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Abstract: This paper studies the electromechanical characteristics of synchronous generators under
dynamic stator interturn short circuit (DSISC). First, the air gap magnetic flux density (MFD) of the
generator under normal and DSISC fault was obtained. Then, the expression for the phase current
and the electromagnetic torque (EMT) were obtained. After this, the phase current and EMT were
analyzed by finite element analysis (FEA). Finally, the measured electromechanical characteristics
of the CS-5 generator under different conditions were analyzed in accordance with theory and
simulation. It was shown that with the occurrence, and deterioration, of DSISC, the amplitude of the
first harmonic, third harmonic and fifth harmonic of the phase current became more affected by the
pulse. Meanwhile, the even-numbered harmonics components of EMT increased.

Keywords: synchronous generator; dynamic stator interturn short circuit (DSISC); electromagnetic
torque (EMT); phase current; harmonic component

1. Introduction

Stator interturn short circuit (SISC) is a common electrical fault and may be induced
by insulation aging, overvoltage shock and mechanical vibration. The types of short circuit
can be divided into dynamic stator interturn short circuit (DSISC) and static stator interturn
short circuit (SSISC). A DSISC is due to intermittent short circuit of the damaged insulation
layer in the operation of the generator set [1,2].

An interturn short circuit fault causes a significant increase in the short circuit ring
current. If the interturn short circuit fault is not found and handled in time, it can easily
develop into a ground short circuit fault and cause serious accidents [3]. In view of the
seriousness of such faults and the inconvenience of repair, many scholars and operators
have put a lot of energy into their research. As early as 1952, the A.W.W. The Camero
adopted the non-destructive test method of winding impedance estimation to identify
and diagnose interturn short circuits and inter-femoral short circuits to water turbine
generators [4]. Since then, the characteristics of generator fault parameters, such as stator
voltage, current and electromagnetic torque (EMT), have been widely applied [5–8].

Concerning electrical characteristics, M. Ojaghi and V. Bahari found that when a
stator interturn short circuit (SISC) occurs, the stator line current increases by an integer
multiple of 25Hz [9]. There is no symmetry between the stator current and voltage when
there is a stator interturn short circuit fault [10,11]. The excitation current will have an
additional second harmonic, while the circulating current in the parallel branch will be
induced to produce additional primary and tertiary harmonics [12,13]. A neural network
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method based on monitoring the three-phase line current and phase voltage changes to
automatically detect and locate the inter-turn stator short circuit fault of the induction
motor was proposed by Roshanfekr, R. et al. [14]. A complete magneto equivalent circuit
model was presented that takes into account saturation effects in the stator winding and
spatial harmonics, differences between rotor and stator short circuit, short circuit and fault
current amplitude load levels. Yong-chun Liang introduced the interturn short circuit fault
identification method of a permanent magnet synchronous motor based on stator current
and noise. This method extracts the frequency map of the stator current from the monitored
stator current as the main judgment basis, and uses the generator noise as the auxiliary
basis to improve the accuracy of short circuit detection [15]. Alwodai, A. et al. investigated
a modulation signal bi-spectrum (MSB) to detect stator winding faults. Compared with
the conventional power spectrum analysis, MSB can better avoid noise pollution and has
higher diagnostic accuracy [16].

Regarding mechanical properties, Shu-Ting, W. et al. analyzed the frequency charac-
teristics of rotor imbalance and stator core pulse and showed that the second harmonic
vibration of the rotor decreases [17]. Yu-Ling, H. et al. developed a new air gap eccentricity
(SAGE) and stator interturn short circuit (SISC) to analyze the mechanical characteristics of
a generator under different fault types and different fault factors. It was concluded that
the amplitude of EMT increased as the degree of SISC increased [18]. Heming, L. et al.
studied the flux density of the air gap and analyzed the magnetic tensile characteristics of
the stator and rotor, and found the mapping relationship between mechanical vibration
characteristics and electrical faults [19]. Hao, L. et al. analyzed the EMT of the generator
by virtual displacement. Through simulation and experimental analysis, the harmonic
component of the AC pulse produced by the short circuit was related to the stator winding
structure [20]. Obeid, N.H. et al., through simulation and experiment on intermittent short
circuit of stator end winding, obtained the correspondence of the stator current. It was
proved that the insulation damage after unit vibration is the main cause of early inter-turn
short circuit failure [21].

The above literature establishes the foundation for the diagnosis of SISC. However, in
the actual operation of the generator, DSISC failures often occur. This paper presents the
DSISC fault model and obtains the electromechanical characteristics of the generator under
different short circuit degrees. This is important for early fault diagnosis of generators.

2. Analysis Model of DSISC

When DSISC occurs, the effective turns of the stator coil decrease, thus affecting the
decrease of the gas gap magnetic motive force (MMF). The current in the stator no longer
flows out from the fault line turns. A completely new loop arises in the stator coil, in which
there is a reverse MMF generated by the DSISC.

The reverse magnetomotive force (MMF) generated by the short circuit ring current
during DSISC occurs as a pulse. The reverse MMF when SSISC occurs is in the form of
steps. The response maps of the pulses and steps are shown in Figure 1.
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Formula fN is the generator air gap MMF under normal conditions. Fγ is the γth 
harmonic amplitude. If0 is the excitation current, η is the coefficient between the stator 
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The air gap magnetic flux density (MFD) of the synchronous generator is obtained
by multiplying the air gap MMF and the air gap magnetic per unit area. Under normal
operational conditions, the air gap magnetic field is evenly distributed, and the air gap
distribution is shown in Figure 2. The air gap magnetic can be expressed as:

Λ(αm, t) =
µ0

g0
= Λ0 (1)
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Figure 2. Air gap distribution under normal generator operating conditions.

In Equation (1): µ0 is the vacuum permeability, αm is the mechanical angle used to
characterize the peripheral position of the air gap, t is the time, g0 is the average air gap
length of the generator, and Λ0 is the air gap magnetic conductivity constant.

2.1. Impact of DSISC on MMF

The vector diagram of the generator is shown in Figure 3a, where Fr is the MMF
generated by the excitation winding. Fs is the MMF generated by the stator winding. Fc is
the synthetic MMF, ψ is the generator internal angle and β is the angle between the main
MMF and the armature reaction first harmonic potential.
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The expression of air gap MMF under normal generator conditions of Figure 3 is [13]:
fN(αm, t) = F1 cos(ωt− αm − β) + F3 cos 3(ωt− αm − β) · · ·+Fγ cos γ(ωt− αm − β)

Fγ =
√
(Frγ − Fsγ sin ψ)2 + (Fsγ cos ψ)2 =

I f 0
Kγ

√
1 + η2 − 2η sin ψ

(2)

Formula fN is the generator air gap MMF under normal conditions. Fγ is the γth har-
monic amplitude. If0 is the excitation current, η is the coefficient between the stator reaction
first harmonic MMF and the main MMF and ω is the generator electric angle frequency.
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2.2. Impact of DSISC on MFD

Equations (1) and (2), provides the MFD expression of the air gap under the normal
working condition of the generator.

BN(αm, t) = Λ0 I f 0

√
1 + η2 − 2η sin ψ

K
[cos(ωt− αm − β) + · · ·+ 1

γ
cos(γωt− γαm − γβ)] (3)

Equation (3) refers to the MFD of the normal working condition of the generator.
When there is a DSISC in the generator the model is as shown in Figure 4. The

occurrence of the DSISC will produce a pulse current Is in the short circuit ring. Meanwhile,
the short circuit ring produces a pulse vibration magnetic field, fd, centered on the center
of the short circuit turn. The fd will become two magnetic fields in opposite rotational
directions, distributed as a cosine function in space. See (4):

fd(αm, t) = Fdmaxρ cos ωt cos αm
= Fd+ρ cos(ωt− αm) + Fd−ρ cos(ωt + αm)

(4)
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For the resulting reverse magnetic field, since it has a double rotational speed difference
from the rotor, a new electromotive force will be produced with a frequency of 2 in the rotor
winding. According to Lenz’s law, the equivalent excitation current after a short circuit can
be expressed as:

I f (t) = I f 0 − I f 2 cos 2ωt (5)

In formula (5), If2 is the current induced by the magnetic field Fd in the rotor winding,
which is closely related to the degree of the stator interturn short circuit, so the induced
current If2 can be expressed as:

I f 2 = (nm/wc)I f 0 = kI f 0 (6)

The nm is the number of turns in the short circuit, wc is the number of turns per phase
of the stator winding, and k is the degree of short circuit. Therefore, the greater the short
circuit degree, the greater the induction current If2, and the excitation current decreases
more obviously. Accordingly, the more the main (rotor) and first harmonic (stator armature
reaction MMF) will be reduced.

After DSISC occurs, the generator MMF is shown in Figure 3b, where Fr1 and Fs1 are
the fixed rotor MMF after short circuit. Therefore, the synthetic MMF after short circuit can
be expressed as:
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fF(αm, t) = Fc1 cos(ωt− αm − β1) + Fc3 cos 3(ωt− αm − β1) + · · ·+ Fcγ cos γ(ωt− αm − β1)

Fcγ =
(I f 0−I f 2 cos 2ωt)

Kγ

√
1 + η2 − 2η sin ψ

(7)

Excluding the high harmonic effect, the air gap synthesis MMF can be further ex-
pressed as:

fF(αm, t) =

√
1+η2−2η sin ψ

K [I f 0 cos(ωt− αm − β1)− nm
2wc

I f 0 cos(ωt + αm + β1)

+ nm
6wc

I f 0 cos(ωt− 3αm − 3β1) +
1
2 I f 0 cos(3ωt− 3αm − 3β1)− nm

2wc
I f 0 cos(3ωt− αm − β1)

+ nm
10wc

I f 0 cos(3ωt− 5αm − 5β1) +
1
5 I f 0 cos(5ωt− 5αm − 5β1)− 1

2 I f 0 cos(3ωt− 3αm − 3β1)

− nm
2wc

I f 0 cos(3ωt− αm − β1) +
nm

10wc
I f 0 cos(3ωt− 5αm − 5β1) +

1
5 I f 0 cos(5ωt− 5αm − 5β1)

− nm
6wc

I f 0 cos(5ωt− 3αm − 3β1) +
nm

14wc
I f 0 cos(5ωt− 7αm − 7β1)]

(8)

Linking (1) and (8), the MFD can be expressed as:

BF(αm, t) = Λ0

√
1+η2−2η sin ψ

K [I f 0 cos(ωt− αm − β2)

− nm
2wc

I f 0 cos(ωt + αm + β2) +
nm
6wc

I f 0 cos(ωt− 3αm − 3β2)

+ 1
3 I f 0 cos(3ωt− 3αm − 3β2)− nm

2wc
I f 0 cos(3ωt− αm − β2)

+ nm
10wc

I f 0 cos(3ωt− 5αm − 5β2) +
1
5 I f 0 cos(5ωt− 5αm − 5β2)

− nm
6wc

I f 0 cos(5ωt− 3αm − 3β2) +
nm

14wc
I f 0 cos(5ωt− 7αm − 7β2)]

(9)

The amplitudes corresponding to each harmonic component of the MFD are shown in
Table 1. Therefore, with the increase of degree of the DSISC, the induction current increases,
the air gap magnetic density decreases, and the third and fifth harmonics appear in the air
gap magnetic density; the third harmonic in the air gap magnetic density increases, and the
first harmonic and the fifth harmonic decrease.

Table 1. Amplitudes Corresponding to Each Harmonic Component of the MFD.

Condition Harmonic
Component Amplitudes

Normal
1st I f 0Λ0

√
1+η2−2η sin ψ

K

DSISC I f 0Λ0

√
1+η2−2η sin ψ

K (1− k
3 )

Normal
3rd I f 0Λ0

√
1+η2−2η sin ψ

3K

DSISC I f 0Λ0

√
1+η2−2η sin ψ

3K (1− 6k
5 )

Normal
5th I f 0Λ0

√
1+η2−2η sin ψ

5K

DSISC I f 0Λ0

√
1+η2−2η sin ψ

5K (1− 5k
6 )



Machines 2022, 10, 432 6 of 11

2.3. Impact of DSISC on Current

The normal current expression of a generator is:

iN(αm, t) = 2qwcτl f Λ0 I f 0

√
1+η2−2η sin ψ

ZK [kw1 cos(ωt− αm − β)

+ 1
3 kw3 cos(3ωt− 3αm − 3β) · · ·+ 1

γ kwγ cos(γωt− γαm − γβ)]

(10)

In Equation (10), l is the effective length of the stator magnetic wire cutting winding;
Rs is the stator core inner diameter; nr is the generator speed; and Z is the reactance of the
stator winding.

By putting Equation (9) into (10), the generator phase current expression under DSISC
fault is obtained, as follows:

iF(αm, t) = 2qwcτl f Λ0

√
1+η2−2η sin ψ

ZK [I f 0 cos(ωt− αm − β1)

− nm
2wc

I f 0 cos(ωt + αm + β1) +
nm
6wc

I f 0 cos(ωt− 3αm − 3β1)

+ 1
3 I f 0 cos(3ωt− 3αm − 3β1)− nm

2wc
I f 0 cos(3ωt− αm − β1)

+ nm
10wc

I f 0 cos(3ωt− 5αm − 5β1) +
1
5 I f 0 cos(5ωt− 5αm − 5β1)

− nm
6wc

I f 0 cos(5ωt− 3αm − 3β1) +
nm

14wc
I f 0 cos(5ωt− 7αm − 7β1)]

(11)

It can be seen that with the occurrence and degree of DSISC failure, the phase current
amplitude of the generator will decrease.

2.4. Impact of DSISC on EMT

Based on the above analysis, according to the virtual displacement principle, the EMT
studied in this paper can be expressed as:

T = p ∂W
∂ψ

W =
∫

v
[B(αm ,t)]2

2µ0
dv

(12)

According to this, the EMT depends on the square of the MFD. Qualitatively, the
trend of EMT should be consistent with MFD, and the trend of squared operation will be
more obvious.

3. FEA and Experimental Validation

For this paper, the CS-5 hidden pole synchronous generator was studied. Finite-
element analysis (FEA) and experiments on the generator characteristics under DSISC fault,
are compared with SSISC fault. Specific parameters of the generator are listed in Table 2.

This prototype generator was specifically designed and manufactured by ourselves
and is able to simulate SISC. This paper establishes the finite element analysis (FEA) model
in ANSYS Maxwell according to the CS-5 hidden pole synchronous generator design param-
eters, and verifies the stability and convergence of the model through previous calculations.
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Table 2. Parameters of the CS-5 Prototype Generator.

Parameters Values Parameters Values

rated power 5 kW stator core length 130 mm
pole-pairs 1 stator coil turns per slot 22

power factor (cosϕ) 0.8 rotor slots 16
radial air-gap length 1.2 mm rotor core outer diameter 142.6 mm

stator slots 36 rotor core inner diameter 40 mm
stator outer diameter 250.5 mm rotor coil turns per slot 60
stator inner diameter 145 mm internal power factor (cosψ) 0.62

The experimental platform is shown in Figure 5a, and the established FEA model is
shown in Figure 5b, where A1–A5 is the short circuit tap of the stator winding: 0% (A1), 3%
(A2), 6% (A3), 9% (A4), and 100% (A5).
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The DSISC fault experiment is realized by combining the PWM pulse generator and
the DC solid-state relay. As shown in the test table, the DC solid state relay shorts the
generator stator and connects the PWM to the control circuit portion of the DC solid state
relay. The switching of normal and short circuit can be realized by setting the pulse cycle
and peak of PWM, and adjusting the duty cycle of square wave can control the closing time
of the DC solid-state relay. The method used in this paper can simulate a dynamic short
circuit in actual high-speed operation.

In order to correspond to the simulation and experiment, the external coupling circuit
has the same parameters in the actual generator. The schematic diagram of the external
coupling circuit of the generator stator winding is shown in Figure 5e. Experimental
simulation of DSISC can be realized by using the pulse voltage unit to generate a specific
pulse square wave, and controlling the short-circuit trigger switch S-A1. The specific
simulation parameters are shown in Figure 5d.

During finite element analysis, the external circuit contains parameters, such as normal
and short circuit winding, and changes the resistance values of the corresponding resistors,
Rw and Rf. Different degrees of fault simulation can be achieved. In Figure 5c, Td is the
delay time, Tr is the rise time, Tf is the fall time, Pw is the pulse width. The DSISC cycle
corresponds to the pulse cycle. The trigger voltage of the control switch is represented by
Von. When the voltage value of the pulse voltage source is greater than Von, the switch
S_A1 operates and the stator coil is short circuited. Voff represents the cut-off voltage of
the voltage control switch. When the voltage value of the pulse voltage source is less than
Voff, the switch S_A1 is turned off and the stator coil is normal. The short-circuit portion
of the duty cycle and DSISC frequency can be changed by adjusting Pw and period. The
short circuit section produces an external circuit of DSISC with a period of 20 ms (15% duty
cycle), with the same settings used in the experiment.

In the experiment, DSISC simulation can be realized by short circuit to different de-
grees. In the FEA simulation, it corresponds to the experiment by changing the FEA model
and external coupled circuit parameters. Table 3 is the abbreviation of different cases.

Table 3. Abbreviation of Different Cases.

Full Name Abbreviation Full Name Abbreviation

Normal N DSISC 3% D3
SSISC 3% S3 DSISC 6% D6
SSISC 6% S6 DSISC 9% D9
SSISC 9% S9

4. Results Analysis and Discussion

From Figure 6, when DSISC occurs and the degree intensifies, the overall amplitude
of the MFD decreases.
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The amplitude of the first harmonic and the fifth harmonic decreased gradually, but
the third harmonic rose.

As can be seen from Figure 7, when DSISC occurred, the generator phase current
curve was also “compressed”, but was affected by the reverse current of the short circuit
pulse, and the absolute value of the current at position 1 increased with the degree of short
circuit. With a short degree of aggravation, the amplitude of the first harmonic and the fifth
harmonic gradually decreased, but the third harmonic rose. The air gap magnetic density
followed the phase current and agreed with Equation (11).
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Figure 7. Current in varied DSISC degree cases: (a–c) waves by model, FEA and experiment, and
(d–f) harmonic variations.

The theoretical, simulation, and experimental time-domain maps of the EMT are
shown in Figure 8. The results show that the waveform amplitude increased with the
occurrence and degree of DSISC. It is shown in the frequency domain, Figure 8, that the
second, fourth, and sixth harmonic amplitudes increased as DSISC increased. The FEA
results are in good agreement with the experimental data.

The influence on the EMT harmonic composition can be divided into two aspects. On
the one hand, there are the tooth groove effect and the harmonic current. On the other
hand, the radial eccentricity of the rotor leads to the long-term operation of the generator.
Rotor radial eccentricity is the phenomenon of radial deviation between the moving center
and the stator center of the rotor.

Although there is a data gap in the EMT frequency amplitude increment of theory,
simulation and experiment, the overall development trend of the three data types is
the same.
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Figure 8. EMT in varied DSISC degree cases: (a–c) waves by model, FEA and experiment, and
(d–f) harmonic variations.

Compared with SSISC, DSISC, with the same short circuit degree, has less influence
on MFD and phase current of the generator, but has a greater impact on EMT. The results
correspond to the above theoretical analysis.

5. Conclusions

This paper presents a new fault analysis model for SISC of synchronous generators.
Further, based on simulation and experiments on different DSISC degrees, the mechanical
and electrical characteristics represented by phase current and EMT were studied. The
results show that:

(1). When DSISC occurs, the overall amplitude of the generator circumference to MFD
decreases, and the amplitude of the first harmonic and the fifth harmonic gradually
reduce, but the third harmonic rises.

(2). The phase current time domain curve under DSISC fault will be affected by a short
circuit, producing reverse pulse, and amplitude increases with short circuit. The
harmonic change trend of the phase current is the same as that for the MFD.

(3). When DSISC occurs, the EMT fluctuation of the generator increases, and as the short
circuit degree increases, the second, fourth and sixth harmonic amplitudes increase.
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