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Abstract This paper reviews recent efforts to realize a high-

efficiency memory for optical pulses using slow and stored light

based on electromagnetically induced transparency (EIT) in

ensembles of warm atoms in vapor cells. After a brief summary

of basic continuous-wave and dynamic EIT properties, studies

using weak classical signal pulses in optically dense coherent

media are discussed, including optimization strategies for stored

light efficiency and pulse-shape control, and modification of EIT

and slow/stored light spectral properties due to atomic motion.

Quantum memory demonstrations using both single photons

and pulses of squeezed light are then reviewed. Finally a brief

comparison with other approaches is presented.

Electromagnetically induced transparency-based slow and

stored light in warm atoms

Irina Novikova1,*, Ronald L. Walsworth2, and Yanhong Xiao3

1. Introduction

In recent years, an increasing number of applications, such
as quantum information and quantum sensor technologies,
have had their performance improved as a result of har-
nessing the quantum mechanical properties of light. Many
of these applications rely on the ability to couple light to
resonant systems, such as ensembles of atoms (warm or
cold), “atom-like” defects in solid-state systems (such as ni-
trogen vacancy centers in diamond) or nanostructures (such
as quantum dots), and photonic structures. A prominent ex-
ample is electromagnetically induced transparency (EIT),
which allows controlled manipulations of the optical prop-
erties of atomic or atom-like media via strong coupling of a
near-resonant optical signal field and collective long-lived
ensemble spin by means of a strong classical optical control
field [1,2]. EIT has become a versatile tool for realization of
controllable atom-light coupling, such as the manipulation
of optical pulse propagation through atomic and atom-like
media via slow [3–5] and stored light [6–9].

One of the exciting potential applications of EIT and
slow and stored light is for practical realization of a quantum
memory. This rapidly evolving area of research has been re-
viewed in several publications over the last decade [10–16].
In this review we focus on experiments aimed at optimizing
EIT-based slow and stored light using warm atoms contained
in vapor cells of various configurations. The key difference

between cold and warm atomic ensembles is the thermal
motion of warm atoms, which produces significant Doppler
broadening of optical transitions. However, the broadening
of the two-photon spin transition can be minimized by work-
ing in collinear geometry (e. g., co-propagating control and
signal fields). The residual Doppler broadening caused by
small mismatch of the wavelengths of the two fields can be
practically eliminated by restriction of the motion of atoms
in a region smaller than a microwave transition wavelength
(e. g., by adding an inert buffer gas), thereby operating in a
Dicke narrowing regime for the two-photon transition [17].
Thus, warm atomic ensembles can be as practical as cold
atoms for coherent manipulations of atomic spins using
EIT [7, 18–22]. In addition, warm-vapor-cell experiments
have several attractive features, including relative simplicity
of design and easy control over large atomic ensembles.
A typical vapor cell is a sealed glass cylinder or sphere
containing a small amount of solid metal (e. g., Rb or Cs).
The atomic vapor concentration can be easily controlled by
changing the temperature of the glass cell. Moreover, any
unwanted external magnetic fields can be effectively elimi-
nated by placing the atomic vapor cell in a high-permeability
magnetic shielding enclosure. The interaction time of warm
atoms with EIT laser fields is extendable to several mil-
liseconds by introducing an inert buffer gas at a pressure
of a few torr into the vapor cell to restrict the motion of
alkali metal atoms to slow diffusion, or by employing an
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anti-relaxation wall coating on the inner surface of the va-
por cell. In addition, recent progress in chip-scale atomic
clocks [23] and magnetometers [24] employing EIT and
related effects clearly demonstrates the potential for dra-
matic scaling down and commercialization of atomic vapor
cell-based technology, including for educational purposes.

This article is organized as follows. Section 2 gives a
brief summary of the basic principles of idealized three-
level EIT systems and typical experimental results for slow
and stored light using warm atoms. Section 3 describes gen-
eral algorithms for optimization of an EIT-based quantum
memory based on slow and stored light and their recent ex-
perimental verification. Section 4 discusses modifications to
the idealized description of EIT and slow/stored light arising
from the motion of warm atoms, as well as related exper-
iments involving buffer gas and wall-coated vapor cells.
Experimental demonstrations of the storage of non-classical
states of light in warm atomic ensembles are described in
Sect. 5, in which there is also a discussion of additional com-
plications that arise for non-classical signal storage com-
pared to that of weak coherent signals. Section 6 provides a
comparison of ensemble EIT schemes with alternative light
storage techniques.

2. Overview of EIT and slow/stored light in
warm atoms

2.1. Basic principles of EIT in an idealized
three-level scheme

Following the formalism of [10], we consider propaga-
tion of a weak optical signal (or probe) pulse with enve-
lope E ✭z❀ t✮ and a strong (classical) optical control field
with a Rabi frequency envelope Ω✭z❀ t✮ in a resonant Λ-
type atomic medium, as illustrated schematically in Fig. 1.
As in [6, 55, 57–59], we define the Rabi frequency Ω as

Figure 1 (online color at: www.lpr-journal.org) (a) Idealized three-

level Λ EIT system, formed by interaction of an atomic ensemble

with a strong control optical field Ω✭t✮ and weak signal optical

field E ✭t✮. Two-photon detuning δ is the mismatch between the

frequency difference of the two optical fields and the energy split-

ting of the two ground-state levels ❥b✐ and ❥c✐ (usually a Zeeman

and/or hyperfine splitting, ΔHFS). One-photon detuning Δ is the

common detuning of both optical fields from the excited state ❥a✐.
(b) Typical arrangement for warm-atom EIT and slow/stored light

experiments, with an atomic vapor cell (e. g., using Rb) located

within magnetic shielding and interacting with the two optical

fields.

❥Ω❥2 ❂℘2
esI❂✭2h̄2ε0c✮, where I is the control intensity. In

general, the propagation of a signal pulse can be described
by the following equations [6, 10], assuming a slowly vary-
ing envelope E of the signal field and defining the optical po-
larization P❂∑ ❥b✐❤a❥❂♣N of the ❥a✐–❥b✐ transition and the

spin coherence S ❂ ∑ ❥b✐❤c❥❂♣N between states ❥b✐ and ❥c✐:

✭∂t ✰ c∂z✮E ✭z❀ t✮ ❂ ig
♣

NP✭z❀ t✮❀ (1)

∂tP✭z❀ t✮ ❂�γP✭z❀ t✮✰ ig
♣

NE ✭z❀ t✮

✰ iΩ✭t � z❂c✮S✭z❀ t✮❀ (2)

∂tS✭z❀ t✮ ❂�γbcS✭z❀ t✮✰ iΩ✭t � z❂c✮P✭z❀ t✮✿ (3)

Here, c is the speed of light in vacuum, N is the number of
atoms in the interaction region, γ and γbc are the decoher-
ence rates of the optical and spin transitions, respectively,
g is the atom-field coupling constant (assumed to be the
same for both the ❥a✐–❥b✐ and ❥a✐–❥c✐ optical transitions), λ
is the signal field wavelength, L is the length of the sample,
and αL ❂ 2g2N❂γc is the unsaturated optical depth on the
❥b✐–❥a✐ optical transition.

Under the conditions of two-photon Raman resonance
(i. e., when νc � νs ❂ Δbc) the control field creates strong
coupling between the signal field E and a collective ground-
state spin coherence (“spin wave”) S in the atomic ensemble,
which results in strong suppression of resonant absorption
for both the control and signal fields; i. e., the effect known
as EIT. In the ideal case of no spin decoherence (γbc ❂ 0)
EIT provides 100% transmission of the optical fields. For
any realistic system, however, nonzero γbc leads to residual
absorption even under EIT conditions. In the case of steady-
state optical fields and assuming no absorption for the strong
control field Ω, the amplitude of the signal field after propa-
gating the distance L along the axis z of the atomic medium
E ✭z✮ is the following:

❥E ✭z✮❥2 ❂ ❥E ✭0✮❥2 exp

✒
�αL

γγbc

2❥Ω❥2
✓

✿ (4)

For typical conditions in warm atoms, which provide a
reasonable approximation of a three-level Λ system, EIT of
more than 50% is readily accomplished. Note also that the
full width at half maximum (FWHM) spectral bandwidth
of the transparency window (ΔωEIT) is proportional to the
intensity of the control field [25, 26]:

ΔωEIT ❂ 2
❥Ω❥2

γ

1♣
αL

✿ (5)

The presence of the control field also modifies the disper-
sive properties of the atomic medium near the two-photon
Raman resonance. In particular, EIT is accompanied by a
steep positive variation dn✭νs✮❂dνs of the refractive index
n with the frequency νs of the signal field. This sharp non-
anomalous dispersion results in an ultraslow group velocity
for the signal pulse. If the bandwidth of the signal pulse
lies within the EIT spectral window, then the pulse will
be delayed, with only modest absorption while propagat-
ing through the atomic medium of length L, by the group

© 2012 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.lpr-journal.org
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delay tD:

tD ❂ L❂vg ❂ αL
γ

2❥Ω❥2
✿ (6)

Importantly, the intensity of the control field dictates the
propagation (group) velocity of the signal pulse by deter-
mining the spectral width of the transparency window: the
weaker the control field, the longer the group delay. There-
fore, by adiabatically changing the intensity of the control
field one is able to control the dynamics of the signal pulse
with minimal loss. In particular, reducing the control field
intensity to zero reduces the signal pulse group velocity
to zero, effectively storing the information carried by the
pulse in the atomic medium. It is convenient to describe
such slow light propagation in terms of quasi-particles –
“dark-state polaritons” [6,10] – which treats the propagation
of the signal pulse through the EIT medium via a quan-
tum mechanical field operator Ψ✭z❀ t✮ that is a combination
of photonic (E ✭z❀ t✮) and ensemble spin coherence (S✭z❀ t✮)
components:

Ψ✭z❀ t✮ ❂ cos✭θ✮E ✭z❀ t✮� sin✭θ✮S✭z❀ t✮❀ (7)

where the mixing angle θ is defined as

cos✭θ✮ ❂
Ω♣

Ω2✰g2N
❂

�
vg

c
✿ (8)

This treatment provides a simple description of stored light
as a dark-state polariton tuned to be completely an ensemble
spin coherence (cos✭θ✮ ❂ 0), which can be realized by re-
ducing the control field to zero (Ω❂ 0) once the signal pulse
has entered the EIT medium. Such a pulse can be stored for
times of the order of the ensemble spin coherence lifetime
(T2 ❂ 1❂γbc) and then converted back to a propagating slow
light pulse by switching the control field back on (Ω ✻❂ 0,
cos✭θ✮ ✻❂ 0) and released from the EIT medium as a purely
photonic pulse. Quantum states of retrieved signal pulses
are in principle identical to those of the input pulses.

Figure 2 illustrates schematically the three stages of the
light storage process (writing, storage, and retrieval). At
the writing stage, a signal pulse Ein✭t✮ is mapped onto a
collective spin excitation S✭z✮ by adiabatically reducing the
control field to zero. This spin wave is then preserved for
some storage time τ (storage stage); all optical fields are
turned off at that time. Finally, at the retrieval stage, the
signal field Eout✭t✮ is retrieved by turning the control field
back on.

2.2. Experimental realization of EIT and classical
slow/stored light in warm atomic ensembles

The idealized three-level Λ scheme can be closely realized
in optical transitions of the D lines of alkali metal atoms,
such as Rb and Cs. Either two hyperfine components of
the ground state or Zeeman substates of the same hyperfine
component can play the role of the two ground states ❥b✐
and ❥c✐ for a Λ system, such as shown in Fig. 1a. A typical

Figure 2 (online color at: www.lpr-journal.org) Schematic of the

light storage process. (a) Time variation of the control field Ω✭t✮,
which is on during the writing and retrieval stages and is turned

off for the storage period. (b) Light storage under ideal conditions

(atomic medium with very high optical depth and insignificant

loss), in which the signal field pulse is slowed down and fully

compressed inside the EIT medium during the writing stage, and

then completely mapped (stored) into the spin wave and finally

retrieved without losses. (c) The same process for more realistic

conditions (moderate optical depth, some loss); in this case the

slow light group velocity vg is not sufficiently small to compress

the whole signal pulse inside the EIT medium, so that the front

of the pulse escapes the cell before the control field is turned off;

at the same time the tail of the pulse is not stored since it does

not enter the medium during the writing stage. Practical consider-

ations of the EIT medium length and possible pulse compression

(proportional to the optical depth) set the fundamental limitation of

maximum achievable light storage efficiency, even for insignificant

loss during the storage period.

arrangement for warm-atom EIT and slow/stored light ex-
periments is shown in Fig. 1b. Since a stable relative phase
between the control and signal fields is required to create,
preserve, and retrieve long-lived spin coherence via EIT,
these two fields are typically derived from the same laser
to address a Zeeman coherence within the same hyperfine
state, or from two phase-locked lasers tuned to the different
hyperfine optical transitions. In typical experimental config-
urations, orthogonal control and signal fields are used; they
are combined at a polarizing beam splitter before entering
the vapor cell, and then the control field is separated after
the cell using a second polarizer, so so that the signal field
is separately detected.

For some experiments, it is possible to phase-modulate
the output of a single laser at a microwave frequency match-
ing the atomic hyperfine splitting, and then use the strong
field at unmodulated frequency νc as the control field and
one of the first modulation sidebands at frequency νc✰ΔHFS

as the signal field. In this case both fields perfectly spatially
overlap and have the same polarization, but it is more chal-
lenging to isolate the signal field for detection after inter-
action with atoms. Often the signal and control fields are
resolved by monitoring the beat frequency between each
field and a third (reference) field at a shifted radio frequency.
Another potential complication of this phase modulation

www.lpr-journal.org © 2012 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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method is the presence of the other modulation sideband
at the frequency νc �ΔHFS. While this field is far-detuned
from all optical transitions, its presence may still affect the
signal field transmission and dynamics through enhanced
four-wave mixing (FWM) processes (see discussion below).

Usually, an atomic vapor cell is a sealed Pyrex glass
sphere or cylinder that contains a small amount of solid
or liquid alkali metal. The density of atoms in the vapor
phase is determined by thermodynamic equilibrium, and
can be controlled by the cell temperature. In a “vacuum”
cell, there is no buffer gas added and the alkali metal atoms
move ballistically from wall to wall, except for occasional
alkali metal-alkali metal collisions. Since atoms are usu-
ally completely thermalized as a result of a single collision
with a wall, the atomic ground state coherence lifetime in a
vacuum vapor cell is limited by the mean time-of-flight of
atoms through the laser beam: γbc ∝ ❤v✐T❂a, where a is the

radius of the beam and ❤v✐T ❂

♣
8kT❂πm (where k is the

Boltzmann constant, m is atomic mass, and T is absolute
temperature) is the mean atomic velocity in thermal equilib-
rium. There are two commonly employed methods to extend
the coherence lifetime of warm atoms: (i) atomic motion
can be effectively slowed down by the use of an inert buffer
gas, causing alkali metal atoms to move diffusively through
the laser beam; or (ii) the atomic ground-state coherence
can be preserved during wall collisions by coating the inside
of the glass walls with an anti-relaxation coating. With the
buffer gas method the atom-laser interaction time can be
extended by several orders of magnitude [27, 28]:

γbc ❂ 2✿4052 D

a2

1

1✰6✿8λ❂a
❀ (9)

where D❂ D0 ✁ p0❂p is the diffusion constant for motion of
the alkali metal atom through the buffer gas, λ ❂ 3D❂❤v✐T is
the alkali metal atom mean free path, p is the buffer gas pres-
sure, and D0 and p0 are the corresponding values at one stan-
dard atmosphere. Standard buffer gases include inert atoms
(He, Ne, Ar) or simple molecules (N2); these gases are char-
acterized by small collisional dephasing cross-section for
the ground states of alkali metal atoms (detailed informa-
tion on diffusion constants and collisional cross-sections of
alkali metal atoms with various buffer gases is available,
for example, in [27]). However, excited electronic states are
much more sensitive to buffer gas collisions, resulting in a
homogeneous broadening of the optical transitions.

Figure 3 shows typical experimental results for slow and
stored light in a 87Rb vapor cell, with 22 torr of Ne buffer
gas in this example. A single laser tuned in the vicinity of
the 5S1❂2 ✦ 5P1❂2 (D1) line of 87Rb served as the control
optical field. Phase modulation of the laser output using an
electro-optical modulator transferred approximately 2% of
the total light power into each first-order sideband, creating
signal and Stokes optical fields with negligible variations in
control field amplitude. Small variation of the modulation
frequency around the hyperfine splitting of 6.835 GHz con-
trolled the two-photon detuning δ ; and desired pulse shapes
for the signal field were produced by applying a calibrated
voltage to the modulator during the writing stage. In such a

Figure 3 (online color at: www.lpr-journal.org) Examples of

measured signal field after propagation through a warm-Rb EIT

medium with with 22 torr Ne buffer gas: (a) slow light (constant

control field); (b) stored light (flat control field during signal pulse

writing and retrieval; zero control field during storage). In both

cases the control field power was 900 μW. Insets show schemat-

ics of time-course for the control field and input signal pulse.

configuration the best slow and stored light was observed us-
ing circularly polarized optical fields in a Λ system formed
by the control field on the F ❂ 2 ✦ F ✵

❂ 2 transition and
the signal field on the F ❂ 1 ✦ F ✵

❂ 2 transition.

In slow light experiments the control field intensity is
ideally constant; hence the signal pulse propagates with con-
stant reduced group velocity. Figure 3a shows a measured
delay of 440 µs for the output signal pulse, exceeding the
FWHM of the input pulse (350 µs), with a corresponding
fractional delay of 1.3. However, interaction with the atomic
ensemble also broadened the output signal pulse to 500 µs
due to the finite EIT transmission linewidth. In the most
common stored light realization (Fig. 3b) the control field is
constant during writing and retrieval stages (“flat” control);
but it is turned off during the storage using, for example, an
acousto-optical modulator. In such cases the signal pulse,
slowly propagating inside the atomic ensemble as a dark-
state polariton, is converted into a non-propagating spin
wave (i. e., is “stored” in the atomic medium) by turning
off the control field power. In the experimental example
shown in Fig. 3b, the front portion of the signal pulse es-
caped the cell before storage due to insufficient fractional

© 2012 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.lpr-journal.org
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delay and pulse broadening (“leakage”). The stored frac-
tion of the signal pulse was then retrieved by turning the
control field back on after a few milliseconds. The shapes
of the retrieved signal pulses were nearly identical; they
also were good matches to the slow light pulse shown in
Fig. 3a (accounting for the missing front of the signal pulse
due to leakage). However, longer storage time resulted in
exponential reduction of the recovered signal pulse energy
due to spin wave decoherence during storage. Relatively
long (❃ 1 ms) measured spin coherence lifetimes have been
achieved in warm-atom EIT-based stored light experiments
by using high-quality magnetic shielding to minimize the
effect of stray laboratory magnetic fields, and by mitigating
the effect of atomic thermal motion using a relatively large
laser beam diameter (approximately 1 cm) and high buffer
gas pressure [17, 29].

Substantially longer spin coherence lifetimes are achiev-
able in vapor cells with an anti-relaxation wall coating.
Paraffin is the most commonly used anti-relaxation wall
coating for alkali metal atom vapor cells [30–33]. Ground-
state coherence times of up to a second (i. e., up to 10 000
wall collisions before spin decoherence) were achieved us-
ing paraffin-coated cells [30, 32, 34–36], and a Zeeman co-
herence lifetime of up to 60 s was recently reported in va-
por cells with novel alkene coatings [37]. However, the
dynamics of light-atom interactions is more complicated
with wall-coated cells than with buffer gas cells due to long
coherence lifetimes “in the dark” (outside the laser beam),
as is discussed in more detail in Sect. 4.

At low optical depth (i. e., low atomic density and/or
small vapor cell length) the ground-state coherence lifetime
is mainly determined by environmental parameters such as
the finite interaction time of atoms with the optical fields,
residual magnetic field inhomogeneities, atom-atom and
atom-wall collisions [27], etc. At high optical depth, how-
ever, other processes can become dominant and shorten
the ground-state coherence lifetime, e. g., radiation trap-
ping [38–40]. Due to residual absorption at finite optical
depth there is a nonzero population of the excited atomic
state in the presence of the optical fields, even under EIT
conditions, resulting in spontaneous emission of photons in
arbitrary directions and with arbitrary phases. These spon-
taneously emitted photons do not generally experience EIT
due to wave-vector mismatch with the control field. Thus
in optically thick vapor there is a high probability for such
photons to be reabsorbed, leading to further spontaneous
emission, reabsorption, etc. Such “radiation trapping” can
significantly degrade the dark state that underlies EIT.

At high atomic density, EIT performance can also be
degraded by competing nonlinear processes, such as stimu-
lated Raman scattering and four-wave mixing (FWM) [25,
41–46]. In this case one cannot neglect the off-resonant
coupling between levels ❥b✐ and ❥a✐, which results in gen-
eration of a Stokes optical field at the frequency νc�ΔHFS.
Such a situation is well modeled by a simple double-Λ sys-
tem, where the output signal and Stokes field amplitudes
are the results of interference between “traditional” EIT
and FWM [25, 41, 47, 48]. Both continuous-wave EIT spec-
tra and signal pulse propagation dynamics can be affected

by the presence of a seeded or spontaneously generated
Stokes field, with both signal and Stokes fields observed at
the reading stage of the light storage process [49–51]. On
the other hand, such FWM processes can be used to create
strong correlation and entanglement between the signal and
Stokes fields [52–54].

3. Optimization of light storage efficiency

3.1. Limited memory efficiency due to finite
optical depth

We define the light storage memory efficiency η as the
probability of retrieving an incoming single photon after
storage in an ensemble EIT system; or, equivalently, as
the energy ratio between the initial and retrieved signal
pulses [55, 56]:

η ❂

❘ τ✰T
τ ❥Eout✭t✮❥2dt
❘ 0
�T ❥Ein✭t✮❥2dt

✿ (10)

Even under the idealized assumptions of no incoherent
losses in the system, realization of an EIT quantum memory
with 100% storage efficiency requires simultaneous fulfill-
ment of two conditions. First, as illustrated in Fig. 2b, the
group velocity vg of the signal pulse inside the medium
has to be low enough to spatially compress the entire input
pulse within the length L of the ensemble, i. e., to avoid
“leaking” the front edge of the signal pulse past the EIT
medium or cutting off the pulse tail when the control field
is shut off as part of the storage procedure. This first con-
dition equates to requiring the signal pulse duration T to
be short enough so that T vg ✜ L. The second condition is
that all spectral components of the incoming signal pulse
must fit inside the EIT window to minimize absorption and
resulting spontaneous emission losses, which equates to re-
quiring 1❂T ✜ ΔωEIT ✬

♣
αLvg❂L [6]. The simultaneous

satisfaction of both conditions is possible only at very high
optical depth αL✢ 1 [6,55]. As mentioned above, it is very
challenging to maintain high transparency and long ground-
state coherence time as the density of atoms increases. Thus,
for practical purposes it is important to optimize EIT mem-
ory performance for moderately high optical depth αL ❃ 1.
Such an imperfect but “realistically optimized” situation
is illustrated in Fig. 2c: the tails of the signal pulse are not
stored in the EIT medium due to finite optical depth; there
is some modest decoherence during storage; and the output
pulse shape is slightly modified due to finite EIT spectral
width. Degradation due to these factors must be balanced to
achieve maximum signal pulse storage efficiency.

3.2. Optimization procedure

In a series of recent theoretical works, Gorshkov et al.
considered a wide range of processes for optimal storage
and retrieval of photon wave packets in atomic ensem-
bles [55, 57–60]: EIT; far-off-resonant Raman; and a va-
riety of spin echo methods including ensembles enclosed in

www.lpr-journal.org © 2012 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 4 (online color at: www.lpr-journal.org)

Schematic of the iterative signal pulse optimiza-

tion procedure. (a) An input signal pulse Ein✭t✮
is mapped into a spin wave S✭z✮ using a control

field envelope Ω✭t✮. (b) After a storage period

τ , the spin wave is mapped into an output sig-

nal pulse Eout using the time-reversed control

field envelope Ω✭τ� t✮. (c) The time-reversed

and normalized version of the measured Eout is

used as the input Ein for the next iteration of the

procedure. (Reproduced from [56].)

a cavity, inhomogeneous broadening, and high-bandwidth
non-adiabatic storage (1❂T ✘ αLγ) [60]. This comprehen-
sive analysis revealed several general strategies for stored
light optimization; and demonstrated that the highest achiev-
able memory efficiency depends fundamentally only on the
optical depth αL, since the strength of the photonic coupling
to the collective excitation in the atomic ensemble, relative
to spontaneous decay, increases with optical depth [55]. The
analysis of Gorshkov et al. also showed that under opti-
mized conditions the writing stage is the time reversal of the
retrieval stage. This time reversal symmetry implies that for
degenerate lower levels of a Λ system, stored signal pulses
are optimally retrieved by a control field propagating in
the opposite direction with respect to the writing stage (i. e.,
“backward retrieval”) [55,58]. In contrast, “forward retrieval”
(co-propagating writing and retrieval control fields) is more
efficient when non-degenerate hyperfine states are used for
light storage [58], due to the nonzero momentum of the spin
wave for a non-degenerate Λ system.

Furthermore, the analysis mentioned above demon-
strated that for each optical depth, there exists a unique spin
wave Sopt✭z✮ that provides the maximum memory efficiency.
Thus, the focus of the optimization process becomes the
identification of a matched pair of control and signal pulse
fields to map the signal pulse reversibly onto the optimal
spin wave.

Two solutions have been analyzed [55, 58] for this opti-
mization problem. The first method utilizes the time-reversal
symmetry of the optimized storage process, which enables
determination of an optimal signal pulse shape for a given
control field temporal profile using successive time-reversal
iteration of the signal pulse shape. An important advantage
of this optimization method is that its realization does not
require any prior knowledge of the system parameters. Fig-
ure 4 shows schematically the iterative optimization proce-
dure adapted to forward retrieval [58]: the input signal pulse
Ein✭t✮ is mapped into a spin wave S✭z✮ inside the atomic
vapor for a given optical depth and control Rabi frequency
envelope Ω✭t✮ (both Ein✭t✮ and Ω✭t✮ are assumed to vanish

outside of time interval ❬0❀T ❪); an output signal pulse Eout✭t✮
is forward-retrieved using the time-reversed control field
pulse Ω✭T�t✮; then a time-reversed and normalized version
of the retrieved signal pulse Eout✭T � t✮ becomes the input
signal pulse for the next iteration cycle.

These steps are repeated several times until the shape of
the retrieved pulse Eout✭t✮ is identical to the time-reversed
input signal pulse Ein✭T � t✮ (attenuated because of imper-
fect memory). Under reasonable assumptions (we assume
that writing and retrieval control fields are real, and that
spin decoherence has a negligible effect during storage and
retrieval stages, and only cause a modest reduction of the
efficiency due to spin wave decay during storage time) the
resulting pulse shape provides the highest storage efficiency
possible for a given optical depth and control field pro-
file. The success of this optimization procedure is based
on linearity of the EIT light storage process, such that at
each step the stored spin wave can be decomposed into a
linear superposition of orthogonal spin wave eigenmodes,
for which the optimal spin wave results in maximum stor-
age efficiency, and consequently maximum contribution to
the retrieved signal pulse. Thus, after several iterations the
optimization procedure converges to the optimized input
signal pulse shape for a given optical depth and control field
temporal profile.

The second optimization method allows maximally effi-
cient storage and retrieval of an arbitrary signal pulse shape
Ein✭t✮, which requires determination of an optimized control
field Ω✭t✮. As shown in [58], this optimized control field
can be most easily calculated for the idealized condition
of mapping Ein✭t✮ into a “decayless” spin wave S✭z✮ in a
semi-infinite atomic EIT medium with no optical polariza-
tion decay and for a given optical depth αL. This decayless
spin wave S✭z✮ allows unitary reversible storage of an ar-
bitrary input signal pulse, which establishes a one-to-one
correspondence between Ein✭t✮ and a given control field. As
also shown in [58], this same control field maps the input
signal pulse onto the optimal spin wave Sopt✭z✮ in a realistic
EIT medium with finite length and polarization decay.
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3.3. Experimental verification

The light storage optimization procedures outlined above
have been successfully tested experimentally using weak
classical signal pulses in warm Rb atomic ensembles. Exper-
imental realizations [49,56] of the iterative time-reversal op-
timization method confirmed the three primary predictions
of the underlying theory [55, 58]: (i) efficiency increases
with each iteration until the input signal field converges to
its optimal pulse shape; (ii) the result of the optimization
procedure is independent of the initial (trial) signal pulse
shape; and (iii) the final, optimal light storage efficiency
depends only on the optical depth and not on the control
field temporal profile.

An example experimental realization of the iterative
optimization procedure is shown in Fig. 5. The initial input
signal pulse had a Gaussian profile (iteration 0). Since this
pulse shape was far from optimal, a large fraction of the
input signal pulse escaped the cell before the control field
was turned off. However, some of the pulse was stored as an
atomic spin wave (iteration 0, writing stage). After a 400 µs
storage interval, the time-reversed control field was turned
on (iteration 0, retrieval stage), and the retrieved signal pulse
was detected. The efficiency of the storage process at this
stage was only 16%. The detected signal pulse shape in
iteration 0 was then digitally reversed and normalized to
the same integrated input pulse energy and used as an input
signal pulse for iteration 1. This new input pulse shape was

much closer to optimal, such that it was stored with an
efficiency of 45%. To find the optimal input pulse shape,
these steps were repeated several times until the shape of the
retrieved signal pulse was identical to the reversed profile of
the input pulse (though the amplitude of the retrieved pulse
was always somewhat attenuated because of finite loss in the
EIT medium unrelated to pulse shape). The resulting signal
pulse shape provided the highest storage efficiency for a
given control field (and fixed optical depth). For example,
in the experiment shown in Fig. 5, the optimal signal field
pulse shape (achieved at the end of iteration 2) yielded a
storage efficiency of 47%.

In this and all other experiments the resultant optimized
signal pulse shapes are in excellent agreement with theoreti-
cal calculations using Eqs. (1)–(3) and effective parameters
for the optical depth and control field Rabi frequency [49]
to make a connection between realistic 87Rb atoms (which
have 16 unique states associated with the D1 optical tran-
sition) and an idealized three-level Λ system. Similarly,
optimized control field envelopes obtained from numerical
solutions of Eqs. (1)–(3) for arbitrary signal pulses provide
light storage efficiency similar to that of the iterative signal
pulse method. Figure 6 shows examples of measured light
storage for two randomly chosen signal field envelopes us-
ing the calculated optimal control fields for the writing stage
and two different retrieval methods. First, a flat retrieval
control field of the same intensity was used to retrieve both
pulses, which resulted in the same output pulse (red dashed

Figure 5 (online color at: www.lpr-

journal.org) Example experimental realization

of the light storage optimization procedure.

Top row: control fields during the storage and

retrieval process. Lower three rows: input sig-

nal pulses during three iterations of the opti-

mization process in the left column with the

initial input pulse in the first row and the pulses

derived from the previous iteration’s output

pulse in the following rows. Signal field leak-

age during the write process as well as the

retrieved pulse are shown on the right. Signal

pulses are normalized such that the integrated

intensity of the input signal pulse is unity for

time measured in microseconds. For more in-

formation, see [61].
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Figure 6 (online color at: www.lpr-journal.org) Example measure-

ments of light storage for two differently shaped signal pulses

(a✵, b✵) using in each case the calculated optimal control fields

(a, b) for the writing stage (t ❁ 0). Input signal pulse shapes are

shown as black dotted curves. The same graphs also show the

signal pulse leakage (solid black curves for t ❁ 0) and retrieved

signal pulses using flat control fields (red dashed curves) or time-

reversed control fields (red solid curves) at the retrieval stage

(t ❃ 100 μs). The temperature of the Rb vapor cell was 60.5 °C

(αL❂ 24); other experimental details are given in [49].

curves in Figs. 6a✵ and b✵) independent of the input signal
pulse shape, because the excitation was stored in the same
optimal spin wave in each case. Second, an optimal control
field was used for retrieval (i. e., a time-reversed version
of the writing control field), which yielded output signal
pulses that were time-reversed copies of the corresponding
input signal pulses (moderately attenuated due to finite loss
in the system). This observed time-reversal symmetry be-
tween stored and retrieved signal pulse shapes illustrates the
mutual consistency of the two optimization methods.

Experimental tests have also been performed of the the-
oretical prediction of light storage memory efficiency in-
creasing with optical depth, by repeating the iterative signal
pulse optimization procedure for a wide range of warm Rb
atomic densities [49]. Figure 7 shows memory efficiency
as a function of optical depth measured for two different
power values of a flat control field. Each experimental data
point corresponds to the storage efficiency measured for op-
timized signal pulses obtained using the iterative optimiza-
tion procedure for each particular control field power and
optical depth. These results indicate that for moderately low
optical depth (αL✔ 25) the optimization procedure follows
the prediction of the simple theory, yielding a maximum
efficiency that is independent of control field power, reach-
ing a highest efficiency of 45%. However, at higher optical
depth the experimental results deviate from theory, show-
ing reduced light storage efficiency at high optical depth.
Several reasons for this non-ideal behavior have been identi-
fied. One of them is decay of the spin wave. Nonetheless, if
the signal pulse duration is short enough, the effect of spin
wave decay is negligible during the writing and retrieval
processes; and the optimization procedures, developed for
an ideal system with no spin decay, can apply to realistic
atomic ensembles with spin decoherence. In all cases, maxi-
mum storage efficiency is achieved for optimal signal and/or
control field pulse shapes after taking into account the reduc-

tion of storage efficiencies by the factor e�τ❂ts due to spin

Figure 7 (online color at: www.lpr-journal.org) Measured light

storage efficiency as a function of optical depth (colored dia-

monds) for two different power values of flat control fields, op-

timized signal pulses, and a 100 μs storage period in warm Rb

vapor [49]. Thin and thick lack solid curves show the theoretically

predicted maximum efficiency for both high and low control field

powers, assuming no spin wave decay (i) and taking into account

an efficiency reduction by a factor of 0.82 during the 100 μs stor-

age period (ii). Dashed red (iii) and blue (iv) curves are calculated

efficiencies for the same two control fields assuming spin wave

decay with a 500 μs time constant during all three stages of the

storage process (writing, storage, retrieval) [49].

wave decoherence during the storage time τ (ts is the spin
wave decay time constant). Note that as the optimal pulse
duration increases with optical depth for a given control
power, due to density narrowing of the EIT window (see
Eq. (5)), spin decay also becomes significant during writing
and retrieval, breaking time-reversal symmetry and reduc-
ing the efficiency of light storage at higher optical depth.
This problem can be alleviated in many practical cases by
using higher control field power, and hence shorter optimal
signal pulses.

Fig. 7 also shows that spin wave decay cannot account
for the observed lower-than-expected optimized storage ef-
ficiency for αL ✕ 25, although time-reversal symmetry is
still preserved [49]. One of the possible causes for the lower
efficiency is resonant FWM, which becomes significant at
large optical depth. This process is well modeled by a sim-
ple double-Λ system, where the output signal and Stokes
field amplitudes are the results of interference between the
“traditional” (single-Λ) EIT system and their coupled propa-
gation under FWM conditions. The description of the cou-
pled propagation of the signal and Stokes fields is in good
agreement with experimental observations [48, 51]. Under
these conditions the simple dark-state polariton treatment
of light storage is no longer valid. The spin wave becomes
dependent on a combination of signal and Stokes fields,
which does not preserve each of them individually [50, 51].
While detrimental for storage of quantum states of light,
resonant FWM may be useful for classical slow light ap-
plications, as it offers additional control mechanisms for
signal pulse propagation by, for example, controlling the
amplitude of a seeded Stokes field. Moreover, by tuning
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the central frequency of the input signal field around the
two-photon resonance, one can achieve longer pulse delay
and/or amplification [48]. Finally, note that for very high
optical depth both optimization procedures fail when control
field absorption becomes significant.

3.4. Pulse-shape control

The optimization methods outlined above can be employed
together to help satisfy the two key requirements for a prac-
tical light storage quantum memory: (i) reaching the highest
possible memory efficiency in an ensemble with finite opti-
cal depth and loss; and (ii) precisely controlling the temporal
envelope of the retrieved signal pulse. The latter goal can be
achieved by adjusting the control field envelopes for both
writing and retrieval stages. Since the maximum memory
efficiency is achieved when the input signal pulse is mapped
onto an optimal spin wave S✭z✮, determined by an optimal
control field Ω✭t✮ that is unique for each αL [55, 58], the
retrieval control field Ω✭t✮ (τ ❁ t ❁ τ ✰T ) that maps S✭z✮
onto the desired target output signal pulse Etgt✭t✮ can be de-
termined by the same control field optimization procedure
together with the time-reversal symmetry principle for opti-
mized light storage [49,55,56,58]. Thus the control field that
retrieves the optimal spin wave S✭z✮ into Etgt✭t✮ after storage
is the time-reversed copy of the control field that stores the
time-reversed target pulse Etgt✭τ� t✮ into S✭z✮ [62].

As shown in Fig. 8, this method has been employed
experimentally for warm Rb atoms to achieve signal-pulse-
shape-preserving storage and retrieval, i. e., a target output
signal pulse that is identical to the input pulse when ac-

Figure 8 (online color at: www.lpr-journal.org) Measured (a) con-

trol and (b) signal fields in pulse-shape-preserving storage of

a “positive ramp” signal pulse in warm Rb vapor using a calcu-

lated optimal control field envelope Ω✭t✮. During the writing stage

(t ❁ 0), the input pulse Ein✭t✮ is mapped onto the optimal spin

wave S✭z✮ (inset in (a)), while a fraction of the pulse escapes

the cell (leakage in (b)). After a storage time τ , the spin wave

S✭z✮ is mapped into an output signal pulse Eout✭t✮ during the re-

trieval stage. The dashed blue line in (b) shows the target output

pulse shape calculated for realistic conditions in this experiment;

see [62] for details.

counting for finite loss during the storage process [62]. The
measured output signal pulse (solid black curve in Fig. 8b)
matches very well the target “positive ramp” pulse shape
(dashed blue line in Fig. 8b). Moreover, since this method
is based on universal symmetries for optimal light stor-
age, it is likely to be indispensable for applications in both
classical [63] and quantum optical information process-
ing in a wide range of experimental arrangements, such
as ensembles enclosed in a cavity [57, 64], the off-resonant
regime [55, 57, 58], non-adiabatic storage (i. e., storage of
pulses of high bandwidth) [60], and ensembles with inho-
mogeneous broadening [59], including Doppler broadening
and line broadening in solids.

4. Effects of EIT lineshapes on slow and
stored light

4.1. Using measured EIT spectra to determine
slow-light delay

Characterization of slow and stored light for a particular
medium often begins with the associated static EIT reso-
nance. Recent work [65] has shown that a simple realistic
model of EIT spectra allows accurate prediction of the slow-
light pulse delay from two easily measurable parameters:
the linewidth and the off-resonant transmission level (which
serves as a proxy for the medium’s effective optical depth).
Fig. 9a shows a typical measured EIT spectrum for warm Rb
atoms, with the signal field transmission normalized to the
two-photon off-resonance transmission. For a Lorentzian
EIT lineshape, the optical depth of the medium αL can be
determined from the two-photon off-resonance transmission
“floor” F of the EIT spectrum: F ❂ exp✭�αL✮. Also, the
EIT FWHM linewidth W and peak transmission 1�C to-
gether determine the coherence decay and optical pumping
rate. The predicted maximum slow-light delay τ can then
be expressed from the above easily measurable parameters
as τmax ❂�ln✭F✮❂W . As shown in Fig. 9b, good agreement
is found between the measured maximum slow-light delay
and the delay predicted from the simple model of [65] using
easily measured EIT spectrum parameters. In general, slow
light with large pulse delay and high transmission efficiency
is obtained for a low EIT spectral floor F (i. e., high optical
depth) and large EIT transmission amplitude A (i. e., low
loss). Thus the above characterization procedure using static
EIT lineshape measurements can be an efficient, practical
method to optimize slow light performance. This technique
should be applicable to a wide range of slow light media, for
which static resonance lineshapes can be easily extracted.

Note that the above procedure is quantitatively valid
for a Lorentzian (or near-Lorentzian) EIT lineshape, but
can be still used as a qualitative guide for non-Lorentzian
lineshapes. In practice, several factors can cause a non-
Lorentzian EIT lineshape, such as atomic motion, a non-
uniform laser beam profile [66, 67], FWM effects [25, 47,
48, 68], and various other spectral narrowing and reshap-
ing phenomena [26].
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Figure 9 (a) Example measured EIT intensity spectrum for warm

Rb vapor with normalized contrast and background levels. The

solid gray curve represents the data while the black dashed curve

is a fit to a skew-Lorentzian yielding an EIT FWHM linewidth

W ✬ 10 kHz. F: signal intensity above background away from

EIT resonance (the “floor”); A: amplitude of EIT peak; C: differ-

ence between EIT peak and 100% transmission (the “ceiling”). (b)

Measured slow-light delays (filled squares) and predictions (open

squares) based on experimentally accessible EIT lineshape pa-

rameters. Good agreement is shown over a large range of pulse

delays and laser intensities. (Reproduced from [65], which also

includes experimental and model details.)

We next focus on the effects of atomic motion in buffer
and coated cells on EIT spectra, slow light dynamics, and
stored light efficiency.

4.2. Ramsey-narrowed EIT lineshapes in buffer
gas cells

To increase the atom-light interaction time in warm vapor
cells, an inert buffer gas at a pressure of a few torr is often
added to restrict the fast, thermal atomic motion. A buffer
gas also reduces two-photon Doppler broadening of the EIT
medium’s optical transitions through the Dicke narrowing

Figure 10 (online color at: www.lpr-journal.org) (a) Example

path for atoms diffusing in and out of the laser beam in a buffer

gas cell. (b) Calculated EIT lineshapes resulting from diffusive

return of atomic coherence to the laser beam. The solid red

curve is an example for one particular diffusion history (Ramsey

sequence), with equal time spent in the laser beam tin ❂ τD before

and after diffusing in the dark for time tout ❂ 20τD, where τD is the

mean time to leave the beam given by the lowest-order diffusion

mode. The dashed black curve is the weighted average over

all Ramsey sequences, yielding the characteristic “pointy” EIT

lineshape resulting from diffusion-induced Ramsey narrowing.

(Reproduced from [70].)

effect [69]. It has been common practice to calculate EIT de-
coherence due to atom diffusion out of the laser beam using
only the lowest diffusion mode, as in Eq. (9), which yields
a Lorentzian EIT lineshape in the non-power-broadened
regime. Note, however, that this lowest diffusion mode cal-
culation implicitly assumes that there is insignificant dif-
fusive return of atomic coherence to the laser beam – an
assumption that is often incorrect for practical warm-atom
EIT systems. In particular, when the laser beam diameter
is much smaller than that of the vapor cell and other deco-
herence processes (e. g., due to inhomogeneous magnetic
fields) are insignificant, atoms can diffuse in and out of
the laser beam multiple times without losing their coher-
ence, as shown schematically in Fig. 10a. In this case, each
atom in the EIT ensemble effectively experiences a Ramsey-
like sequence of interactions with the laser interspersed
with coherent evolution in the dark (outside the laser beam).
The resultant contribution of one such sequence to the EIT
spectrum is well modeled by Ramsey fringes, as shown
in Fig. 10b. Summing over contributions to the EIT spec-
trum from all atoms undergoing such diffusive motion in
and out of the laser beam, and using probabilistic weights
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Figure 11 (online color at: www.lpr-journal.org) Measured Rb

EIT lineshapes (red curves) and fits using a Lorentzian lineshape

(dashed curves), with laser beam diameters of approximately

(a) 1.5 mm and (b) 10 mm in a 3 torr Ne cell with total incident

laser intensity of 1 μW/mm2. Fitted Lorentzian parameters are

the amplitude, off-resonant background, and full widths of ap-

proximately (a) 1400 Hz and (b) 400 Hz. The broad solid curve in

(a) is a 20 kHz FWHM Lorentzian, the expected lineshape for a

coherence lifetime set by the lowest order diffusion mode out of

the laser beam, with amplitude set equal to the peak measured

amplitude for illustrative purposes. (Reproduced from [70].)

for different Ramsey fringe spectra governed by the diffu-
sion equation, one derives a non-Lorentzian, “pointy” EIT
lineshape, with a sharp central peak that results from con-
structive interference of the central fringes of all diffusing
atoms together with largely destructive interference of the
other Ramsey fringes [70].

Both experiment and theory have demonstrated the ex-
istence and ubiquity of this “diffusion-induced Ramsey-
narrowing” effect in warm-atom buffer gas EIT systems. As
shown in Fig. 11a for typical Rb EIT operating conditions in
a buffer gas cell, the measured EIT resonance for a 1.5 mm
diameter laser beam has a FWHM of 740 Hz, whereas the
calculated FWHM is approximately 20 kHz if one assumes
(incorrectly) that the coherence lifetime is set by the low-
est order diffusion mode out of the beam. As also shown
in Fig. 11a, the measured EIT lineshape for the 1.5 mm di-
ameter laser beam is spectrally narrower near resonance
than a Lorentzian lineshape: this sharp central peak is the
characteristic signature of diffusion-induced Ramsey nar-
rowing. In contrast, the measured EIT resonance in the same

buffer gas Rb cell for a 10 mm diameter laser beam (with the
same total intensity as the 1.5 mm beam) is well fitted by a
Lorentzian line shape with FWHM of 400 Hz (see Fig. 11b),
which is in good agreement with the calculated FWHM us-
ing the lowest order diffusion mode, and is consistent with
only a small fraction of atoms leaving this relatively large
diameter beam and returning during the intrinsic coherence
lifetime (set by buffer gas collisions and diffusion to the
cell walls). A theoretical model based on multiple return
of atoms into the laser beam found good agreement with
measured EIT spectra [71]. In general, the contrast of the
narrow peak of the EIT spectrum decreases when buffer gas
pressure is higher, laser power is higher, or the laser beam
is larger. The sharp peak linewidth is mainly determined by
the intrinsic coherence decay rate (i. e., it is not limited by
the time to diffuse out of the laser beam on a single pass),
and is relatively insensitive to power broadening.

The pointed EIT lineshape commonly exhibited in buffer
gas cells poses a challenge for high-efficiency slow and
stored light. To avoid large signal pulse absorption and
reshaping, the bandwidth of the signal pulse should be sig-
nificantly less than the sharp peak linewidth. However, the
slow-light delay for such a pulse is often not long enough
for high-efficiency light storage, because only a small part
of the atoms contribute to the narrow peak, i. e., the ef-
fective optical depth for the useful sharp peak of the EIT
spectrum is much smaller than the nominal optical depth.
For instance, for the Ramsey-narrowed EIT experiments
described in [72], a Gaussian waveform was employed for
the signal pulse with a (relatively long) temporal length of
1 ms, which experienced a group delay of about 450 µs for
a control field power of 50 µW. Note that a larger control
field intensity was used at the retrieval (600 µW) to increase
the EIT linewidth and thereby minimize losses during re-
lease and propagation of the retrieved signal pulse. The 1❂e

storage time was about 500 µs, corresponding to a decoher-
ence rate consistent with the linewidth of the sharp peak of
the EIT spectrum at low laser intensities, but much longer
than the lowest order diffusive escape time calculated from
Eq. (9). For the highest efficiency of stored light in buffer
gas cells, it is desirable to use a laser beam diameter that
is large enough to maximize the coherence lifetime, and
also to have enough laser power to provide high EIT trans-
mission and efficient readout. Given practical constraints
on laser power, one must determine an optimal laser beam
diameter to maximize light storage efficiency.

Firstenberg and coworkers carried out a comprehensive
study of the effects on EIT of thermal atomic motion in
buffer gas cells, including an assessment of the effect of
misalignment of the control and signal fields (i. e., differ-
ing k vectors when these fields are not collinear) [73, 74].
They found that the EIT lineshape broadens and its con-
trast degrades as the angle between the control and signal
fields increases, due to residual Doppler broadening of the
two-photon EIT resonance [74]. Moreover, when a non-
collimated beam such as a diffracted beam is considered,
the signal field transmission becomes a function of position
within the laser beam, similar to the intensity distribution in
diffraction. This feature was utilized to eliminate and manip-
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ulate effects of optical diffraction by adjusting the EIT two-
photon detuning [75,76]. Similar effects were also exploited
to slow and store images, of both the input light amplitude
and phase, using EIT in warm-atom buffer gas cells [77,78].
In warm-atom buffer cells, diffusion of coherently prepared
atoms is an issue that must be addressed in high-resolution
and long-time image storage. A “phase shift” method [79]
and storing of the image’s Fourier plane [80, 81] were pro-
posed to offset the effects of diffusion; both proved effective.

4.3. Dual-structure EIT lineshapes in cells with
anti-relaxation wall coatings

Coating the glass inner walls of an atomic vapor cell with
an anti-relaxation layer such as paraffin is another way to
prolong atomic coherence lifetimes by reducing the effects
of atom-wall collisions on atomic hyperfine and Zeeman
states. An EIT linewidth as narrow as 1 Hz has been re-
alized in such paraffin-coated cells (no buffer gas) [34];
and recent improvements in coating materials have enabled
coherence lifetimes as long as a minute [82, 83]. Coated
cells are actively being used for magnetometer [84], atomic
clock [85], and quantum optics [86–88] applications. In
comparison to buffer gas cells, coated cells do not suffer
from collisional decoherence of excited states due to the
buffer gas, which destroys quantum correlations in heralded
photon generation experiments [89]. Thus, coated cells may
be the best candidates for the use of warm vapor cells in
single-photon experiments [87].

The typical EIT lineshape in a coated cell has a dual
structure [86, 90] (Fig. 12a). A narrow central peak results
from multiple coherent atom-light interactions, as the atoms
make many wall collisions before suffering decoherence.
The linewidth of the narrow peak set by the intrinsic atomic

coherence lifetime, which is determined by coating quality,
cell geometry, magnetic field inhomogeneity, etc. A broad
pedestal underlying the narrow peak arises from atom-light
interactions during a one-time pass of atoms through the
laser beam. Slow and stored light in coated cells can operate
on two different time scales corresponding to signal pulses
with spectral widths that fit within the linewidth of either
the narrow peak or broad pedestal structures of the EIT
lineshape. For instance, in [86], slow light in a coated cell
was observed for signal pulse widths of both 5 ms and 50 µs.
However, the fractional pulse delay was limited to only
about 30%, due to radiation trapping, which prevents further
increase of efficiency at higher optical depth. In general for
coated cells, the stored light efficiency is low, although
the storage time can be long (✬ 8 ms has been observed,
see Fig. 12b [91]).

The low stored light efficiency is determined by funda-
mental issues associated with the ballistic motion of atoms
in coated cells. For warm atoms, Zeeman EIT (ground states
are degenerate Zeeman levels) has much lower contrast than
for hyperfine EIT (ground states are non-degenerate hyper-
fine levels), because for Zeeman EIT the two-photon transi-
tion matrix elements have opposite signs for the two excited
states (D1 line of 87Rb, for example) which are partly mixed
under Doppler broadening. Hence ground-state Zeeman co-
herence induced via EIT coupling through the two excited
states will destructively interfere [92]. However, for hyper-
fine EIT to work in a coated cell, the atoms must not move
beyond the range of the hyperfine wavelength, which is ap-
proximately 4 cm for 87Rb. (Atoms with smaller hyperfine
splitting and hence longer hyperfine wavelength are also be-
ing investigated to overcome such issues [93].) In addition,
a high-intensity laser beam with diameter comparable to the
size of the cell is desirable for efficient readout of all the
stored coherence within the cell, which demands very high

Figure 12 (a) Measured Rb EIT spectrum from a coated cell, exhibiting

the characteristic dual-structure EIT lineshape. An expanded view is

shown to the right of the narrow central feature of the EIT spectrum.

(b) Measured light storage resulting from the narrow central peak of the

coated-cell EIT spectrum shown in (a); 8 ms of storage time is realized,

but with low storage efficiency. (Reproduced from [91].)
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laser power for typical centimeter-diameter cells. Motivated
by these constraints, a narrow diameter (1 mm) coated cell
for Rb vapor was constructed to limit longitudinal atomic
motion and enable the use of a brighter laser beam for read-
out. Initial hyperfine EIT and slow light results [94] show
that the narrow cell geometry is promising, but requires
improvement in the quality of the wall coating for optimal
slow and stored light performance.

While the rapid atomic motion in coated cells has detri-
mental effects on light storage efficiency, it can be a useful
feature for other applications. For instance, a recent demon-
stration of a slow light beam splitter [95] takes advantage
of the rapid motion of atoms in a coated cell to spread
coherence from one location to the entire cell, allowing
the coherence to be converted back into light at a differ-
ent location in the cell. Since atomic coherence is rapidly
shared within a coated cell, light from different locations is
phase coherent, as long as the cell is much smaller than the
wavelength of the atomic ground-state coherence. The light
splitting ratio provided by this technique is also adjustable
by means of altering the laser power. With further improve-
ments in atom-light state transfer efficiency, such a variable
beam splitter may be used as an optical router for classical
communications or a multiport programmable beam splitter
for quantum repeater applications.

5. Storage of non-classical states

Following the proof-of-principle demonstrations of stored
(classical) light using EIT in both warm- and cold-atom
ensembles [7, 8, 96, 97], the focus of the EIT community
turned to the storage of non-classical signal fields, with a
leading motivation being the development of a practical
quantum repeater using atomic ensembles. Great progress
in this research program has been made over the last decade,
as discussed in detail in several comprehensive review arti-
cles [13–15]. Here, we concentrate on issues and progress
relevant to the storage of non-classical states using warm-
atom EIT and related techniques.

Theoretically, there is only a modest difference between
the EIT-based storage of a classical and quantum optical sig-
nal, although appropriate Langevin noise operators must be
added to Eq. (1) to account for the effects of quantum fluc-
tuations, following a well-established procedure [98–100].
However, while the simplified three-level approximation
for atomic ensemble EIT works sufficiently well for mean-
value calculations, a more comprehensive treatment of the
energy level structure of real atoms (e. g., including all the
hyperfine and Zeeman levels in both ground and excited
states) is required for a realistic analysis of the effect of
noise on the storage of quantum states [101]. In addition,
inhomogeneous broadening of optical transitions can be sig-
nificant in vapor cells, which can adversely affect the fidelity
of quantum state storage due to atomic velocity-dependent
variations in atom-light interactions [102, 103].

Experiments with quantum signals (either few-photon
pulses or quasi-continuous squeezed vacuum pulses) are
also much more technically challenging than with classical

signals, since quantum states are more fragile and difficult
to detect with high fidelity. In particular, since optical losses
degrade quantum states to regular vacuum states, losses
must be minimized for all system components, including
interfaces between the signal field source, atomic vapor
light storage cell, detector, etc. Also, nearly perfect trans-
parency of the atomic ensemble under EIT conditions is
required. However, in any realistic experiment there is resid-
ual absorption due to the finite lifetime of the dark state,
e. g., as given by Eq. (4). This absorption increases at high
optical depth, inhibiting realization of a quantum memory
with high storage efficiency, as discussed in Sect. 3. Further-
more, the quantum efficiency must be high for the signal
field detectors, which is a particularly severe requirement
for single-photon measurements; although photon-counting
detectors with high quantum efficiency have been recently
demonstrated [104, 105], no suitable off-the-shelf devices
are currently commercially available.

Another challenge is that the relatively narrow (up to
a few megahertz) EIT linewidth provided by atomic en-
sembles limits the bandwidth of non-classical optical fields
that can be slowed down and stored with high efficiency.
Thus, such experiments require a source of resonant, narrow-
band non-classical light to fit within the linewidth of the
EIT window. Currently, the most common single-photon
source is based on parametric down-conversion in nonlinear
crystals [105]. However, the bandwidth of single photons
produced with this technique is usually very broad (typically
a few nanometers wide) due to the large spectral bandwidth
of optical nonlinearity in crystals. Narrow-band powerful
pump lasers and high-quality cavities permit narrowing the
photon bandwidth to a few megahertz [106–108], but this is
still a very challenging technical task.

Optical loss is not the only factor adversely affecting
quantum state storage using EIT in warm atomic ensembles.
The fidelity of quantum measurements is reduced if any ad-
ditional optical fields are present in the mode of the desired
non-classical signal field. The quality of a quantum signal
is also degraded by incoherent fields generated as a result
of atom-control field interactions. Recent experiments in-
vestigating squeezed vacuum generation in Rb vapor based
on polarization self-rotation and associated quantum noise
properties [109–115] demonstrated that spontaneous emis-
sion due to residual absorption of the control field can be
strongly enhanced due to coupling back to the atomic tran-
sitions. It was also recently demonstrated that buffer-gas-
induced collisional dephasing of the alkali metal excited
electronic state, which is much stronger than for the ground
state, results in additional unwanted incoherent Raman scat-
tering [89], which produces photons at the optical transition
frequency, rather than the Raman resonance frequency, and
thus does not provide the photon-spin coupling that un-
derlies all EIT effects. These spontaneous and incoherent
Raman photons must be eliminated from the signal field
detection channel either by spectral filtering, which adds
further technical complication, or by reduction of the colli-
sion rate, e. g., by lowering the buffer gas pressure, which
reduces the atom-light interaction time and thus degrades
the quality of the EIT resonance.

www.lpr-journal.org © 2012 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



346

LASER & PHOTONICS

REVIEWS

I. Novikova et al.: EIT-based slow and stored light in warm atoms

In addition, it is essential to cleanly separate the signal
and control fields at the detection stage after interaction
with atomic ensembles. The closeness of the signal and con-
trol optical frequencies limits the utility of spectroscopic
filtering methods, since traditional dispersive elements and
interference filters cannot efficiently resolve two optical
fields separated by only a few gigahertz. Application of spa-
tial filtering is limited as well in a warm-atom system, since
nearly collinear propagation of the signal and control fields
is required to avoid large two-photon Doppler broadening,
which occurs when ✭kc�ks✮ ✁vatoms becomes comparable to
or larger than the ground-state linewidth. For example, an an-
gle mismatch as small as 0.25 mrad between the signal and
control fields produces about 100 kHz Doppler broadening
for warm atoms. Such stringent requirement of collinear-
ity of the signal and control fields makes spatial filtering
inadequate for the necessary separation of the fields at the
detection stage. To address this challenge, multiple spectral
filtering stages have been required, such as optically pumped
filtering cells and/or Fabry-Perot etalons [89, 116, 117].

5.1. Single-photon storage

Over the last decade, the prospects of practical realization
of a quantum repeater based on atomic ensembles using the
DLCZ protocol, proposed by Duan, Lukin, Cirac, and Zoller
in 2001 [118], stimulated many research groups to investi-
gate EIT-based interactions of single- or few-photon pulses
with both warm and cold atomic ensembles. The DLCZ
protocol produces entanglement between two distant atomic
ensembles by probabilistic entanglement of pairs of neigh-
boring ensembles followed by entanglement swapping be-
tween adjacent pairs to extend the created entanglement; the
procedure is then repeated for a series of separated ensemble
pairs to extend the entanglement to arbitrary distances. In
the traditional realization of the DLCZ protocol, both en-
sembles in a pair separated by some distance L less than the
absorption length of the photon communication channel are
illuminated with an identical off-resonance classical pump
field until a spontaneous Raman process occurs producing a
single spin wave and emission of a correlated single Stokes
photon in the forward direction. The photon outputs from
both ensembles are directed to interfere on a beam split-
ter and measured with two sensitive photodetectors. It is
important that the probability of Stokes emission is kept
low to ensure no double excitations within one ensemble
or simultaneous excitation in both ensembles. If only one
Stokes photon is emitted, the click in one (and only one) of
the two detectors indicates the creation of maximally entan-
gled states between the two ensembles. If zero or more than
one photons are detected, then the process must be repeated.
After entanglement is successfully created within each of
two adjacent ensemble pairs, with one ensemble in each
entangled pair being in close proximity, the entanglement
is extended to the two widely separated ensembles in the
two pairs (separated by 2L) by performing an entanglement
swapping operation between the two co-located ensembles
(one from each originally entangled pair). Such swapping is

accomplished by illuminating the two co-located ensembles
with a resonant classical control field that under EIT condi-
tions converts the previously created spin excitation in each
ensemble into an anti-Stokes photon. The photon outputs
from the two co-located ensembles are then interfered on a
beam splitter and measured. Since each emitted anti-Stokes
photon is still entangled with the atomic spin excitation in
the corresponding pair of originally entangled ensembles
(each separated by distance L), a click in one (and only
one) of the output photodetectors signifies entanglement
creation between the two widely separated atomic ensem-
bles in the two pairs. The same steps can be repeated to
extend the entanglement even further over successive pairs
of ensembles each separated by a distance L. The proposed
protocol can be largely insensitive to many realistic losses,
and predicts polynomial (rather than exponential) scaling
of entanglement preparation time with distance. Further
theoretical development of the original DLCZ protocol is
reviewed in [119].

Experimental realization of the full DLCZ protocol or
its variants has not yet been achieved, due to many techni-
cal challenges for both cold and warm atoms. Nevertheless,
many essential steps for a DLCZ-type quantum repeater
have been experimentally demonstrated, including quan-
tum correlation and entanglement between the initial single-
photon pulse emitted in the spontaneous Raman process
and the later single-photon pulse retrieved under EIT condi-
tions [116, 120–127]. In these demonstration experiments,
much like the first part of the DLCZ protocol outlined above,
the first (Stokes) photon is produced by spontaneous Ra-
man generation under the action of a strong off-resonance
laser field, which simultaneously creates a spin coherence
in the atomic ensemble. This coherence is later read out by
a resonant optical field under EIT and slow/stored light con-
ditions, resulting in the generation of a second, correlated
(anti-Stokes) photon. Quantum mechanical correlations be-
tween these two photons can be verified by measuring their
photon-number fluctuations using a Hanbury-Brown-Twiss-
type setup, which allows measurement of normalized corre-
lation functions:

g✭2✮✭nAS❀nS✮ ❂
❤: n̂AS❀ n̂S :✐

❤n̂AS✐❤n̂S✐
❀ (11)

where n̂S,AS denote the photon-number operators for the
Stokes and anti-Stokes fields, correspondingly, and :: de-
notes operator normal ordering. For classical sources of

light the value for the correlation function is g✭2✮ ❂ 1, and

for ideally correlated photons g✭2✮ ❂ 0. A measured value

of g✭2✮ ❁ 1 indicates non-classical correlations between two
photons. In practice, ideal correlation between two pho-
tons cannot be achieved due to optical losses, photode-
tector dark counts, contamination from spontaneous pho-
tons, etc. For example, if the overall Stokes photon detec-
tion efficiency is less than unity, it is possible to excite
two or more independent spin excitations in the atomic
ensemble even when only one Stokes photon is detected.
Hence, any losses in the anti-Stokes channel reduce the ob-
served correlations, since not every initial spin excitation
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contributes to the final photon count. Thus, in warm-atom
experiments to date [116,124] the minimum observed value

of g✭2✮
❂ 0✿3✝0✿2 corresponded to the highest experimental

photon detection efficiency and the lowest Raman scattering
probability, which minimized the probability of scattering
more than one Stokes photon. Including a buffer gas in a
warm-atom vapor cell, to increase the light-atom interac-
tion time, can create additional challenges: as discussed in
Sect. 4, warm-atom diffusion in the presence of a buffer gas
allows coherently prepared atoms to leave the optical inter-
action region, evolve in the dark, and re-enter the laser beam
with a random phase, leading to emission of an anti-Stokes
photon in a different spatial mode, and hence to reduced
quantum correlations.

Despite such technical issues, photon-correlation exper-
iments conducted in both warm and cold atomic ensembles,
as well as demonstrations of entanglement between the
Stokes photon and a spin excitation in an atomic ensem-
ble [128–130], confirmed key aspects of the DLCZ protocol
enabling demonstrations of entanglement of independent
atomic ensembles [131–135].

Quantum repeaters and many other quantum optics
and information applications require development of a
long-lived quantum memory for few-photon pulses. Most
existing demonstrations of single-photon storage and re-
trieval [19, 124, 136–139] used the generation of correlated
photon pairs, described above, as a source of heralded sin-
gle photons with controllable delay between the heralding
(Stokes) and signal (anti-Stokes) pulses. With this tech-
nique the bandwidth of the emitted photons matches the EIT
bandwidth in atomic ensembles used for storage; and the
waveform of the generated few-photon pulses can still be
modified with additional protocols [116, 125, 127, 140–142].
We note that EIT-based storage of single photons gen-
erated via parametric down-conversion has also been re-
ported [143, 144].

To observe interaction of a single heralded anti-Stokes
photon with a separate atomic ensemble under EIT and
slow/stored light conditions, one can exploit the non-
classical intensity correlations between the Stokes and anti-
Stokes photons and/or the conditional probability of anti-
Stokes photon detection after appropriate delay from de-
tection of the Stokes photon. Recent warm-atom experi-
ments [124] demonstrated preservation of photon number
correlations under EIT conditions for the initial Stokes pho-
ton and the anti-Stokes photon after its storage and retrieval
in a separate atomic ensemble; these correlations then disap-
pear when a two-photon detuning is introduced. For exam-
ple, Fig. 13a illustrates the propagation of a single-photon
anti-Stokes signal pulse under slow light conditions in a
warm-atom vapor cell. The whole waveform is delayed after
interaction with the atoms; this delay increases if the optical
density is increased. In addition, as shown in Fig. 13b, a sig-
nificant fraction of the single-photon anti-Stokes pulse can
be stored in the target atomic ensemble and then recovered
using EIT techniques.

The majority of EIT-based experiments relevant to the
DLCZ protocol have been carried out using 87Rb atoms,
because of the availability of lasers resonant with relevant

Figure 13 (online color at: www.lpr-journal.org) (a) Conditional

probability (per 30 ns) of detecting an anti-Stokes photon trans-

mitted through a target ensemble consisting of a 4.5-cm long Rb

vapor cell with 8 torr of Ne buffer gas. Target ensemble absent

(black triangles); target ensemble present at a temperature of

34.6 °C (blue diamonds) and 47 °C (red diamonds). Probability

amplitude of delayed pulse at (34.6 °C, 47 °C) is scaled by (1.34,

2.14). Solid lines represent theoretical calculations for EIT propa-

gation in a Doppler-broadened medium. (b) Storage and retrieval

of a single-photon anti-Stokes pulse. EIT control is turned off

100 ns after the retrieval from the source ensemble begins; after

waiting for a storage time of τ ❂ 460 ns, the EIT control is turned

back on, resulting in the retrieved pulse centered at 600 ns. Target

ensemble temperature of 47 °C. (Reproduced from [124].)

optical transitions, and the possibility of using the 85Rb
isotope as an absorption filter for the control field prior to
single-photon detection. Recently, however, the storage of
single-photon signal pulses has been demonstrated in Cs
vapor [145]. In this experiment, a signal pulse with aver-
age photon number much less than one was produced by
phase-modulation of the control field, following the method
used for classical light storage. As discussed above, this
method ensures phase coherence between the control and
signal optical fields, and eliminates any residual Doppler
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broadening due to imperfect collinear geometry between
the control and signal fields. However, application of this
technique at the single-photon level for signal pulses only
became possible with the development of high-rejection
bandpass optical filters based on a multi-pass Fabry-Perot
etalon [117]. Such filters provide greater than 110 dB sup-
pression of the unwanted control field without significant
attenuation of the signal optical pulse.

Photon-based realizations of quantum information pro-
tocols require construction and manipulation of qubits. In
particular, the EIT-based toolkit developed for realization
of atom-photon correlations and entanglement, discussed
above, can be directly applied to the storage of polarization
qubits, in which information is encoded as a superposition
of photon quantum states with orthogonal polarizations. In
this case the two polarization modes of the original photon
are spatially separated using a polarizing beam splitter, and
then stored in two spatially separated atomic ensembles.
After simultaneous retrieval, the two polarizations are re-
combined on the second beam splitter. Several cold-atom
experiments have recently demonstrated such storage of
polarization qubits with a lifetime of up to several millisec-
onds [21, 128, 137, 146]. While storage of a classical ana-
logue of a polarization qubit in an atomic vapor cell has been
performed [147], no warm-atom EIT-based quantum mem-
ory for a photonic polarization qubit has been reported yet.

5.2. Storage of squeezed light

There has also been great recent progress in the application
of warm- and cold-atom EIT for the storage of continuous-
variable quantum optical fields, such as squeezed light. For
example, recent advances in periodically poled nonlinear
crystals enabled the development of sources of narrow-band
squeezed light or vacuum optical fields at wavelengths suit-
able for alkali metal optical transitions, e. g., using para-
metric down-conversion in periodically poled KTiOPO4

crystals (PPKTP) [106–108]. The use of narrow-band pow-
erful lasers, high-quality power build-up cavities, and so-
phisticated feedback electronics has also enabled dramatic
reductions of technical noise at lower frequencies, and con-
sequently allowed observation of optical squeezing at side-
band frequencies below 100 kHz.

Key recent results include transmission of a squeezed
vacuum field through an optically dense atomic ensemble
under EIT conditions without complete loss of quantum
noise suppression [148, 149]; controlled slow-light delay
of squeezed vacuum pulses [150]; and storage of squeezed
vacuum pulses achieved in both a Rb vapor cell [151, 152]
and a cloud of laser-cooled Rb atoms [153]. Both of these
storage experiments observed significant degradation of the
optical field squeezing due to residual absorption of the
input pulse by resonant atoms. Recently, these results were
improved and extended to higher sideband frequencies by
using a bichromatic control field to create a double EIT
window tuned to both squeezed noise sidebands [154].

Note that an alternative, simpler method to generate res-
onant squeezed vacuum based on polarization self-rotation

was first proposed in [109,110], and then realized by several
research groups [103, 111, 115, 155]. This method relies on
modification of the noise properties of a vacuum (orthog-
onal) component of a linearly polarized field propagating
through a near-resonant atomic medium. Light shifts of the
Zeeman sublevels induce polarization rotation of elliptically
polarized light, resulting in cross-phase modulation between
the two orthogonal components of a linearly polarized field
and in squeezing of one of the noise quadratures of the vac-
uum field. Experimentally measured squeezing (❁ 2 dB of
noise suppression below the fundamental quantum limit) is
significantly less than predicted theoretically due to excess
noise caused by spontaneous emission and its interaction
with optically pumped atoms. However, a related method
of squeezing generation in a non-degenerate scheme has
achieved 3.5 dB of noise suppression [156].

The EIT-based continuous-variable quantum memory
can be potentially integrated with another atom-based stor-
age technique exploiting far off-resonance Raman interac-
tions [15, 157]. For example, a quantum state of a weak
coherent signal pulse was mapped non-locally into the spin
states of two ensembles of warm Cs atoms through quantum
non-demolition experiments [158]. Recently, an improved
storage protocol was used to store a distinctly non-classical
optical field (two-mode squeezed light) with fidelity above
the classical benchmark [159]. Since this particular quantum
memory protocol requires a very long coherence lifetime, it
was realized using paraffin-coated vapor cells for relatively
narrow-band optical pulses in a well-defined single spatial
and temporal mode. Furthermore, an alternative version of
a far-detuned Raman interaction was demonstrated to allow
storage of broad-band (❃ 1 GHz) optical signal pulses in a
warm atomic ensemble [160, 161].

6. Comparison of EIT light storage in atomic
ensembles with other techniques

To date, most EIT experiments on slow and stored light
have been performed in ensembles of warm or cold alkali
metal atoms, since their energy level structure allows rea-
sonably good realizations of a three-level Λ system, which
is the canonical system for EIT. Achieving similar effects
in solid-state systems is attractive for practical applications,
but faces severe scientific and technical challenges. In partic-
ular, while atoms in an ensemble under good environmental
control are nearly perfectly identical and indistinguishable,
optically active color centers embedded into a solid matrix
(defects, donor atoms, vacancies, etc.) suffer from large
variations in their properties due to nanoscale differences
in their surroundings (strain in the crystal, neighboring de-
fects, etc.), which can lead to broad, inhomogeneous spectral
absorption and emission properties, rapid inhomogeneous
dephasing, non-radiative decay processes, etc. In most cases,
these non-ideal (i. e., non-atom-like) properties preclude the
realization of EIT and slow/stored light. Nonetheless, cer-
tain classes of solid-state materials, such as doped yttrium
orthosilicate crystals (Pr3✰:Y2SiO5 or Eu3✰:Y2SiO5), ex-
hibit sufficiently atom-like spin and optical properties. For
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example, the homogeneous lifetime of the ground-state spin
coherence associated with the dopant ions in such crystals
can extend to many seconds; and the electronic energy level
structure and optical properties can be suitable for realizing
EIT and slow/stored light [162]. As a consequence, ion-
doped crystals have been used to demonstrate EIT-based
storage of optical pulses for more than a second [163].

Progress with such solid-state systems has also stimu-
lated development of alternative quantum memory proto-
cols to overcome the narrow bandwidth requirements of
EIT-based light storage. For example, the highest light stor-
age memory efficiency achieved to date in any system em-
ployed a protocol based on controlled reversible inhomo-
geneous broadening (CRIB) [164]. This technique uses a
modified photon echo in which the original broad-band sig-
nal pulse is absorbed by a controllable inhomogeneously
broadened atomic ensemble, such that the bandwidth of the
pulse matches the broadening of the transition. The inho-
mogeneous broadening is achieved by applying an external
magnetic or electric field gradient; and the memory read-
out is realized by reversing the applied gradient. Although
this technique was first proposed for atomic vapors [165],
it is particularly well suited for doped solid-state crystals,
such as those described above, due to their narrow homo-
geneously broadened optical lines. Initial proposals consid-
ered storage of signal pulses in optical coherences, with the
storage time limited by the intrinsic lifetime of the optical
transition. Later proposals, however, extended these ideas
to transfer of the stored optical coherence into a long-lived
spin coherence [166]. The CRIB protocol has been used to
demonstrate the highest efficiency coherent optical memory
achieved with any technique: 69% in Pr3✰:Y2SiO5 [167]
and 87% in a Rb vapor cell [168]. The Rb vapor CRIB ex-
periment also demonstrated storage and retrieval of a train
of 20 optical pulses with 2% storage efficiency, reaching a
delay-bandwidth product of 40. These parameters signifi-
cantly surpass those demonstrated in EIT-based memories
(for which the highest storage efficiency realized to date is
approximately 43%, with a delay-bandwidth product of less
than 1).

The atomic frequency comb (AFC) memory tech-
nique [169] employs an inhomogeneously broadened
medium with a modulated optical absorption spectrum that
consists of a series of evenly spaced narrow absorption
peaks. Frequency components of a broad-band signal pulse
are absorbed by the AFC and then re-emitted after a pre-
determined storage time [170]. The storage time can be
extended in a controllable manner by transferring the op-
tical excitation into a long-lived spin coherence and back
by applying π-pulses [171]. The main advantages of the
AFC memory are its intrinsic multimode storage capacity
and favorable scaling with optical depth compared to other
protocols [172–174].

Since many applications of slow and stored light are
geared towards telecommunication applications and long-
distance network development, it is important to realize
these effects for light at wavelengths optimally suited for
optical fiber transmission (1300 and 1550 nm). Researchers
are working actively on this challenging task using a variety

of protocols and systems. For example, a CRIB-based proto-
col has been used to store and retrieve weak coherent light
pulses, including single photons, in an Er-doped Y2SiO5

crystal at cryogenic temperatures (2.6 K) [175]. Other recent
experiments have demonstrated EIT in a quantum dot-based
“artificial atom” [176, 177]. In addition, several groups have
explored the slowing and storing of short optical pulses in
specially designed photonic structures [178, 179], in which
the role of the atomic ensemble is played by optical res-
onators with controllable coupling. Finally, EIT-like behav-
ior has been predicted and demonstrated for surface elec-
tromagnetic fields (surface plasmon polaritons), localized
in metal nanostructures [180, 181]. Dynamic control over
the coupling between two types of nanostructures allows
trapping of plasmons in a non-interacting mode, similar to a
dark state in an atomic ensemble. We look forward to further
continued progress in all the areas discussed above.
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S. Kröll, S. Moiseev, and M. Sellars, Laser Photon. Rev.

4, 244 (2010).

[165] S. A. Moiseev and S. Kroll, Phys. Rev. Lett. 87, 173601

(2001).

[166] B. Kraus, W. Tittel, N. Gisin, and M. Nilsson, S. Kröll, and
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