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Electromagnetic Waves in a Time Periodic Medium
With Step-Varying Refractive Index
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Abstract— We present an exact mathematical framework for
electromagnetic wave propagation in periodically time-modulated
media, in which the permittivity is homogenous and modulated in
a step-varying fashion. By using Hill’s equation theory, we show
that this problem has analytical solutions. We connect the
dispersion relation, which exhibits k−gaps, with the Hill stability
analysis, providing an alternative mathematical description for
wave propagation in temporal crystals. Our analysis, which is
exact and transposable to other kinds of waves or modulation
schemes, provides general useful physical and mathematical
insights, complementing the use of numerical techniques such
as finite differences in the time domain, or harmonic balance
schemes, with a more transparent and practical design tool. The
present analytical transient mathematical analysis, in contrast
with the existing frequency-domain numerical approaches, can
exhibit the parametric properties of electromagnetic waves inside
a time periodic medium. For this reason, it can be a useful tool for
the design of active microwave and optical devices, which employ
time periodic wave medium modulation to filter or parametrically
amplify wave signals.

Index Terms— Electromagnetic wave propagation, Hill’s equa-
tion, parametric amplification, stability analysis, time-modulated
media.

I. INTRODUCTION

S INCE the pioneering works of Brillouin [1], wave prop-
agation in spatial periodical devices has been of great

interest to researchers and engineers. Spatially periodic struc-
tures have, indeed, been broadly used to filter and amplify and
in general manipulate electromagnetic signals in a variety of
modern technological applications including telecommunica-
tions, signal processing, and imaging. It is well-known that
electromagnetic waves experience reflections from disconti-
nuities. A periodic formulation of small discontinuities can
trigger the creation of Bloch waves, which can be subject to
Bragg reflections and bandgaps [1]–[9]. In addition to medium
discontinuities in space, the effect of medium discontinuities
on electromagnetic wave propagation in the time domain
has also attracted the attention and curiosity of the research
community [10]–[13]. Several studies about temporal crystals,
also known as time periodic wave media and time-Floquet
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systems, have been reported over the years dating back to the
1950’s [7], [14]–[30]. More recently, time-modulated media
have been used to exhibit parametric amplification [24], [31],
near-zero effective refractive index [32], nonreciprocity [33],
nonreciprocal gain and frequency conversion [34], and elec-
tromagnetic energy accumulation [35]. Recent findings have
also connected them with parity–time symmetric scattering
theory [31]. They have also been implemented in combination
with spatial periodicity to engineer band structures [36], [37].

One of the key properties of time periodic wave media,
at the core of this paper, is the fact that they can exhibit
complete gaps in the dispersion relation, in a way analogous
to space periodic media. These gaps, however, are formed for
the wave vector k (momentum gaps) instead of frequency ω.
Contrary to what happens in space crystals: bandgaps support
evanescent wave propagation, which are forced by passiv-
ity to describe fields that exponentially decay away from
sources [38], [39], the active nature of temporal crystals allows
the gaps to also support fields that grow exponentially in time.
Thus, the absence of wave propagation in these k−gaps can be
related to unstable wave solutions. Furthermore, such media
do not conserve frequency and the same wave vector can be
associated with an infinite number of operating frequencies,
which is a very unique property. More specifically for a
modulation of frequency �, one obtains a temporal Brillouin
zone of width �, and a periodicity of the dispersion relation
along the frequency axis [k(ω) = k(ω + n�), for n ∈ Z],
in close resemblance with the periodicity of the band structure
along the k-axis in the spatial analogous case.

Yet, to date, such interesting properties have only been ana-
lyzed either numerically using finite-difference time-domain
(FDTD) simulations, or semianalytically using opaque approx-
imate methods involving truncation of the harmonic content
of the field, which inherently limits our understanding of
such systems and our ability to conveniently predict their
behavior and design them for specific purposes. Conversely,
here, we demonstrate an exact, fully analytical solution to the
complex problem of wave propagation in a temporal crystal
with periodic step-varying dielectric constant, which can be
used directly as a transient mathematical tool to determine
parametric or evanescent properties of time periodic electro-
magnetic media, without any approximations. This analytical
treatment is based, on the Hill equation stability theory.
We consider a nonmagnetic, isotropic, and nonstationary infi-
nite medium, in which the dielectric permittivity is modulated
in time with a step function. We show that this special problem
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Fig. 1. Illustration of the infinite time periodic medium under study. The
dielectric constant is uniform in space and is periodic in time, successively
taking the values ε1 and ε2.

of electromagnetic theory can be mathematically modeled as a
system of differential equations with time periodic coefficients,
which support exact analytical solutions. We connect for the
first time to our knowledge the Hill stability analysis with the
band structure properties of such complex wave media and we
validate our exact analytical solutions and remarks with the
approximate prediction from a rigorous numerical approach
using Floquet theorem [40] in the frequency domain. Thus,
in contrast with the numerical studies of the literature, this
paper provides an exact analytical mathematical framework for
the analysis of such wave propagation problem, by mapping it
to Hill’s equation [41]–[46]. This treatment, which can also be
easily applied to other modulation schemes (as shown in the
Appendix), gives precious insights for the overall parametric
behavior of time-modulated media which is lacking from the
already established numerical approaches and highlights an
interesting connection between the mathematical theory of
Hill’s differential equation and electromagnetic wave propa-
gation in a time periodic medium.

II. TIME-DOMAIN ANALYSIS: ELECTRIC

DISPLACEMENT WAVE

Let us assume an infinite medium for which the dielectric
permittivity ε is modulated in time due to the perfect synchro-
nization of capacitor switches. Hence, ε is

ε(t) =
{
ε1, 0 ≤ t < τ

ε2, τ < t ≤ T
(1)

where ε(t) = ε(t + T ), as shown in Fig. 1. In the absence of
sources, Maxwell’s equations are

∇ · D = 0, ∇ · B = 0,

∇ × E = −∂t B, ∇ × H = ∂t D (2)

and the constitution relations are B = μ0H and D =
ε(t)E. At this point, it is convenient to form the wave
equation for the electric displacement field. Since we assume
an infinite medium, we can truncate the problem to a 1-D
scalar field. Applying Maxwell’s equations, the constitution
relations and the curl operator two times, we extract the wave
equation

∂2 D

∂x2 = μ0ε(t)
∂2 D

∂ t2 . (3)

In order to find solutions of the wave equation, we use the
separation of variables method, which implies that we search
for solutions of the form: D(x, t) = X (x)T (t). By plugging
it into (3), we get a system of two uncoupled differential
equations

d2 X (x)

dx2 + k2 X (x) = 0 (4)

d2T (t)

dt2 + k2

μ0ε(t)
T (t) = 0. (5)

Equation (4) is well-known and gives solutions of the form
exp(± jkx). In combination with (5), it can provide the full-
wave profile of the field. In order to solve (5), we introduce
the variable transformation ξ = �t/2, where � is the
time-modulation frequency, and the unit rectangular coefficient
ψ(ξ) = ψ(ξ + π) is shown as follows:

ψ(ξ) =
{

1, 0 < ξ < τ �(= �τ/2)

−1, τ � < ξ < π.
(6)

Equation (5) becomes

d2T (ξ)

dξ2 +
[

2k2

�2μ0

(
ε2+ε1

ε1ε2

)
−2

k2

�2μ0

(
ε1−ε2

ε1ε2

)
ψ(ξ)

]
T (ξ)

= 0. (7)

This differential equation is the well-known Hill’s equa-
tion [41]

d2T (ξ)

dξ2 + [a − 2qψ(ξ)]T (ξ) = 0. (8)

For the π periodic function ψ(ξ), a = 2k2(ε2 + ε1)/
(�2μ0ε1ε2), and q = k2(ε1 − ε2)/(�

2μ0ε1ε2). Since we
consider a step variation of the dielectric permittivity, ψ(ξ)
is not just π periodic but also unit rectangular and thus obeys
the Meissner equation

d2T (ξ)

dξ2 + 4k2

�2μ0ε1
T (ξ) = 0, 0 ≤ ξ < τ �(= �τ/2) (9)

d2T (ξ)

dξ2 + 4k2

�2μ0ε2
T (ξ) = 0, τ � ≤ ξ < π. (10)

In order to find the solution of such systems, it is nec-
essary to calculate a quantity known as the state transition
matrix [41]–[46]. (This matrix is analogous to the W−form
of the transfer matrix used in 1-D photonic crystals and in
quantum particle propagation [47], [48].) The transition matrix
�(t, τ ) is defined by the Wronskian W(t) (Appendix)

�(t, τ ) = W(t)W(τ )−1 (11)

and can be easily constructed for the Meissner equation.
In fact, for 0 ≤ ξ < τ �, we find the following expression
for (12), as shown at the top of the following page.

For τ � ≤ ξ < π , the transition matrix satisfies the property
�(ξ, 0) = �(ξ, τ �)·�(τ �, 0) [41] (Appendix), as shown in (13)
at the top of the following page.

For ξ > π , assuming that ξ = mπ + ξ � with 0 < ξ � < π
and m is an integer, the transition matrix is defined as
�(ξ, 0) = �(ξ �, 0) ·�(π, 0)m [41]–[46] (Appendix). Knowing
the transition matrix leads to the solution of the wave equation.
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�(ξ, 0) =

⎛
⎜⎜⎝

cos

[
2k

�
√
μ0ε1

ξ

]
�

√
μ0ε1

2k
sin

[
2k

�
√
μ0ε1

ξ

]

− 2k

�
√
μ0ε1

sin

[
2k

�
√
μ0ε1

ξ

]
cos

[
2k

�
√
μ0ε1

ξ

]
⎞
⎟⎟⎠ (12)

�(ξ, 0) =

⎛
⎜⎜⎝

cos

[
2k

�
√
μ0ε2

(ξ − τ �)
]

�
√
μ0ε2

2k
sin

[
2k

�
√
μ0ε2

(ξ − τ �)
]

− 2k

�
√
μ0ε2

sin

[
2k

�
√
μ0ε2

(ξ − τ �)
]

cos

[
2k

�
√
μ0ε2

(ξ − τ �)
]

⎞
⎟⎟⎠

·

⎛
⎜⎜⎝

cos

[
2k

�
√
μ0ε1

τ �
]

�
√
μ0ε1

2k
sin

[
2k

�
√
μ0ε1

τ �
]

− 2k

�
√
μ0ε1

sin

[
2k

�
√
μ0ε1

τ �
]

cos

[
2k

�
√
μ0ε1

τ �
]

⎞
⎟⎟⎠ . (13)

For example, the wave has the following form, for the time
period (0, T ):

D (x, t) = cos

(
kt√
μ0ε1

) (
A0e− j kx + B0e jkx

)

+ �
√
μ0ε1

2k
sin

(
kt√
μ0ε1

) (
C0e− j kx + D0e jkx

)
0 < t < τ (14)

D (x, t) =
(

cos

(
k (t − τ )√
μ0ε2

)
cos

(
kτ√
μ0ε1

)

−
√
ε2

ε1
sin

(
k (t − τ )√
μ0ε2

)
sin

(
kτ√
μ0ε1

))

×
(

A0e− j kx + B0e jkx
)

+
(
�

√
μ0ε1

2k
cos

(
k (t − τ )√
μ0ε2

)
sin

(
kτ√
μ0ε1

)

+ �
√
μ0ε2

2k
sin

(
k (t − τ )√
μ0ε2

)
cos

(
kτ√
μ0ε1

))

×
(

C0e− j kx + D0e jkx
)

τ < t < T (15)

where the values A0, B0, C0, and D0 are defined by the
initial field at t = 0. An important remark is that in this time
periodic structure the field condition at t = 0 is equivalent
with the boundary and initial field conditions of spatially
periodic electromagnetic propagation problems. As an illus-
tration, we show in Fig. 2(a)–(c) the electric displacement
oscillations for a specific case with time-symmetric field initial
conditions (A0 = 1 and B0 = C0 = D0 = 0), with
ε1 = 4ε0, ε2 = ε0, and τ = T/2, and for three different
parameter scenarios, ω = 0.68 �, ω = 2 �, and ω = 2.5 �.
These plots highlight how the modulation generates other
frequencies, even after a short number of periods, consistent
with the Floquet theorem [40]. It is also apparent that differ-
ent harmonics may undergo different time-behaviors, being
either stable, attenuated, or parametrically amplified. More
specifically, the physical and engineering importance of this
time-domain analysis is explicitly illustrated in Fig. 2. As we

Fig. 2. Field oscillations for the time periodic medium with ε1 = 4ε0, ε1 =
ε0, and τ = T/2 with frequency excitation. (a) ω = 0.68 �, (b) ω = 2 �,
and (c) ω = 2.5 �.

show in Section III, propagation at the conditions of Fig. 2(b)
and (c) is unstable and more specifically is at the 4th and
5th k−gap of the band structure, respectively, but different
initial conditions result to an attenuated electric displacement
field [Fig. 2(b)] and to a parametrically amplified electric
displacement field [Fig. 2(c)]. These results are analytical
without using any time marching numerical method such as
FDTD and cannot be obtained by harmonic balance techniques
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Fig. 3. Illustrations of the Hill stability charts for (a) τ � = π/4, (b) τ � = π/2, and (c) τ � = 3π/4. Blue color: stable wave states. Red: unstable wave
states.

since such techniques can only approximate steady stable wave
states.

III. STABILITY ANALYSIS

In Section II, we found the solution of the electric displace-
ment wave from an exact, strict mathematical analysis in the
time domain. It is important to mention that the wave solution
can be short-time stable, but as time passes the wave signal
can exponentially increase or decrease and result in parametric
amplification or perfect absorption, depending on the symme-
try of the excitation and the modulation. Lagrange stability
analysis is mathematically linked with the existence or the
absence of unitarity in the state transition matrix. It has been
proven [41], [42] (Appendix) that the stability is satisfied for
operating regions when

|tr(�(π, 0))| < 2. (16)

For our specific case, the condition (16) becomes

|cos[(a + 2q)1/2(π − τ �)] cos[(a − 2q)1/2τ �]

− 1

2

(√
a + 2q

a − 2q
+

√
a − 2q

a + 2q

)

× sin[(a + 2q)1/2(π − τ �)]sin[(a − 2q)1/2τ �]| < 1 (17)

where a and q are defined in (7). As it is shown in (17),
the stability analysis is extremely dependent on all a, q , and τ �.
Even though the next step for the stability analysis is to
consider numerical values for its parameters, we can extract
some general information for some points of operation. In the
case that ε1 −ε2 → 0, the depth of modulation converges also
to 0, i.e., q → 0. If we also assume that τ � = π/2, i.e., τ =
T/2, then we find marginal instability for a = n2, n ∈ Z. For
this choice of parameters, the effective dielectric permittivity is
easily found from the general formula εeff = T/

∫ T
0 dt/ε(t) as:

εeff = 2ε1ε2/(ε2 + ε1) and the system becomes a parametric
amplifier (or a perfect absorber) for the operating frequency

ω = k√
μ0εeff

= n
�

2
. (18)

The physical interpretation of this result is that at these spe-
cific frequencies (even multiples of the excitation frequency),
the energy provided to modulate the medium can be optimally
coupled to the existing wave, leading to parametric wave

pumping, or on the contrary brutally force the attenuation
of the existing field. In order to determine which of these
conditions occur one has to proceed to the transient analysis of
Section II. (Harmonic balance techniques that are most often
used and are defined in Section IV can only approximate a
group of field harmonics for the steady-state wave conditions
and cannot exhibit the parametric characteristics of the wave
states.) The mathematical interpretation of this exotic phenom-
enon is that by choosing this operating frequency, the eigen-
values of the state transition matrix collide to unity and the
system experiences t−multiplied instability; this means that no
matter how small the difference of the dielectric permittivity,
the system provides either gain of parametric nature to the
wave signal or coherent perfect absorption. These special
operating conditions are associated with the Floquet diabolic
and exceptional points, as shown in related studies [49]. The
analysis of the general Hill equations predicts that marginal
instability always occurs for a = n2, n ∈ Z, when q → 0,
independent of the time modulation of the dielectric permit-
tivity. Before moving to the quantitative study of the Hill
stability chart, it is also useful to mention that the stability
analysis of our system is symmetric for τ � = π/2, meaning
that substituting q → −q will not change the stability chart.
In Fig. 3, we provide the stability chart for a representative
group of values of τ �. As we expect for τ � = π/2, the chart
is symmetric since the modulation is also symmetric. As the
modulation becomes asymmetric, the stability chart follows
this asymmetry. Another important remark is that the density
of stable regions are reduced as the absolute value of q
(hence the time modulation depth) increases. Even though the
stability charts present the stable and unstable regions for every
possible combination of values of a and q , the representative
wave state parameters for our problem form the geometric
locus of a line, starting from (0, 0) point and continuing
with an angle θ = arctan(2(ε1 + ε2)/(ε1 − ε2)) [similar Hill
stability charts and geometric loci can be obtained for general
periodic ε(t)]. Note that for an angle of θ = 90°, the geometric
locus will not intersect with any region with instability; this
means obviously that when ε1 = ε2 the dispersion relation has
no discontinuities and any value of k is allowed. As the angle θ
deviates from 90°, the line intersects with instability regions.
This phenomenon directly explains the existence of forbidden
values of k, known as k−gaps in the dispersion relation.
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Evidently, as the modulation depth increases, θ decreases and
the sizes of the k−gaps are also increased. From (17) and
Fig. 3, it is evident that a critical angle θc exists, below
which the unstable regions occupy most of the space, and
hence most wave numbers are not stable. This phenomenon
is linked with the coexistence of unstable regions for the
Meissner equation [41]. This critical angle is occurred for
a = ±2q resulting to θc = arctan(2) = 63.43° or θc =
180° − arctan(2) = 116.57°. These remarks provide us
with a criterion for operating with parameters that lead to
possibly denser stable regions. More specifically, it yields a
relation between the parameters of the amplitudes of the time
periodic medium, namely, ε1, ε2. This condition indicates,
after some elementary mathematical algebra, that when ε1
and ε2 are not of the same sign, the operating parameters
are most likely to land in instability, although stability is still
possible.

IV. FREQUENCY-DOMAIN ANALYSIS:
DISPERSION RELATION

The frequency-domain analysis is the most commonly
employed to deal with time periodic media. It applies the
Floquet theorem [40] directly and provides numerical results
about the steady state (yet without providing much insights
about the wave physics, the parametric nature of the wave
and the breaking of the energy conservation of the electromag-
netic wave in such active media). This numerical frequency-
domain analysis is limited to approximating the steady-state
responses. In this section, we apply such an independent
numerical method in order to compare it with our exact
solution and validate the band structure properties with those
that are established by the Hill stability analysis. Since the
periodic modulation of the permittivity can be expanded in
Fourier series as: ε(t) = ∑

ε̃ne jn�t , the Floquet theorem
leads us to the conclusion that the field solution is of the
form

E(k, ω, t) =
(∑

En(ω)e
jn�t

)
e jkx . (19)

Plugging (19) into the wave equation

∂2 E

∂x2 − μ0
∂2(ε(t)E)

∂ t2 = 0 (20)

we get, after using the orthogonality relations of the Fourier
coefficients [30]

∑(
(ω − m�)2ε̃m−n − k2

μ0
δmn

)
En(ω) = 0 (21)

where δmn is the delta function and m, n ∈ Z. Equation (21)
forms a Ax = 0 linear system. It is straightforward to show
that k(ω) = k(ω + n�), and dkω|n�/2 = ∞, for n ∈ Z (also
observed in [30]). By truncating the system to a finite number
of harmonics and setting det(A) = 0, we can get nontrivial
solutions and extract the dispersion relation. Numerically,
this means that for a fixed frequency ω, the appropriate
value of k which forces the determinant to singularity gives
us the dispersion relation. In our special case, the Fourier

Fig. 4. (a) Dispersion relation of the time periodic medium with ε1 = 2ε0,
ε2 = ε0, and τ = T/2. (b) Dispersion relation of the time periodic medium
with ε1 = 3ε0, ε2 = ε0, and τ = T/2. (c) Stability chart with the geometric
loci (lines) associated with the operating parameters of (a) and (b) colored
with green and blue, respectively.

coefficients of the dielectric permittivity used in this
calculation are

ε̃n =
⎧⎨
⎩

j

2πn
(e− j2nπτ/T − 1)(ε1 − ε2), n 	= 0

ε2 + (ε1 − ε2)τ/T, n = 0.
(22)

Fig. 4 shows the obtained dispersion relation for some
representative values of the time modulation of the medium.
In Fig. 4(a), we present the dispersion relation for the case
ε1 = 2ε0, ε2 = ε0 and τ = T/2. These parameters form an
angle θ1 ≈ 80.54° at the stability chart, as shown in Fig. 4(c)
(green line). In Fig. 4(b), we present the dispersion relation
for the case ε1 = 3ε0, ε2 = ε0, and τ = T/2. For this
example, the angle at the stability chart has to be lower
(θ2 ≈ 75.96°) since the modulation depth is higher [blue
line at Fig. 4(c)]. For the symmetric modulation of τ = T/2,
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it is evident that wave propagation has the same dispersion
when the values of ε1 and ε2 are swapped. This is directly
linked with the fact that the stability chart is also symmetric
for this specific condition (τ � = �τ/2 = π/2). When this
happens, the operating line at the stability chart has an angle
θ � = 180° − θ . As expected from the exact analytical solu-
tion, the dispersion relation exhibits k−gaps. These k−gaps
are found exactly at the parametric amplification condition
(18), in full agreement with the exact time-domain analytical
solution of Section III. Indeed, if we look closely at Fig. 4,
we find that the nth k−gap encountered at the dispersion
relation is related with the unstable region that is near the
marginal instability at a = n2. As expected, the gap is larger
for an increased modulation depth since its line locus has a
lower slope and intersects more with the unstable regions,
as shown in Fig. 4(c). Going back to the transient analysis of
Section II and the field oscillations of Fig. 2, the power of this
analytical transient analysis for time periodic media is evident.
The conditions for wave propagation of Fig. 2(b) and (c) are
amid the momentum gaps of the dispersion relation. More
precisely, they are at the parametric amplification conditions
with n = 4 and n = 5 (4th and 5th k−gaps). The frequency-
domain analysis cannot predict the parametric behavior of the
electric displacement wave oscillations, whereas the analytical
model based on the transition matrix can obtain the exact
results. Depending on the initial conditions, the wave can be
evanescent [Fig. 2(b)] or parametrically amplified [Fig. 2(c)].

V. CONCLUSION

In this paper, we have developed the proper mathemat-
ical tools to deal with wave propagation in time periodic
media. We used the Hill differential equation to model this
electromagnetic theoretical problem and we described the
complex wave phenomena associated with the parametric gain
in light of the Hill stability analysis. Moreover, we analyzed
the dispersion relation of such structures with detail and
connected it with the classical Hill analysis of stability for
time-varying systems. We believe that this paper enriches the
pre-existing literature on time-varying wave phenomena by
providing in-depth exact mathematical and physical insight
for wave propagation in general time periodic media. As we
described, the design and synchronization process of an active
time periodic medium device can be multifaceted because the
same operating conditions could result in parametric ampli-
fication or in attenuated fields. This analytical mathematical
framework could be of great assistance to the engineering
community. It can be used directly and is a powerful design
tool for active microwave and optical devices, which employ
time periodic wave medium modulation to filter wave sig-
nals (k−gap devices), since it has the ability to detect the
parametric oscillating properties, in contrast with the exist-
ing frequency-domain numerical solvers. Our mathematical
approach can be also useful for other waves (acoustic, mechan-
ical, elastic, and gravity) and other modulation schemes (as
shown in the Appendix), and may become a precious tool
for the design and understanding of time modulated wave
systems.

APPENDIX: GENERAL SOLUTIONS OF ELECTRIC

DISPLACEMENT FIELD FOR TIME PERIODIC

DIELECTRIC PERMITTIVITY

Equations (3)–(5) characterize the electric displacement
field in a wave medium with a time-dependent ε = ε(t).
In the case, ε is also periodic: ε(t) = ε(t + T ) the differential
equation of the electric displacement field is

d2 D(t)

dt2 + f (t)D(t) = 0 (23)

where f (t) = k2/(μ0ε(t)) is also T periodic. We define the
state vector as

D̃ =
[

D(t)
dt D(t)

]
. (24)

The general problem of (23) can be formulated as

dt D̃ = V(t)D̃ (25)

where

V(t) = V(t + T ) =
[

0 1
− f (t) 0

]
. (26)

Since the differential equation is of the second order,
the Wronskian is a 2 × 2 matrix, formed by the independent
homogenous solutions D̃1 and D̃2

W(t) = [D̃1 D̃2]. (27)

After basic algebraic manipulations, we get

D̃ = W(t)W(0)−1 D̃(0). (28)

Hence we define the transition matrix �(t2, t1), which
connects the electric displacement solution at time t1 to the
one at time t2 as

�(t2, t1) = W(t2)W(t1)
−1. (29)

Plugging the transition matrix to (25), we derive some
interesting properties. For instance, it is easily found that the
transition matrix is a homogenous solution of the differential
equation and �(mT, 0) = �(T, 0)m for m integer (which is
a property directly linked with the Floquet theory). After this
analysis, the problem is simplified in finding this transition
matrix. The transition matrix is

�(tN , 0) = �(tN , tN−1) · · ·�(t1, 0) (30)

for: tN > tN−1 > · · · t1 > 0.
In order to check the stability of the solution the eigenvalues

λ1 and λ2 of �(T, 0) have to take an absolute value less than
unity. It is straightforward to show that

λ1,2 = tr(�(T, 0))/2 ±
√

[tr(�(T, 0))/2]2 − 1. (31)

By requiring the stability condition |λ| < 1, we get the
formula used directly in (16). For more details, we refer the
reader to [41]–[46].
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