
ar
X

iv
:2

20
2.

11
27

5v
1 

 [
ph

ys
ic

s.
op

tic
s]

  2
3 

Fe
b 

20
22
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Electromagnetically induced optical (or photonic) lattices via atomic coherence in atomic ensembles

have recently received great theoretical and experimental interest. We here conceive a way to generate

electromagnetically induced moiré optical lattices—a twisted periodic pattern when two identical periodic

patterns (lattices) are overlapped in a twisted angle (θ)—in a three-level coherent atomic gas working under

electromagnetically induced transparency. We show that, changing the twisted angle and relative strength

between the two constitutive sublattices, the moiré Bloch bands that are extremely flattened can always appear,

resembling the typical flat-band and moiré physics found in other contexts. Dynamics of light propagation

in the induced periodic structures demonstrating the unique linear localization and delocalization properties

are also revealed. Our scheme can be implemented in a Rubidium atomic medium, where the predicted moiré

optical lattices and flattened bands are naturally observable.

Keywords electromagnetically induced transparency, moiré optical lattices, extremely flat bands, light

propagation, coherent atomic gas

I. INTRODUCTION

Spatial periodic structures, particularly the man-made ones

like waveguide arrays, photonic crystals and lattices, as well

as optical lattices, have great applications in controlling the

flow of light and matter waves because of their intriguing

structural properties (e.g., partial and full photonic band gaps,

symmetry-protected topological spectrum) [1–11]. The fabri-

cations of such artificial periodic structures and investigations

of the peculiar wave properties have been receiving great re-

search attention in past years. Of particular interest in the op-

tics and photonic communities are the two fabricated meth-

ods, direct femtosecond-laser writing technique and optically

induced ones, with the former being widely used in solid ma-

terials where the induced photonic lattices have a permanent

refractive index (and the optical and thermal stability of the

laser machining method should be carefully processed) and

the latter applies both to solid materials and gaseous media.

The periodic structures manufactured by the latter method are

aliased as electromagnetically induced gratings (EIGs), which

are being extensively studied from both theoretical and exper-

imental sides [12–23] in recent years, owning to the highly

tunable degree of freedom of the induced periodic structures

enabled by external and real-time changeable environments

for both hot atomic vapours under room temperature and ul-

tracold atoms (like Bose-Einstein condensates) in the nano-

Kevin regime.

Electromagnetically induced transparency (EIT) is a unique

quantum interference in coherent atomic ensembles with mul-

tilevel electronic structures, where a strong control (light)

field dresses the field-coupled states and then a weak probe
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field cannot feel the absorption, leading to the cancellation

of strong absorption completely in the induced transparency’s

spectral region and thus making the atomic medium transpar-

ent [24]. Interesting properties and promising futuristic ap-

plications that are closely associated with the EIT in an all-

optical way include (but are not limited to) coherent popula-

tion trapping, greatly enhanced nonlinear susceptibility, steep

dispersion, slow and fast light, shape-stable coupled excita-

tions of light and matter (the so-called dark-state polaritons),

light storage (including nonlinear wave localization), com-

munications and computations in both classic and quantum

regimes [25–38]. Particularly worth mentioning is the fact

that, the EIGs with tunable optical properties (lattice depth,

periodicity, structural arrangement, etc.) under EIT regime

are pushing towards the realization of those application tar-

gets [12–23].

In very recent years, scientists are progressing toward the

realization of novel periodic structures, and particularly moiré

patterns [39, 40]—two-dimensional (2D) twisted structures of

two identical periodic structures overlapped in a twisted an-

gle (θ)—are entering the optics and photonics communities

while their fabrication by means of EIGs in gaseous medium

still remains blank. Here a realizable all-optically way de-

pended on the aforementioned optically induced technique for

fabricating the moiré optical lattices in a three-level Λ-type

atomic system under EIT is conceived. Rich and interesting

extremely flat bands of the underlying band-gap structures are

discovered for the electromagnetically induced moiré optical

lattices, showing unique linear localization and delocalization

moiré physics for light propagation as displayed in other 2D

moiré structures reported elsewhere [39].
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FIG. 1. (Color online) (a) Theoretical configuration of a Λ-type

three-level atomic system that induces moiré optical lattices under

EIT. A weak probe field Ωp couples the ground state |1〉 to the ex-

cite state |3〉, and a strong space-dependent control field Ωc couples

the metastable state |2〉 to the excite state |3〉. The spontaneous emis-

sion decay rates of transitions Γ13, 23 and detunings ∆2, 3 are defined

in the text. The combined effect of weak probe and strong control

fields, Ωp and Ωc, kindles the standard EIT regime. (b) Contour plot

of the spatial periodic modulated control field Ωc(x, y) that is taken

as a moiré pattern (shaded blue, pattern minima; shaded red, pattern

maxima) at ǫ1 = ǫ2 = 1 with rotation angle θ = arctan(3/4). The

black arrows denote the primitive vectors.

II. THEORETICAL MODEL

Our fundamental theory relates to light propagation in a

three-level Λ-type coherent atomic ensemble working in EIT

regime, as described in Fig. 1(a). A weak probe field

with half-Rabi frequency Ωp and center angular frequency ωp

dresses ground state |1〉 to excite state |3〉, and a very strong

continuous-wave control field with half-Rabi frequency Ωc

and center angular frequency ωc, modulated periodically in

spatial, connects metastable state |2〉 to excite state |3〉. The

spontaneous emission decay rates of transitions |3〉 → |1〉
and |3〉 → |2〉 are represented by Γ13 and Γ23, and the de-

tunings ∆2 = ωp − ωc − ω21 and ∆3 = ωp − ω31, here

ωjl = (Ej − El)/~ with Ej being the eigen energy of state

|j〉. To obtain the electromagnetically induced moiré optical

lattices under the EIT condition, the control field (after sim-

plification) is chosen as the periodic function of spatial coor-

dinates (x, y), i.e.,

Ωc(x, y) = Ωc0[1 + f(x, y)]. (1)

Here Ωc0 is a constant describing the magnitude of the control

field, and f(x, y) = ǫ1(cos
2 x+cos2 y)+ǫ2(cos

2 x′+cos2 y′),
ǫ1, 2 > 0 being the modulation depth (amplitude) of the

two optical lattices with the same periodicity π. The rotated

(x′, y′) plane at a rotating angle θ yields

(

x′

y′

)

=

(

cos θ − sin θ
sin θ cos θ

)(

x
y

)

. (2)

For discussion, we define the strength contrast as p = ǫ1/ǫ2.

The contour plot of the control field Ωc(x, y) given by Eq. (1)

taken as moiré square lattice is displayed in Fig. 1(b), showing

a spatial twisted displacement compared to the conventional

square lattice.

By adopting the standard Maxwell-Bloch equations that de-

scribe the propagation of probe fieldΩp , and after substitution

as detailed in Supplement Information, we have the dimen-

sionless 2D envelope equation

i
∂u

∂s
= −

1

2

(

∂2

∂ξ2
+

∂2

∂η2

)

u+ VOL(r)u, (3)

where the dimensionless variables are defined as spatial co-

ordinates r = (ξ, η) = (x, y)/R, u = Ωp/U0, and prop-

agation distance s = z/LDiff with typical diffraction length

LDiff = ωpR
2/c. Here U0 and R are the typical Rabi fre-

quency and beam radius of the probe field. The coefficient of

the last term in Eq. (3) represents the induced moiré optical

lattice potential with lattice depth V0 [See Supplement Infor-

mation]

VOL(r) = −
V0

[1 + f(ξ, η)]2
. (4)

The theoretical model considered here can be realized in

realistic physical systems. Specifically, the energy levels |1〉,
|2〉, and |3〉 can be selected respectively as 52S1/2(F =

1), 52S1/2(F = 2), and 52P1/2(F = 2) states of 87Rb

atoms tuned to D1-line transition [41], and the decay rates

are given by Γ2 ≃ 1.0 kHz, and Γ3 ≃ 5.75 MHz, and

|p13| = 2.54 × 10−27 C cm. To achieve the dimension-

less 2D envelope equation (3), other parameters are chosen

as Na = 3.69× 1010 V0 cm−3 (V0 is a real constant denoting

lattice depth), Ωc0 = 1.0 × 107 Hz, R = 36 µm, ∆1 = 0,

∆2 = 1.0 × 105 Hz, and ∆3 = 1.0 × 104 Hz, and thus the

typical diffraction length is LDiff = 1.0 cm. Note that these

parameters are used in all our calculations reported below.

III. NUMERICAL RESULTS

We stress that once again the electromagnetically induced

moiré optical lattices [given in Eq. (4)] provide a rotational

degree of freedom for the periodic structures, in contrast to

those conventional periodic optical patterns formed also un-

der the EIT condition. As pointed out elsewhere [42], when

Pythagorean angle is satisfied, θ = arctan(a/b), cos θ = a/c
and natural numbers (a, b, c) obey a2 + b2 = c2, the moiré

optical lattices Eq. (4) can be defined as periodic struc-

tures in the first Brillouin zone, and then the corresponding

band gap structures can be easily obtained using the Bloch

theory. To this end, the probe field u can be written as

u = U(r) exp(iβs), where β is the propagation constant,

and the stationary envelope U(r) can be sought as the form

U(r) = φk(r) exp(ik ·r), here the wave vectors k = (kx, ky)
are confined to the first reduced Brillouin zone of the moiré

optical lattices, and φk(r) = φk(r + d) is a periodic Bloch

function having the same periodicity d as the lattices. Then

the dispersion relation of the 2D Bloch waves, β(k), can be

found by calculating the linear eigenvalue problem
[

1

2

(

∂

∂r
+ ik

)2

− VOL(r)

]

φk(r) = β(k)φk(r). (5)

Numerically, we adopt the plane wave expansion method [2]

to calculate the eigenvalue problem (5), periodic boundary
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FIG. 2. Contour shapes of the electromagnetically induced moiré optical lattice potentials (shaded blue, potential minima; shaded purple,

potential maxima) with different parameters: (a) twisted angle θ = arctan(3/4) and strength contrast p = 1 (ǫ1 = ǫ2 = 1), (b) θ =
arctan(3/4) and p = 0.25 (ǫ1 = 0.4, ǫ2 = 1.6), (c) θ = arctan(5/12) and strength contrast p = 1. We have set V0 = 20 for panels (a)-(c).

(d) The first Brillouin zone of the induced lattice potentials in the reciprocal space; signed are high symmetry points (Γ, M, X). The linear

Bloch-wave spectra (expressed by propagation constant β) of the induced optical lattice at twisted angle θ = arctan(3/4) with (e) varying V0

and p = 1, (f) different ratios p and V0 = 20. Band-gap structures of the lattices at p = 1 and V0 = 20 and under different twisted angles:

(g) θ = arctan(3/4) and (h) θ = arctan(5/12). (i) Band-gap structure with p = 0.25 and V0 = 20 at θ = arctan(3/4) . I and II in panels

(e)-(i) represent the first and second finite band gaps, respectively.

condition is applied based on the Bloch theory. Such process-

ing way is matured in optics context for processing photonic

crystals, more details could be referred to Ref. [2].

Figures 2(a)∼2(c) display the shapes of the induced moiré

optical lattices under different Pythagorean angles θ and

strength contrast as p = ǫ1/ǫ2 with V0 = 20. To calculate the

associated band gap structures, we have given the first Bril-

louin zone in the momentum (reciprocal) space (kx, ky) in

Fig. 2(d), whose exact values can be tuned to portray the elec-

tromagnetically induced moiré lattice potentials with varying

twisted angles θ. The linear band-gap structures of the lat-

tices, described as propagation constant β versus lattice depth

V0 and versus strength contrast p (= ǫ1/ǫ2), are respectively

displayed in Figs. 2(e) and 2(f). It is observed from the for-

mer that the width of the first finite band gap widens and more

higher band gaps emerge with an increase of V0. At V0 = 20

while increasing p, the first finite band gap widens while the

second gap narrows, according to the latter. The rich spectra

(and the variation rule with changing V0 and p) of the moiré

lattice potentials in Figs. 2(e) and 2(f) supplement and enrich

the band-gap properties of the moiré patterns in other optics

backgrounds [39, 40, 42], implying the possibility of finding

flat band feature of the induced lattices in our model.

At a defined V0 and p, the underlying band-gap structures

of the induced moiré lattice potentials change dramatically

with different twisted angle θ, comparing the Figs. 2(g) and

2(h); interestingly, there are a lot of flatten bands, which are

a unique feature of moiré patterns [39, 40, 42]. One can see

that at θ = arctan(3/4), there exists a wide first band gap and

the second gap is in a moderate width; keeping other condi-

tions constant while setting θ = arctan(5/12), a much wider

first gap is created and the second gap shrinks greatly. The
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

s=2 s=4 s=6

(j) (k) (l)

η

ξ

FIG. 3. Linear propagations of light (module, |u|) in the induced

moiré optical lattices at twisted angle θ = arctan(3/4) and differ-

ent propagation distance s (s = z/LDiff , as given below the Eq.

(3) ) displaying delocalization [(a)∼(c)] and localization [(d)∼(f),

(g)∼(i)] properties. Other parameters: (a)∼(c) strength contrast

p = 1, lattice depth V0 = 1; (d)∼(f) p = 1, V0 = 20; (g)∼(i)

p = 0.25, V0 = 20. (j)∼(l) show the linear propagations of light in

the induced moiré optical lattices at twisted angle θ = arctan(5/12)
with p = 1, V0 = 20 for the light propagating to s = 2, s = 4, and

s = 6, respectively. ξ, η ∈ [−12, 12] for all panels.

strength contrast p is also an important parameter that can

change the band-gap structure of the induced moiré lattices,

through changing it, the widths of the first finite band gap

and the second one can be tuned almost by will, according

to Fig. 2(i) and as compared with Fig. 2(g). As empha-

sized above, the electromagnetically induced periodic struc-

tures have a tunable advantage, since the power, structural

arrangement, and dimensionality of the laser fields could be

modulated based on the experimental requirements; in this re-

spect, not only the moiré square lattices described here, but

also the moiré aperiodic lattices and the hitherto unexplored

spectrum property can also be envisaged, which will be the

future direction.

The most recent theoretical predictions and experimental

progresses of moiré lattices in optics community have proven

the spectacular linear localization mechanism provided by the

flat bands of the lattice [39, 43]. It is thus natural to ask

whether such new localization paradigm or regime can be

complied with in our electromagnetically induced moiré opti-

cal lattices. Our answer is a definitely yes. Figure 3 demon-

strates such linear localization and delocalization properties

of light propagation in the moiré optical lattices introduced

here when it propagates to s = 2, 4, 6, respectively. Under

delocalization paradigm, light propagation in the moiré lattice

undergoes the typical diffraction pattern along the propaga-

tion distance, as seen in Figs. 3(a)∼3(c) for such evolutions at

twisted angle θ = arctan(3/4) with strength contrast p = 1
and lattice depth V0 = 1; under the localization regime of-

fered by the flat bands, both the shape and strength of the in-

put light could be well conserved, as displayed by two typical

examples in the second line and the third one of Fig. 3 at

twisted angle θ = arctan(3/4) and V0 = 20 with p = 1
and p = 0.25, respectively. It is seen that the localized light

in Figs. 3(g)∼3(i) has more weak side patterns compared to

that of Figs. 3(d)∼3(f), this difference is induced by the dif-

ferent configurations of the moiré optical lattices (as compar-

ing the Figs. 2(a) and 2(b)), apparently, there is a stronger

Bragg diffraction since the existence of several higher sublat-

tices around the lattice minima for the case of p = 0.25. We

also demonstrate that the twisted angle of the moiré optical

lattices has a great impact on the light propagation, figures

3(j)∼3(l) display the linear propagations of light at twisted

angle θ = arctan(5/12) with p = 1 and V0 = 20, which re-

veals that the shape and position of light change as the twisted

angle changes in the localization and delocalization mecha-

nisms. It is relevant to mention that the light evolutions in

Fig. 3 are produced by means of both the fast-Fourier trans-

form and fourth-order Runge-Kutta methods, and both meth-

ods can smoothly match. The initial light input we used is the

2D Gaussian beam with appropriate amplitude and waist.

IV. CONCLUSION

Summarizing, we have conceived a way to generate 2D

moiré lattice potentials in a coherent atomic ensemble using

the optically (electromagnetically) induced method. We find

that the lattice depth V0, twisted angle θ, and strength contrast

p could have great influences on the shapes and the band-gap

structures of the resulting moiré lattice potentials, emphasiz-

ing the flat band property. The extraordinary localization and

delocalization abilities of the induced moiré lattice are also

confirmed. Considering the fact that our theoretical analyses

are based on the realistic atomic media with realizable param-

eters, the predicted electromagnetically induced moiré lattices

and the associated moiré physics can be readily observed in

experiments. Future research interests may be paid attention

to the moiré aperiodic lattices at non-Pythagorean angles θ
and in nonlinear situation where the nonlinear localization of

light in atomic gases is yet to be explored.

Electronic supplementary material Electronic supplemen-

tary materials are available in the online version of this article

at https:// and http:// and are accessible for authorized users.

Acknowledgments This work was supported by the National

Natural Science Foundation of China (11704066, 12074423,

12074063), and Jiangxi Provincial Natural Science Founda-

tion (20202BABL211013).



5

[1] Y. S. Kivshar and G. P. Agrawal, Optical solitons: From fibers

to photonic crystals, San Diego: Academic Press, 2003.

[2] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D.

Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed.,

Princeton: Princeton University Press, 2011.

[3] O. Morsch and M. Oberthaler, Dynamics of Bose-Einstein con-

densates in optical lattices, Rev. Mod. Phys. 78(1), 179 (2006).

[4] I. L. Garanovich, S. Longhi, A. A. Sukhorukova, and Y. S.

Kivshar, Light propagation and localization in modulated pho-

tonic lattices and waveguides, Phys. Rep. 518(1-2), 1 (2012).

[5] Y. V. Kartashov, G. E. Astrakharchik, B. A. Malomed, and L.

Torner, Frontiers in multidimensional self-trapping of nonlinear

fields and matter, Nat. Rev. Phys. 1(3), 185 (2019).

[6] L. Zeng and J. Zeng, Gap-type dark localized modes in a Bose-

Einstein condensate with optical lattices, Adv. Photon. 1(4),

046004 (2019).

[7] L. Zeng and J. Zeng, Preventing critical collapse of higher-order

solitons by tailoring unconventional optical diffraction and non-

linearities, Commun. Phys. 3(1), 26 (2020).

[8] J. Shi and J. Zeng, Self-trapped spatially localized states in

combined linear-nonlinear periodic potentials, Front. Phys.

15(1), 12602 (2020).

[9] Y.-Y. Zheng, S.-T. Chen, Z.-P. Huang, S.-X. Dai, B. Liu, Y.-

Y. Li, and S.-R. Wang, Quantum droplets in two-dimensional

optical lattices, Front. Phys. 16(2), 22501 (2021).

[10] J. Li and J. Zeng, Dark matter-wave gap solitons in dense ultra-

cold atoms trapped by a one-dimensional optical lattice, Phys.

Rev. A 103(1), 013320 (2021).

[11] J. Chen and J. Zeng, Dark matter-wave gap solitons of Bose-

Einstein condensates trapped in optical lattices with competing

cubic-quintic nonlinearities, Chaos, Solitons & Fractals 150,

111149 (2021).

[12] Y. Zhang, Z. Wu, M. R. Belić, H. Zheng, Z. Wang, M. Xiao,

and Y. Zhang, Photonic Floquet topological insulators in atomic

ensembles, Laser Photonics Rev. 9(3), 331 (2015).

[13] F. Wen, H. Ye, X. Zhang, W. Wang, S. Li, H. Wang, Y. Zhang,

and C.-W. Qiu, Optically induced atomic lattice with tunable

near-field and far-field diffraction patterns, Photon. Res. 5(6),

676 (2017).

[14] F. Wen, X. Zhang, H. Ye, W. Wang, H. Wang, Y. Zhang, Z.

Dai, and C.-W. Qiu, Efficient and Tunable Photoinduced Hon-

eycomb Lattice in an Atomic Ensemble, Laser Photonics Rev.

12(9), 1800050 (2018).

[15] L. Zhao, Electromagnetically induced polarization grating, Sci.

Rep. 8(1), 3073 (2018).

[16] C. Hang, W. Li, and G. Huang, Nonlinear light diffraction by

electromagnetically induced gratings with PT symmetry in a

Rydberg atomic gas, Phys. Rev. A 100(4), 043807 (2019).

[17] Z. Zhang, F. Li, G. Malpuech, Y. Zhang, O. Bleu, S. Koniakhin,

C. Li, Y. Zhang, M. Xiao, and D. D. Solnyshkov, Particlelike

behavior of topological defects in linear wave packets in pho-

tonic graphene, Phys. Rev. Lett. 122(23), 233905 (2019).

[18] J. Yuan, C. Wu, L. Wang, G. Chen, and S. Jia, Observation of

diffraction pattern in two-dimensional optically induced atomic

lattice, Opt. Lett. 44(17), 4123 (2019).

[19] H. Zhang, J. Yuan, S. Dong, C. Wu, and L. Wang, Observa-

tion of an Electromagnetically Induced Grating in Cold 85Rb

Atoms, Appl. Sci. 10(17), 5740 (2020).

[20] Z. Zhang, R. Wang, Y. Zhang, Y. V. Kartashov, F. Li, H. Zhong,

H. Guan, K. Gao, F. Li, Y. Zhang, and M. Xiao, Observation of

edge solitons in photonic graphene, Nat. Commun. 11(1), 1902

(2020).

[21] Z. Zhang, Y. Shen, S. Ning, S. Liang, Y. Feng, C. Li, Y. Zhang,

and M. Xiao, Transport of light in a moving photonic lattice via

atomic coherence, Opt. Lett. 46(17), 4096 (2021).

[22] S. Ning, J. Lu, S. Liang, Y. Feng, C. Li, Z. Zhang, and Y. Zhang,

Talbot effect of an electromagnetically induced square photonic

lattice assisted by a spatial light modulator, Opt. Lett. 46(19),

5035 (2021).

[23] Z. Shi and G. Huang, Selection and cloning of periodic opti-

cal patterns with a cold Rydberg atomic gas, Opt. Lett. 46(21),

5344 (2021).
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equations. We show the derivation of the two-dimensional envelope equation in Sec. II.
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I. MAXWELL-BLOCH EQUATIONS

We consider light propagation in a three-level Λ-type coherent atomic ensemble that is cooled to an ultralow temperature to

eliminate the Doppler broadening effect [1] [See Fig. 1(a) in the main text]. A weak probe field with half-Rabi frequency Ωp

and center angular frequencyωp couples ground state |1〉 to excite state |3〉, and a very strong continuous-wave control field with

half-Rabi frequency Ωc and center angular frequency ωc, modulated periodically in spatial, bridges metastable state |2〉 to excite

state |3〉. The spontaneous emission decay rates of transitions |3〉 → |1〉 and |3〉 → |2〉 are represented by Γ13 and Γ23, and the

detunings ∆2 = ωp − ωc − ω21 and ∆3 = ωp − ω31, here ωjl = (Ej − El)/~ with Ej being the eigen energy of state |j〉. It

should be noted that, in reality, the energy levels |1〉, |2〉, and |3〉 can be selected respectively as 52S1/2(F = 1), 52S1/2(F = 2),

and 52P1/2(F = 2) states of 87Rb atoms tuned to D1-line transition [2]. Under an appropriate condition, the two laser fields

and the atomic gas result in a well-known EIT core where the absorption of the probe field can be suppressed remarkably due to

the quantum interference effect induced by the control field [3]. To obtain the electromagnetically induced moiré optical lattices

under the EIT condition, the control field (after simplification) is chosen as the periodic function of spatial coordinates (x, y)
[See the main text].

In our model, both the probe and control laser fields are assumed to propagate along the z direction, thus the electric-field

vector can be written as E = Ep + Ec = êpEpei(kpz−ωpt) + êcEc(x, y)ei(kcz−ωct) + c.c.. Here êp (êc) is the unit vector of the

probe (control) field with the envelope Ep (Ec), ωp (ωc) is the angular frequency of the probe (control) field, and kp = ωp/c
(kc = ωc/c) is the wavenumber of the probe (control) field before entering the atomic gas. Under the methods of electric-dipole

and rotating-wave approximations, the Hamiltonian of the system in the interaction picture is

Ĥint = −
3

∑

j=1

~∆j |j〉〈j| − ~ [Ωc|3〉〈2|+Ωp|3〉〈1|+H.c.] , (S1)

with ∆1 = 0. Here Ωc = (p23 · êc)Ec/~ and Ωp = (p13 · êp)Ep/~ are half Rabi frequencies of the control and probe fields,

where pjl is the electric dipole matrix element related to the transition from |j〉 to |l〉. Thus the equation of motion for density

matrix σ in the interaction picture is given by

i
∂

∂t
σ11 − iΓ13σ33 +Ω∗

pσ31 − Ωpσ
∗

31 = 0, (S2a)

i
∂

∂t
σ22 − iΓ23σ33 +Ω∗

cσ32 − Ωcσ
∗

32 = 0, (S2b)

i
∂

∂t
σ33 + i(Γ13 + Γ23)σ33 − Ω∗

pσ31 +Ωpσ
∗

31Ω
∗

cσ32 +Ωcσ
∗

32 = 0, (S2c)

(

i
∂

∂t
+ d21

)

σ21 − Ωpσ
∗

32 +Ω∗

cσ31 = 0, (S2d)

(

i
∂

∂t
+ d31

)

σ31 − Ωp(σ33 − σ11) + Ωcσ21 = 0, (S2e)

(

i
∂

∂t
+ d32

)

σ32 − Ωc(σ33 − σ22) + Ωpσ
∗

21 = 0, (S2f)

where djl = ∆j − ∆l + iγjl. Dephasing rates are defined as γjl = (Γj + Γl)/2 + γcol
jl with Γj =

∑

Ei<Ej
Γij being the

spontaneous emission rate from the state |j〉 to all lower energy states |i〉 and γcol
jl being the dephasing rate reflecting the loss of

phase coherence between |j〉 and |l〉.
According to the method of slowly varying envelope approximation, the Maxwell equation for the probe-field Rabi frequency

Ωp is described as [4]

i

(

∂

∂z
+

1

c

∂

∂t

)

Ωp +
c

2ωp

(

∂2

∂x2
+

∂2

∂y2

)

Ωp +
ωp

2c
χpΩp = 0, (S3)

where χp = Na|p13 · êp|2σ31/(~ε0Ωp) is the optical susceptibility of the probe field, with Na being atomic density. Because

we focus on the stationary state of the system under study, we assume that the time duration of the probe field is very large, i.e.,

the time derivatives in the Maxwell-Bloch Eqs. (S2) and (S3) can be neglected appropriately.
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II. DERIVATION OF ENVELOPE EQUATION

To investigate electromagnetically induced moiré optical lattices in the linear circumstance, we assume that the intensity of

probe field is very weak. Thus the Bloch Eq. (S2) can be solved by using a perturbation expansion, i.e., Ωp being taken as a

small parameter. The linear solution of nondiagonal element is read as

σ31 =
d21Ωp

|Ωc|2 − d21d31
. (S4)

Based on this solution we can achieve the expression of the optically induced susceptibility of the probe field with the form [5, 6]

χp =
Na|p13 · êp|2

~ε0

d21
|Ωc|2 − d21d31

. (S5)

Because of the energy levels being selected from 87Rb atoms tuned to D1-line transition, the decay rates are given by Γ2 ≃ 1.0
kHz, and Γ3 ≃ 5.75 MHz, and p13 = 2.54× 10−27 C cm [2]. Through choosing other parameters Na = 3.69× 1010 V0 cm−3

(V0 is a real constant), Ωc0 = 1.0× 107 Hz, R = 36 µm, ∆1 = 0, ∆2 = 1.0× 105 Hz, and ∆3 = 1.0× 104 Hz, the real part and

the imaginary part of product term d21d31 are much smaller than |Ωc0|2. In addition, we introduce some dimensionless variables:

spatial coordinates r = (ξ, η) = (x, y)/R, u = Ωp/U0, and propagation distance s = z/LDiff with typical diffraction length

LDiff = ωpR
2/c. Here U0 and R are the typical Rabi frequency and beam radius of the probe field. Based on the parameters

mentioned above, we can obtain the typical diffraction length LDiff = 1.0 cm. Then the Maxwell equation for the probe-field

Rabi frequency can be convert into the dimensionless 2D envelope equation

i
∂u

∂s
= −

1

2

(

∂2

∂ξ2
+

∂2

∂η2

)

u+ VOL(r)u, (S6)

The coefficient of the last term in Eq. (S6) represents the induced moiré optical lattice potential with lattice depth V0

VOL(r) = −
V0

[1 + f(ξ, η)]2
. (S7)
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