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Abstract—In this paper we provide a general formulation for the
electromagnetic wave interaction with stratified media and then
specialize to slabs of negative isotropic media. The field solutions are
obtained in all regions of the stratified medium. The characteristic
waves in negative isotropic media are backward waves. We derive the
field solutions and show that a Gaussian beam is laterally shifted by a
negative isotropic slab. The amount of beam center shift is calculated
for both cases of transmission and reflection. Guided waves in stratified
media are studied. Placing a linear antenna and all types of Hertzian
dipole antennas in a stratified medium, we obtained solutions in all
regions. We demonstrate and locate the positions of the perfect images
of the antenna sources in the presence of negative isotropic slabs.
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1. INTRODUCTION

In the constitutive relations for negative isotropic media, both the
permittivity € and the permeability p are negative. Vesolago [1]
explored their various electromagnetic properties. He observed that
in such media, the wave vector k, the electric field vector FE, and
the magnetic field vector H form a left-handed system, and called
them left-handed subtances. The left-handed materials (LHM) possess
negative refractive indeces. Experimental verifications were made with
metamaterials and their use as perfect lenses was suggested [2-6]. In
light of their potential new applications, negative isotropic media have
received wide attention.

In this paper we provide a general formulation with complete
solution for electromagnetic waves interacting with a stratified medium
and then specialize to slabs of negative isotropic medium. After
showing that the characteristic waves in negative isotropic meia are
backward waves, we consider relection and transmission of TE and TM
waves by a negative isotropic medium. The solutions for the reflection
and transmission by a stratified medium are then derived and listed by
using the propagation matrices [7]. Specializing to a slab of negative
isotropic medium, we show how wave beam incident on the slab will
be laterally shifted.

We then consider guided waves in negative isotropic materials in
stratified media. Coupling of guided waves are studied. Next we derive
field solutions for a linear antenna situated in a stratified medium. The
images and their locations are calculated. Finally we consider Hertzian
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electric and magnetic dipole sources with different orientation inside
stratified media. The complete solutions in all regions are derived
and listed [8]. Specializing to slabs of negative isotropic medium, we
show positions of its images for various configurations, suggesting that
perfect images can be made using flat lenzes made of slab negative
isotropic slabs.

2. BACKWARD WAVES IN NEGATIVE ISOTROPIC
MEDIA
The constitutive relations for isotropic media have been written as
D =¢E where € = permittivity (1a)
B=uH where p = permeability (1b)

For negative isotropic media, both € and p are negative. For a plane
electromagnetic wave of the form

l %((?g ] = [ % ] cos(k - T — wt) (2)

The Maxwell equations become

kxFE=wuld (3)
kx H=—weFE (4)
k-E=0 (5)
k-H=0 (6)

where k = w, /€.
The Poynting’s vector power density is

1 - i ExE)x E= LIEP
wpe L' x (kx H) = L[AP
When p and € ar both positive, Poynting’s power vector is in the same
direction as k and so are the group and phase velocities. From (3)-
(6), we see that the three vectors k, E, and H form a right-handed
system. When either u or € is negative, we have evanescent instead of
propgating waves.

In negative isotropic media, both p and € are negative, Poynting’s
power vector is in the opposite dlrectlon of k and so are the group and
phase velolcities. The three vectiors k, E, and H form a left-handed
Medium (LHM). In this medium, the power propagates in a direction

that is opposite to the direction of k. The plane wave in the negative
isotropic medium is thus a backward wave.

Ex H=

(7)
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Figure 1. Reflection and transmission of TM waves by negative
isotropic media.

3. REFLECTION AND TRANSMISSION BY A
NEGATIVE ISOTROPIC MEDIUM

We first study the case of TM wave incidence from free space upon a
negative isotropic medium with permittivity ¢, = —e¢g and permeability
ut = —po. The incident magnetic field is assumed to have unit
amplitude and points in the Z direction (Fig. 1). We write, omitting
the time convention e ™!

)

E; = [~gk, + 2ky]— e kvyth=2) (8D)
WeQ
rad - ok 1 ST TN =
Si=FE x H = [k, + tk.]—e'Fi—F)T (80)
weg

The reflected field components for the incident TM wave are

FT = i- RTMe(kryy"l‘krzz) (9a)

I 1

By = [—ikps + 2kpy|— RTMelbroytkr=) (o)
WEQ

< =, 7k |RTM‘2 P

Sy =Ex H = [jkyy+ 2ky;] ik —E) T (9¢)

WEen

The incident wave vector k; = yky + 2k, and the reflected wave vector
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ky, = ykry + Zk;, are governed by the dispersion relations

ko + k2 = wnoeo = k° (10)

szy + k2, = wlpoeo = k2 (11)

The reflection coefficient RTM for the magnetic field component Hj,
is to be determined by the boundary conditions.
In region t, the transmitted TM field components are

ﬁt =4 TTMei(k‘th‘-i-k‘tzz) (12&)

— 1 ,

Ey = [~ gk + 2kyy) w—EtTTMe“katzZ) (12b)
TTM2 o

21 gilke—ky) T (12¢)

St = [Gkiy + Zkt.] e

where TTM is the transmission coefficient for the magnetic field
component H;,. The dispersion relation
kfy + k2 = W e = k? (13)
governs the magnitude k; for the transmitted wave vector k; = Yky +
ZktZ'Let the boundary surface be at z = 0. The boundary condition of
continuity of tangential H field gives
eikvy o RTM gikryy _ pTM gkeyy (14)
Since (14) must hold for all y and ¢, it follows that
ky = kry = kiy (15)

Eq. (15) is known as the phase matching condition. Eq. (14) then
reduces to

|4 RTM 7TV (16)
From the dispersion relations (10) and (11) by noting that the reflected
wave propagates in the negative Z direction, we find k., = —k,.

The continuity of the tangential components of F, at z = 0 for all
y and t gives
k k
22(1— RT™™) = 22T (17)
€0 €t
Note that the boundary conditions of normal D and normal B
components continuous at z = 0 are also satisfied. Solving (16) and
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(17), we find
P = Z‘% (18)
RTM — % (19)
7™ — Hi%}M (20)

for the reflection coefficient R and the transmission coefficientT?™
In the negative isotropic medium, we have ¢, = —eg and py = —pg-.
From Eq. (18), we find p’™ = 1, and from Egs. (19) and (20), we
determine that R = 0 and T7™ = 1. From the dispersion relation
(13), we find ky, = —k,. As seen from Fig. 1, the transmitted k; vector
is in the same direction as the reflected k, vector.
The Poynting power vector density is, from (23c),

_ |TTM 2 o
Sy = [~ gk, + 2k, ——¢ike=hk)T (21)
WEeQ
such that the transmitted power is directed away from the boundary
into the transmitted medium. B
When the incident wave is an evanescent wave with k; = gk, +
Zikr, and ky, > k, we have

H; = iH;p = & e/ Foyth=2) (22a)
_ 1 ,
E; = [0k, + 2k, — ' kvyTks2) (22b)
weo
R — 1 o 7=
S;=Ex H = [jky + 2k,]—e'*i"ki)T (22¢)
weQ
Ft =4 TTMei(ktx$+ktzZ) (23&)
_ 1 .
By = [~ ks + 2y —TTM eilkryythes2) (23b)
WEt
_ TTM?Z o o
Si = [Gkey + 2hps ] —elke k)T (23¢c)

WEg

For an incident TE wave, the incident wave vector k; = ky + 2k,
the reflected wave vector k, = k., + 2k.. = 9k, — Zk., and the
transmitted wave vector k; = @k, + 2k, all satisfy the dispersion
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relations (10), (11), and (13), and the phase match condition (15).

The incident electric and magnetic field vectors are

E; = FetkiT
— 1 —
H; = [yAkz - Zk‘y]ielk’ T
wHo
rad = ok 1 ST T\ =
Si=ExH =gk, + gk;]_ez(krki)-r

WHo

The reflected electric and magnetic field vectors are

— — ‘RTE|2 e
S,r. = E X H = I:’gky — ék;]iel(k‘r*k‘r)-'r
WHo

In region t, the transmitted TE wave solution takes the form

Et = 3 TTEeikt~F

ezkt T

H; = [jk, — 3k
t = [Okt. — Zk,] it
o | TE|2
=[Gk, + 2k5 ) —

St [Z/ y+z tz} Wit

T
ez(ktfkt)-r

where TTE

conditions of continuity of tangential E and H fields, we find

(24a)
(24Db)

(24c¢)

(25a)

(25b)

(25c¢)

(26a)

(26b)

(26¢)

is the transmission coefficient. From the boundary

TE _ Mokt
Por = 27
0t Mtkz ( )
1— TE
RTE = ——Por (28)
1+ po;
2
T = 29
1+ptFf (29)
for the reflection coefficient RTE and the transmission coefficientTTE
In the negative isotropic medium, @y = —pg, and ki, = —k, such

that the transmitted power is directed away from the boundary into
the transmitted medium. From Eq. (27), we find p’® = 1. Egs. (28)

and (29) then yield that RT% =0 and T7# = 1.
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4. REFLECTION AND TRANSMISSION BY
STRATIFIED MEDIA

Consider a plane wave incident on a stratified isotropic medium with
boundaries at z = di, da,...,d; (Fig. 3). The (n + 1)th region is
semi-infinite and is labeled region ¢, ¢t = n + 1. The permittivity and
permeability in each region are denoted by ¢; and p;. The plane wave is
incident from region 0 and has the plane of incidence parallel to the y-z
plane. All field vectors are dependent on y and z only and independent
of z. Since 0/0x = 0, the Maxwell equations in any region [ can be
separated into TE and TM components governed by Ej, and H,. We
obtain

y iwlul % (30)

Iz = Z;/ltz %Em (31)
(;: t 35 22 +w Mlﬁz)Eu =0 (32)
Ey, = Z;il %le (33)
2 = i%Hm (34)
(;; 522 +w MlQ)Hlx =0 (35)

The TE waves are completely determined by (30)—(32) and the TM
waves by (33)—(35). The two sets of equations are duals of each other

under the replacements E; — H;, H; — —E;, and 1 = €.
For a TE plane wave, E, = Ey e®*=#t#y¥ _incident on the stratified
medium, the total field in region [ can be Written as

Elw — (El—f—eik?lzz _|_ El_efiklzz) eikyy (36)
. klz + ik, z — —ikiz\ Likyy
Hyy = Wiy (El € —Eje )e ’ (37)
k .
le — (E“F ik 2 + E' e —iky, 2z ) 'Lk"yy (38)

wpy
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Obviously (36) satisfies the Helmholtz wave equation in (32).
Substitution of (36) in (32) yields the dispersion relation

k2 + k; = Wi (39)

We do not write a subscript [ for the y component of k as a consequence
of the phase-matching conditions. Truly, there are multiple reflections
and transmissions in each layer [. The amplitude ElJr thus represents
all wave components that have a propagating velocity component along
the positive Z direction, and E; represents those with a velocity
component along the negative Z direction.

We note that in region 0 where [ = 0,

Ef = Ep (40)

Ey = REy (41)
In region t where [ =n + 1 =t, we have

Ef =TE, (42)

E, =0 (43)

because region t is semi-infinite and there is no wave propagating
with a velocity component in the positive Z direction. We denote the
transmitted amplitude by T

The wave amplitudes El+ and E;” are related to wave amplitudes
in neighboring regions by the boundary conditions. At z = djy1,
boundary conditions require that £, and H, be continuous. We obtain

El-i-eiklzdl+1 +El—e—i/€zzdl+1 _ El—:-l etk+1) 2 i1 +El_+1 e~ thas1) zdiva (44)

ElJr ekizdipr Ef e~ Hizdit

= Pii+1) El—:—leik(Hl) i1 Elllefik(lﬂ)zdlﬂ (45)
where .
HIR@1+1) 2
P = — 46
(D pi1ky (46)

for the TE wave. There are n+ 1 boundaries which give rise to (2n+2)
equations. In region 0, we have an unknown reflection coefficient R.
In region ¢, we have an unknown transmission coefficient T'. There
are two unknowns E;r and E; in each of the regions [ = 1, 2, ...,
n. Thus we have a total of (2n + 2) unknowns. To solve for the
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(2n 4 2) unknowns from the (2n + 2) linear equations, we can arrange
the equations in matrix form with the unknowns forming a (2n + 2)
column matrix and the coefficients forming a (2n+2) x (2n+ 2) square
matrix. The solution is then obtained by inverting the square matrix.
This procedure is straightforward but tedious. We shall now describe
simpler ways to deal with the problem.

For a TM plane wave, H, = Hye***t%w¥ incident on the
stratified medium, the total field in region [ can be written as

Hyy = (Bf e 4 By emihes) eth (47)
—k 4 . ,
Ely _ welz (E;_Clklzz _ El—eflklzz> ezk:yy (48)
l
k .
B, = =L (B ei® 4 B emihies) cikuy (49)
weg

Matching boundary conditions at the boundaries, identifying

€k -

50
€141k (50)

Pia+1) =
for TM waves, we obtain the same equations as in (44) and (45).

4.1. Reflection Coefficients

To find a closed form solution for the reflection coefficient R for the
stratified medium, we first solve (44) and (45) for A; and B;.

) 1
El.g-ezkldel - 5 (1 —|—pl(l+1))

E+ eF+nzdivs + Ry Erpqe” s dm} (51)

— 1
Bremaba = (14 m)
where .
— Di(1+1)
Rigyry=37—7"7"" (53)
+1) I+ i+

is the reflection coefficient for waves in region [, caused by the boundary
separating regions [ and [ + 1. We note from (46) that

1
Pii+1)

P11 = (54)
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which also gives
Ry = —Riggn (55)
Thus the reflection coefficient in region [ + 1, R(41);, caused by the
boundary separating regions [ + 1 and [, is equal to the negative of
Ri41y -
Forming the ratio of (51) and (52) we obtain

By cihudi . [1 _ (1/Rl2(l+1))} o2(ka g1y = Fhiz)d )

EF R [1/Rl(l+1)] ehusn=dus 4 (B, /ER)

. 2 i2(k +kp)d
ei2k1zd 41 [1_(1/Rl(l+1))} ey iz .

1+1
: + (56)
Ry41) {I/Rl(lﬂ) } ei2k(+1) 2da+1) Ef,

With the second equality we introduce a notation for writing a
continued fraction. Equation (56) expresses (E;"/E;) in terms of
Eljrl/ElJfH and so on, until the transmitted region ¢, where E; /E;" =
0, is reached.

The reflection coefficient due to the stratified medium is R =
By/Ap. Making use of the continued fractions, we obtain

ei2kozdi  [1— (1/331)] ei2(k1z+koz)dy
Ror | (1/Ron)eiZh=da T R

6i2k1zd2

R =

[1 — (1/R3,)] e??(ke=thrz)da oi2K(n—1) 2n
(1/312)612]“22‘12 Rin—1yn

: + Rye =i (57)

(1/R(n—1) n)el2knzdn "
This is a closed-form solution for the reflection coefficient expressed
in continued fractions. Such a solution is very easily programmed for
numerical computation.

4.2. Propagation Matrices and Transmission Coefficients

For a plane wave incident on a stratified medium, we have obtained the
boundary conditions of continuity of tangential electric and magnetic
fields at each interface z = dj, with the two equations (44)—(45) relating
wave amplitudes in regions [ and [ + 1:

Eltleik(l-kl)zd(l-kl) +Eljr1€—ik(z+1)zd(z+1) E+ ikizdy1) +E e —ikizd(141)
(58)
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El—z-leik(lﬂ) 2das1) _ Elji-l e~ a1 2da4)
= Pas1) El-*-eikzzd(l-s-l) E e —ikizd(41) (59)

where for TE waves
pig1kiz

(1) pik(i41)= (60)
and for TM waves .
€l+1K12
— oz 61
Pa+1)1 6lk(l+1)z (61)

Equations (60) and (61) follow from duality but bear in mind that E;"
and E;” denote amplitudes of tangential electric fields for TE waves

and HIJr and H; denote amplitudes of tangential magnetic fields for
TM waves. In the last section we determined the reflection coefficients
R = Ey /Ef from the (2n+2) boundary conditions. We will now show
that the transmission coefficient 7 = E; /E; can be obtained by the
use of propagation matrices.

We solve for B, and Ej, | in terms of E;” and E; from (58)—(59)
and obtain

: 1 . ,
Ef, jefusn=dinn — 5(1 +Pas1y) (Ef“e”%”“+1 + R(l+1)lEl_e”klzdl+1>

. 1 ' '
Elfi_lefzk(Hl)zlerl = 5(1 + p(l+1)l) (R(l+1)lElJ’_elklZdl+1 4 El_eilklde’l)

Expressing in the form of matrix multiplication, we have

E;t = ET

[ By ] et [ E; ] (62)
where
= 1
Vi = 51+ 2]

—i(ky1)z—kiz)di1 Ry le—i(k(z+1)z+kzz)dz+1
R(l+1)l€ (k)= tFiz)dia etk yz—kiz)dia (63)
is called the forward-propagating matrix. In (63),
L —pat1):
Rt = Ty,

is the reflection coefficient at the boundary separating regions [+ 1 and
[, and the first subscript denotes the region with the incident wave.
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It is to be noted for the forward-propagating matrix between layers n

andt=n+1,
o) =7 ()
=Vin- n
[ 0 tn En
with
= ]_ _i(ktz_knz)dt R _i(k?tz"!‘knz)dt
Vin = B (14 pn) [ Remei(ktz—i—km)dt tréﬁktz—knz)dt ]

By the same token, we may express El+ and E;” in terms of ElJfH and

E; ., by using (51)7.(52) and Fieﬁne a backward-propagating matrix.

The propagation matrices can be used to determine wave
amplitudes in any region in terms of those in any other region. For
m > [, we make use of the forward propagation matrix to obtain

Ef
(I+1)1 " [El ]

Similarly, backward-propagating matrices can be used to express wave
amplitudes in any region j in terms of those in region [ for [ > j.

In particular, the transmission coefficient T = E; /Ey for a
stratified medium with ¢ = n + 1 layers can be calculated by the
multiplication of n + 1 propagation matrices. Using the forward-
propagating matrices, we have

(o) =70 (&)

Vio=Vin- Vam-1) - V1o

<l

Ef = =
[E— ] =Viom-1) " Vim-1)(m-2) "

m

where

includes all information about the stratified medium. Once 7t0
is known, both the reflection and transmission coefficients can be
calculated from its matrix elements.

4.3. Reflection and Transmission by a Slab Medium

For a slab medium with boundary surfaces at z = d; and z = da, we
find from (57), with ¢ = 2 and n = 1, the reflection coefficient

ei2k’0,zd1 [1 _ (1/R%1)] 6i2(k12+k02)d1
R (1/Rgy )ei2k1=d1 4 Ryoei2kizdz

_ Ro1 + Rypei?kr=(d2—d1) ¢i2kozd1
1+ R01R126i2k12(d2_d1)

R=




Stratified negative isotropic media 15

Making use of propagation matrix ﬁ(lﬂ)l as shown in (62)

E+ ]_ e—’i(klz—koz)dl R e_i(klz+k02)dl 1
[Ei_] =5t + o) [Rloei(’flz+k0z)d1 eilha—ko-)h [R]
T 1 eilkiz—kiz)dr  p . o—ilkiztkiz)de ) (B
{ 0 ] = 5(1 +pt1) [Rtlei(ktz—i-ku)dt téi(ktz—klz)dt Ei—

we find the amplitudes inside the slab medium to be

267i(k1z*koz)d1
Ef = ' .
(1 + pOl)(l + R01R1t612k1z(d2—d1))

2 Rype~i(k12=koz)d1 gi2k12d2
(1 + po1)(1 + Roy Ryei?k1=(d2—dn))

The transmission coefficient is

ET =

4eikad1 eiklz (d2_d1)€_ik2zd2
(14 po1)(1 + p1¢) (1 4 Roy RypeiZhi=(d2—dr))

For an electromagnetic wave incident on a negative isotropic slab in
free space, we let u; = —ug, €1 = —€g, and p; = po, € = €g. We find
k1. = —koz, ka2 = koz, po1 = p12 =1, Ror = Ri2 = R =0, E] =0,
B = ¢iZko=di T — o—i2ko=(dz—d1)

Assuming a Gaussian beam with beamwidth ¢ incident on the
negative isotropic slab with incident angle 6; and incident vector
k; = ykiy + Zk;., where k;y = kosin6; , k;, = ko cos ;. For an incident
TM wayve field, we write

H, :/ dky ei(kyy+koZZ)\p(k;y) (63)
2
U(ky) = e bl (69)

Then for the transmitted magnetic field, we have
H, = /OO dk, et (kvytho:[z=2(d2=d)]) g (1, ) (70)

Thus on the plane at a constant z in the transmitted region, the
Gaussian beam spot is at ¥y, which is shifted by a distance of
2(dy — dy)tan6; in the negative ¢ direction in the presence of the
negative isotropic slab as compare to the location of the spot y;, in
the absence of the slab.
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Figure 4. Beam center shifted by 2(dy — d;) tan 6;.

The reflected beam shift will be twice when we place the negative
isotropic slab in front of a perfect conductor. We find

H1 = —po, €1 = —€o, k1, = —koz,
T =0, Ef =e?ko:dt pr = Rype i2ko:(d2—d1)
po1 =1, Rp1 = 0.
For TE waves
RTE = —1, RTE = _¢~i2ko:(d2—d1) gi2kozdi

For TM waves
RlTQM —1, RTM _ ,—i2kos(do—d1) gi2ko-di

In the absence of the negative isotropic slab, the reflection coeflicient

1S
RTF = _¢ihosdz RTM _ qi2hozds,

Thus on the plane at a constant z in Region 0, the Gaussian beam
spot is at Yous, which is shifted by a distance of 4(ds — d;) tan 6; in the
negative g direction in the presence of the negative isotropic slab as
compare to the location of the spot y;, in the absence of the slab.
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Figure 5. Beam center shifted by 4(dy — dy) tan 6;.

5. GUIDED WAVES IN STRATIFIED MEDIA

5.1. Guidance Conditions

The geometrical configuration of the problem is shown in Figure 6.
There are t layers at z = di,do,...ds, and s + 1 layers at z =
do,d_1,...,d_s. We shall first assume that all regions contain isotropic
media. In region [, we denote the permittivity and permeability by ¢
and u;. Notice that in region 0, €y and g are not necessarily equal to
the free space permittivity €, and permeability u, .
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Figure 6. Guided Waves in stratified media.

For TE waves,

the solutions in region [ take the following form:

— |:El+€iklzz +El—€7iklzzj| eikyy (71)
— & [Efeiklzz — Efe_iklzz} ety
Wi
_ —ky [E;reiklzz _i_El—efiklzz} oikyy (72)
Wy

For TM waves we invoke duality with the replacement E — H,

H— —F, up 2 €.

The boundary

conditions of the interfaces require that tangential

electric and magnetic field components be continuous for all  and y.
At z = d;y1, we obtain

El+ etkizdita + El_ e thizdipa

— Ei:—l etk+1) 2 dit1 + Elll e~ k1) zdita (73)

ElJr k=i _ Ef e~ Hizdit

_ + ik »d - —ik »d
*pl(l+1) El—l—lel (I4+1) z2@1+1 __ El+1e WR(141) zQ1+1 (74)

where

pik(is1) 2 1
= = 75
i) i1k Payn (75)
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We now determine the wave amplitudes in region [. From (73)—(74) we
can express Efr and £, in terms of EZTH and E;_ | or express Eltl and

Eljrl in terms of EZJr and E;” . We find

4 ikidipr _
EfemEtt = +m z+1)

1
2 (1
{ etz + Rl(l+1)E1116_ik(l+1)zdl+l} (76)
i 1
ki
Ej etz — 3 (1 +pl(l+1))
{Bigen) By ehosv=dion 4 B emtharn=dian - (77)

for E and E;,” in terms of ElJrl and E, |, and

+10

, 1
El—‘y—-i_lelk(l+1)zdl+l — 5(1 + p(l+1)l)
{BFe=tio 4 Ry Bre =t} (1)

. 1
— ikgyed
B em =i = 5(1+p(z+1)l)

{R(lﬂ)lEfr ezt 4 B efiklzdm} (79)

for Eltrl and Ej, in terms of E' and E; . In (76)—(?7), the Fresnel
reflection coefficient

L =Dy

Ropiy = T+ by = —Ry 4 (80)
where
. 1 — Di(1+1)
Rl(l+1) = m (81)

is the reflection coefficient for waves in region [, caused by the boundary
separating regions [ and [ 4 1. The reflection coefficient in region [+ 1,
R(141)1, caused by the boundary separating regions [+1 and [, is equal
to the negative of Ry .

There are altogether s + ¢ boundaries which give rise to 2(s + t)
equations as shown above. There are altogether s 4+ ¢ + 1 regions.
In regions ¢ and —s we have E; = 0 and E*, = 0 because there
are no waves originating from infinity. Thus we have a total of
2(s+t+1) —2 = 2(s + t) unknowns to be solved from the 2(s + t)
equations.
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For z > 0, we let [ = 0, and obtain the reflection coefficients
Roy = Ey,/ Ef , in the form of continued fractions. We find

. 21 ) ]
RO _ E0_+ _ ei2kozd1 N [1 — (1/]?01) } i2(koz+k12)d1 (82)
" 0+ ROI (1/R01)67'2k1zd1 + (E;/Eil»)

where E] /E; can be expressed in terms of E; /Ey and so on until
region ¢t where E; /E;" = 0.

For z < 0, we let [ = 0, and obtain the reflection coefficients
Ro— = Ej_/E,_ in the form of continued fractions. We find

2] .
El emiZkoxdo [1 — (1/R0(71)> } e~ #2(koz+k-12)do

Ry =——= + - -
0 E,_ Ry—1) (1/Ro(—1y)e~2h-12do 4 (EY,/E7)

(83)

where ET,/E~, are expressible in terms of ET,/E~, and so on until
region —s, where E*,/E~, = 0.
In region 0, the guidance condition is determined from

RoyRo— =1 (84)
For s =2 and t = 2, we find

Roy + Rype?h (%) pi2ko=d
1+ R01R12ei%1z(d2—d1)
— RO(*l) + R(,l)(ime_mk*lz(d—l—do)
1 + RO(—l)R(_1)(_2)6_22k—12(d—1—d0)

Roy =

(85)

e—iQk‘()zd() (86)

Consider guidance in Region 0 with evanescence in Regions 1 and -1

such that ki, = /k? — k% =iay, and k_1, = /k?| — k:g =1i0_1,. We

then have
/leOz ,ulka
; Ho—1- 260 1 H0Q 1z
-1 =1 i Ro—1) = €705 gy = —tan™ ———— (88
Po(-1) i1k, OGD) bo(-1) 1o, (88)

where @1 and ¢g_1) are Goos-Haschen shifts at the boundaries z = d;
and z = dp.
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5.2. Fields of Guided Waves
For a slab waveguide with s =1 and ¢t = 1, we have
Roy = Rgeko=di (89)
Ro— = Ry(_yye 2ho=o (90)
The guidance condition becomes
Po(—1) + P01 + kozd1 — kodo = mm (91)

for the mth order guided mode.For an asymmetric slab waveguide, we
have

Ef, =0 (92)
1 . .
ED =35 (14 pc10)) { Ropyo By el o thorodo . g eitho-—hosdo L (g3
+_ 1 + i(koz—k12)d1 — —i(ko.+k12)d1
By = 5 (1+puo) { By e'to- Rty By e iosthas)d } (94)
Ef =0 (95)
The field in Region —1 is
E_yp = [BZjet%] efh (96)
k—lz — ik
H_y, = — B e 1| ety 97
W= o [ -1€¢ } € (97)
_ _ky — a_1zz| ikyy
Ho= (B e ety (98)
= k
<8 1 >=j—2L||E7,Pe?157 99
1> = g5 1B ] (99)
The field in Region 0 is
Eoy = |Ef €0+ 4 By e7tho:2] cikuy (100)
Ho, = wzo | eiko® — B emihos2] cikuy (101)
—k . 4 .
Hy, = w—ui | ekos 4 B emthos2] by (102)

_ k .
<So>= gzwzo B 12+ |Eg |? + 2Re { Ef (Eg )*eo-*} ] (103)
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The field in Region 1 is

Kong

By, = |Bfemou?] ¢iho (104)
_ klz 4+ _—aizz| Likyy

Hy == [ emor2] ik (105)

k + —a1zz| ik
Hy, = [E & }e vy (106)

Wil
<5 > Ry (| B 2 2-2] (107)
2w,u

When the waveguide is a negative isotropic slab with pug = —p, and

€ —

—é€,, we observe that the Poynting power inside the wave guide

is flowing in the negative ¢ direction while the Poynting power outside
the slab flow in the positive g direction.

5.3. Coupling of Guided Waves

For the case of s =2 and ¢t = 2, we find

ET,

0
1
2

l\D|P—‘[\D|P—‘[\D|F—‘[\3\>—‘[\3\H

o

(14 pio) {

1+ p1o) {
14 pa1) {

5 (1 + p—z(—1)>
{RoayBhetstiadia 4 prie

E eZ k‘Oz k‘lz dl + RlOE 6 (k‘Oz"rk'lz)dl}
R10E+ k02+klz)d1 + E—e—l(koz—k;lz)dl}

E €Z (k12—k2z)do +R21E e~ (k1z+kzz)d2}

(108)

—i(k—12—k_2,)d— }(109)
(14 po) { B eiFo=—horddo gy B eihosthordo L (110)

(1+p_10) {R_lOE(—)"_ei(kOZ“i’kle)dO _+_E0_67i(k0z*k71z)d0} (111)

(112)
(113)

(114)
(115)

We let waves be guided in Region —1 and Region 1, thus kg, = iaq,,
k_o, = ia_g,, and ko, = iaa,. The electromagnetic fields in all regions
take the following forms.
In Region —2:

By, = B2 ety

(116)
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k—QZ — a_o2.z| Jikyy
H 9, = i [—E_Qe } ey
_ _ky — a—a9.z| ikyy
Hop= [Byeo2] e (117)
— k,
S_9>=j—2— ||E,|Pe?v-2:2 118
<Bop > =gyt |IESfe ] (118)
In Region —1:
B_yy = [Ef et 4 B emthone] cibu (119)
k—l ik_ — —ik_ ik
H_ 1y = m_zl [Ei-lez 122 _ E” e i 1zz} etkyy
—k ik - —ik ik
Hopo= A et (120)
S _ gt ET >+ |EZ,|>—2Re { E*,(E,)*eF1=7| | (121
<Sa>=y Yooy |EZ [+ [ B e L (EZ))"e 1] (121)
In Region 0:
o o e R (122)
HOy _ OZO [Ea—ezk()zz N Eo—efzko,zz] ezkyy
_ _ky + ikoyz — _—tkozz| Jikyy
HOz_w—m[EOe + Eje }e v (123)
<8y >= A2 B 12+ |Eg |? + 2Re { Ef (Eg )*eo-2} ] (124)
In Region 1:
Bi, = |Bf eh 4 Btz cibu (125)
Hyy = w—lz [Efre”"’lzz — Efe_“’“zz} ehvy
M1
_ _ky + ik1.z — —iki.z| ikyy
le—w—m[Ele + By e ez ety (126)
- ky
<8 >= Azw 1B 2+ | By 2+ 2Re {|Ef (BT )"e02}] - (127)
In Region 2:

B = [ b a2
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_ ko, + —ag.z| ikyy
HQy_UJMQ [EQe }e v
—k, ,
Hy, = ¥ [E+ 022 } ikyy (129)
w2
< By > = g [|Bf P oo (130)
2wz

We observe that if Region —1 is a slab medium with positive g and
€, while Region 1 is a negative slab, the guided wave in Region —1 is
propagating in the positive g direction, and the guided wave in Region
1 is propagating in the negative y direction. Thus the guided wave
direction is reversed through evanescent coupling with Region 0.

6. LINEAR ANTENNAS IN STRATIFIED MEDIA

6.1. Integral Formulation

The geometrical configuration of the problem is shown in Figure 7.
The origin of the coordinate system is placed in the location of the
linear antenna, which is in the Z-direction.

J(T) = 2I16(y")0(2) (131)
There are t layers at z = di,do,...d; and s + 1 layers at z =
do,d_1,...,d_s. We shall first assume that all regions contain isotropic

media. In region [, we denote the permittivity and permeability by ¢
and p;. Notice that in region 0, ¢y and pg are not necessarily equal
to the free space permittivity and permeability which we denote by ¢,
and p, .

The solution of the electric field vector for the linear antenna in
unbounded medium with permittivity ey and gy is

oo oo pr— —
E = iwuo/ / dydzG(r,7") - J(T')
—oo J—o00
=3 iwpol {%Hél)(kp)}
=7 ZWMOI {L /OO dky Leikyy“i’ik()z'zl}
— Oz
—wuol etko=2 z>0
= dk . 132
x/ Y 47rkgz {e‘ZkOZZ 2<0 (132)
We have from the Maxwell equations in source-free regions
1 ) o0

- VxE = iv X T dky Leikyy-ﬁ-ikoz\zl
WO 47 oo 02
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Region —s|Region —s+1 Region —1 | Region 0 Region 1 Region ¢t —1 | Region ¢

linear
antenna

z=d-s+1 z=d-s42 z=d_1 z=4dp z2=d1 z=dy z=dt-1 z=d;

Figure 7. Linear antennas in stratified media.

1 [ ikyy etko=z z>0
7 LOO dkye Y { _e*ik)ozz - S 0 (133)
ikosz >0
- zk Y e zZ
+z / dk: v {e—ikozz} 20 (134)

The solutions in region [ take the following form:

B, = / dhy |Bff itis? + By e=he7] o (135)

/ dkj klZ El«FeiklzZ o Efe_iklzz:| eikyy
wm
/ dhy— 2 [B e + Bremihes] b (130)

The boundary conditions of the interfaces require that tangential
electric and magnetic field components be continuous for all z and
y. At z = d;y1, we obtain

E+ ko di1 + E* —iky di1
— El—:-l etk zdip1 El?—l e R+1) 2 i1 (137)
El-i-eikzzdzﬂ _ El—e—ikzzdz+1

= P+ 1) Elﬁ_leik<l+1)zdl+1 _ Eljrle—ik<z+1)zdz+1 (138)
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where . .
HiR(1+1) 2
P = = 139
Dk P+ (139)

We now determine the wave amplitudes in region /. From (137)—(138)
we can express Efr and E;” in terms of Elil and B or express Ef

+1
and Eljrl in terms of E;r and E;” . We find

) 1
El—i—elklzdl+1 = 5 (1 +pl(l+1))
{Blyehom=dion 4 B ) B e o=t} (140)
) 1
— —ikpdi
El e~ Hizdi — 5 (1 +pl(l+1))

{Rl(l+1)El-:1€ik(l+1)2dl+1 + Elllefik(l“)zdl“} (141)

for ElJr and E; in terms of El:l and E |, and

, 1
El—:lelk(Hl)ZdH—l = 5(1 + p(l—i—l)l)
{El-i-eiklzlerl + R(l+1) lEl—e*’iklzlerl } (142)
, 1
El:_le—zk(ﬂrl)zdl-kl = 5(1 + p(l+l)l)
{R(lJrl) ettt B efiklzdm} (143)

for B, and E;, in terms of E;" and E; . In (140)—(143), the Fresnel
reflection coefficient

I —pasin
Ropjap =1, T Pty = =Ry (144)
where
I =pigs)
Ryq41) = Too P (145)

is the reflection coefficient for waves in region [, caused by the boundary
separating regions [ and [+ 1. The reflection coefficient in region [+ 1,
R4 1)1, caused by the boundary separating regions [+1 and [, is equal
to the negative of Ry -

There are altogether s + ¢ boundaries which give rise to 2(s + t)
equations as shown above. There are altogether s + ¢ 4+ 1 regions.
In regions ¢ and —s we have E; = 0 and ET, = 0 because there
are no waves originating from infinity. Thus we have a total of
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2(s+t+1)—2 = 2(s+t) unknowns to be solved from the 2(s + t)
equations. The wave amplitudes are related to the configurations and
the excitation amplitudes of the dipole antenna in region 0. Thus field
amplitudes in Region 0 require special attention.

For z > 0, we notice that F, = 0. Letting [ = 0, we obtain
the reflection coefficients Roy = Ey, / Ef | in the form of continued
fractions. We find

By, chodr  [1—(1/Ry)’| e2lbosthad

— o _ + . .
Eg, Ry, (1/Ryy)ei?k=dv + (BT /EY)

Ry (146)

where E; /E; can be expressed in terms of E, /E; and so on until
region ¢ where E; /E;" = 0.

For z < 0, we notice that ET, = 0. Letting [ = 0, we obtain
the reflection coefficients Ry = FEj /E;_ in the form of continued
fractions. We find

2 .
EE)F e_iQkadO |:]- - (1/R0(_1)) :| 6_12(k02+k—1z)d()
Ey. Ro1)  (1/Ryyy)e k1240 4 (B JE7))

(147)

where ET,/E~, are expressible in terms of ET,/E~, and so on until
region —s, where ET,/E~, = 0.

Once the wave amplitudes in region 0 are found, wave amplitudes
in other regions can be determined by the use of propagation matrices,
and from a set of dual equations for TE waves.

In region 0 it becomes necessary that we distinguish the wave
amplitudes in region 0 for z > 0 from those in region 0 for z < 0. For
z > 0 we use E(J)Zr , Eg, 5 and for 2 < 0 we use Eai , Ey_. Thus we have

Ey_ = Ey* Eg, = Eg* + Eun
E,_ =Ey"+ Eup Ey, = Ey*® (148)
Elin = —wpol /4mko.

where E;* and EJ * characterize contributions due to the stratified
medium. Let

(149)

Ro_ = = (150)
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we find
Ro—(1+ Roy)
E;* Elin 151
0 1 _ R07R0+ l ( )
o Roy(1+ Ro-)
E;* Ejin 152
0 1 _ RO-RO.A,. l ( )
_(1 1 _
Ef = ME”” Ef = +7ROEZM
1- RO—RO+ 1- RO—R0+ (153)
g LttRer o g - Bos(1+Ro-)
0— — 1— RO—RO+ lin 0+ — 1_ RO—R0+ lin

We have expressed the solution in region 0 where the linear antenna
is located in terms of superpositions of the primary excitations in the
absence of the stratified medium and the homogeneous solutions of the
stratified medium in the absence of the source.

6.2. Linear Antenna Between Two Negative Isotropic Slabs

For a linear antenna situated in-between two negative isotropic slabs,
welet 1o = po, €2 = €g; pi_1 = —pig, €-1 = —€0; f1 = — o, €1 = —€Q,
and MUt = o, € = €Q- We find k_zz = k?gz = k()z, k_lz = klz = —koz,
P(—2)(—-1) = P(-1)0 = Po1 = P12 =1, R_ay—1) = R(_1)0 = Ro1 = Ri2 =
Rof = R0+ =0.

E+ =0 E+ — FE.
- o+ (154)
Ey_ = Eupy, EOJr =0
From (140) to (143), we find
El+ :El—:_lei(k(lJrl)z_klz)dl+l (155)
El_ — Eljrle_i(k(l+l)z_klz)dl+1 (156)
It follows that
Ei_l - 0
E:l = Eline_i(kOZ_k—lz)dO — Eline—iQkozdo } (157)
Ei_g =0
E=, = Epne—ilkos—hos)dorgmizkosdo — [ o=i2ko=(do—d_1) } (158)
Ef— = Elinefi(klszOz)dl — Eline’i2k0zd1 }
— (159)
E =0
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Ef = Eypeitea—hi)dzgiZhosdi — . o=i2hoz(da—dh)
Ey, =0
The field in Region —2 is

F_op = /°° . [Elmefikoz[z+2(dofd_1)]} cikyy

> k_ , .
H—2y _ / dky 2z {—Elineilkoz[Z+2(d07d71)]i| eikyy
—o0 wh—2

o —k
H72Z - dky Y

My { Eline—z‘koz[z+2(do—d,1)q cikuy
- wi—2

The field in Region —1 is

S 4 '
E—lac == / dky [Elinelka [272d0]} elkyy
—o0

H_ly _ /oo dky k_1. [_ElineikOZ[szdo]} etkyy
—o0 wi—1

H*lz = > dk‘y_—k.y I:EllneZkOZ[Z_2d0}:| eikyy
—00 wit—1

In Region 0 for z <0
0 . .
on :/ dky [Elme—zkzzZ} ezkyy
[0.9]

oo ko
Ho, = /_ N dkywzo

_ dk _ky . —tkiz| Likyy
HOZ — Yy Elzne e
—00 W

[_Elmefiklzz} eikyy

In Region 0 for z > 0

oo . .
Eoe= [ iy [Bine™] et
—0o0
ka
wio

H _/Oo dk [E iklzz} ikyy
0y — Y 1in€ e
—o0
o0 —k ) .
Hy, :/ dky_y {Elinelkhz} ezkzyy
—00 wio

In region 1

%) ] .
Elz = / dkz‘y {Eline_lkoz[z_2d1]:| eZkyy

—00
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(160)

(161)

(162)

(163)

(164)

(165)

(166)

(167)

(168)

(169)
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Region -2 Region -1 Region 0 Region 1 Region 2

Mo, €0 -Ho, -€0 o, €0 -Ho, -€0 Ho, €0

z=d z=dy z=d z=dy

|

z

Linear
Antenna

Figure 8. Images of a linear antenna in Region 0.

Hly _ /_ dky ;zl [Elinefzk()z[zf2d1]] ezkyy

le_/ dk i ) —ikoz[z—2d1]} eikyy (170)
(.U

In region 2

Byo= [ dby [Bugeio-l=2ta=i0l] ity (171)

[ ke ko [z—2(do—d1)]] Likyy
Ha, = /_ k- | Eine ] et
Hy, = / e, | Bjipehoslz=2de= ]| eikuy (172)
— 00 w2

It is thus seen that the field in Region 2 is due to a linear antenna
situated at z = 2(dy — dy), which is a perfect image of the original line
source. Likewise a perfect image is formed in Region —2 and located
at z = 2(d_1 — dp).

6.3. Linear Antenna in Front of a Negative Isotropic Slab

For linear antennas in front of stratified media, all regions —1 to —s
are absent, we have Ear_ =0 and R,_ = 0. It follows that

B =0 Sehn ) m

EO_— = (1 + R0+)Elm E0_+ = RO+ Ey;,
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For a linear antenna in front of a slab medium with boundary surfaces

at z = d; and z = dy, we find the reflection coefficient

2k (da—d
Ry + Ry et2rz(dz—c1) 2k, d1
1 + R01R126i2k‘12(d27d1)

Ro+

the amplitudes inside the slab medium

E+ _ 2Eline_i(klz_k0'z)d1
! (14 po1)(1+ R01R1t612k1z(d2*d1))

2R12Elme*i(kIZ*k0z)d1ei2k1zd2
(14 po1)(1 + Ro1 Ryze?kr=(da—dr))

and the transmission coefficient

Ey =

Apikozdi giks(da—dr) g —ikzzdo
© (14 por) (1 + pre) (1 + Ryy Ryjei?hr=(d2—dh))

Consider a linear antenna in front of the slab medium,
(A) In region 0; z < 0

Eo, = / dky [(1 + RO+)Elm€_ik”Z} etkvy

kOZ —iky,z| ikyy
/ L |~ (1+ Roy) Bigne ™ %1% ethv

—ky .
Hoo= [ dk,—"v 2 (14 Roy) Buie %] ety

oo wpg

(B) In region 0; z > 0
Eyy = /_Oo dky Epr, [elklzz + R0+e*“€lzz} ety
> ko ik ik ik
Hoy = /_OO dkyw—;oEzm {62 " — Ryje ZZZ} ety
o _ky iklzz —iklzz ikyy
.= | dk;ymElm [e + Ry, e ] e
(C) In region 1

Eyp = / dky [Efre’klzz + Efe_’klzz] etkvy
—0oQ

(174)

(175)

(176)

(177)

(178)
(179)

(180)

(181)
(182)

(183)

(184)
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Hy, = / i E (B eki® — premifiz] et (185)
—00 W
[e§) —k . . )

Hy. = / dky—2 [Bf e 4 premthez] ehw - (186)
—00 w1

(D) In region 2, ko, = ko,

By = / dk, [TE,m ’W} eikuy (187)
ko . ,
Hoy = / dhey 2 [T By oy (188)
WM2
k iko,z| ik
Hoy= [ dk,—2u [TEZ 22 }e vy (189)
oo wpn

For a linear antenna in front of a negative isotropic slab in free

space, we let puy = —po, €1 = —e€g, and py = pg, € = €o. We find
k1. = —koz, k22 = Koz, po1 = p12 = 1, Roy = Rig = Roy =0, By =0,
Ejin = —wpol [dkg., Ef = Eypet?ozdt T = e=i2koz(d2=d1)

(A) In region 0; z < 0

Fow = / by By [ %0:%] e (190)
o ko —ik ik
Hoy= | dky—2% By, [—e~ko=2] eikuy 191
0y /_OO yw,uo l [ € }6’ (191)
Ho, = / - dk:y_—kyE,m [e7ho=] etk (192)
—00 WHo

(B) In region 0; z > 0

_ o ) ikozz | ,tkyy
Ey, = dkyEyn |e e (193)
—00
_ o kOZ ikozz | Likyy
Hy, = /_Oo Aky = Fiin [etho==] ety (194)
] —k . .
Hy. = / dly—" By | €022 kvt (195)
—00 w o

1 [ 1 . .
H ) = L [ iy Lot

T J—o00 0z

1 [ 1 . etkozz z>0
== dk, —etv =~ 1
T /—oo Y k()ze {e_’kOZZ} 2<0 (196)
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(C) In region 1, di < z < 2dy, ko, — iky
oo . .
Elx — / dkyElmefzkoZ (272d1)ezkyy
—00

= H;' (k: Y2+ |z - 2d1|2)

-1 0 0

H, = j— —3-V\E
= ko- —ikoz(z—2d1) ik
Hyy :/ dky Ejjpe™tro=iam 0 gt
—00 WHo

o0 k . ,
Hy, = / dky_yElme—zkoz (z—2d1)€zkyy
—0o0 wio
(D) In region 1, 2dy < z < dg, ky — —ky, ko. — —iky

00 ) '
—0o0
00 ) ‘
Hly = / dk'y@Eline_1k02(2_2dl)e_’bkyy
—00 who

> ky —ikoz(2—2d1) ,—ik
le - _/ dky—Eline thoz (= Ve RyY
—00 wo

(E) In region 2, dy < z < 2(da — di), ky — —ky, , ko» — —iky

E2x = /OO dk’yElin6ikOZ(2_2(d2_d1))6_ikyy
—o0

H2y _ / dky 0z Elinezkoz(sz(dzfdl))eflkyy
—o0 w o

0 k . ,
H2Z — / dky7yElinelka(Z_2(d2—d1)6—Zkyy
—00 WHo
(F) In region 2, 2(dy — dy) < z, ko, — iky

EQm = /oo dkyElineikOZ(2*2(d27d1))eikyy

ko By, k0= (:=2(d2=d1)) yikyy
wio

H2y == / dk'y

HQZ — /Oo dky__k;yEl/L.neika(Z*Z(dQ*dl)e’ikyy
—00 wo
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(197)
(198)
(199)

(200)

(201)
(202)

(203)

(204)

(205)

(206)

(207)

(208)

(209)

It is seen that in the transmitted region, the field originates from a
linear antenna located at z = 2(d2 — d;), which is a perfect image of

the original antenna.
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7. DIPOLE ANTENNAS IN STRATIFIED MEDIA

7.1. Hertzian Electric and Magnetic Dipoles

The most fundamental model for radiating structures is a Hertzian
electric dipole which consists of a current-carrying element with an
infinitesimal length [. Denoting the current dipole moment with Il, the
current density J(7) of a Hertzian dipole pointing in the 2 direction
and located at the origin is

J() = 2116(7) (210)

The exact expressions for the electric field vector F(7) for the Hertzian
dipole is calculated to be

E(F) = iwp [I+ vv} / / ap 2116(7)

4 |7 — 7|
= iwpll [2+ ;,: Vaaz} a7y
B icjl;;rll {ééeikr n %(55% + g(% + 2%) {(T_QZ - ;_;)eikr]}
e R T
| ] | e P
- i he ]S [

N4 31 3 ikr
P Sl E I
pr2 [ + kr kQTQ}}e

ik - -

iwpe R 7 1 oz 37 3 }}

= Il 1+————=| -7 |1+ —— —= 211
Amr {Z [ + kr k2r2] Tr [ + r (211)

Notice that with g(r) = *" /4nr and 0g(r)/0z = (ik — 1/r) cos 0 g(r).
To cast in spherical coordinates, note that Z = 7cosf — 6sinf and

z =rcosf. We find from (211)
E(r) = el DY i—|—<L) 2cos0+0 1+L+(L> sin ¢
kr — \kr
(212)

drr kr kr

The magnetic field follows from Faraday’s law

ik'r ;
H(F):mVxE——gbzkll — {14—%} sin @ (213)
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The complex Poynting power density is calculated by taking the cross
product of E and the complex conjugate of H

5= [B0 s o (Y o o= ) () ]

(214)
The time-average Poynting power density is
kIl 9
<S>= —R {S} = 2 [47r'r} sin” ¢ (215)

Let the electric current moment be in a general direction, we write
Il = 21,0+ yl,l + 21.1. From (211), (212), and (213) we find

L ik , :
B =22 (LY )
B(r) = {”(”kr kw) i 1) [Hkr S| b @16)

wr

1., 1kr .
H(F) = x Tzzf [1 + i} (217)

Notice that # = 2z/r + pp/r = &x/r + gy/r + 2z/r. The Poynting
vector is

I i 3i . 2 2

The time-average Poynting power density is

[(1D)* — (7 - 11)°]

2(4mr)? (219)

1
<§>=JRe{S} =7 nk?

In a negative isotropic medium when k& = —|k| the phase velocity of
the radiated wave points towards the dipole while the Poynting power
is propagating in the direction of increasing 7.

The dual of a Hertzian electric dipole is a magnetic dipole. A
Hertzian magnetic dipole can be realized with the model of a small
current loop with area A and carrying current I. The correspondence
between the electric and magnetic dipoles can be quantified by letting
the Hertzian dipole moment II to be [7]

(I1)e = (ikIA)m (220)
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Region —s|Region —s+1 Region —1 | Region 0 Region 1 Region ¢ —1 | Region ¢

dipole
antenna

z=d-s 41 Z:d—s+222d71 z = do z=d1 z=4ds z=dt-1 z2=d,

Figure 9. Hertzian dipole source in stratified media.

E,, =nH. (221)

_ E,

Hy=--¢ (222)
"

where the subscripts e and m are used to denote the electric dipole
and the current loop, respectively. The solutions for a small current
loop thus follow from the solutions for electric dipoles.

7.2. Integral Formulation for Dipoles in Stratified Media

The geometrical configuration of the problem is shown in Figure 9. The
origin of the coordinate system is placed in the location of the dipole
which can be a z-directed electric dipole (ZED), a z-directed magnetic
dipole (ZMD), an x-directed electric dipole (XED), an y-directed
electric dipole (YED), an x-directed magnetic dipole (XMD). or an y-
directed magnetic dipole (YMD). There are ¢ layers at z = dy,ds, ... d;
and s+1 layers at z = dy,d_1, . ..,d_sy1. We shall first assume that all
regions contain isotropic media. In region [, we denote the permittivity
and permeability by ¢; and p;. Notice that in region 0, ¢y, and po are
not necessarily equal to the free space permittivity and permeability
which we denote by €, and p, .

Making use of cylindrical coordinate system, the integrands of

transverse field components Es = pE, + ngSE¢ and H, = pH, + (]BH¢
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are derived from those of the longitudinal components F, and H,. Let
o
Jo / dk, E. (k) (223)
—00
o0
H, — / dk, H. (k,) (224)
—0o0

We have from the Maxwell equations in source-free regions

By(k,) = % [VS%EZ(/@)) i Vs x Hz(kp)} (225)
o
Hy(ky) = 1«12 {v 882 H.(k,) — iwe)Vs x Ez(kp)} (226)

The fields of a dipole radiating in unbounded space with permittivity
€o and o can be transformed from spherical coordinates to cylindrical
coordinates by using the Sommerfeld identity

zkor

/ dk, —”H ) (k,p)etho-l?] (227)

From the previsous section, we find for a Hertzian electric dipole I16(7)
situated at the origin,

ikr
—_ zwu T €
E(T) = i {IJF 2 VV] -1l -
o _ o] k .
_ 1 oo [k '
H(r) =7 VxE= VXTI /_oo dky L EHY (Rop)et™e- - (229)

Noticing that Hél)/(k:pp) = —Hfl)(k:pp), we find
(A) z-directed electric dipole (ZED): Il = 211

b etkozz z>0
H,=0; E. = /_OO dky Eeq {e—ikozz } Hél)(kpp) B ; 0
(230)
with 5
Erea = _ﬂ (231)
87rwegk0z

where Il is the electric dipole moment.
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(B) x-directed electric dipole (XED): Il = &1l

oo eikozz o> O
.= [ a, Ed{_k A Gpyeoss 20 em2)

FARS
[e%s) eikOZz (1) . z Z 0
H, = /_ dhy Hag {e—mzz} D (k,p) sin S, )
with ) )
Ik Ik
wed = 1 L. ved =1 L 234
d ZSWWGQ7 d Z87"k02 ( )

(C) y-directed electric dipole (YED): Il = 11

& E, g ekoz7 . . 2> 0
b= /_Oo ahp {—Ezede—ikozz } Hy (kyp) sin 6 T2 (289)

e’} eikozz >0
H,=— /_ dkp Hyeq {e—z‘kozz Hl(l)(kpp) oS @ z - 0 (236)

with
IR IR
Eyed = Eyeqd = ZS’]TWE(]; Hyed = Hyeq = ZS’/Tk()g (237)

The results of the y-directed electric dipole (YED) can be obtained
from that for XED by replacing ¢ with —7/2 + ¢.

Notice that the magnetic dipoles produce fields which are duals of
those produced by the corresponding electric dipoles. The results for
the magnetic dipoles ZMD, XMD, and YMD, can be obtained by the
replacement £ — H, H — —F, uy 2 €, and Il — iwug I A. We note
in particular that at z = 0, the following field components vanish:

(A) z-directed electric dipole (ZED)

E,=0 (238)
(B) x-directed electric dipole (XED)
E.=H,=Hy=0 (239)
This is seen from (225)—(226) and by noting from (227) that
8 e’ik’or
- =0 t =0 240
0z r as (240)

We now consider dipole sources placed in Region 0 of the stratified
isotropic medium (Fig. 9). We assume that all regions contain isotropic
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media. In region [, we denote the permittivity and permeability
by € and p;. The solutions to the wave equations can be written
as superpositions of TE and TM wave components. Let Efr and
E; denote amplitudes for the TM waves and HIJr and H; denote
amplitudes for the TE waves. We find in region [ the following
solutions:

(A) z-directed electric dipole (ZED): Il = 211

B = / dky [ B e* + B ehi2) HY (k,p) (241)

kz . .
/ dle, B et — Brem™e| B (kyp)  (242)

Hy = / dl, =L “"6’ E+eiklzz+El_e_iklzZ] HY (k,p) (243

(B) x-directed electric dipole (XED): Il = %11

B, = / dk, B e + B em*1:=] HY (kyp) cos (244)

]{;Z . .
Elp _ / dk LR E-l—ezkzzz _El e Zklzzi| Hfl)/ (kpp) cos ¢

/ dkpzli;m H;reiklzz + Hl_e_iklzz} H{l)(k’pp) [cos ¢] (245)

By = / dk'p;lzlz B eiti® — Brehiez] BV (kyp) [ sin o]

+ / dk, Z]::“’ (1 e+ H e 2| BV (K p) sin ¢ (246)

H. — / ki, [Hif e 4 Hy e %2] B (k) sin(9) (247)

kz . L
H, = / i, (1 e — m e 7| 1Y (kyp) sin g

+ / dk, kf,j’q (B et 4 B o] B (kyp) [ sin ¢] (248)

Zkz ik 2 — —ikj,z
Hyy = / dk, k; H ettt — Hy e D (kyp)eos 6]

n / dl, =L “"q E+eiklzZ+E;e—“W] HY (kyp)cos¢  (249)
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where Hy(Ll)(k’pp) is the nth order Hankel function of the first kind
and H,gl)l(kpp) denotes the derivative of HS" (&) with respect to its
argument &. The integrands of transverse field components E, =
pE, + <Z>E¢ and Hy, = pH, + gf)qu are derived from those of the
longitudinal components E, and H,.

In region 0 it becomes necessary that we distinguish the wave

amplitudes in region 0 for z > 0 from those in region 0 for z < 0.
For z > 0 we use Ef, , Eq, , Hy, , and Hy, ; and for z < 0 we use

E{]t , By, Hgﬁ, and H,_ .

(A) z-directed electric dipole (ZED)
Ey_ = Ej” Eg = Ej” + Eeea
Ey =Ey*+FE.a Ey =FE;~ (250)
Hi = Hy =0 Hf, = Hg, =0

where E # and E(Jf # characterize contributions due to the stratified
medium. Let

_ Eoy Eo”

RIM — = (251)
O T B, Ef*+E.a
E+ E+z
RIM _ —0= _ — 0 (252)
Eo_ EO + Ezed
we find
RiM(1 4+ REM)
+z _ “l0— 0+
EO = 1— RQTEMR&]_W Ezed (253)
., RIM@1+ RIM)
EO g 1_ R%z\/[RgKW Ezed (254)
T™M TM T™M
E+:R_(1+R0+)Ed [ 14+ RyZ .
0— 1— RTi\/[Rg“_']_M ze 0+ 1— RTi\/[R(Y)“_{_V[ ze
B oLt RtM 5 P REM(1 + RIM) (255)
- =7 RIMRIM zed 0+7= T _ RITMRIM zed
Hy = Hy =0 Hy, = Hy, =0

(B) x-directed electric dipole (XED)
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EO+— = E()+x E(;r—l- = E(Tz + Eged
E(]__:E()_x_Exed E0_+:E(]_x

+ +x + +z (256)
H07 = HO IT[OJr = HO + erd
Hy = Hy" + Hyeq Hy, = Hy"

where Ej*, E{f * Hy?, and Hy* characterize contributions due to the
stratified medium. Let

we find

Ef =

E; =

Hf =

Hy_

ES ETT
RGM = = (257)
Ef Ef®
RIM = 0= = 0 (258)
Hy H®
RIF=—"%=_ 0 (259)
HO+ Hy™ + Hyeq
H+ H+33
RiF =0 = 0 (260)
Hy_ Hy™" 4 Hyeq
RTM(I _ RTM)
o _ - 0+
EO T _ _ - R%EVIR%KV[ E:red (261)
O " 1-RIMRIM T
RIP(1+ REE)
+o _ 10— 0+
H = 1 ROTPROTE H,cq (263)
- xe
1— REERTE
REM(1— REM 1— R§M
- ( TM %E)Efred E5r+ = TN TN Dred
1—-Ry? ROJr 1—-Ry? ROJr
1— REM _ _ RIMQ—RIM)
_1 — Rgszgw—ﬁ/[Exed E0+ = 1— R%“_]\/[R(j)“—{_\/[ Exed
REYE(1+ RIE) . 1+RIE
1 . R%“_E'R%“f Hz‘ed H0+ - 1 _ RgFRngzed
1+ RLF _ REE(1+REE)
1 RgERngmed H0+ = 1— R%lERgf H$ed

(265)



42 Kong

We have expressed the solution in region 0 where the dipoles are located
in terms of superpositions of the primary excitations in the absence of
the stratified medium and the homogeneous solutions of the stratified
medium in the absence of the source. It is easily shown that they satisfy
the boundary conditions at z = 0 by remembering the vanishing field
components as listed in (238)—(239) for the primary excitations.

The boundary conditions of the interfaces require that tangential
electric and magnetic field components be continuous for all p and ¢.
At z =d;y1, we obtain

ki (El-i-eikzzdz+1 _ El—e—ikzzd1+1)

_ + ikgan .d — ik .d

= k(11 (El+1€ D= = By T l“) (266)
€ (E;reikudz + Efe—ikzzdz+1)

I+1
k. (Hl+eiklzdl+1 _ Hl—e*iklzdLH)

= €+1) <E+ etk 2divt El;le—ikuH)del) (267)

_ + ik d - —ik d

=kay1)- (Hl+1ez (=0t — Hyqem k= l“) (268)
n (Hl-i-eikzzdz+1 + Hl—e—ik12d1+1)

_ + ik od - —ikgin) .d

= H(l+1) (Hl+1€l (D=0 4 H e 0D l“) (269)

We now determine the wave amplitudes in region [. For TM waves,
(266)—(267) can be solved to express E;" and E; in terms of E;" |, and

E,_, or to express Eltl and E;_; in terms of El+ and E; . We find
; 1 (a1 Fay)-
E+ ikidiyr = <i Tz
re 2\ ¢ + ki,
ik d - _—ik d
|y etturn=dion . RIM ) B emfhasn A (270a)

o 1 (11 Fay)-
E Zklzdl+1 — ( + )
L€ 2\ ¢ + ki

[RI B e =4o 4 B oo =dn] - (270b)

for ElJr and E;” in terms of El’jrl and F,_,, and

. 1 k
E?_'Helk(”l)zdl“ _ 3 (i 4 p lz >
€141 (I+1) =z

(B et BRI B ekt ] (271a)
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El:-le_ik<l+l>2dl+1 :% ( €l 4 p ki >
€141 (I+1)2

{R(ljtl)lEfLeiklzdl+1 + El_efiklzdl“} (271b)
for E;_'H and Eljs—l in terms of El+ and E; . The Fresnel reflection

coefficient

L —epiki ek -
L+ ep1ki ek -

Ry = = —R{i}y (272)

A similar procedure applies to the case of TE waves. The results are
duals of those of (270a)—(272) with the replacements of E* by H™T,
E~ by H™, and € by u.

There are altogether s + ¢t boundaries which give rise to 4(s + t)
equations as shown above. There are altogether s + ¢ + 1 regions. In
regions t and —s we have E; = H; =0 and E*, = H', = 0 because
there are no waves originating from infinity. Thus we have a total of
4(s+t+ 1) — 4 = 4(s + t) unknowns to be solved from the 4(s + ¢)
equations. The wave amplitudes are related to the configurations and
the excitation amplitudes of the dipole antenna in region 0. Thus field
amplitudes in Region 0 require special attention.

For z > 0, we notice that Et_ =k, =0. Letting [ =0, we obtain
the reflection coefficients RfM = Ey, /Ef, and R{F = Hy, /H{, in
the form of continued fractions. We find

E- ei2kozdi [1 1/RTM } i2(koz+k12)d1
0+

RTM — _ 073

0+ Eé:_ RTM (1/RTM)612k1zd1 + (E /E ) ( )
H‘ ei2ko=d1 {1 l/RTE } i2(koz+kiz)d1

For = - - (274)
0+ HCH— RglE (1 RTE)EZZklzdl + ( 1 /H1+)

where E] /E{ and H; /H;" can be expressed in terms of E, /E; and
H; /H5 and so on until region ¢t where E; /E;" = 0= H,; /H;" .

For z < 0, we notice that T, = H', = 0. Letting [ = 0, we obtain
the reflection coefficients RIM = Ef /E; and RIF = Hy" /H; in
the form of continued fractions. We find

2 .
E(-)t e~ 12kozdo [1 - (1/R(7;(]\,41)> :| e~ 2(koz+k-12)do

RIM — = + ‘
Eq_ R&Ml) (1/R(:]F(Af1))eﬂ%_“do + (B /ED)

(275)
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2 .
H(St B 6—i2k0zdo {1 — (1/R&€1)> } 6_Z2(koz+k*“)d0

= +
- TE « _
H,_ RO(—I) (1/R&€1) )e_zgk_lzdo +(H* /HT))

RIF = (276)

where E*,/E~; and H',/H ", are expressible in terms of E,/E~,
and HY,/H—, and so on until region —s, where EY /E-, = 0 =
HY,/H-, =0.

Once the wave amplitudes in region 0 are found, wave amplitudes
in other regions can be determined by the use of propagation matrices,
and from a set of dual equations for TE waves.

7.3. Dipoles Between Two Negative Isotropic Slabs

For a z-directed electric dipole (ZED) antenna situated inbetween two
negative isotropic slabs, we let p_o = o, €_2 = €; p—1 = —po,
€-1 = —€0; H1 = —Ho, €1 = —€0, Ut = fo, € = €. We find k_o, =
ko: = Koz, k-1 = k12 = —koz, p(—2)(~1) = P(-1)0 = Po1 = p12 = 1,

R 1y =Ry = Rii" = BRI} = R{M = R{Y =
E{_ =0 E@ = F.eq (277)
Ey =FE.q Ey =0
From (270a) to (270b), we find
El+ — _El'ilei(k(l+l)z_klz)dl+1 (278)
E = _Eﬁ_le—i(kuﬂ)z—klz)dlﬂ (279)
It follows that
Ef, =0
B~ = —E,ge-ihos—ho1:)do — _ B o~2ozdo } (280)
Efy =0
E:2 — Ezede—i(qu—kﬂz)dqe—i2k0zdo — Ezedei%()z(d,l—do) } (281)
Ei‘r — B e ik—ko)dy — _p ci2kozdh
282
Ef =0 (282)
+ _ —i(kas—k12)d2 ,i2kosd1 — —i2koz (da—dy)
gz _ OEzede € Eeqe } (283)
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The field in Region —2 is

E_y, = / dhy | Bcge™Hoslz=2d =0} [V (k, p)

E_ 2p_/ dk, Zk 22 Ezede—ikoz[z—z(d,l—do)]] H[gl)/ (kop)
H 54 —/ dk M]:p 2 [Ezed —ikoz[z=2(d-1— do)]} L (k,p)
The field in Region —1 is
Eflzz/fo dhy [~ Ercae™o=20) D (1 p)

Bty [ by 2 Bt 2] 1 ()

H 1= / dk,,“"];‘l [—Ezede%z[z—%l} HSY (k,p)
. ’

In Region 0 for z <0

Ep, = / dk, [Ezede—“%zﬂ =Y (k,p)

ko _
Eo, _/ dk, "0 ) o ELoge zk[)zz} H((]1)/ (kpp)
Hog = / dk,,”;ﬂ [Ezede—“foﬂ HSY (k,p)
oo )
In Region 0 for z > 0
iko, ik s
= [ ]
/ dk, 0 MEO Beae™=*| B (kyp)

In region 1

Ey, = _/ dk [ zed€ ~ikos[z— 2d1]} ()(kpp)

Elp — / dk‘ Zklz z ik02[2—2d1]:| H(gl)/ (kpp)

45

(284)
(285)

(286)

(287)

(288)

(289)

(290)

(291)

(292)

(293)
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P
Region -2 | Region -1 Region 0 Region 1 Region 2
o, €0 -Ho, -€o0 o, €0 -H0, -€0 Ho, €0
k
z
Image 23211?113. /:;
Z:d_l Z:d() ZIdl Z:dg
Figure 10. Images of a dipole antenna in Region 0.
Hiy= / dk, ' zw€1 e~ tkoz[z— 2d1]} ( ) (kpp) (294)
In region 2
o0
By, = / dky [ Begqe™o- 220201 1Y (k) (295)
—o0
Esp = dkPZ = {Eze eko=z=2(d> dl)]] ( / (kpp)
s k,
H2¢ _ dk}p% {Ezed tko,[z—2(d2— d1)]} ( )4 (kpp) (296)
NS k,

It is thus seen that the field in Region 2 is due to a dipole antenna
situated at z = 2(dy — dy), which is a perfect image of the original
line source. Similarly, a perfect image of the original dipole antenna is
formed in Region —2 and located at z = 2(d—; — dp).

7.4. Dipoles in Front of Stratified Isotropic Media

For dipoles in front of stratified media, all regions —1 to —s are absent,
we have Ear_ = Har_ =0 and Rgiw = Rg_E = 0. It follows that for
(1) z-directed electric dipole (ZED)
Ef =0 Ef, = E.eq
Ey_ = (1+ ng)Ezed Eyy = RO+ zed (297)
Hi —Hy =0 Hj,—Hy, —0
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Region 0 Region 1 Region n | Region ¢
p
dipole 5
antenna
z = dy z=d2 z=dp z =d¢

Figure 11. Dipole in layered medium.

(2) x-directed electric dipole (XED)

E(—)i__ =0 E(—):_ = Eyed
EO: = _(1 - Rgiw)Exed EO_+ = Rginxed (298)
H(—)t =0 ];I(—)’—Jr = erd

Hy = (1+RIP)Hyea  Hy, = REFP Hyed

The results of the y-directed electric dipole (YED) can be obtained
from that for XED by replacing ¢ with ¢ —7/2. The magnetic dipoles
produce fields which are duals of those produced by the corresponding
electric dipoles. The results for the magnetic dipoles ZMD, XMD, and
YMD, can be obtained by the replacement £ — H, H — —E, pg & €,
Il — iwpg IA and TE = TM.

7.5. Dipoles in Front of a Negative Isotropic Slab

For a z-directed electric dipole (ZED) in front of a slab medium with
boundary surfaces at z = d; and z = ds, we find the reflection
coefficient

. R(])“]M + R{ZMeilez (do—d1)

— _ ei2kozd 299
1+ R%“IMR{QMeszlz(dQ—dﬂ ( )
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the amplitudes inside the slab medium

o 2Ezede*i(k1z*k02)d1
1 (51 _|_ klz)(l _|_ R RTM€Zlez(d2 dl))

(300)

E,_ _ 2R12 E de_i(klz_koz)dlei2klzd2 (301)
1 (61 + klz)(1+R RTM€z2k1z(d2 d,l)>

and the transmission coefficient

4etkozdi pikiz(d2—d1) p—ik2zd2

(S (2 4 21+ REMRIM ei?his(da—d)

7™ (302)

where for TM waves, pl(l+1) = ekq1)z/€1r1kiz, and

TM
—Pila+)

Riity =
W(i+1) — 1+pﬁ%1)

is the reflection coefficient at the boundary between regions [ and [+ 1.
Consider a z-directed electric dipole (ZED) in front of the slab
medium, we find

(A) In region 0; z < 0

Fo. — / dky [(1+ REM) Begge™ 02| B (k,p) (303)

15 .
Eop = / Ak "2 [~ (1 REM) Bucqe™ 0] 1Y (Jyp) (304)

Hoy = / dk “;60 (14 R Bucae™™ =] HEY (kpp)  (305)

(B) In region 0; z > 0
Ey. = / dhpEegq ["% 4+ REMe=02] HV (k,p)  (306)
o= [y T B [ — REM e 1Y (1) (307)
Hoy = / dk Z‘Zeo ea |07+ REM e h07] B (k) (308)
(C) In region 1

E. - / dk, [Efei= 4 By emi=2] B (k,p) (309)
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Elp _/ dk Zklz E+€ik1zz —Efe_iklzz} H(gl)’ (kpp) (310)

Hiy = / dkp“‘:l [Bf ==+ By e BV (kyp)  (311)
ok

(D) In region 2, ko, = ko,

>~ ~ (1)

By, = / dky [T Eoege™2] HY (kop) (312)
K ;

By = / dk," 2 T Eecac™ ] H{Y (kop) (313)
/ dk, 22 ““2 [TE.cae™=7| B (kyp)  (314)
For a z-directed electric dipole (ZED) in front of a negative
isotropic slab, we let w1 = —pug, €1 = —e€g, and py = po, € = €.
We find k1, = —koz, ka» = Koz, po1 = p12 = 1, Ro1 = Ria = REM =0,

E; — 07 Ef’ — _EzedeiQkozdla T = e—i?k()z(dg—dl)'

E(J)r_ =0 an. = E.ed

Ey_ =FE.eq Ey, =0 (315)

Y = Hy =0 Hf, = Hy. =0

E(r) = pE, + ZE,
—iwullei’”{ 2z

e [Hgk +3(/~m~) } o [HLHL)Q]

kr kr
+pr [1+3k—+3(kr) H (316)

7,.2

The magnetic field follows from Faraday’s law

— A ~—ikIle™ " p )

The complex Poynting power density is calculated by taking the cross
product of E and the complex conjugate of H

5 _ M{ i [1+3i+3(%)2} {H_*(m)z}
P

(317)

(4mr)? L

+320 {1+3i +3(i)2]}p [1— kﬂ (318)
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The time-average Poynting power density is

5 )

(A) In region 0; z < 0

Eo. = / dky | Bocae™ 0| HV (yp) = E.

° ik —1 z
Eop= | by [~ Eueae™ ™= B () = E,
T,

0 Wwe ik x
Hoy = / iy = | Beae™™0 | Hi (kop) = H,
oo PR,
(B) In region 0; z > 0

Eo. = / dk, [EzedeikOZZ] H (kyp) = E.

ko
EOP _/ dk ! O E.eq elkozz] H(l)/ (kpp) = EP

iwe ;
Hog :/ dkp 2 : [Ezedemozz} H(gl)/(kpp) =Hy
oo o

(C) In region 1, ki, = —ko,

Elz - / dk |: zede_lkOZ(Z_zdl)] H(gl) (kpp) = _Ez

Kong

(319)

(320)

(321)

(322)

(323)
(324)

(325)

(326)

ko _ _
Bip= [ iy (B0 1Y (kyp) = ~E, (327)

o= [k, | zede—ikozwdﬂ} H (kop) = H,  (328)

(D) In region 2, kg, = ko,

E2z = / dkﬂ [Ezedeikoz[z_%dQ_dl)]} Hél)(k:pp) = Ez

EQP = / dkPZ:zz [Ezedeikoz[z_%(h_dl)q H(gl)/ (kpp) =
oo o

Weg

H2¢:/_ dk, [Ezedeik()z[zfﬂdgfdl)q HY (k)

p

(329)

E, (330)

— H, (331)

It is seen that in the transmitted region, the field originates from a

ZED located at z = 2(dy — dy).
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7.6. Dipoles In Front of Negative Isotropic Slab Backed by a
Perfect Conductor

Region t is assumed to be a perfect conductor. With pu; = —pg,
€1 = —e€g, k1. = —koz, we find po1 = eokiz/etko. = 1, ¢ — o0,
RIM =1, RIM =0, and the following solutions:

TT™M _ (332)
Ei;'_ _ _EzedeiQk‘ozdl (333)
Ef _ Zede—z?ko.z(dz—dl) (334)
Rg‘iw —_ e*iQkoz(dzfdl)eiQk'Ozdl (335)

(A) In region 1
By = /_ dky [Ef o= %0 4 By eo==] HP (kyp) (336)

Ei, _/ dk‘ ;’foz |:E+ —ikoz2 — BT ezkoﬂ} H( ) (k‘pp) (337)
p

Hyy = /_ ~ dkp_::q) (B om0 4 Brettoes| HEY' (k,p) (338)
(B) In region 0; z > 0
Eo. —-J/ dkpFoca [€%02 + REM =002 BV (k,p)  (339)
By, = / ke, 02 Zkoz sea |€70F = REM e o= | HY (kyp) (340)

we 1Ko~z —iko. 2
Hop = / dkpk—OEzed[ sz REMemho-=] 1M (k) (341)
0,

(C) In region 0; z <0

Fo. — / dky [(1 4+ REM) Eocge™ 02| HP (k) (342)

> —ikoz —ikozz
B, = /_ _dk, kpo (14 REM) Bucae™™ 0| B (kyp) (343)

o0 TWE — 2
H%:/ iy [(1+ REM) Becae™™0 | HyV (kpp)  (344)
e

From solutions in Region 0 for z < 0, we notice the remarkable result
that an image dipoe has been generated with the amplitude equal to
that of the source with |[RIM| =1 and positioned at z = —2ds + 4d;!
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As a concluding remark, note all previous illustrations of the
negative isotropic material have assumed the constitutive parameters
uw = —po and € = —¢,. The realization of such material may never
be attainable. For practical consideration of material properties,
two issues require extensive study are dispersion of tne material and
their loss, aside from many interesting mathematical and physical
conceptual issues.
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