikr

r

=
−ωµ

8π

[
I +

1
k2
∇∇

]
· Il

∫ ∞
−∞

dkρ
kρ
k0z

H
(1)
0 (kρρ)eik0z |z| (228)

H(r) =
1

iωµ
∇× E =

i

8π
∇× Il

∫ ∞
−∞

dkρ
kρ
k0z

H
(1)
0 (kρρ)eik0z |z| (229)

Noticing that H
(1)′
0 (kρρ) = −H

(1)
1 (kρρ), we find

(A) z-directed electric dipole (ZED): Il = ẑIl

Hz = 0; Ez =
∫ ∞
−∞

dkρEzed

{
eik0zz

e−ik0zz

}
H

(1)
0 (kρρ)

z ≥ 0
z ≤ 0

(230)
with

Ezed = −
Ilk3

ρ

8πωε0k0z
(231)

where Il is the electric dipole moment.
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(B) x-directed electric dipole (XED): Il = x̂Il

Ez =
∫ ∞
−∞

dkρExed

{
eik0zz

−e−ik0zz

}
H

(1)
1 (kρρ) cosφ

z ≥ 0
z ≤ 0

(232)

Hz =
∫ ∞
−∞

dkρHxed

{
eik0zz

e−ik0zz

}
H

(1)
1 (kρρ) sinφ

z ≥ 0
z ≤ 0

(233)

with

Exed = i
Ilk2

ρ

8πωε0
; Hxed = i

Ilk2
ρ

8πk0z
(234)

(C) y-directed electric dipole (YED): Il = ŷIl

Ez =
∫ ∞
−∞

dkρ

{
Eyed e

ik0zz

−Eyed e−ik0zz

}
H

(1)
1 (kρρ) sinφ

z ≥ 0
z ≤ 0

(235)

Hz = −
∫ ∞
−∞

dkρHyed

{
eik0zz

e−ik0zz

}
H

(1)
1 (kρρ) cosφ

z ≥ 0
z ≤ 0

(236)

with

Eyed = Exed = i
Ilk2

ρ

8πωε0
; Hyed = Hxed = i

Ilk2
ρ

8πk0z
(237)

The results of the y-directed electric dipole (YED) can be obtained
from that for XED by replacing φ with −π/2 + φ.

Notice that the magnetic dipoles produce fields which are duals of
those produced by the corresponding electric dipoles. The results for
the magnetic dipoles ZMD, XMD, and YMD, can be obtained by the
replacement E → H, H → −E, µ0 →← ε0, and Il → iωµ0 IA. We note
in particular that at z = 0, the following field components vanish:

(A) z-directed electric dipole (ZED)

Eρ = 0 (238)

(B) x-directed electric dipole (XED)

Ez = Hρ = Hφ = 0 (239)

This is seen from (225)–(226) and by noting from (227) that

∂

∂z

eik0r

r
= 0 at z = 0 (240)

We now consider dipole sources placed in Region 0 of the stratified
isotropic medium (Fig. 9). We assume that all regions contain isotropic
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media. In region l, we denote the permittivity and permeability
by εl and µl. The solutions to the wave equations can be written
as superpositions of TE and TM wave components. Let E+

l and
E−l denote amplitudes for the TM waves and H+

l and H−l denote
amplitudes for the TE waves. We find in region l the following
solutions:

(A) z-directed electric dipole (ZED): Il = ẑIl

Elz =
∫ ∞
−∞

dkρ
[
E+
l eiklzz + E−l e−iklzz

]
H

(1)
0 (kρρ) (241)

Elρ =
∫ ∞
−∞

dkρ
iklz
kρ

[
E+
l eiklzz − E−l e−iklzz

]
H

(1)′
0 (kρρ) (242)

Hlφ =
∫ ∞
−∞

dkρ
iωεl
kρ

[
E+
l eiklzz + E−l e−iklzz

]
H

(1)′
0 (kρρ) (243)

(B) x-directed electric dipole (XED): Il = x̂Il

Elz =
∫ ∞
−∞

dkρ
[
E+
l eiklzz + E−l e−iklzz

]
H

(1)
1 (kρρ) cosφ (244)

Elρ =
∫ ∞
−∞

dkρ
iklz
kρ

[
E+
l eiklzz − E−l e−iklzz

]
H

(1)′
1 (kρρ) cosφ

+
∫ ∞
−∞

dkρ
iωµl
k2
ρρ

[
H+
l eiklzz + H−l e−iklzz

]
H

(1)
1 (kρρ)[cosφ] (245)

Elφ =
∫ ∞
−∞

dkρ
iklz
k2
ρρ

[
E+
l eiklzz − E−l e−iklzz

]
H

(1)
1 (kρρ)[− sinφ]

+
∫ ∞
−∞

dkρ
−iωµl

kρ

[
H+
l eiklzz + H−l e−iklzz

]
H

(1)′
1 (kρρ) sinφ (246)

Hlz =
∫ ∞
−∞

dkρ
[
H+
l eiklzz + H−l e−iklzz

]
H

(1)
1 (kρρ) sin(φ) (247)

Hlρ =
∫ ∞
−∞

dkρ
iklz
kρ

[
H+
l eiklzz −H−l e−iklzz

]
H

(1)′
1 (kρρ) sinφ

+
∫ ∞
−∞

dkρ
−iωεl
k2
ρρ

[
E+
l eiklzz + E−l e−iklzz

]
H

(1)
1 (kρρ)[− sinφ] (248)

Hlφ =
∫ ∞
−∞

dkρ
iklz
k2
ρρ

[
H+
l eiklzz −H−l e−iklzz

]
H

(1)
1 (kρρ)[cosφ]

+
∫ ∞
−∞

dkρ
iωεl
kρ

[
E+
l eiklzz + E−l e−iklzz

]
H

(1)′
1 (kρρ) cosφ (249)
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where H
(1)
n (kρρ) is the nth order Hankel function of the first kind

and H
(1)′
n (kρρ) denotes the derivative of H

(1)
n (ξ) with respect to its

argument ξ . The integrands of transverse field components Es =
ρ̂Eρ + φ̂Eφ and Hs = ρ̂Hρ + φ̂Hφ are derived from those of the
longitudinal components Ez and Hz.

In region 0 it becomes necessary that we distinguish the wave
amplitudes in region 0 for z ≥ 0 from those in region 0 for z < 0.
For z > 0 we use E+

0+ , E−0+ , H+
0+ , and H−0+ ; and for z < 0 we use

E+
0− , E−0− , H+

0−, and H−0− .
(A) z-directed electric dipole (ZED)

E+
0− = E+z

0 E+
0+ = E+z

0 + Ezed

E−0− = E−z0 + Ezed E−0+ = E−z0

H+
0− = H−0− = 0 H+

0+ = H−0+ = 0


 (250)

where E−z0 and E+z
0 characterize contributions due to the stratified

medium. Let

RTM
0+ =

E−0+
E+

0+

=
E−z0

E+z
0 + Ezed

(251)

RTM
0− =

E+
0−

E−0−
=

E+z
0

E−z0 + Ezed
(252)

we find

E+z
0 =

RTM
0− (1 + RTM

0+ )
1−RTM

0− RTM
0+

Ezed (253)

E−z0 =
RTM

0+ (1 + RTM
0− )

1−RTM
0− RTM

0+

Ezed (254)

E+
0− =

RTM
0− (1 + RTM

0+ )
1−RTM

0− RTM
0+

Ezed E+
0+ =

1 + RTM
0−

1−RTM
0− RTM

0+

Ezed

E−0− =
1 + RTM

0+

1−RTM
0− RTM

0+

Ezed E−0+ =
RTM

0+ (1 + RTM
0− )

1−RTM
0− RTM

0+

Ezed

H+
0− = H−0− = 0 H+

0+ = H−0+ = 0




(255)

(B) x-directed electric dipole (XED)
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E+
0− = E+x

0 E+
0+ = E+x

0 + Exed

E−0− = E−x0 − Exed E−0+ = E−x0

H+
0− = H+x

0 H+
0+ = H+x

0 + Hxed

H−0− = H−x0 + Hxed H−0+ = H−x0




(256)

where E−z0 , E+z
0 , H−z0 , and H+z

0 characterize contributions due to the
stratified medium. Let

RTM
0+ =

E−0+
E+

0+

=
E−x0

E+z
0 + Exed

(257)

RTM
0− =

E+
0−

E−0−
=

E+x
0

E−x0 − Exed
(258)

RTE
0+ =

H−0+
H+

0+

=
H−x0

H+x
0 + Hxed

(259)

RTE
0− =

H+
0−

H−0−
=

H+x
0

H−x0 + Hxed
(260)

we find

E+x
0 = −RTM

0− (1−RTM
0+ )

1−RTM
0− RTM

0+

Exed (261)

E−x0 =
RTM

0+ (1−RTM
0− )

1−RTM
0− RTM

0+

Exed (262)

H+x
0 =

RTE
0− (1 + RTE

0+ )
1−RTE

0− RTE
0+

Hxed (263)

H−x0 =
RTE

0+ (1 + RTE
0− )

1−RTE
0− RTE

0+

Hxed (264)

E+
0− = −RTM

0− (1−RTM
0+ )

1−RTM
0− RTM

0+

Exed E+
0+ =

1−RTM
0−

1−RTM
0− RTM

0+

Exed

E−0− = − 1−RTM
0+

1−RTM
0− RTM

0+

Exed E−0+ =
RTM

0+ (1−RTM
0− )

1−RTM
0− RTM

0+

Exed

H+
0− =

RTE
0− (1 + RTE

0+ )
1−RTE

0− RTE
0+

Hxed H+
0+ =

1 + RTE
0−

1−RTE
0− RTE

0+

Hxed

H−0− =
1 + RTE

0+

1−RTE
0− RTE

0+

Hxed H−0+ =
RTE

0+ (1 + RTE
0− )

1−RTE
0− RTE

0+

Hxed



(265)
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We have expressed the solution in region 0 where the dipoles are located
in terms of superpositions of the primary excitations in the absence of
the stratified medium and the homogeneous solutions of the stratified
medium in the absence of the source. It is easily shown that they satisfy
the boundary conditions at z = 0 by remembering the vanishing field
components as listed in (238)–(239) for the primary excitations.

The boundary conditions of the interfaces require that tangential
electric and magnetic field components be continuous for all ρ and φ.
At z = dl+1 , we obtain

klz
(
E+
l eiklzdl+1 − E−l e−iklzdl+1

)
= k(l+1) z

(
E+
l+1e

ik(l+1) zdl+1 − E−l+1e
−ik(l+1) zdl+1

)
(266)

εl
(
E+
l eiklzdl + E−l e−iklzdl+1

)
= ε(l+1)

(
E+
l+1e

ik(l+1) zdl+1 + E−l+1e
−ik(l+1) zdl+1

)
(267)

klz
(
H+
l eiklzdl+1 −H−l e−iklzdl+1

)
= k(l+1) z

(
H+
l+1e

ik(l+1) zdl+1 −H−l+1e
−ik(l+1) zdl+1

)
(268)

µl
(
H+
l eiklzdl+1 + H−l e−iklzdl+1

)
= µ(l+1)

(
H+
l+1e

ik(l+1) zdl+1 + H−l+1e
−ik(l+1) zdl+1

)
(269)

We now determine the wave amplitudes in region l. For TM waves,
(266)–(267) can be solved to express E+

l and E−l in terms of E+
l−1 and

E−l−1 or to express E+
l−1 and E−l−1 in terms of E+

l and E−l . We find

E+
l eiklzdl+1 =

1
2

(
εl+1

εl
+

k(l+1) z

klz

)
[
E+
l+1e

ik(l+1) zdl+1 +RTM
l(l+1)E

−
l+1e

−ik(l+1) zdl+1

]
(270a)

E−l e−iklzdl+1 =
1
2

(
εl+1

εl
+

k(l+1) z

klz

)
[
RTM
l(l+1)E

+
l+1e

ik(l+1) zdl+1 +E−l+1e
−ik(l+1) zdl+1

]
(270b)

for E+
l and E−l in terms of E+

l+1 and E−l+1, and

E+
l+1e

ik(l+1) zdl+1 =
1
2

(
εl

εl+1
+

klz
k(l+1) z

)
[
E+
l eiklzdl+1 + RTM

(l+1) lE
−
l e−iklzdl+1

]
(271a)
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E−l+1e
−ik(l+1)zdl+1 =

1
2

(
εl

εl+1
+

klz
k(l+1)z

)
[
RTM

(l+1)lE
+
l eiklzdl+1 + E−l e−iklzdl+1

]
(271b)

for E+
l+1 and E−l+1 in terms of E+

l and E−l . The Fresnel reflection
coefficient

RTM
(l+1)l =

1− εl+1klz/εlk(l+1) z

1 + εl+1klz/εlk(l+1) z
= −RTM

l(l+1) (272)

A similar procedure applies to the case of TE waves. The results are
duals of those of (270a)–(272) with the replacements of E+ by H+,
E− by H−, and ε by µ.

There are altogether s + t boundaries which give rise to 4(s + t)
equations as shown above. There are altogether s + t + 1 regions. In
regions t and −s we have E−t = H−t = 0 and E+

−s = H+
−s = 0 because

there are no waves originating from infinity. Thus we have a total of
4(s + t + 1) − 4 = 4(s + t) unknowns to be solved from the 4(s + t)
equations. The wave amplitudes are related to the configurations and
the excitation amplitudes of the dipole antenna in region 0. Thus field
amplitudes in Region 0 require special attention.

For z ≥ 0, we notice that E−t = E−t = 0. Letting l = 0, we obtain
the reflection coefficients RTM

0+ = E−0+/E+
0+ and RTE

0+ = H−0+/H+
0+ in

the form of continued fractions. We find

RTM
0+ =

E−0+
E+

0+

=
ei2k0zd1

RTM
01

+

[
1−

(
1/RTM

01

)2
]
ei2(k0z+k1z)d1

(1/RTM
01 )ei2k1zd1 + (E−1 /E+

1 )
(273)

RTE
0+ =

H−0+
H+

0+

=
ei2k0zd1

RTE
01

+

[
1−

(
1/RTE

01

)2
]
ei2(k0z+k1z)d1

(1/RTE
01 )ei2k1zd1 + (H−1 /H+

1 )
(274)

where E−1 /E+
1 and H−1 /H+

1 can be expressed in terms of E−2 /E+
2 and

H−2 /H+
2 and so on until region t where E−t /E+

t = 0 = H−t /H+
t .

For z ≤ 0, we notice that E+
−s = H+

−s = 0. Letting l = 0, we obtain
the reflection coefficients RTM

0− = E+
0−/E

−
0− and RTE

0− = H+
0−/H

−
0− in

the form of continued fractions. We find

RTM
0− =

E+
0−

E−0−
=

e−i2k0zd0

RTM
0(−1)

+

[
1−

(
1/RTM

0(−1)

)2
]
e−i2(k0z+k−1z)d0

(1/RTM
0(−1))e

−i2k−1zd0 + (E+
−1/E

−
−1)

(275)
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RTE
0− =

H+
0−

H−0−
=

e−i2k0zd0

RTE
0(−1)

+

[
1−

(
1/RTE

0(−1)

)2
]
e−i2(k0z+k−1z)d0

(
1/RTE

0(−1)

)
e−i2k−1zd0 + (H+

−1/H
−
−1)

(276)

where E+
−1/E

−
−1 and H+

−1/H
−
−1 are expressible in terms of E+

−2/E
−
−2

and H+
−2/H

−
−2 and so on until region −s, where E+

−s/E
−
−s = 0 =

H+
−s/H

−
−s = 0.

Once the wave amplitudes in region 0 are found, wave amplitudes
in other regions can be determined by the use of propagation matrices,
and from a set of dual equations for TE waves.

7.3. Dipoles Between Two Negative Isotropic Slabs

For a z-directed electric dipole (ZED) antenna situated inbetween two
negative isotropic slabs, we let µ−2 = µ0, ε−2 = ε0; µ−1 = −µ0,
ε−1 = −ε0; µ1 = −µ0, ε1 = −ε0, µt = µ0, εt = ε0. We find k−2z =
k2z = k0z, k−1z = k1z = −k0z, p(−2)(−1) = p(−1)0 = p01 = p12 = 1,
RTM

(−2)(−1) = RTM
(−1)0 = RTM

01 = RTM
12 = RTM

0− = RTM
0+ = 0.

E+
0− = 0 E+

0+ = Ezed

E−0− = Ezed E−0+ = 0

}
(277)

From (270a) to (270b), we find

E+
l = −E+

l+1e
i(k(l+1)z−klz)dl+1 (278)

E−l = −E−l+1e
−i(k(l+1)z−klz)dl+1 (279)

It follows that

E+
−1 = 0

E−−1 = −Ezede
−i(k0z−k−1z)d0 = −Ezede

−i2k0zd0

}
(280)

E+
−2 = 0

E−−2 = Ezede
−i(k−1z−k−2z)d−1e−i2k0zd0 = Ezede

i2k0z(d−1−d0)

}
(281)

E+
1 = −Ezede

−i(k1z−k0z)d1 = −Ezede
i2k0zd1

E−1 = 0

}
(282)

E+
2 = Ezede

−i(k2z−k1z)d2ei2k0zd1 = Ezede
−i2k0z(d2−d1)

E−2 = 0

}
(283)
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The field in Region −2 is

E−2z =
∫ ∞
−∞

dkρ
[
Ezede

−ik0z [z−2(d−1−d0)]
]
H

(1)
0 (kρρ) (284)

E−2ρ =
∫ ∞
−∞

dkρ
ik−2z

kρ

[
−Ezede

−ik0z [z−2(d−1−d0)]
]
H

(1)′
0 (kρρ) (285)

H−2φ =
∫ ∞
−∞

dkρ
iωε−2

kρ

[
Ezede

−ik0z [z−2(d−1−d0)]
]
H

(1)′
0 (kρρ) (286)

The field in Region −1 is

E−1z =
∫ ∞
−∞

dkρ
[
−Ezede

ik0z [z−2d0]
]
H

(1)
0 (kρρ) (287)

E−1ρ =
∫ ∞
−∞

dkρ
ik−1z

kρ

[
Ezede

ik0z [z−2d0]
]
H

(1)′
0 (kρρ)

H−1φ =
∫ ∞
−∞

dkρ
iωε−1

kρ

[
−Ezede

ik0z [z−2d0]
]
H

(1)′
0 (kρρ) (288)

In Region 0 for z ≤ 0

E0z =
∫ ∞
−∞

dkρ
[
Ezede

−ik0zz
]
H

(1)
0 (kρρ) (289)

E0ρ =
∫ ∞
−∞

dkρ
ik0z

kρ

[
−Ezede

−ik0zz
]
H

(1)′
0 (kρρ)

H0φ =
∫ ∞
−∞

dkρ
iωε0
kρ

[
Ezede

−ik0zz
]
H

(1)′
0 (kρρ) (290)

In Region 0 for z ≥ 0

E0z =
∫ ∞
−∞

dkρ
[
Ezede

ik0zz
]
H

(1)
0 (kρρ) (291)

E0ρ =
∫ ∞
−∞

dkρ
ik0z

kρ

[
Ezede

ik0zz
]
H

(1)′
0 (kρρ)

H0φ =
∫ ∞
−∞

dkρ
iωε0
kρ

[
Ezede

ik0zz
]
H

(1)′
0 (kρρ) (292)

In region 1

E1z = −
∫ ∞
−∞

dkρ
[
Ezede

−ik0z [z−2d1]
]
H

(1)
0 (kρρ) (293)

E1ρ = −
∫ ∞
−∞

dkρ
ik1z

kρ

[
Ezede

−ik0z [z−2d1]
]
H

(1)′
0 (kρρ)
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Figure 10. Images of a dipole antenna in Region 0.

H1φ = −
∫ ∞
−∞

dkρ
iωε1
kρ

[
Ezede

−ik0z [z−2d1]
]
H

(1)′
0 (kρρ) (294)

In region 2

E2z =
∫ ∞
−∞

dkρ
[
Ezede

ik0z [z−2(d2−d1)]
]
H

(1)
0 (kρρ) (295)

E2ρ =
∫ ∞
−∞

dkρ
ik2z

kρ

[
Ezede

ik0z [z−2(d2−d1)]
]
H

(1)′
0 (kρρ)

H2φ =
∫ ∞
−∞

dkρ
iωε2
kρ

[
Ezede

ik0z [z−2(d2−d1)]
]
H

(1)′
0 (kρρ) (296)

It is thus seen that the field in Region 2 is due to a dipole antenna
situated at z = 2(d2 − d1), which is a perfect image of the original
line source. Similarly, a perfect image of the original dipole antenna is
formed in Region −2 and located at z = 2(d−1 − d0).

7.4. Dipoles in Front of Stratified Isotropic Media

For dipoles in front of stratified media, all regions −1 to −s are absent,
we have E+

0− = H+
0− = 0 and RTM

0− = RTE
0− = 0. It follows that for

(1) z-directed electric dipole (ZED)

E+
0− = 0 E+

0+ = Ezed

E−0− = (1 + RTM
0+ )Ezed E−0+ = RTM

0+ Ezed

H+
0− = H−0− = 0 H+

0+ = H−0+ = 0


 (297)
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Figure 11. Dipole in layered medium.

(2) x-directed electric dipole (XED)

E+
0− = 0 E+

0+ = Exed

E−0− = −(1−RTM
0+ )Exed E−0+ = RTM

0+ Exed

H+
0− = 0 H+

0+ = Hxed

H−0− = (1 + RTE
0+ )Hxed H−0+ = RTE

0+ Hxed




(298)

The results of the y-directed electric dipole (YED) can be obtained
from that for XED by replacing φ with φ−π/2. The magnetic dipoles
produce fields which are duals of those produced by the corresponding
electric dipoles. The results for the magnetic dipoles ZMD, XMD, and
YMD, can be obtained by the replacement E → H, H → −E, µ0 →← ε0,
Il→ iωµ0 IA and TE →← TM.

7.5. Dipoles in Front of a Negative Isotropic Slab

For a z-directed electric dipole (ZED) in front of a slab medium with
boundary surfaces at z = d1 and z = d2, we find the reflection
coefficient

RTM =
RTM

01 + RTM
12 ei2k1z(d2−d1)

1 + RTM
01 RTM

12 ei2k1z(d2−d1)
ei2k0zd1 (299)
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the amplitudes inside the slab medium

E+
1 =

2Ezede
−i(k1z−k0z)d1

( ε1ε0 + k1z
k0z

)(1 + RTM
01 RTM

12 ei2k1z(d2−d1))
(300)

E−1 =
2RTM

12 Ezede
−i(k1z−k0z)d1ei2k1zd2

( ε1ε0 + k1z
k0z

)(1 + RTM
01 RTM

12 ei2k1z(d2−d1))
(301)

and the transmission coefficient

T TM =
4eik0zd1eik1z(d2−d1)e−ik2zd2

( ε1ε0 + k1z
k0z

)( ε2ε1 + k2z
k1z

)(1 + RTM
01 RTM

12 ei2k1z(d2−d1))
(302)

where for TM waves, pTMl(l+1) = εlk(l+1)z/εl+1klz, and

RTM
l(l+1) =

1− pTMl(l+1)

1 + pTMl(l+1)

is the reflection coefficient at the boundary between regions l and l+1.
Consider a z-directed electric dipole (ZED) in front of the slab

medium, we find

(A) In region 0; z ≤ 0

E0z =
∫ ∞
−∞

dkρ
[
(1 + RTM

0+ )Ezede
−ik0zz

]
H

(1)
0 (kρρ) (303)

E0ρ =
∫ ∞
−∞

dkρ
ik0z

kρ

[
−(1 + RTM

0+ )Ezede
−ik0zz

]
H

(1)′
0 (kρρ) (304)

H0φ =
∫ ∞
−∞

dkρ
iωε0
kρ

[
(1 + RTM

0+ )Ezede
−ik0zz

]
H

(1)′
0 (kρρ) (305)

(B) In region 0; z ≥ 0

E0z =
∫ ∞
−∞

dkρEzed

[
eik0zz + RTM

0+ e−ik0zz
]
H

(1)
0 (kρρ) (306)

E0ρ =
∫ ∞
−∞

dkρ
ik0z

kρ
Ezed

[
eik0zz −RTM

0+ e−ik0zz
]
H

(1)′
0 (kρρ) (307)

H0φ =
∫ ∞
−∞

dkρ
iωε0
kρ

Ezed

[
eik0zz + RTM

0+ e−ik0zz
]
H

(1)′
0 (kρρ) (308)

(C) In region 1

E1z =
∫ ∞
−∞

dkρ
[
E+

1 eik1zz + E−1 e−ik1zz
]
H

(1)
0 (kρρ) (309)
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E1ρ =
∫ ∞
−∞

dkρ
ik1z

kρ

[
E+

1 eik1zz − E−1 e−ik1zz
]
H

(1)′
0 (kρρ) (310)

H1φ =
∫ ∞
−∞

dkρ
iωε1
kρ

[
E+

1 eik1zz + E−1 e−ik1zz
]
H

(1)′
0 (kρρ) (311)

(D) In region 2, k2z = k0z

E2z =
∫ ∞
−∞

dkρ
[
TEzede

−ik2zz
]
H

(1)
0 (kρρ) (312)

E2ρ =
∫ ∞
−∞

dkρ
ik2z

kρ

[
TEzede

−ik2zz
]
H

(1)′
0 (kρρ) (313)

H2φ =
∫ ∞
−∞

dkρ
iωε2
kρ

[
TEzede

−ik2zz
]
H

(1)′
0 (kρρ) (314)

For a z-directed electric dipole (ZED) in front of a negative
isotropic slab, we let µ1 = −µ0, ε1 = −ε0, and µt = µ0, εt = ε0.
We find k1z = −k0z, k2z = k0z, p01 = p12 = 1, R01 = R12 = RTM

0+ = 0,
E−1 = 0, E+

1 = −Ezede
i2k0zd1 , T = e−i2k0z(d2−d1).

E+
0− = 0 E+

0+ = Ezed

E−0− = Ezed E−0+ = 0

H+
0− = H−0− = 0 H+

0+ = H−0+ = 0


 (315)

E(r) = ρ̂Eρ + ẑEz

=
−iωµIleikr

4πr

{
ẑ
zz

r2

[
1 + 3

i

kr
+ 3(

i

kr
)2

]
− ẑ

[
1 +

i

kr
+ (

i

kr
)2

]

+ ρ̂
zρ

r2

[
1 + 3

i

kr
+ 3(

i

kr
)2

]}
(316)

The magnetic field follows from Faraday’s law

H(r) = φ̂Hφ = φ̂
−ikIleikr

4πr
ρ

r

[
1 +

i

kr

]
(317)

The complex Poynting power density is calculated by taking the cross
product of E and the complex conjugate of H

S =
ωµk(Il)2

(4πr)2

{
−ρ̂

zz

r2

[
1 + 3

i

kr
+ 3(

i

kr
)2

]
+ ρ̂

[
1 +

i

kr
+ (

i

kr
)2

]

+ ẑ
zρ

r2

[
1 + 3

i

kr
+ 3(

i

kr
)2

]}
ρ

r

[
1− i

kr

]
(318)
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The time-average Poynting power density is

< S > =
ωµk(Il)2

2(4πr)2

{
ρ̂
ρ

r
+ ẑ

z

r

}
(
ρ

r
)2 (319)

(A) In region 0; z ≤ 0

E0z =
∫ ∞
−∞

dkρ
[
Ezede

−ik0zz
]
H

(1)
0 (kρρ) = Ez (320)

E0ρ =
∫ ∞
−∞

dkρ
ik0z

kρ

[
−Ezede

−ik0zz
]
H

(1)′
0 (kρρ) = Eρ (321)

H0φ =
∫ ∞
−∞

dkρ
iωε0
kρ

[
Ezede

−ik0zz
]
H

(1)′
0 (kρρ) = Hφ (322)

(B) In region 0; z ≥ 0

E0z =
∫ ∞
−∞

dkρ
[
Ezede

ik0zz
]
H

(1)
0 (kρρ) = Ez (323)

E0ρ =
∫ ∞
−∞

dkρ
ik0z

kρ

[
Ezede

ik0zz
]
H

(1)′
0 (kρρ) = Eρ (324)

H0φ =
∫ ∞
−∞

dkρ
iωε0
kρ

[
Ezede

ik0zz
]
H

(1)′
0 (kρρ) = Hφ (325)

(C) In region 1, k1z = −k0z

E1z =
∫ ∞
−∞

dkρ
[
−Ezede

−ik0z(z−2d1)
]
H

(1)
0 (kρρ) = −Ez (326)

E1ρ =
∫ ∞
−∞

dkρ
ik0z

kρ

[
Ezede

−ik0z(z−2d1)
]
H

(1)′
0 (kρρ) = −Eρ (327)

H1φ =
∫ ∞
−∞

dkρ
iωε0
kρ

[
Ezede

−ik0z(z−2d1)
]
H

(1)′
0 (kρρ) = Hφ (328)

(D) In region 2, k2z = k0z

E2z =
∫ ∞
−∞

dkρ
[
Ezede

ik0z [z−2(d2−d1)]
]
H

(1)
0 (kρρ) = Ez (329)

E2ρ =
∫ ∞
−∞

dkρ
ik2z

kρ

[
Ezede

ik0z [z−2(d2−d1)]
]
H

(1)′
0 (kρρ) = Eρ (330)

H2φ =
∫ ∞
−∞

dkρ
iωε2
kρ

[
Ezede

ik0z [z−2(d2−d1)]
]
H

(1)′
0 (kρρ) = Hφ (331)

It is seen that in the transmitted region, the field originates from a
ZED located at z = 2(d2 − d1).
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7.6. Dipoles In Front of Negative Isotropic Slab Backed by a
Perfect Conductor

Region t is assumed to be a perfect conductor. With µ1 = −µ0,
ε1 = −ε0, k1z = −k0z, we find p01 = ε0k1z/ε1k0z = 1, εt → ∞,
RTM

12 = 1, RTM
01 = 0, and the following solutions:

T TM = 0 (332)

E+
1 = −Ezede

i2k0zd1 (333)

E−1 = −Ezede
−i2k0z(d2−d1) (334)

RTM
0+ = e−i2k0z(d2−d1)ei2k0zd1 (335)

(A) In region 1

E1z =
∫ ∞
−∞

dkρ
[
E+

1 e−ik0zz + E−1 eik0zz
]
H

(1)
0 (kρρ) (336)

E1ρ =
∫ ∞
−∞

dkρ
−ik0z

kρ

[
E+

1 e−ik0zz − E−1 eik0zz
]
H

(1)′
0 (kρρ) (337)

H1φ =
∫ ∞
−∞

dkρ
−iωε0

kρ

[
E+

1 e−ik0zz + E−1 eik0zz
]
H

(1)′
0 (kρρ) (338)

(B) In region 0; z ≥ 0

E0z =
∫ ∞
−∞

dkρEzed

[
eik0zz + RTM

0+ e−ik0zz
]
H

(1)
0 (kρρ) (339)

E0ρ =
∫ ∞
−∞

dkρ
ik0z

kρ
Ezed

[
eik0zz −RTM

0+ e−ik0zz
]
H

(1)′
0 (kρρ) (340)

H0φ =
∫ ∞
−∞

dkρ
iωε0
kρ

Ezed

[
eik0zz + RTM

0+ e−ik0zz
]
H

(1)′
0 (kρρ) (341)

(C) In region 0; z ≤ 0

E0z =
∫ ∞
−∞

dkρ
[
(1 + RTM

0+ )Ezede
−ik0zz

]
H

(1)
0 (kρρ) (342)

E0ρ =
∫ ∞
−∞

dkρ
−ik0z

kρ

[
(1 + RTM

0+ )Ezede
−ik0zz

]
H

(1)′
0 (kρρ) (343)

H0φ =
∫ ∞
−∞

dkρ
iωε0
kρ

[
(1 + RTM

0+ )Ezede
−ik0zz

]
H

(1)′
0 (kρρ) (344)

From solutions in Region 0 for z ≤ 0, we notice the remarkable result
that an image dipoe has been generated with the amplitude equal to
that of the source with |RTM

0+ | = 1 and positioned at z = −2d2 + 4d1!
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As a concluding remark, note all previous illustrations of the
negative isotropic material have assumed the constitutive parameters
µ = −µo and ε = −εo. The realization of such material may never
be attainable. For practical consideration of material properties,
two issues require extensive study are dispersion of tne material and
their loss, aside from many interesting mathematical and physical
conceptual issues.
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