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By investigating the third order nonlinearity of a four-level ladder-type atomic system, it is found 

that, with spontaneously generated coherence (SGC) present, the nonlinear absorption or 

refraction can be significantly enhanced with vanishing linear absorption. We attribute the 

enhancement of nonlinearity mainly to quantum interference in the two decay pathways from the 

two upper closely lying levels. With a standing-wave trigger field, absorption or phase grating, 

which effectively diffracts a weak probe into high-order direction, can be induced by the SGC 

enhanced absorptive or refractive nonlinear modulation. In contrast to the schemes for enhancing 

nonlinearity, no additional coupling field is required. Moreover, the present gratings result from 

the nonlinear modulation which differs from the recent investigations based on linear 

modulation. 

PACS number(s): 42.50.Gy, 42.65.-k, 42.65.An 

I. INTRODUCTION 

Nonlinear optical phenomenon is well known as a fundamental process resulting from the 

interaction between light and matter. Especially the third order nonlinearity plays an important 

role and has many applications in polarization phase gates [1-3], optical switch [4,5], the 

generation of optical solitons [6,7], etc. However, the absence of sufficient nonlinearity and large 



absorption in conventional media become obstacles to its applications, therefore, giant third 

order nonlinearity at low light level is desirable in various optical devices. To avoid these 

disadvantages, coherently driven multilevel electromagnetically induced transparency (EIT) 

systems were proposed to enhance third order Kerr nonlinearity with vanishing linear absorption 

and then large self- or cross- phase modulation (SPM or XPM) can be achieved [8-13]. Recently, 

giant Kerr nonlinearity was also obtained in active Raman gain (ARG) media [14].  

The above studies on the enhancement of nonlinearity are all based on the laser induced 

atomic coherence in multilevel atoms, and it is crucial to have at least one coupling laser to 

create the necessary coherence. However, the atomic coherence can also occur in the process of 

spontaneous emission, in which the atom decays from closely placed upper levels to a single 

ground level. The quantum interference between the decay channels, which is called 

spontaneously generated coherence (SGC), can lead to many phenomena, such as amplification 

without inversion [15,16], narrowing and quenching of spontaneous emission [17-23], refractive 

index enhancement without absorption [24], and giant SPM [25]. Another novel phenomenon 

caused by SGC is that it can induce dark state for a light-matter system and make a medium 

transparent to a short laser pulse [26,27]. In contrast to the lossless propagation in three level EIT 

media, no coupling laser field is required. 

 In this paper, we investigate the effect of SGC on the third order cross nonlinear interaction 

between the probe field and the trigger field in a four-level ladder-type system. When the trigger 

is resonant, the nonlinear two-photon absorption can be enhanced by constructive quantum 

interference, while the linear absorption is vanishing due to the destructive quantum interference 

between the two decay channels. We can also obtain enhanced nonlinear refraction with both 

linear and nonlinear absorption neglectable in the case of a large detuned trigger field. The 



enhancement of nonlinearity in this system is a result of inherent quantum interference in the 

decay so that no coupling laser fields are required for transparency. We then exploit the enhanced 

nonlinearity to a type of all optical device. By using a trigger with standing-wave intensity 

pattern, the probe experiences a periodic variation of absorption or refractive index, and 

therefore, the medium acts an absorption or phase grating and can effectively diffract the probe 

into high order directions. This phenomenon is called electromagnetically induced grating (EIG), 

which is usually studied in EIT-based systems [28-30]. However, the gratings here are created by 

the nonlinear modulation which is different from the recent EIG schemes based on linear 

modulation. Moreover, the nonlinear modulation can lead to almost pure phase grating with high 

diffraction efficiency which cannot be obtained in the hybrid grating by linear modulation. We 

would like to point out that nonlinear modulation was proposed to achieve phase grating [31], 

however it is based on EIT and a coupling field is required. 

 Note, however, that SGC only exists in such atoms having closely lying upper levels and 

that corresponding dipole matrix elements are nor orthogonal. That is, the upper levels should 

have the same J  and Jm  quantum numbers [32]. But the rigorous conditions of 

near-degenerated levels and nonorthogonal dipole moments are rarely met in real atoms so no 

experiment has been carried out in atoms to observe the SGC effect directly. However, such type 

quantum interference results from the incoherent decay processes can be realized in many other 

systems. Examples include spontaneous emission in dimer [29], autoionizing resonances [34, 35], 

tunneling effect in quantum wells [36-38]. Modified vacuum, such as cavity field or anisotropy 

vacuum, can even lead to quantum interference among the decay channels with orthogonal 

dipole moments [39-41]. The SGC effect can be also simulated with atoms in the dressed-state 

picture [42-45]. Therefore, although our proposed scheme is difficultly carried out with atom in 



free vacuum, it can be equally applied and achieved with the above systems. 

 This paper is organized as follows: In Sec. II the effect of SGC on the third order nonlinear 

susceptibility is investigated, and it is found that SGC can enhance the nonlinearity while 

keeping the linear absorption vanished. In Sec. III, by using a standing-wave trigger field, we 

exploit the enhanced nonlinear modulation to obtain pure absorption and phase gratings which 

can effectively diffract the weak probe to high order directions. Finally we present conclusions in 

Sec. IV. 

II. ENHANCED THIRD ORDER NONLINEARITY VIA SGC 

We consider a four-level double-ladder atomic system shown in Fig. 1(a). A weak probe field 

couples the ground state 1  to two closely lying upper states 2  and 3  with Rabi 

frequencies 1 12 2p pE dΩ = ⋅  and 2 13 2p pE dΩ = ⋅ . The states 2  and 3  are 

simultaneously coupled to the excited state 4  by a trigger field. The corresponding Rabi 

frequencies are 1 24 2T TE dΩ = ⋅  and 2 34 2T TE dΩ = ⋅ . pE  ( TE ) represents the amplitude 

of the probe (trigger) field and ijd  denotes the electric-dipole moment of transition i j↔ . 

For simplicity, we assume in the following that 13 12d d p=  ( 34 24d d q= ) and the misalignment 

angle α  between 13d  and 12d  is equally partitioned by pE  while 34d  is parallel 

(antiparallel) to 24d , as shown in Fig. 1(b). Then we have 1 2p p ppΩ = Ω = Ω  and 

1 2T T TqΩ = Ω = Ω .  

Under the electric-dipole and rotating-wave approximation, utilizing the Weisskopf-Wigner 

theory of spontaneous emission, the system dynamics can be described by equations of motion 

for the probability amplitudes of the states given as: 



 1 2 3,p pa i a ip a= Ω + Ω  (1a) 

 2 32
2 2 1 4 2 3( ) ,

2 2p p Ta i a i a i a a a
η

δ
Γ ΓΓ= Δ − + Ω + Ω − −  (1b) 

 2 33
3 3 1 4 3 2( ) ,

2 2p p Ta i a ip a iq a a a
η

δ
Γ ΓΓ= Δ + + Ω + Ω − −  (1c) 
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4 4 2 3 4( ) ,

2p T T Ta i a i a iq a aΓ= Δ + Δ + Ω + Ω −  (1d) 

where 2Γ , 3Γ  and 4Γ  are the spontaneous decay rates from the corresponding states. 

21 31( ) 2p pω ω ωΔ = − +  and 42 43( ) 2T Tω ω ωΔ = − +  denote the detuning of the probe and 

trigger fields, respectively. The frequency difference of the two closely lying state 2  and 3  

is 2δ . The cross coupling term between the two spontaneous emission pathways, which refers 

to the quantum interference effect or SGC, is described as 2 3 2η Γ Γ , where 

12 13 12 13 cosd d d dη α= ⋅ =  denotes the alignment of the two spontaneous emission dipole 

matrix elements. If these dipole matrix elements are parallel, i.e. 0α =  and 1η = , the system 

exhibits quantum interference generated from the two spontaneous emission pathways, while if 

2α π=  and 0η = , there is no SGC. Such a system can be also achieved in Rb dimer, 

autoionizing system, quantum wells, cavity or anisotropy vacuum coupled atomic systems, and 

atomic system in dressed-state picture. 

 In the steady state, we solve the coupled amplitude equations under the weak field 

approximation ( 2
1 1a = ). Then from the polarization of the medium, i.e. 

* *
0 12 2 1 13 3 12 ( )p p pP E N d a a d a aε χ= = + , we can obtain the probe susceptibility pχ  given by 
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where N  is the atomic density, and χ  can be written as 
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where 2 2 2p iγ δ′ = Δ − + Γ , 3 3 2p iγ δ′ = Δ + + Γ  and 23 2 3 2γ η= Γ Γ . What we are interested 

in is the cross Kerr nonlinearity between the trigger and probe fields. Then we expand the probe 

susceptibility pχ  into the second order of TΩ  which can be written as 

  
2
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where (1)χ  and (3)χ  correspond to the first order linear and third order cross Kerr nonlinear 

parts of the probe susceptibility, respectively, which are given by 
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 From Eq. (3b) one finds that the linear probe susceptibility vanishes at the frequency: 
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when 

 1,η =  2
2 3.p Γ = Γ  (4b) 

In such a case, the medium is transparent to the probe field and no spontaneous emission 

occurs as a result of destructive quantum interference. In the steady state, the system evolves into 

dark state with all the population trapping in the state 
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where N  is the normalization factor.  

 While in the presence of the trigger field, it couples the dark state to the state 4  which 

leads to two-photon absorption. With a resonant trigger field, the corresponding two-photon 

transition probability is 
2

4 2 1 1 2Dark p T p TP → ∝ Ω Ω − Ω Ω , which can be written as 

2
4 ( )Dark p TP p q→ ∝ Ω Ω ⋅ − . If p q= , the transition probability is zero, then the dark state keeps 

unperturbed and the probe field experiences no absorption due to destructive quantum 

interference in the two-photon transition. Hence there is no nonlinear interaction at the 

transparency position determined by Eq. 4(a). However, when 0pq < , both the probe and 

trigger fields are absorbed via two-photon absorption as a result of constructive quantum 

interference. The same results can also be derived from Eq. (3c). When the probe field is at the 

transparent frequency, the second term in Eq. (3c) disappears, and remain only the first term 

which is proportional to 2( )p q− . Therefore, we can obtain enhanced nonlinearity for the probe 

field by setting 0pq <  even though the linear probe absorption is vanishing. In the following 

discussions, we assume that 1p =  and 1q = − , then 2 3Γ = Γ  according to Eq. (4b). 

 We now focus on the effect of SGC on the probe susceptibility through numerical simulation. 

For simplicity, we set 2 3 γΓ = Γ =  and all the other parameters are scaled by γ . Figure 2(a) 

and 2(b) show the absorptive ( (1)Im[ ]χ ) and refractive ( (1)Re[ ]χ ) parts of the linear 

susceptibility as a function of the probe detuning with SGC (black solid line) and without SGC 

(red dashed line), respectively. In the absence of SGC ( 0η = ), the probe is absorbed and the 

corresponding absorptive spectrum is the incoherent sum of two Lorentzian functions. However, 



in the presence of SGC, the destructive quantum interference between the spontaneous emission 

from the two upper states makes the medium transparent to the probe field at particular 

frequency ( 0pΔ = ), and what’s more, the dispersion becomes strong and steep due to SGC. 

Figure 2(c) and 2(d) display the absorptive ( (3)Im[ ]χ ) and refractive ( (3)Re[ ]χ ) parts of the third 

order nonlinearity with resonant trigger field ( 0TΔ = ). As can be seen, both the nonlinear 

absorption and the nonlinear refraction are enhanced via SGC. At the transparent position of 

0pΔ = , the atom-field system is in the dark state in the presence of SGC, hence there are more 

population trapped in the two closely lying upper states 2  and 3 . As a result, the 

two-photon absorption is enhanced as shown in Fig. 2(c). However, (3)Re[ ] 0χ =  at 0pΔ =  

and large nonlinear refractive index at 0Δ ≠p  is accompanied by significant linear and nonliear 

absorption. To obtain large Kerr nonlinearity with vanishing linear and nonlinear absorption, an 

off resonant trigger field is required. As shown in Fig. 2(e) and 2(f), the cross Kerr nonlinearity is 

enhanced accompanied by neglectable two-photon absorption with 25TΔ = −  via SGC. 

III. SGC-ASSISTED ELECTROMAGNETICALLY INDUCED GRATING 

The enhanced two-photon absorption and Kerr nonlinearity have many applications in all optical 

switching, polarization phase gate. In the following, we propose a new type of all optical device 

utilizing the SGC-assisted large third order nonlinearity.  

Due to the intensity dependent third order nonlinear absorption and refractive index, a 

trigger field with intensity pattern can produce absorption and phase pattern for the probe field. 

Therefore, when the trigger has a standing-wave pattern, the probe field experiences a periodic 

variation of the absorption or refractive index. Therefore, the probe, which propagates 

perpendicularly to the standing-wave, can be diffracted by the electromagnetically induced 



grating. 

The schematic diagram of the EIG is shown in Fig. 3. Two counter-propagating components 

of the trigger fields form a standing-wave along the x -direction, and then lead to intensity 

dependent atom-field interaction. The probe passes through the standing-wave region in the 

z -direction and acquires periodical absorption and phase modulation. Therefore, an absorption 

or phase diffraction grating is formed. 

In order to obtain the diffraction pattern for the probe field propagating through the medium, 

we begin with the Maxwell’s equation. Under the slowly varying amplitude approximation and 

in the steady-state regime, the self-consistent equation for pE  is given by 

 
0

,p
p

p

E
i P

z
π

ε λ
∂

=
∂

 (6a) 

where pλ  is the wavelength of probe field. Equation (6a) can be rewritten as 
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where 2
12 0( ) ( )pz Nd zπ ε λ γ′ = ⋅ . z′  can be made dimensionless by setting 

2
0 0 12( ) ( )pz Ndε λ γ π=  as the unit for z . When taking only the first and third order 

susceptibilities into account, we have 
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Then the complex transmission function for an interaction length L  of the medium can be 

derived from Eqs. (6b) and (6c) as  

 -Im[ ] Re[ ]e e ,L i LT χ γ χ γ=  (7a) 

 
(1) (3) 2 (1) (3) 2-Im[ ] Re[ ]e e ,T TL i LT χ χ γ χ χ γ+ Ω + Ω=  (7b) 



where the first and second terms in the exponential correspond respectively to the absorption and 

phase modulation. For a standing-wave trigger field with Rabi frequency 

0( ) sin( )T Tx xπΩ = Ω Λ , where Λ  is the spatial frequency of the standing-wave, the 

transmission function is modulated in the x -direction as gratings. Then by Fourier 

transformation of T , we obtain the Fraunhofer diffraction equation given by 
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where 

 
0

( ) exp( 2 sin )pF T i x dxθ π θ λ
Λ

= −∫  (8b) 

represents the Fraunhofer diffraction of a single space period, M is the number of spatial 

periods of the grating, and θ  is the diffraction angle with respect to the z -direction. The thn  

order diffraction angle is determined by the grating equation, sin pnθ λ= Λ . Therefore, we can 

obtain the first order diffraction intensity as 

 
2

2
1 1 0

( ) ( ) exp( 2 ) ,pI F T i x dxθ θ π
Λ

= = − Λ∫  (9) 

A. Absorption grating 

As pointed out in the above discussions, when the trigger field is resonant, the probability of 

two-photon absorption is maximal accompanied by vanishing linear absorption and no refraction. 

Hence, the trigger field with standing-wave intensity pattern can lead to periodic absorption 

modulation across the beam profile of the probe field and no phase modulation takes place. 

Figure 4(a) and (4b) show respectively the amplitude ( ( )T x ) and phase ( Φ ) of the transmission 

function T . In the absence of SGC, the medium is opaque to the probe and the absorption 

modulation depth is small [red dashed line in Fig. (4a)], which restrict the diffraction efficiency 



[red dashed line in Fig. (4d)]. However, when SGC effect is present, the destruction quantum 

interference leads to transparency for the probe field at the nodes of standing-wave, and the 

construction quantum interference results in two-photon absorption at the antinodes. As a result, 

the average transmissivity is higher and the absorption modulation depth is larger than in the case 

of no SGC [black solid line in Fig. (4a)]. Therefore, the diffraction efficiency can be enhanced 

with the assistance of SGC [black solid line in Fig. (4c)]. 

The role of SGC is twofold in the enhancement of diffraction efficiency for the EIG. One is 

that SGC induces transparency for the probe field [see Fig. 2(a)], then more light is transmitted 

the medium. The other is due to the SGC enhanced nonlinear absorption [see Fig. 2(c)], which 

increases the absorption modulation depth. As a result, more light can be diffracted into the first 

order diffraction component which located at sin 0.25pθ λ= Λ = . Using Eq. (7b) which taking 

only third order susceptibilities into account, we plot respectively the amplitude, phase and 

diffraction patterns in Figs. 4(a), 4(b) and 4(c) with green dash-dot line. As can be seen, it is the 

SGC enhanced third order nonlinearity with vanishing linear absorption that contributes mainly 

to the absorption modulation and the diffraction patterns. 

The diffraction efficiency, which is determined by the nonlinear absorption modulation, 

depends strongly on the intensity of trigger field TΩ  and the interaction length L . Figure 5 

illustrates how these parameters affect the first order diffraction efficiency. Figure 5(a) shows the 

first order diffraction intensity as a function of 0TΩ . As the intensity of trigger field increases, 

the nonlinear absorption modulation depth increases, thus improving the diffraction power of the 

grating. However, it peaks at certain 0TΩ , beyond which it fades away due to the decrease of 

average transmissivity as a result of increased nonlinear absorption. The result is the same when 

the interaction length L  varies, as shown in Fig. 5(b). 



B. Phase grating 

The diffraction efficiency attainable by the pure absorption grating is limited (6.25% for an ideal 

sinusoidal absorption grating and 4% in our above results). The fact is that the absorption 

modulation tends to gather light to the center maximal (zero order diffraction) and the light 

absorption is dominant. In order to increase the diffraction efficiency, we wish the medium that is 

transparent to the probe, but can induce a π  phase modulation across the probe field. 

Fortunately, the SGC induced transparency and enhanced nonlinear refraction with off resonant 

trigger field meet such conditions, hence a phase grating can be formed with the help of SGC. 

The numerical results are illustrated in figure 6. In the case of without SGC, although the phase 

modulation is large enough [about 0.65π  with red dashed line in Fig. (6b)], the probe field is 

almost completely absorbed [red dashed line in Fig. (6a)], hence the first order diffraction 

efficiency is extremely low [ 540.6 10 %−×  in Fig. (6d)]. While SGC is present, we can obtain a 

phase modulation on the order of π  [black solid line in Fig. (6b)] with small nonlinear 

absorption modulation which oscillates around an average transmissivity of 95% [black solid line 

in Fig. (6a)]. The phase modulation diffracts a significant portion of the probe energy into two 

first-order patterns ( sin 0.25θ = ± ) and a small portion into the two second diffraction order 

( sin 0.5θ = ± ). The resulting first order diffraction efficiency of the grating is 31% which is very 

close to that of an ideal sinusoidal phase grating (about 34%). 

The role of SGC in the formation of phase grating is to enhance Kerr nonlinearity and 

restrain absorption, and then almost pure phase modulation can be achieved. In Figs. 6(a), 6(b) 

and 6(c), we plot respectively the amplitude, phase and diffraction patterns induced by the third 

order nonlinear susceptibility with green dash-dot line. It is clear that the π  phase modulation 

and the efficient diffraction are mainly due to the enhanced Kerr nonlinearity with neglectable 



absorption induced by the SGC effect. 

Figure 7 displays the first order diffraction intensity as a function of the trigger field 0TΩ  

and the interaction length L . It shows that an optimum value of 0TΩ  or L  exists for which 

the energy of light in the first order is significant increased. For large 0TΩ  or L , the nonlinear 

absorption is dominant, then the diffraction efficiency decreases. 

IV. CONCLUTION 

We have investigated the effect of SGC on the third order nonlinearity in a ladder-type atomic 

system. It is found that SGC is capable of enhancing the nonlinearity. With a resonant trigger 

field, two-photon absorption is enhanced by the constructive quantum interference while 

maintaining linear absorption vanishing due to the SGC effect. However, with large off resonant 

trigger field, a large nonlinear refraction can be obtained accompanied by neglectable nonlinear 

absorption. Such SGC assisted enhancement of nonlinear absorption or refraction allow us to 

achieve efficient pure absorption or phase grating when the trigger has a standing-wave pattern. 

In the formation of electromagnetically induced grating, the role of SGC is twofold. The SGC 

effect can make the opaque medium transparent via destructive interference, then the 

transmissivity for the probe is greatly increased and more light is available to be diffracted. 

Furthermore, SGC can enhance the absorption or phase modulation depth, and therefore, the 

diffraction power of the grating is increased. The all optically induced gratings may have 

applications in light switching and routing. It is worth noting here that the enhancement of 

nonlinearity in this system is a result of inherent quantum interference in the decay so that no 

coupling laser fields are required for creating transparency. Moreover, the present gratings arise 

from the nonlinear modulation which is different from the recent EIG schemes based on linear 

modulation. Finally, it should be emphasized that, although the existence of SGC needs for 



nonorthogonal dipole moments and near-degenerate close-lying upper levels which are rarely 

met in real atoms and become the bottleneck in the observation of the predicted new effects [32], 

such type of quantum interference can be observed in many incoherent decay processes. 

Example include spontaneous emission in molecules [33], autoionizing resonances [34, 35], and 

tunneling effect in quantum wells [36-38]. When the atom couples to cavity field or anisotropy 

vacuum, quantum interference occurs even if the corresponding dipole moments are orthogonal 

[39-41]. Moreover, the SGC effect can also be simulated in the dressed atoms interacting with dc 

field, laser field or microwave field [42-45]. Therefore, our proposed scheme can be equally 

applied to the above systems where such interference exists. 
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Figure captions 

FIG. 1. (Color online) (a) Schematic diagram of a four-level double Ladder-type system with 

two closely spaced upper levels 2  and 3  strongly coupled via spontaneous 

emission. A trigger field TE  couples levels 2  and 3  to an exited level 4 , while 

a weak probe field pE  interacts with 1 2↔  and 1 3↔  transitions. (b) 

Arrangement of the probe (trigger) electric field pE  ( TE ) and the relevant dipole 

moments 12d  and 13d  ( 24d  and 34d ). 

FIG. 2. (Color online) Evolutions of absorptive and refractive parts of (1)χ  and (3)χ  versus 

the probe detuning pΔ  in the cases of with (black solid curve) and without (red dashed 

curve) SGC. Parameters are 2 3 4 γΓ = Γ = Γ = , δ γ= , 0TΔ =  in (c) and (d), 

25T γΔ = −  in (e) and (f). 

FIG. 3. Sketch of the spatial configuration of the probe and trigger field. 

FIG. 4. (Color online) (a) The absorption modulation for the probe. (b) The phase modulation 

for the probe. (c) The diffraction pattern as a function of sin( )θ  with SGC. (d) The 

diffraction pattern as a function of sin( )θ  without SGC. The black solid and red 

dashed curves correspond to the cases with and without SGC when considering all 

orders susceptibilities. The green dash-dot curves display the case of only taking the 

third order nonlinearity into account. Parameters are as follows: 0 0.5T γΩ = , Λ =4, 

5M = , 02L z= . Other parameters are the same as in Fig. 2 (c) and 2(d). 

FIG. 5. The first order diffraction intensity 1( )pI θ  as a function of 0TΩ  (a) and L  (b), 

respectively. The parameters are the same as in Fig. 4. 



FIG. 6. (Color online) (a) The absorption modulation for the probe. (b) The phase modulation 

for the probe. (c) The diffraction pattern as a function of sin( )θ  with SGC. (d) The 

diffraction pattern as a function of sin( )θ  without SGC. The black solid and red 

dashed curves correspond to the cases with and without SGC when considering all 

orders susceptibilities. The green dash-dot curves display the case of only taking the 

third order nonlinearity into account. Parameters are as follows: 0 0.5T γΩ = , Λ =4, 

5M = , 080L z= . Other parameters are the same as in Fig. 2 (e) and 2(f). 

FIG. 7. The first order diffraction intensity 1( )pI θ  as a function of 0TΩ  (a) and L  (b), 

respectively. The parameters are the same as in Fig. 6. 
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